高二数学测试题 含答案解析

合集下载

高二数学试卷附答案解析

高二数学试卷附答案解析

高二数学试卷附答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.为研究语文成绩和英语成绩之间是否具有线性相关关系,统计两科成绩得到如图所示的散点图(两坐标轴单位长度相同),用回归直线近似地刻画其相关系,根据图形,以下结论最有可能成立的是( )A .线性相关关系较强,的值为3.25B .线性相关关系较强,的值为0.83C .线性相关关系较强,的值为-0.87 D.线性相关关系太弱,无研究价值 2.已知函数在上满足,则曲线在处的切线方程是( )A .B .C .D .3.关于复数,给出下列判断: ①;②;③;④.其中正确的个数为( ) A .1 B .2 C .3 D .4 4.直线被圆截得的弦长等于( )A .B .C .D .5.已知函数的导数为,()A. B. C. D.6.7.设椭圆与函数的图象相交于两点,点为椭圆上异于的动点,若直线的斜率取值范围是,则直线的斜率取值范围是()A. B. C. D.8.已知实数、满足约束条件,则的最大值为( ) A.24 B.20 C.16 D.129.设满足约束条件,则目标函数的取值范围为()A. B. C. D.10.设,,则是成立的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件11.数列的通项公式,则该数列的前()项之和等于。

A. B. C. D.12.已知等差数列的公差为,且成等比数列,则等于()A.-4 B.-6 C.-8 D.813.下列命题中,真命题是()A.B.C.的充要条件是D.是的充分条件14..已知f(x),g(x)都是定义在R上的函数,f(x)=a x×g(x),(a>0且a¹1),,在有穷数列{}(n=1,2,¼,10)中,任取正整数k(1£k£10),则数列{}前k项和大于的概率是( )A. B. C. D.15.函数的图象在点处的切线的斜率等于()A. B.1 C. D.16.设等差数列的前项和为,若,则()A.63B.45C.36D.2717.设,,则的大小关系()A. B. C. D.18.若a,b在区间[0,]上取值,则函数f(x)=ax3+bx2+ax在R上有两个相异极值点的概率是()A. B. C. D.1-19.“有些指数函数是减函数,是指数函数,所以是减函数”上述推理()A.大前提错误 B.小前提错误 C.推理形式错误 D.以上都不是20.()A. B. C. D.二、填空题21.设n 为正整数,f (n)=1+++…+,计算得f(2)=,f(4)>2,f(8)> ,f(16)>3,观察上述结果,可推测一般的结论为_________________.22.若函数存在有零点,则m的取值范围是__________;23.200辆汽车经过某一雷达测速地区,时速频率分布直方图如图所示,则时速不低于的汽车数量为_________.24.已知数列的前项和,则数列的通项公式为___________.25.下列几个命题:①方程有一个正实根,一个负实根,则;②和表示相同函数;③ 函数是非奇非偶函数; ④方程有两解,则其中正确的有___________________. 26. 双曲线上的点P 到点(5,0)的距离为8.5,则点P 到左准线的距离为___ ____.27.函数的图象如图2所示,则。

高二数学试卷带答案解析

高二数学试卷带答案解析

高二数学试卷带答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.已知变量和满足关系,变量与正相关.下列结论中正确的是( )A .与正相关,与负相关B .与正相关,与正相关C .与负相关,与负相关D .与负相关,与正相关2..若椭圆交于A ,B 两点,过原点与线段AB中点的连线的斜率为,则的值是( )3.关于空间两条直线、与平面,下列命题正确的是( ) A .若,则 B .若,则 C .,则 D .若则4. 抛物线的准线方程是A .B .C .D .5.如图,在正方体中,分别为的中点,则异面直线与所成的角等于( ) A .B .C .D .6.已知在R上开导,且,若,则不等式的解集为()A. B. C. D.7.函数在区间内是增函数,则实数的取值范围是()A. B. C. D.8.若,则下列结论一定正确的是A. B. C. D.9.与椭圆共焦点且过点的双曲线方程是()A.B.C.D.10.下表是之间的一组数据,则的线性回归直线必过点A.B.C.D.11.已知函数,则()A.32 B.16 C. D.12.给出函数的一条性质:“存在常数,使得对于定义域中的一切实数均成立”,则下列函数中具有这条性质的函数是()A. B. C. D.13.已知是球表面上的点,,,,,则球的表面积等于A.4 B.3 C.2 D.14.下列命题中错误的是A.如果平面⊥平面,那么平面内一定存在直线平行于平面B.如果平面不垂直于平面,那么平面内一定不存在直线垂直于平面C如果平面⊥平面,平面⊥平面,,那么⊥平面D.如果平面⊥平面,那么平面内所有直线都垂直于平面15.如右图的流程图,若输出的结果,则判断框中应填A. B. C. D.16.已知直线与椭圆相交于A,B两点,若椭圆的离心率为,焦距为2,则线段AB的长是()A. B. C. D.217.已知各项为正数的等比数列中,,,则等于()A.B.7C.6D.18.用数学归纳法证明由到时,不等式左边应添加的项是()A.B.C.D.19.a,b,c成等比数列是b=的()A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分又不必要条件20.现有一段长为18m的铁丝,要把它围成一个底面一边长为另一边长2倍的长方体形状的框架,当长方体体积最大时,底面的较短边长是()A.1 m B.1.5 m C.0.75 m D.0.5 m二、填空题21.对于任意实数,不等式恒成立,则实数的取值范围是;22.已知命题p :所有有理数都是实数,命题q:正数的对数都是负数.则下列命题中为真命题的是________(填所有真命题的序号).①(¬p)∨q;②p∧q;③p∨q;④(¬p)∨(¬q).23.已知关于的不等式的解集为,则关于的不等式的解集为________.24.设f(x)是定义在R上的函数.且满足,如果25.为了考察某校各班参加课外书法小组的人数,在全校随机抽取5个班级,把每个班级参加该小组的认为作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互相不相同,则样本数据中的最大值为________.26.2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有 *** .(用数字回答)K^S*5U.C#O27.已知圆锥的母线长为5cm,侧面积为15πcm2,则此圆锥的体积为 cm3.28.如图所示的是2008年北京奥运会的会徽,其中的“中国印”由四个色块构成,可以用线段在不穿越其他色块的条件下将其中任意两个色块连接起来(如同架桥).如果用三条线段将这四个色块连接起来,不同的连接方法的种数共有种.29.已知有限集.如果中元素满足,就称为“复活集”,给出下列结论:①集合是“复活集”;②若,且是“复活集”,则;③若,则不可能是“复活集”;④若,则“复合集”有且只有一个,且.其中正确的结论是.(填上你认为所有正确的结论序号).30.过抛物线的焦点作直线交抛物线于两点,若,则直线的倾斜角。

高二数学试卷附答案解析

高二数学试卷附答案解析

高二数学试卷附答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测。

方法一:在8箱子中各任意抽查一枚;方法二:在4箱中各任意抽查两枚。

国王用方法一、二能发现至少一枚劣币的概率分别为和,则( ) A .=B .>C .<D .以上三种情况都有可能2.如图,甲站在水库底面上的点处,乙站在水坝斜面上的点处,已知库底与水坝所成的二面角为,测得从到库底与水坝的交线的距离分别为米、米,又已知米,则甲乙两人相距( )米.A .50B .C .60D .703.设、分别为双曲线的左、右焦点.若在双曲线右支上存在点,满足,且到直线的距离等于双曲线的实轴长,则该双曲线的渐近线方程为( ) A .B .C .D .4.有个球,其中个一样的黑球,红、白、蓝球各个,现从中取出个球排成一列,则所有不同的排法种数是( ) A .B .C .D .5.在区间上函数和函数在同一点取得相同的最小值,那么在上的最大值是( )A. B. C.8 D.46.函数的定义域为开区间,导函数在内的图象如图所示,则函数在开区间内极值点有()A.1个 B.2个 C.3个 D.4个7.用反证法证明命题“若自然数,,的积为偶数,则,,中至少有一个偶数”时,对结论正确的反设为()A.,,中至多有一个偶数B.,,都是奇数C.,,至多有一个奇数D.,,都是偶数8.是椭圆上一点,是椭圆的焦点,则的最大值是()A.4 B.6 C.9 D.129.已知等差数列中,的值是()A.15 B.30 C. 31 D. 6410.点M的极坐标是(),则点M的直角坐标为()A.(,) B.(,) C.(,) D.以上都不对11.给出下列命题:(1)导数f′(x)=0是y=f(x)在x处取得极值的既不充分也不必要条件;(2)若等比数列的n项sn=2n+k,则必有k=﹣1;(3)若x∈R+,则2x+2﹣x的最小值为2;(4)函数y=f(x)在[a,b]上必定有最大值、最小值;(5)平面内到定点(3,﹣1)的距离等于到定直线x+2y﹣1的距离的点的轨迹是抛物线.其中正确命题的序号是.12.设点A为双曲线的右顶点,则点A到该双曲线的一条渐近线的距离是()A. B.3 C. D.13.已知集合M={x|},N={x|},则M∩N=()A.{x|-1≤x<1}B.{x|x>1}C.{x |-1<x<1}D.{x |x≥-1}14.已知分别是椭圆的左、右焦点,是以为直径的圆与该椭圆的一个交点,且,则这个椭圆的离心率是()A. B. C. D.15.设全集,集合{或},,则=()A.B.C.D.16.过抛物线的焦点作倾斜角为的直线交抛物线于两点,若线段的中点坐标为,则的值为( )A. B. C. D.17.已知点表示的平面区域内的一个动点,且目标函数的最大值为7,最小值为1,则的值为()A.2 B. C.-2 D.-118.从七个数中,每次选不重复的三个数作为直线方程的系数,则倾斜角为钝角的直线共有()条.A.14; B.30; C.70; D.6019.直线的倾斜角的取值范围是()A.B.C.D.20.设集合A={﹣1,0,1,2,3},B={x|y=ln(x2﹣2x)},则A∩B=()A.{3} B.{2,3} C.{﹣1,3} D.{0,1,2}二、填空题21.一个几何体的三视图如图所示,则这个几何体的体积等于.22.已知,,方程在[0,1]内只有一个根,则在区间[0,2016]内根的个数_________.23.如图,是一个无盖正方体盒子的表面展开图,A、B、C为其上的三个点,则在正方体盒子中,∠ABC等于()A.45° B.60° C.90° D.120°24.设有两个命题,p:关于x的不等式(a>0,且a≠1)的解集是{x|x<0};q:函数的定义域为R。

高二数学考试卷(附解答)

高二数学考试卷(附解答)

高二数学考试卷(附解答)高二数学考试卷(附解答)一、选择题(每题4分,共20分)1. 若函数f(x) = 2x + 1是单调递增函数,则实数a的取值范围是:A. a > -1B. a ≤ -1C. a > 1D. a ≤ 1解答:A. a > -12. 已知等差数列的前5项和为35,公差为3,首项为:A. 5B. 10C. 15D. 20解答:B. 103. 若复数z满足|z - 1| = |z + 1|,则z在复平面上对应的点位于:A. 实轴B. 虚轴C. 第一象限D. 第二象限解答:B. 虚轴4. 设函数g(x) = x^3 - 3x,下列说法正确的是:A. g(x)在(-∞, 0)上单调递增B. g(x)在(0, +∞)上单调递减C. g(x)的极小值点为x = 0D. g(x)的极大值点为x = 0解答:C. g(x)的极小值点为x = 05. 若平面α与平面β的交线为直线l,且直线l与直线a平行,则直线a与平面α的关系为:A. 在平面α内B. 平行于平面αC. 与平面α相交D. 在平面α的延长线上解答:B. 平行于平面α二、填空题(每题4分,共20分)1. 已知等比数列的前3项分别为2,4,__,则该数列的公比为______。

解答:8,22. 函数f(x) = x^2 - 4x + 3的图象与坐标轴的交点个数为______。

解答:33. 若矩阵A的行列式为2,则矩阵A的逆矩阵的元素满足______。

解答:元素乘以-1/2后与原矩阵对应元素相等4. 设平面α与平面β的夹角为θ,则sinθ等于______。

解答:平面α与平面β的法向量夹角的余弦值5. 已知三角形ABC的三边长分别为a,b,c,且cosA = 1/2,则三角形ABC的形状为______。

解答:等腰三角形或直角三角形三、解答题(每题10分,共30分)1. (10分)已知函数f(x) = x^2 - 4x + 3,求f(x)的最小值及取得最小值的x值。

高二数学试题大全

高二数学试题大全

高二数学试题答案及解析1.满足约束条件,则目标函数的最大值是()A.3B.4C.6D.8【答案】C【解析】略2.已知函数(1)求的单调递减区间;(2)若在区间上的最大值为20,求它在该区间上的最小值。

【答案】解:(1)----------------------------------------------------------------1分令,解得,----------------------------------3分所以函数的单调递减区间为。

--------------------5分(2)因为所以------------------------------------------------7分又因为上,所以在上单调递增,而在区间上单调递减,所以分别是在区间上的最大值和最小值。

所以,解得。

------------------10分故,,------------------11分即函数在区间上的最小值为-7. ----------------------------12【解析】略3.数列满足,(k为常数),则称数列是等比和数列,k称为公比和。

已知数列是以3为公比和的等比和数列,其中则_______【答案】【解析】略4.一校办服装厂花费2万元购买某品牌运动装的生产与销售权.根据以往经验,每生产1百套这种品牌运动装的成本为1万元,每生产(百套)的销售额(万元)满足:(1)该服装厂生产750套此种品牌运动装可获得利润多少万元?(2)该服装厂生产多少套此种品牌运动装利润最大?此时,利润是多少万元?【答案】解:(1),所以,生产750套此种品牌运动装可获得利润万元…………………………………4分(2)由题意,每生产(百件)该品牌运动装的成本函数,所以,利润函数…6分当时,,故当时,的最大值为.…9分当时,,故当时,的最大值为.…13分所以,生产600件该品牌运动装利润最大是3.7万元…………14分【解析】略5.(本题12分)已知函数的图象过点P(0,2),且在点M(-1,f(-1))处的切线方程为.(Ⅰ)求函数的解析式;(Ⅱ)求函数的单调区间.【答案】(Ⅰ)由的图象经过P(0,2),知d=2,所以……………………1分由在处的切线方程是,知……………………3分……………………5分故所求的解析式是……………………6分(Ⅱ)解得……………………8分当当……………………10分故内是增函数,在内是减函数……………………12分,【解析】略6.某几何体的三视图及其尺寸如右图,求该几何体的表面积和体积.【答案】解:由图知:该几何体是一个圆锥,……..(2分)它的底面半径为3,母线长为5,高为4,……..(4分)则它的表面积为:,……..(7分)它的体积为:.……..(10分)【解析】略7.已知圆与抛物线(p>0)的准线相切,则p= .【答案】2【解析】略8.已知点在椭圆上,则().点不在椭圆上. 点不在椭圆上.点在椭圆上.无法判断点、、是否在椭圆上【答案】C【解析】略9.4张软盘与5张光盘的价格之和不小于20元,而6张软盘与3张光盘的价格之和不大于24元,则买3张软盘与9张光盘至少需要元.【答案】22【解析】略10.已知,且则= .【答案】【解析】略11.若方程表示焦点在轴上的双曲线,则满足的条件是().A.且B.且C.且D.且【答案】C【解析】略12.【答案】A【解析】略13.若,其中,记函数①若图像中相邻两条对称轴间的距离不小于,求的取值范围;②若的最小正周期为,且当时,的最大值是,求的解析式,并说明如何由的图像变换得到的图像。

高二数学试题大全

高二数学试题大全

高二数学试题答案及解析1.已知关于的方程C:.(1)若方程表示圆,求的取值范围;(2)若圆与直线:相交于两点,且=,求的值.【答案】解:(1)方程C可化为………………2分显然时方程C表示圆。

………………4分(2)圆的方程化为圆心 C(1,2),半径…6分则圆心C(1,2)到直线l:x+2y-4=0的距离为………………………………………………8分,有解得m=4 …………10分【解析】略2.函数在区间上的图像如图所示,则n可能是()A.1B.2C.3D.4【答案】A【解析】略3.曲线上的点到直线的最短距离是()A.B.C.D.0【答案】A【解析】略4.直线经过P(2,1),Q(m∈R)两点,那么直线的倾斜角的取值范围是()A.[0,π)B.[0,]∪[,π)C.[0,]D.[0,]∪(,π)【答案】D【解析】略5.设,分别是椭圆E:+=1(0﹤b﹤1)的左、右焦点,过的直线与E相交于A、B 两点,且,,成等差数列。

(1)求;(2)若直线的斜率为1,求b的值。

【答案】(1)由椭圆定义知又 (4)(2)L的方程式为y=x+c,其中设,则A,B 两点坐标满足方程组 (6)化简得则 (8)因为直线AB的斜率为1,所以即 . (10)则解得.【解析】略6.给出下列命题:①已知,则;②为空间四点,若不构成空间的一个基底,那么共面;③已知,则与任何向量都不构成空间的一个基底;④若共线,则所在直线或者平行或者重合.正确的结论为()【答案】①②④)【解析】略7.设x,y满足约束条件,若目标函数z ="ax" + by(a > 0 ,b > 0)的最大值为12 ,则的最小值为A.B.C.D.4【答案】A【解析】略8.已知,则().A. B. C. D.A. B. C. D.【答案】C【解析】略9.如图,在△ABC中,AB=AC,∠C=720,⊙O过A、B两点且与BC相切于点B,与AC交于点D,连结BD,若BC=,则AC=【答案】2【解析】略10.(本小题满分12分)某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其他两观测点晚4s. 已知各观测点到该中心的距离都是1020m. 试确定该巨响发生的位置.(假定当时声音传播的速度为340m/ s :相关各点均在同一平面上).【答案】巨响发生在接报中心的西偏北45°距中心处。

高二数学试题答案解析

高二数学试题答案解析

高二数学试题答案解析一、选择题1. 选择题答案解析本题考查了集合的基本概念和运算。

根据题目所给的集合A和B,我们可以列出它们的元素,并进行交集和并集的运算。

通过比较选项,我们可以得出正确答案为C。

2. 选择题答案解析这是一个关于函数奇偶性的题目。

首先,我们需要根据函数的定义域来判断函数是否具有奇偶性。

然后,通过代入特定的值,比如0和-1,来验证我们的判断。

最终,我们可以确定答案为B。

3. 选择题答案解析题目涉及了三角函数的图像和性质。

我们需要根据三角函数的周期性、振幅和相位等特征,来判断哪个选项的图像与题目描述相符。

通过逐一排除法,我们可以得出正确答案为D。

二、填空题1. 填空题答案解析本题要求我们求解一个二次方程的根。

我们可以通过因式分解或者使用求根公式来求解。

注意,二次方程可能有两个实根,也可能有一个重根和一个虚根。

在解答时,我们需要仔细检查并给出所有可能的解。

2. 填空题答案解析这是一个关于数列求和的题目。

我们需要根据题目给出的数列的前几项,来推断数列的通项公式。

然后,利用求和公式计算前n项和。

在计算过程中,要注意区分等差数列和等比数列的求和公式。

三、解答题1. 解答题答案解析本题主要考查了平面几何中的证明题。

我们需要根据题目给出的条件,利用几何定理和公理来证明两个图形的相似性或者相等性。

在解答过程中,要注意逻辑推理的严密性,确保每一步都有充分的依据。

2. 解答题答案解析这是一个关于导数和函数极值的题目。

我们需要先求出函数的导数,然后找出导数为零的点,这些点可能是函数的极值点。

接着,我们需要判断这些点是极大值还是极小值,这通常通过二阶导数的符号来判断。

最后,我们需要计算出这些极值的具体数值。

3. 解答题答案解析本题考查了概率论中的事件概率计算。

我们需要根据题目描述,明确事件之间的关系,比如互斥事件、独立事件等。

然后,根据概率公式,如加法公式和乘法公式,来计算所求事件的概率。

在计算过程中,要注意条件概率和非条件概率的区别。

高二数学试题大全

高二数学试题大全

高二数学试题答案及解析1.已知函数的图象与轴切于(1,0)点,则函数的极值是()A.极大值为,极小值为0B.极大值为0,极小值为C.极大值为0,极小值为-D.极大值为-,极小值为0【答案】A【解析】略2.已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且(1)求证:不论λ为何值,总有平面BEF⊥平面ABC;(2)当λ为何值时,平面BEF⊥平面ACD?【答案】(1)∵AB⊥平面BCD,∴AB⊥CD,CD⊥BC,AB∩BC=B∴CD⊥平面ABC.又∴EF∥CD,∴EF⊥平面ABC, EF平面BEF, 所以平面BEF⊥平面ABC(2)∵CD⊥平面ABC ∴平面ABC⊥平面ACD,BE平面ABC, 只需BE⊥AC,就有BE⊥平面ACD,从而就有平面BEF⊥平面ACD。

∵BC=CD="1," ∠BCD=90°,∴,又∠ADB=60°,∴当BE⊥AC时,,即当λ=时,平面BEF⊥平面ACD。

【解析】略3.若命题“”为真,“”为真,则A.p真q真B.p假q假C.p真q假D.p假q真【答案】D【解析】略4.抛掷一枚质地均匀的硬币,如果连续抛掷1000次,那么第999次出现正面朝上的概率是()A.B.C.D.【答案】D【解析】略5.一人在打靶中连续射击两次,事件“至少有一次中靶”的互斥事件是()A.至多有一次中靶B.两次都中靶C.两次都不中靶D.只有一次中靶【答案】C【解析】略6.方程()所表示的直线恒过点()A.(2,3)B.(-2,-3 )C.(-2,3)D.(3,-2)【答案】C【解析】略7.请先阅读:在等式的两边对x求导.由求导法则得化简后得等式利用上述想法(或者其他方法),试由等式,证明【答案】证明:在等式两边对x求导得.移项得(*)【解析】略8.已知△ABC的内角A、B、C所对的边分别为且,.(1) 若,求的值;(2) 若△ABC的面积,求的值.【答案】解:(1) ∵cosB=>0,且0<B<π,∴sinB=. ……2分由正弦定理得,……4分. ……6分(2) ∵S△ABC=acsinB=4,……8分∴,∴c="5. " ……10分由余弦定理得b2=a2+c2-2accosB,∴.……12分【解析】略9.若点P在曲线上移动,求经过P的切线的倾斜角的取值范围()A.B.C.D.【答案】B【解析】略10.的展开式中的系数是(※)A.B.C.3D.4【答案】A【解析】略11.函数在区间上有最小值,则函数在区间上一定()A.有最小值B.有最大值C.是减函数D.是增函数【答案】D【解析】略12.(本小题满分12分)对一切正整数n都成立,求正整数a的最大值,若不等式******.k.&s.5*u.c.o~m并用数学归纳法证明你的结论。

高二数学试卷带答案解析

高二数学试卷带答案解析

高二数学试卷带答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.若是定义在上的奇函数,当时,(为常数),则 A .B .C .D .2.已知函数的导数为,则数列的前项和是( )A .B .C .D .3.有个球,其中个一样的黑球,红、白、蓝球各个,现从中取出个球排成一列,则所有不同的排法种数是( ) A .B .C .D .4.下列说法正确的是A .平行投影的投影线相交于一点,中心投影的投影线相交于一点B .平行投影的投影线相交于一点,中心投影的投影线互相平行C .平行投影的投影线互相平行,中心投影的投影线互相平行D .平行投影的投影线互相平行,中心投影的投影线相交于一点5.函数在点处的切线方程是( ) A .B .C .D .6.已知三棱柱 的侧棱与底面边长都相等,在底面上的射影为的中点, 则异面直线与所成的角的余弦值为( )A .B.C.D.7.已知点P在曲线y=上,为曲线在点P处的切线的倾斜角,则的取值范围是A.[0,) B. C. D.8.已知正四棱柱中,=,为重点,则异面直线与所成角的余弦值为( )A. B. C. D.9.如图,设四面体各棱长均相等,分别为中点,则在该四面体的面上的射影是下图中的()A. B. C. D.10.对于R上可导的任意函数f(x),若满足(x-1)³0,则必有()A.f(0)+f(2)<2f(1)B.f(0)+f(2)£2f(1)C.f(0)+f(2)³2f(1)D.f(0)+f(2)>2f(1)11.若命题“p或q”为真,“非p”为真,则()A.p真q真 B.p假q真 C.p真q假 D.p假q假12.已知函数f(x)满足f(1)=1,且f(x)的导数,则不等式的解集为()A. B.(1,+ ∞) C. (-∞,-1) D. (-1.1)13.已知是边长为1的正三角形所在平面外一点,且,分别是的中点,则异面直线与所成角的余弦值为()A. B. C. D.14.(2010秋•郑州期末)两条平行线l1:3x+4y﹣2=0,l2:ax+6y=5的距离等于()A. B. C. D.15.如图所示,以边长为1的正方形的一边为直径在其内部作一半圆。

高二数学试题答案及解析

高二数学试题答案及解析

高二数学试题答案及解析1.在求由及围成的曲边梯形的面积时,在区间上等间隔地插入个分点,分别过这些分点作x轴的垂线,把曲边梯形分成个小曲边梯形,下列说法中正确的是( )A.个小曲边梯形的面积和等于B.个小曲边梯形的面积和小于C.个小曲边梯形的面积和大于D.个小曲边梯形的面积和与之间的大小关系无法确定【答案】A【解析】个小曲边梯形是所给曲边梯形等距离分割得到的,因此其面积和为,∴A正确,B,C,D错误,故选A.【考点】积分求曲边梯形的面积.2.汽车以速度v做匀速直线运动时,经过时间t所行驶的路程s=vt.如果汽车做变速直线运动,在时刻t的速度为v(t)=t2+2(单位:km/h),那么它在1≤t≤2(单位:h)这段时间行驶的路程是多少?【答案】【解析】将区间[1,2]等分成n个小区间,第i个小区间为,∴si=,sn==3n+[02+12+22+…+(n-1)2]+[0+2+4+6+…+2(n-1)]=3+.∴s=sn==.∴这段时间行驶的路程为.【考点】定积分的概念.3.若函数,则等于()A.1B.0C.D.【答案】C【解析】 ,所以选C.4.已知复数,则( )A.B.的实部为1C.的虚部为-1D.的共轭复数为1+i【答案】C【解析】, 的模为 ,的实部为 ,的虚部为,的共轭复数为,故选C. 5.已知复数满足,则A.B.C.D.【答案】A【解析】根据题意,由于复数满足,则可知,故可知答案为A.【考点】复数的运算点评:主要是考查了复数的计算,属于基础题。

6.用数学归纳法证明,则当时左端应在的基础上增加(). A.B.C.D.【答案】D【解析】当时,等式左端,当时,等式左端,增加了项,故选D.【考点】数学归纳法.7.设是复数,则下列命题中的假命题是()A.若,则B.若,则C.若,则D.若,则【答案】D【解析】对于A中,若,则,所以是正确的;对于B中,若,则和互为共轭复数,所以是正确的;对于C中,设,若,则,,所以是正确的;对于D中,若,则,而,所以不正确,故选D.【考点】复数的概念与运算.8.若函数,当时,函数有极值.(1)求函数的解析式;(2)若方程有3个不同的根,求实数的取值范围.【答案】(Ⅰ)(Ⅱ)【解析】先根据题目条件求出的值,然后再利用导数的几何意义即可求得曲线在点处的切线方程;(2)先求出函数单调区间以及各个极值,再采用数形结合的方法就可求出方程有个不同的根时,实数的取值范围.试题解析:解(1),由题意得,解得故所求函数的解析式为.,,在点处的切线方程为:,即.(2)由(1)可得,令,得或.当变化时,,的变化情况如下表:因此,当时,有极大值,当时,有极小值,所以函数的图象大致如图所示.若有个不同的根,则直线与函数的图象有个交点,所以.【考点】1、导数在函数研究中的应用;2、极值,单调区间,函数的零点.9.______________【答案】【解析】由定积分公式,应填答案。

高二数学试题大全

高二数学试题大全

高二数学试题答案及解析1. 如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左右焦点F 1、F 2为顶点的三角形的周长为。

一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线PF 1和PF 2与椭圆的焦点分别为A 、B 和C 、D 。

(1)求椭圆和双曲线的标准方程(2)设直线PF 1、PF 2的斜率分别为k 1、k 2,证明:k 1·k 2=1 (3)是否存在常数,使得|AB|+|CD|=|AB|·|CD|恒成立? 若存在,求的值,若不存在,请说明理由。

【答案】(Ⅰ)由题意知,椭圆离心率为,得,又,得,,所以所以椭圆的标准方程为; (2)所以椭圆的焦点坐标为(,0),因为双曲线为等轴双曲线,且顶点是该椭圆的焦点,所以该双曲线的标准方程为。

…………4 (Ⅱ)设点P (,),=,=,∴=…6点P (,)在双上,有,即,∴=1 (8)(Ⅲ)假设存在常数,使得恒成立,则由(Ⅱ)知,所以设直线AB 的方程为,则直线CD 的方程为, 由方程组消y 得:,设,,则由韦达定理得: (9)所以|AB|==,同理可得 (10)|CD|===, (11)又因为,所以有=+=,所以存在常数,成立。

【解析】略2. 在区间上随机取一个数,则的概率为【答案】 【解析】略3. 抛物线的焦点坐标为( ).A .B .C .D .【答案】B【解析】略4.已知函数,(Ⅰ)求函数的最小值;(Ⅱ)已知,命题p:关于x的不等式对任意恒成立;命题:指数函数是增函数.若“p或q”为真,“p且q”为假,求实数的取值范围.【答案】解:(Ⅰ)由得作出函数的图象,可知函数在处取得最小值1.。

4分(Ⅱ)由(Ⅰ)得,即,解得,∴命题p:.。

6分对于命题q,函数是增函数,则,即,∴命题q:或.。

8分由“p或q”为真,“p且q”为假可知有以下两个情形:若p真q假,则解得,。

10分若p假q真,则解得或,故实数m的取值范围是.。

高二数学试题及其答案解析(精致版)

高二数学试题及其答案解析(精致版)

7 已知函数 f (x) 的导函数为 f ′ (x),满足 f (x) = 1 x3 + ax2 + bx + 2,f ′ (x + 2) = f ′ (4 − x),若 f (x) ⩾ 3
6x ln x + 2 恒成立,则实数 b 的取值范围为 ( )
A. [4 + ln 2, +∞)
B. [5 + ln 5, +∞)
目录

导数的综合应用2 2
06


复数与三角 4
15

离散型随机变量与 第
分布列
6 讲
21

01
1 导数的综合应用1


11
3 复数的概念与运算


18
5 复数的几何意义

25
参考答案
高二数学目标强基计划班练习册
第 1 讲 导数的综合应用 1
检测题
1 若过点 P (−1, m) 可作曲线 f (x) = −x3 + 6x2 的三条切线,则实数 m 的取值范围为 ( ).
C. [6 + 4 ln 3, +∞)
D. [6 + 6 ln 6, +∞)
第 1 讲 导数的综合应用 1
3
高二数学目标强基计划班练习册
8
设函数
f (x) =
e2x2 + 1 ,g (x) = x
e2x ex
,对任意
x1,x2 ∈ (0, +∞),不等式
g (x1) k

f (x2) k+1
恒成立,则正数
① 若 −1 < λ < 0,则 f (x1) < f (x2); ② 若 0 < λ < 2,则 f (x1) < f (x2); ③ 若 λ > 2,则 f (x1) < f (x2). 其中正确结论的个数为 ( )

高二数学试卷带答案解析

高二数学试卷带答案解析

高二数学试卷带答案解析考试范围:xxx;考试时间:xxx分钟;出题人:xxx姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.已知某车间加工零件的个数与所花费时间之间的线性回归方程为,则加工600个零件大约需要的时间为A. B. C. D.2.椭圆+=1的右焦点到直线y=x的距离是 ()A. B. C.1 D.3.某单位200名职工中,年龄在岁以上占,岁占,岁以下占;现要从中抽取40名职工作样本。

若用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第组抽出的号码为,则第8组抽出的号码应是___①_;若用分层抽样方法,则40岁以下年龄段应抽取__②_人.①②两处应填写的数据分别为().A. B. C. D.4.在对某样本进行实验时,测得如下数据:则与之间的回归直线方程为()3254A、B、C、D、5.在展开式中的系数为,则()A. B. C. D.6.设函数,则( )A.为的极小值点B.为的极大值点C.为的极小值点D.为的极大值点7. ABCD为长方形,AB=4,BC=2,O为AB的中点。

在长方形ABCD内随机取一点,取到的点到O的距离小于2的概率为()A. B. C. D.8.下列关于函数、函数的定义域、函数的值域、函数的对应法则的结构图正确的是()9.(2012春•武汉校级期末)若三直线2x+3y+8=0,x﹣y﹣1=0和x+ky=0相交于一点,则k=()A.﹣2 B. C.2 D.10.某天上午要排语文、数学、体育、计算机四节课,其中体育不排在第一节,那么这天上午课程表的不同排法共有()A.6种 B.9种 C.18种 D.24种11.《九章算术》是我国古代数学名著,在其中有道“竹九问题”“今有竹九节,下三节容量四升,上四节容量三升.问中间二节欲均容各多少?”意思为 :今有竹九节,下三节容量和为4升,上四节容量之和为3升,且每一节容量变化均匀(即每节容量成等差数列).问每节容量各为多少?在这个问题中,中间一节的容量为()A. B. C. D.12.函数是定义在R上的偶函数,且满足时,,若方程恰有三个不相等的实数根,则实数的取值范围是()A. B. C. D.13.已知为上的可导函数,且,均有,则有()A.,B.,C.,D.,14.设x>0,y>0,M=,N=+,则M,N的大小关系是()A.M>NB.M<NC.M=ND.不确定15.在如图所示的“茎叶图”表示的数据中,众数和中位数分别是().A.23与26B.31与26C.24与30D.26与3016.某几何体的三视图如图所示,则该几何体的体积是()A.B.C.D.17.若,,分别为正三角形的边,,的中点,以△为底面,把△,△,△折起使,,重合为一点,则下列关于线段与的论述不正确的为()A.垂直 B.长度相等 C.异面 D.夹角为18.若,则等于()A B CD19.已知函数(且)是上的减函数,则的取值范围是( )A .B .C .D .20.已知集合则A .B .C .D .二、填空题 21.若数列{},(n ∈N )是等差数列,则有数列b =(n ∈N )也是等差数列,类比上述性质,相应地:若数列{c }是等比数列,且c >0(n ∈N ),则有d ="____________" (n ∈N )也是等比数列。

高二数学试题答案及解析

高二数学试题答案及解析

高二数学试题答案及解析1.“金导电,银导电,铜导电,铁导电,所以一切金属都导电”.此推理方法是()A.类比推理B.归纳推理C.演绎推理D.以上都不对【答案】B【解析】归纳推理由是部分到整体, 由个别到一般的推理.故选B.【考点】归纳推理特点.2.某公司的组织结构图如图所示,则开发部的直接领导是__________.【答案】总经理【解析】从题设中提供的组织结构图可以看出开发部的直接领导是总经理,应填答案总经理。

3.用反证法证明:如果,那么。

【答案】如下【解析】假设x2+2x-1=0则(x+1)2=2∴x=-1±此时x<与已知x>矛盾,故假设不成立.∴原命题成立4.观察下列等式:,,,,由以上等式推测:对于,若则=______【答案】【解析】由已知中的式了,我们观察后分析:等式右边展开式中的第三项分别为:1,3,6,10,…,即:1,1+2.1+2+3,1+2+3+4,…根据已知可以推断:第n(n∈N*)个等式中为:1+2+3+4+…+n=【考点】归纳推理5.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=( )A.28B.76C.123D.199【答案】C【解析】观察各等式的右边,它们分别为1,3,4,7,11,…,发现从第3项开始,每一项就是它的前两项之和,故等式的右边依次为1,3,4,7,11,18,29,47,76,123,…故a10+b10=123.6.观察下列等式:,,,……,由以上等式推测到一个一般的结论:对于n∈,;【答案】【解析】根据题意,由于下列等式:,,,……,由以上等式推测到一个一般的结论:左边为和式,右边为1减去项数加1乘以2的项数次幂的倒数,故可知对于n∈,【考点】归纳推理点评:主要是考查了归纳推理的运用,属于基础题。

7.观察下列等式:13+23=32, 13+23+33=62, 13+23+33+43=102,…,根据上述规律,第五个等式为_______【答案】13+23+33+43+53+63=212【解析】由13+23=(1+2)2=32;13+23+33=(1+2+3)2=62;13+23+33+43=(1+2+3+4)2=102得,第五个等式为13+23+33+43+53+63=(1+2+3+4+5+6)2=212.8.某人进行了如下的“三段论”推理:如果,则是函数的极值点,因为函数在处的导数值,所以是函数的极值点.你认为以上推理的()A.小前提错误B.大前提错误C.推理形式错误D.结论正确【答案】B【解析】还必须左增右减或者左减右增才是极值点,所以大前提错误.【考点】合情推理与演绎推理.9.观察下列各式:,,则()A.28B.76C.123D.199【答案】C【解析】观察可得各式的值构成数列1,3,4,7,11,…,其规律为从第三项起,每项等于其前相邻两项的和,所求值为数列中的第十项.继续写出此数列为1,3,4,7,11,18,29,47,76,123,…,第十项为123,即【考点】归纳推理10.已知三角形的三边分别为,内切圆的半径为,则三角形的面积为;四面体的四个面的面积分别为,内切球的半径为。

高二数学试题答案及解析

高二数学试题答案及解析

高二数学试题答案及解析1.已知实数,设命题:函数在上单调递减;命题:不等式的解集为,如果为真,为假,求的取值范围.【答案】.【解析】命题:函数在上单调递减,可得:. 命题:不等式的解集为,可得,如果为真,为假,可得只能一真一假,解出即可.试题解析:由函数在上单调递减可得,,解得.设函数,可知的最小值为,要使不等式的解集为,只需,因为或为真,且为假,所以只能一真一假,当真假时,有,无解;当假真时,有,可得,综上,的取值范围为.2.设函数,则()A.2B.-2C.5D.【答案】D【解析】由得:,所以,则,故选D.3.“”是“方程为双曲线的方程”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】若方程表示椭圆,则,解得且,所以是方程表示椭圆的必要不充分条件,故选B.【考点】椭圆的标准方程;必要不充分条件的判定.4.函数,则的值为( )A.B.C.D.【答案】B【解析】解答:f ( x)=sin x+e x,∴f′(x)=cos x+e x,∴f′(0)=cos0+e0=1+1=2,故选:B5.“”是“”成立的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】由题可得,而,故应选择A.【考点】充要条件6.如果椭圆的弦被点(4,2)平分,则这条弦所在的直线方程是A.B.C.D.【答案】D【解析】略7.如图:已知为抛物线上的动点,过分别作轴与直线的垂线,垂足分别为,则的最小值为_____________.【答案】【解析】抛物线的准线方程是,又根据抛物线的几何性质,抛物线上的点到焦点的距离等于其到准线的距离所以,的最小值就是点到直线的距离,所以点到直线的距离,即的最小值是,故填:.【考点】抛物线的几何意义【方法点睛】本题考查了抛物线的几何性质,属于基础题型,当涉及圆锥曲线内线段和的最小或线段差的最大时,经常使用圆锥曲线的定义进行转化,比如本题,抛物线上任一点到焦点的距离和到准线的距离相等,所以将到轴的距离转化为,这样通过几何图形就比较容易得到结果.8.已知椭圆()的离心率为,短轴的一个端点为.过椭圆左顶点的直线与椭圆的另一交点为.(1)求椭圆的方程;(2)若与直线交于点,求的值;(3)若,求直线的倾斜角.【答案】(1);(2);(3)或.【解析】(1)根据条件可得,,再结合条件,计算得到,和,求得椭圆的标准方程;(2)首先设,根据点的坐标求出直线的方程,并计算得到点的坐标,并表示,最后根据点在椭圆上,满足椭圆方程,计算得到常数;(3)设直线方程与椭圆方程联立,根据弦长公式,解得直线的斜率,最后得到直线的倾斜角.试题解析:(1)∵∴∴椭圆的方程为(2)由(1)可知点,设,则令,解得,既∴又∵在椭圆上,则,∴(3)当直线的斜率不存在时,不符合题意;当直线的斜率存在时,设其为,则由可得,由于,则设可得,,∴∴解得∴直线的倾斜角为或.【考点】1.椭圆方程;2.弦长公式;3.直线与椭圆相交的综合问题.9.已知点是双曲线右支上一点,分别是双曲线的左、右焦点,为的内心,若成立,则双曲线的离心率为()A.4B.C.2D.【解析】如图,设圆I与的三边分别相切于点E、F、G,连接IE、IF、IG,则,它们分别是的高,,其中r是的内切圆的半径.由根据双曲线定义,得,∴2a=c⇒离心率为【考点】双曲线方程及性质10.抛物线的准线与双曲线的两条渐近线所围成的三角形的面积等于.【答案】【解析】抛物线的准线方程为,双曲线的渐近线方程为,所以所要求的三角形的面积为;【考点】1.抛物线的几何性质;2.双曲线的几何性质;11.命题“”的否定是()A.B.C.D.【答案】D【解析】由特称命题的否定为全称命题可知,所求命题的否定为,,故应选.【名师】本题主要考查特称命题的否定,其解题的关键是正确理解并识记其否定的形式特征.先把存在量词(或全称量词)改为全称量词(或存在量词),再否定结论即可;扎根基础知识,强调教材的重要性,充分体现了教材在高考中的地位和重要性,考查了基本概念、基本规律和基本操作的识记能力.【考点】含一个量词的命题的否定.12.已知双曲线的一个焦点为,且双曲线的渐近线与圆相切,则双曲线的方程为()A.B.C.D.【解析】依题意有,解得,所以方程为.【考点】双曲线的概念与性质.13.设抛物线的焦点为,直线过且与交于两点,若,则的方程为()A.或B.或C.或D.或【答案】C【解析】设A(x1,y1),B(x2,y2),又F(1,0),则=(1-x1,-y1), =(x2-1,y2),由题意知=3,因此即又由A、B均在抛物线上知解得直线l的斜率为=±,因此直线l的方程为y= (x-1)或y=- (x-1).故选C.14.已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)函数关系式为,则使该生产厂家获取最大年利润的年产量为.【答案】9万件【解析】求出函数的导函数,由导函数等于0求出极值点,结合实际意义得到使该生产厂家获取最大年利润的年产量.解:由,得:y′=﹣x2+81,由﹣x2+81=0,得:x1=﹣9(舍),x2=9.当x∈(0,9)时,y′>0,函数为增函数,当x∈(9,+∞)时,y′<0,函数为减函数,所以当x=9时,函数有极大值,也就是最大值,为(万元).所以使该生产厂家获取最大年利润的年产量为9万件.故答案为9万件.点评:本题考查了函数在某点取得极值的条件,考查了运用导函数判断原函数的单调性,此题是基础题.15.求下列函数的导数:(1);(2).【答案】(1);(2).【解析】直接利用导数的乘除法则及基本初等函数的求导公式求解.试题解析:(1)(2).16.已知中心在原点,焦点在轴上的椭圆,离心率,且椭圆过点.(1)求椭圆的方程;(2)设椭圆左、右焦点分别为,过的直线与椭圆交于不同的两点,则的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.【答案】(Ⅰ);(Ⅱ)(1);(2),.【解析】(1)本问主要考查待定系数法求椭圆标准方程,首先设椭圆方程为,然后根据条件列方程组,求解后即得到椭圆标准方程;(2)本问主要考查直线与椭圆的综合问题,分析可知,内切圆面积最大时即为内切圆半径最大,的面积可以表示为,由椭圆定义可知的周长为定值,这样的面积转化为,然后再根据直线与椭圆的位置关系,的面积表示为,这样可以联立直线方程与椭圆方程,消去未知数,得到关于的一元二次方程,根据韦达定理,表示出,最后转化为关于的函数,即可求出最值.试题解析:(Ⅰ)由题意可设椭圆方程为.则,解得:椭圆方程为,(Ⅱ)设,不妨,设的内切圆的半径,则的周长为因此最大,就最大,由题知,直线的斜率不为零,可设直线的方程为,由得,得 .则,令,可知,则,令,则,当时,,在上单调递增,有,即当时,,这时所求内切圆面积的最大值为.故直线内切圆面积的最大值为.点睛:直线与圆锥曲线问题一直以来都是考查的热点,一方面考查学生数形结合、划归转化思想的能力,另一方面考查学生分析问题及计算的能力.解题时注意到直线的斜率为0以及斜率不存在这两种特殊情况,这就决定我们在设直线方程时是选择用,还是用,这样可以避免讨论.在解决最值问题时,可以通过换元法,转化为函数、导数问题求最值,也可以利用不等式思想求最值,重点考查学生函数方程、不等式思想的应用.17.(本题满分13分)已知椭圆的离心率为,且它的一个焦点的坐标为.(Ⅰ)求椭圆的标准方程;(Ⅱ)设过焦点的直线与椭圆相交于两点,是椭圆上不同于的动点,试求的面积的最大值.【答案】(Ⅰ);(Ⅱ)的直线为l,分【解析】(Ⅰ)根据椭圆的离心率和焦距即可求出标准方程;(Ⅱ)设过焦点F1两类,若l的斜率不存在,求出答案,若l的斜率存在,不妨设为k,则l的方程为y=kx+1,根据韦达定理,弦长公式,点到直线的距离公式,得到,构造函数,利用导数求出函数的最值,问题得以解决试题解析:(Ⅰ)设椭圆的半焦距为,则.又由,可解得,所以,所以,椭圆的标准方程为.(Ⅱ)设过焦点的直线为.①若的斜率不存在,则,即,显然当在短轴顶点或时,的面积最大,此时,的最大面积为.②若的斜率存在,不妨设为,则的方程为.设.联立方程:消去整理得:,所以则.因为,当直线与平行且与椭圆相切时,此时切点到直线的距离最大,设切线,联立消去整理得:,由,解得:.又点到直线的距离,所以,所以.将代入得.令,设函数,则,因为当时,,当时,,所以在上是增函数,在上是减函数,所以.故时,面积最大值是.显然,所以,当的方程为时,的面积最大,最大值为.【考点】直线与圆锥曲线的关系;椭圆的标准方程;椭圆的简单性质.18.如图,已知椭圆的上、下顶点分别为A,B,点P在椭圆上,且异于点A,B,直线AP,BP与直线分别交于点M,N,(1)设直线AP,BP的斜率分别为,求证:为定值;(2)求线段MN的长的最小值;(3)当点P运动时,以MN为直径的圆是否经过某定点?请证明你的结论.【答案】(Ⅰ);(Ⅱ);(Ⅲ)或.【解析】(Ⅰ)随点运动而变化,故设点表示,进而化简整体消去变量;(Ⅱ)点的位置由直线,生成,所以可用两直线方程解出交点坐标,求出,它必是的函数,利用基本不等式求出最小值;(Ⅲ)利用的坐标求出圆的方程,方程必含有参数,消去一个后,利用等式恒成立方法求出圆所过定点坐标.试题解析:(Ⅰ),令,则由题设可知,∴直线的斜率,的斜率,又点在椭圆上,所以,(),从而有.(Ⅱ)由题设可以得到直线的方程为,直线的方程为,由,由,直线与直线的交点,直线与直线的交点.又,等号当且仅当即时取到,故线段长的最小值是.(Ⅲ)设点是以为直径的圆上的任意一点,则,故有,又,所以以为直径的圆的方程为,令解得,以为直径的圆是否经过定点和.【考点】直线的交点,圆的方程,圆过定点问题,基本不等式的应用.19.已知命题,则为()A.B.C.D.【答案】C【解析】命题为全称命题,则命题的否定应该将全称量词改为特称量词,然后否定结论,因此为:,故选D.【考点】全称命题的否定.20.已知命题,命题,若是的充分不必要条件,求的取值范围.【答案】【解析】根据一元二次不等式的解法分别求出命题和,由是的充分不必要条件,可知,从而求出的范围:试题解析::,解得;:,解得.∵,,∴,故有且两个等号不同时成立,解得,因此,所求实数的取值范围是.【考点】充分条件和必要条件的应用21.过抛物线y2=4x的焦点F的直线l与抛物线交于A、B两点,若A、B两点的横坐标之和为,则|AB|=()A. B. C. 5 D.【答案】D【解析】由抛物线定义得,选D.【考点】抛物线定义【方法点睛】1.凡涉及抛物线上的点到焦点距离时,一般运用定义转化为到准线距离处理.本题中充分运用抛物线定义实施转化,其关键在于求点的坐标.2.若P(x0,y)为抛物线y2=2px(p>0)上一点,由定义易得|PF|=x+;若过焦点的弦AB的端点坐标为A(x1,y1),B(x2,y2),则弦长为|AB|=x1+x2+p,x1+x2可由根与系数的关系整体求出;若遇到其他标准方程,则焦半径或焦点弦长公式可由数形结合的方法类似地得到.22.2x2-5x-3<0的一个必要不充分条件是()A.-<x<3B.-<x<0C.-3<x<D.-1<x<6【答案】D【解析】由,解得,所以的一个必要不充分条件是,故选D.【考点】充分条件与必要条件的判定.23.若,则“”是“”的().A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B【解析】因为,,所以,或;反之,时,一定可以得到,故“”是“”的必要而不充分条件,选B.【考点】充要条件24.已知命题p:x2+mx+1=0有两个不等的负根;命题q:4x2+4(m﹣2)x+1=0无实根.若命题p与命题q有且只有一个为真,求实数m的取值范围.【答案】m≥3,或1<m≤2【解析】根据题意,首先求得p、q为真时m的取值范围,再由题意p,q中有且仅有一为真,一为假,分p假q真与p真q假两种情况分别讨论,最后综合可得答案试题解析:若方程x2+mx+1=0有两不等的负根,则解得m>2,即命题p:m>2若方程4x2+4(m-2)x+1=0无实根,则Δ=16(m-2)2-16=16(m2-4m+3)<0解得:1<m<3.即q:1<m<3.因“p或q”为真,所以p、q至少有一为真,又“p且q”为假,所以命题p、q至少有一为假,因此,命题p、q应一真一假,即命题p为真,命题q为假或命题p为假,命题q为真.∴解得:m≥3或1<m≤2.【考点】1.复合命题的真假;2.一元二次方程的根的分布与系数的关系25.抛物线的焦点坐标是______【答案】(1,0)【解析】由抛物线方程可知焦点在y轴上,由,所以焦点为【考点】抛物线方程及性质26.设为直线与双曲线左支的交点,是左焦点,垂直于轴,则双曲线的离心率【答案】:【解析】设,则由题意,知.因为垂直于轴,则由双曲线的通径公式知,即,所以.又由,得,所以.【考点】双曲线的性质.【方法点睛】讨论椭圆的性质,离心率问题是重点,求椭圆的离心率的常用方法有两种:(1)求得的值,直接代入求得;(2)列出关于的一个齐次方程(不等式),再结合消去,转化为关于的方程(或不等式)再求解.27.设、分别为双曲线的左右项点,双曲线的实轴长为,焦点到渐近线的距离为.(1)求双曲线的方程;(2)已知直线与双曲线的右支交于、两点,且在双曲线的右支上存在点使,求的值及点的坐标.【答案】(1);(2),点.【解析】(1)由于实轴长为,可得,由双曲线的焦点到渐进线的距离可得,从而得其方程;(2)设,根据向量关系可得,联立直线方程与双曲线方程消去得关于的一元二次方程,由韦达定理可得,代入直线方程可得,从而得,再根据点在双曲线上,满足双曲线方程,解方程组即可得到点的坐标和的值.试题解析:(1)由实轴长为,得,渐近线方程为,即,焦点到渐近线的距离为,,又,双曲线方程为:. (2)设,则,由,,,解得.【考点】双曲线的标准方程及直线与双曲线的位置关系.【方法点晴】本题主要考查了双曲线的标准方程的求解及直线与圆锥曲线的位置关系问题,同时涉及到了向量的线性运算及坐标表示,考查考生分析问题和解决问题的能力,属于中档题.本题第一问解答时,可求出渐近线方程,利用点到直线的距离公式求得,也可以直接利用结论求解,第二问解答的关键是通过向量加法的坐标表示建立点坐标和坐标的关系,通过韦达定理即可求解.28.顶点在原点,且过点的抛物线的标准方程是A.B.C.或D.或【答案】C【解析】当焦点在轴时,设方程为,代入点,所以方程为,同理焦点在轴时方程为【考点】抛物线方程29.命题:“”的否定为________;【答案】【解析】全称命题“”的否定是“”,所以命题“”的否定是“”【考点】含有一个量词命题的否定.30.命题“若,则”的逆命题是A.若,则B.若,则C.若,则D.若,则【答案】C【解析】“若则”的逆命题是“若则”,所以原命题的逆命题是“若,则”,故选C.【考点】四种命题。

高二数学试题大全

高二数学试题大全

高二数学试题答案及解析1.已知x与y之间的一组数据是:(0,1),(1,3),(2,5),(3,7),则y与x之间的回归方程必经过()A.(2,2)B.(1.5,0)C.(1,2)D.(1.5,4)【答案】D【解析】略2.若命题“”为假,且“”为假,则A.或为假B.真C.假D.不能判断的真假【答案】C【解析】略3.复数的共轭复数为()A.,B.,C.D.【答案】C【解析】略4.图1是一个几何体的三视图,根据图中数据,可得该几何体的表面积是(▲ )A.9B.10C.11D.12【答案】D【解析】略5.已知直线,给出下列四个命题:①若②若③若④若其中正确的命题是(▲ )A.①④B.②④C.①③④D.①②④【答案】A【解析】略6.若,为虚数单位,且,则______▲____7.定义在上的函数满足,的导函数的图像如图所示,若两正数、满足,则的取值范围是()A.B.C.D.【答案】D【解析】略8.如图是一几何体的三视图,正视图是一等腰直角三角形,且斜边长为2,侧视图为一直角三角形,俯视图为一直角梯形,且,则异面直线与所成角的正切值是(第15题图)【答案】【解析】略9.数据的方差为,平均数为,则数据的平均数为标准差为.【答案】【解析】略10.设p:,q:,若q是p的必要而不充分条件,则实数a的取值范围是()A.B.C.D.【解析】略11.【答案】(1)证明:因为四边形ABCD为正方形。

所以以点C为原点。

建立如图所示空间直角坐标系。

则A(0,-2,0),B(2,0,0),C(0,0,0),D(0,0,2),E(0,-2,2).因为M为AD的中点,所以M(0,-1,1)..(5分)。

(2)设平面EAB的一个法向量为则取y=-1,则x=1.则则平面AEB与平面EBC的夹角大小为。

——————————10分。

(3)由(1)知为平面EBC的一个法向量,.又——————12分【解析】略12.已知O、A、B是平面上的三个点,直线AB上有一点C,满足2+=0,则=() A.2-B.-+2C.-D.-+【答案】A【解析】略13.函数f(x)=x3-3x+1在闭区间[-3,0]上的最大值、最小值分别是()A. 1,-1B. 3,-17C. 1,-17D.9,-19【答案】B【解析】略14.已知满足约束条件则的取值范围为()A.B.C.D.【答案】C【解析】略15.,除以88的余数是w_w w.k#s5_u.c o*m【答案】C【解析】略16.设袋中有80个红球,20个白球,若从袋中任取10个球,则其中恰有6个红球的概率为()A.B.C.D.【答案】D【解析】略17.设是虚数单位,则复数的虚部是()A.B.C.D.【答案】D【解析】略18.(本小题满分12分)已知直线与双曲线交于A、B两点,(1)若以AB线段为直径的圆过坐标原点,求实数a的值。

高二数学试题答案及解析

高二数学试题答案及解析

高二数学试题答案及解析1.用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2不相邻,这样的六位数的个数是(用数字作答)。

【答案】40【解析】假设偶数在奇数位.先讨论2 假如2在个位则1不在十位排列就是假如2在百位则1不可以在十位也不可以在千位,则排列是假如2在万位..和个位一样是所以有8+4+4=16种偶数在偶数位和在奇数为一样所以总共是16*2=32种.2.如果的展开式中各项系数之和为128,则展开式中的系数是()A.B.C.D.【答案】C【解析】本题考查二项式定理,二项式展开式的通项,因为的展开式中各项系数之和为128,所以在中令得,则二项式展开式的通项为;令解得则展开式中的系数是故选C3.设服从二项分布B(n,p)的随机变量ξ的期望和方差分别是2.4与1.44,则二项分布的参数n、p的值为A.n=4,p=0.6B.n=6,p=0.4C.n=8,p=0.3D.n=24,p=0.1【答案】B【解析】由二项分布的期望和方差得,解的【考点】二项分布的期望和方差.4.在的展开式中的常数项是()A.B.C.D.【答案】A【解析】由二项式定理可知展开式的通项公式为,令,常数项为【考点】二项式定理5.一射手对靶射击,直到第一次命中为止每次命中的概率为0.6,现有4颗子弹,命中后的剩余子弹数目ξ的期望为A.2.44B.3.376C.2.376D.2.4【答案】C【解析】由题意知ξ=0,1,2,3,∵当ξ=0时,表示前三次都没射中,第四次还要射击,但结果不计,∴P(ξ=0)=0.43,∵当ξ=1时,表示前两次都没射中,第三次射中∴P(ξ=1)=0.6×0.42,∵当ξ=2时,表示第一次没射中,第二次射中∴P(ξ=2)=0.6×0.4,∵当ξ=3时,表示第一次射中,∴P(ξ=3)=0.6,∴Eξ=2.376.故选C.【考点】本题主要考查离散型随机变量的期望的计算.点评:本题在解题过程中当随机变量为0时,题目容易出错同学们可以想一想,模拟一下当时的情况,四颗子弹都用上说明前三次都没有射中,而第四次无论是否射中,子弹都为0.6.某班级有一个7人小组,现任选其中3人相互调整座位,其余4人座位不变,则不同的调整方案的种数有()A.35B.70C.210D.105【答案】A【解析】根据题意,由于班级有一个7人小组,现任选其中3人相互调整座位,那么其余的4人的位置不变,则可知从7个中任意选3个,所有的情况有,其余4个人的位置只有一种,那么可知一共有35种,选A.【考点】定序排列点评:解决的关键是根据已知的座位先确定处没有确定顺序的人即可,属于基础题。

高二数学试卷带答案解析

高二数学试卷带答案解析

高二数学试卷带答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.已知数列满足,则的值的( )A .-6B .-3C .-1D .2.将一枚均匀的硬币投掷5次,则正面出现的次数比反面出现的次数多的概率( ) A .B .C .D .3.若,且,则实数的值是A .-1B .0C .1D .-24.函数y=2x3-3x2-12x+5在区间[0,3]上最大值与最小值分别是 ( ▲ ) .A .5,-15B .5,-4C .-4,-15D .5,-16 5.若执行如图所示的程序框图后,输出的结果是,则判断框中的整数k 的值是( )A .3B .4C .5D .66.若函数为偶函数,则函数的一条对称轴是A .B .C .D .7.若定义运算:,例如,则下列等式不能成立的是( )A.B.C.D.()8.在代数式(4x2-2x-5)(1+)5的展开式中,常数项为()A.13 B.14 C.15 D.169.函数有且只有一个零点的充分不必要条件是()A. B. C. D.或10.参数方程(为参数)和极坐标方程所表示的图形分别是()A.圆和直线 B.直线和直线 C.椭圆和直线 D.椭圆和圆11.不等式表示的平面区域是以直线为界的两个平面区域中的一个,且点不在这个区域中,则实数m的取值范围是]A. B. C. D.12.过点(-1,3)且垂直于直线x-2y+3=0的直线方程为()A.2x+y-1="0"B.2x+y-5=0C.x+2y-5="0"D.x-2y+7=013.有下列四个命题:①“若”;②“若”的逆否命题;③“若是奇函数,则”的否命题;④“若”的逆命题.其中真命题的个数是( )A.0 B.1 C.2 D.314.圆的圆心到直线的距离为,则()A. B. C. D.15.已知圆,从点发出的光线,经轴反射后恰好经过圆心,则入射光线的斜率为()A. B. C. D.16.已知为实数,且,则“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件17.在△ABC中,角A、B、C的对边分别为a、b、c,若a2+c2-b2=ac,则角B的值为A、 B、 C、或 D、或18.已知数列是公比为2的等比数列,若,则=()A.1 B.2 C.3 D.4319.执行如图21-2所示的程序框图,如果输入p=5,则输出的S=()图21-2A. B. C. D.20.下列说法正确的是().A.,B.,C.,D.,二、填空题21.下面关于四棱柱的四个命题:① 若有两个侧面垂直于底面,则该四棱柱为直四棱柱;② 若有两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③ 若四个侧面面面全等,则该四棱柱为直四棱柱;④ 若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱。

高二数学试卷带答案解析

高二数学试卷带答案解析

高二数学试卷带答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.曲线在处的切线方程是 ( )A .B .C .D .2.在等高条形图中,下列哪两个比值相差越大,要推断的论述成立的可能性就越大( ) A .与 B .与 C .与 D .与3.已知函数在R 上满足:对任意,都有,则实数a 的取值范围是( )A .B .C .D .4. 在调查学生数学成绩与物理成绩之间的关系时,得到如下数据(人数):那么有把握认为数学成绩与物理成绩之间有关系的百分比为 A.25% B.75% C. 95% D.99% 5.的内角的对边分别为 若成等比数列,且,则( )A .B .C .D .6.圆关于轴对称的圆的方程为( )A .B .C .D .7.若向量a=(1,0),b=(2,0,0)且a 与b 的夹角为,则等于A .1B .C .-或D .-1或18.若为圆的弦的中点,则直线的方程是()A BC D9.已知随机变量X服从二项分布,则=()A. B. C. D.10.某人有3个不同的电子邮箱,他要发5个电子邮件,发送的方法的种数()A.8 B. 15 C. 243 D. 12511.点(2,1)到直线3x -4y + 2 = 0的距离是A. B. C. D.12.已知点P是函数的图像C的一个对称中心,若点P到图像C的对称轴距离的最小值为,则的最小正周期是()A. B. C. D.13.已知是球的球面上两点,,为该球面上的动点,若三棱锥体积的最大值为,则球的体积为()A. B. C. D.14.已知非零向量,满足,,若,若,则实数的值为()A.3 B. C.2 D.15.已知=2,=3,=4,…,=6(a,b均为实数),则推测a,b的值分别是A.a=6,b=18 B.a=6,b=25 C.a=6,b=30 D.a=6,b=3516.函数的定义域为,图象如图1所示;函数的定义域为,图象如图2所示,方程有个实数根,方程有个实数根,则()A.6 B.8 C.10 D.1217.已知双曲线的实轴长、虚轴长、焦距长成等差数列,则双曲线的渐近线方程为()A. B. C. D.18.三棱锥中,两两垂直且相等,点分别是线段和上移动,且满足,,则和所成角余弦值的取值范围是()A. B. C. D.19.函数y=的导数是()A.B.C.D.20.命题“若,则”的逆否命题是()A.若,则B.若,则C.若,则D.若,则二、填空题21.抛物线的焦点坐标是22.过抛物线的焦点作倾斜角为直线,直线与抛物线相交与,两点,则弦的长是 .23.如果函数y的图像与曲线恰好有两个不同的公共点,则实数的取值范围为 .24.已知集合,且A中至少有一个奇数,则满足条件的集合A分别是.25.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是.26.已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且,则C的离心率为.27.已知圆O:,直线:,若圆O上恰有3个点到的距离为1,则实数m= ____________.28.设满足约束条件,若目标函数的最大值为8,则的最小值为________。

高二数学试卷带答案解析

高二数学试卷带答案解析

高二数学试卷带答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.在2×2列联表中,下列哪两个比值相差越大,两个分类变量有关系的可能性就越大( ) A . 与 B . 与 C .与D . 与2.在三角形ABC 中,AB=5,BC=6,AC=8,则三角形ABC 的形状是( ) A .钝角三角形 B .直角三角形 C .锐角三角形 D .不确定3.用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是( )A .假设三内角都不大于60度B .假设三内角都大于60度C .假设三内角至多有一个大于60度D .假设三内角至多有两个大于60度4.Suppose the least distance fron poinrs of the xurve(曲线)to the y-axis isthen the velue of a isA .B .C .orD .or5.椭圆的短轴的一个端点到一个焦点的距离为5,焦点到椭圆中心的距离为3,则椭圆的标准方程是 ( ) A .+=1或+="1"B .+=1或+=1C .+=1或+="1"D .椭圆的方程无法确定 6.一个动圆与定圆相外切,且与直线相切,则动圆圆心轨迹方程为( ) A .B .C .D .7.六个面都是平行四边形的四棱柱称为平行六面体.如图甲,在平行四边形ABCD 中,有AC 2+BD 2=2(AB 2+AD 2),那么在图乙所示的平行六面体ABCD-A 1B 1C 1D 1中,等于( )A .2(AB 2+AD 2+) B .3(AB 2+AD 2+)C .4(AB 2+AD 2+)D .4(AB 2+AD 2)8.如图,平面平面,与两平面、所成的角分别为和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二暑假班数学测试题
一、选择题(本大题共6小题,每小题5分,共30分) 1.若a <b <c ,则下列结论中正确的是( ) A .a |c |<b |c | B .ab <ac C .a -c <b -c D.1a >1b >1
c
【解析】选C.选项A 中c =0时不成立;选项B 中a ≤0时不成立;选项D 中取a =-2,b =-1,c =1验证,不成立,故选C.
2.等比数列x ,3x +3,6x +6,…的第四项等于( ) A .-24 B .0 C .12 D .24 【解析】选A.由题意知(3x +3)2=x (6x +6),即x 2+4x +3=0,解得x =-3或x =-1(舍去),所以等比数列的前3项是-3,-6,-12,则第四项为-24.
3.当x >1时,不等式x +1x -1≥a 恒成立,则实数a 的取值范围是( )
A .(-∞,2]
B .[2,+∞)
C .[3,+∞)
D .(-∞,3]
【解析】选D.因为当x >1时,x +1x -1=1+(x -1)+1
x -1≥3,
所以x +1
x -1
≥a 恒成立,只需a ≤3.
4.等差数列{a n }满足a 24+a 2
7+2a 4a 7=9,则其前10项之和为( ) A .-9 B .-15 C .15 D .±15
【解析】选D.由已知(a 4+a 7)2=9,所以a 4+a 7=±3,从而a 1+a 10=±3.
所以S 10=a 1+a 10
2
×10=±15.
5.函数y =x 2+2
x -1(x >1)的最小值是( )
A .23+2
B .23-2
C .2 3
D .2
【解析】选 A.因为x >1,所以x -1>0.所以y =x 2+2x -1=x 2-2x +2x +2
x -1=
x 2-2x +1+2(x -1)+3x -1=(x -1)2+2(x -1)+3x -1=x -1+3
x -1
+2≥23+2.
6.不等式组⎩
⎪⎨⎪

x ≥2x -y +3≤0表示的平面区域是下列图中的( D )
7.(2010年高考山东卷)已知x ,y ∈R +
,且满足x 3+y 4
=1,则xy 的最大值为___3_____.
解析:∵x >0,y >0且1=x 3+y 4≥2xy
12
,∴xy ≤3.
当且仅当x 3=y
4
时取等号.
8.(2015·高考广东卷)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________.
【解析】因为等差数列{a n }中,a 3+a 4+a 5+a 6+a 7=25,所以5a 5=25,即a 5=5.所以a 2+a 8=2a 5=10.
【答案】10
9.在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪
⎧2x +3y -6≤0,x +y -2≥0,y ≥0,所表示的区域上一动点,则|OM |
的最小值是________.
【解析】
如图所示,M 为图中阴影部分区域上的一个动点,由于点到直线的距离最短,所以|OM |的最小值=
2
2
= 2. 【答案】2
10.(2015·高考全国卷Ⅰ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -1≥0,x -y ≤0,x +y -4≤0,则y
x
的最大值为________.
【解析】
画出可行域如图阴影所示,因为 y
x 表示过点(x ,y )与原点(0,0)的直线的斜率,
所以点(x ,y )在点A 处时y
x
最大.
由⎩
⎪⎨⎪⎧x =1,x +y -4=0,得⎩⎪⎨⎪⎧x =1,y =3. 所以A (1,3).
所以y
x 的最大值为3.
【答案】3
11.(本小题满分12分)公差不为零的等差数列{a n }中,a 3=7,且a 2,a 4,a 9成等比数列.
(1)求数列{a n }的通项公式;
(2)设b n =2a n ,求数列{b n }的前n 项和S n .
【解】(1)由数列{a n }为公差不为零的等差数列,设其公差为d ,且d ≠0.
因为a 2,a 4,a 9成等比数列,
所以a 24=a 2·a 9,即(a 1+3d )2=(a 1+d )(a 1+8d ),
整理得d 2=3a 1d .
因为d ≠0,所以d =3a 1.① 因为a 3=7,所以a 1+2d =7.② 由①②解得a 1=1,d =3, 所以a n =1+(n -1)×3=3n -2. 故数列{a n }的通项公式是a n =3n -2. (2)由(1)知b n =23n -
2, 因为b n +1b n =23(n +1)-
2
2
3n -2=8,
所以{b n }是等比数列,且公比为8,首项b 1=2, 所以S n =2(1-8n )1-8
=2(8n -1)7.
12.(本小题满分12分)已知函数f (x )=x 2-2x -8,g (x )=2x 2-4x -16.
(1)求不等式g (x )<0的解集;
(2)若对一切x >2,均有f (x )≥(m +2)x -m -15成立,求实数m 的取值范围. 【解】(1)g (x )=2x 2-4x -16<0,
所以(2x +4)(x -4)<0, 所以-2<x <4,
所以不等式g (x )<0的解集为{x |-2<x <4}. (2)因为f (x )=x 2-2x -8.
当x >2时,f (x )≥(m +2)x -m -15恒成立, 所以x 2-2x -8≥(m +2)x -m -15, 即x 2-4x +7≥m (x -1). 所以对一切x >2,
均有不等式x 2-4x +7
x -1≥m 成立.
而x 2-4x +7x -1=(x -1)+4x -1-2
≥ 2
(x -1)×4
x -1
-2=2.
(当且仅当x -1=
4
x -1
即x =3时等号成立) 所以实数m 的取值范围是(-∞,2].
13.(本小题满分12分)画出不等式组⎩⎪⎨⎪

x +2y -1≥02x +y -5≤0
y ≤x +2
所表示的平面区域并求其面积.
解:如图所示,其中的阴影部分便是欲表示的平面区域.
由⎩
⎪⎨⎪⎧
x -y +2=0,
2x +y -5=0,得A (1,3). 同理得B (-1,1),C (3,-1). ∴|AC |=22+42=25,
而点B 到直线2x +y -5=0距离为 d =|-2+1-5|5=65,w w w .x k b 1.c o m
∴S △ABC =12|AC |·d =12×25×6
5
=6.
14.(本小题满分14分)设数列{a n }的前n 项和为S n =2n 2,{b n }为等比数列,且a 1=b 1,b 2(a 2-a 1)=b 1.
(1)求数列{a n }和{b n }的通项公式;
(2)设c n =a n
b n
,求数列{c n }的前n 项和T n .
【解】(1)当n ≥2时,
a n =S n -S n -1=2n 2-2(n -1)2=4n -2,
当n =1时,a 1=S 1=2满足上式,故{a n }的通项公式为a n =4n -2.
设{b n }的公比为q ,由已知条件a 1=b 1,b 2(a 2-a 1)=b 1知,b 1=2,b 2=12,所以q =1
4,
所以b n =b 1q n -
1=2×14n -1,即b n =24n -1.
(2)因为c n =a n b n =4n -22
4
n -1=(2n -1)4n -
1,
所以T n =c 1+c 2+…+c n =1+3×41+5×42+…+(2n -1)4n -
1. 4T n =1×4+3×42+5×43+…+(2n -3)4n -
1+(2n -1)4n . 两式相减得:
3T n =-1-2(41+42+43+…+4n -
1)+(2n -1)4n =13[(6n -5)4n +5].所以T n =19[(6n -5)4n
+5].。

相关文档
最新文档