钢轨强度计算Word版

合集下载

导轨强度及变形计算

导轨强度及变形计算

导轨强度及变形计算导轨强度和变形计算⼀.有关导轨强度和变形的要求:1. 根据《GB7588-2003 电梯制造与安装安全规范》中10.1.1,本类型乘客电梯的电梯导轨应满⾜以下要求:根据《GB7588-2003 电梯制造与安装安全规范》的附录G中规定的轿厢内额定载荷分布状况,应对导轨的应⼒予以限制。

2. 根据《GB7588-2003 电梯制造与安装安全规范》中10.1.2,本类型乘客电梯的电梯导轨还应满⾜以下要求:a.根据《GB7588-2003 电梯制造与安装安全规范》中10.1.2.1提供的许⽤应⼒计算式、安全系数和许⽤应⼒值进⾏相应的导轨变形计算;b.“T”型导轨的最⼤计算允许变形,对于装有安全钳的轿厢、对重导轨,安全钳动作时,在两个⽅向上为5mm。

⼆.本类型电梯选⽤的轿厢导轨截⾯的⼒学特性电梯采⽤T127-2/A-B导轨,查标准知,其截⾯的⼒学特性如下:S=28.9cm2W x=31cm3I x=200cm4i x=2.68cme=2.46cm W y=36.8cm3 I y=235cm4i y=2.86cm三.本类型电梯导轨计算许⽤应⼒和变形要求本类型电梯采⽤T127-2/A-B导轨,其钢材抗拉强度为370MPa,根据《GB7588-2003 电梯制造与安装安全规范》中10.1.2.1和10.1.2.2的要求,本类型电梯导轨计算许⽤应⼒σperm和变形要求为:a.正常使⽤载荷情况:σperm=165MPab.安全钳动作时的情况:σperm=205MPac.T型导轨的最⼤计算允许变形为:δperm=5mm四.本类型电梯导轨强度及挠度校核计算4.1 计算选⽤参数:表4.1中的参数为本计算选⽤参数。

表4.14.2 电梯导轨强度及挠度校核计算:4.2.1当安全钳动作时的电梯导轨强度及挠度校核计算1. 导轨的弯曲应⼒是由轿厢导靴对导轨的反作⽤⼒⽽引起的应⼒。

2. 弯曲应⼒m σ的计算:a. 导轨的受⼒F y 、F x 的计算: 1)nhQx x g k F Q p x )(+=P 1=()200021300630117580081.92??+=8627.90N2) h n Qy y g k F Q p y 2P 1)(+==2000225.1906305.4080081.92??+)(=1495.20Nb. M y ,M x 弯矩的计算:mm N l F M y x .42052516150020.14953163=??==mm N l F M x y .88.242659616150090.86273163=??==c. 弯曲应⼒x σ,y σ的计算:MPa W M x x x 57.1331000420525===σ MPa W M yy y 94.653680088.2426596===σd. 弯曲应⼒m σ的计算:MPa y x m 5.7994.6557.13=+=+=σσσ< σperm=205MPa3. 压弯应⼒K σ的计算:a. 轿厢作⽤于⼀根导轨的压弯⼒F K 的计算:()()N n Q P g k F k 3.14028263080081.921=+??=+=b. ω值的计算: 1) 细长⽐λ确认:mink i L =λ=x i l =97.558.261500= 2) ω值的计算:255.1100004627.014.2=+?=λωc. 压弯应⼒K σ的计算压弯应⼒()AM K +F=3KK ωσ=MPa 1.62890255.13.14028=?其中:K 3为冲击系数,根据《GB7588-2003 电梯制造与安装安全规范》的表G.2得:K 3=1.5;M 为附加装置作⽤于⼀根导轨的⼒,假设该⼒已被平衡,故此⼒不考虑;A 为导轨的横截⾯积, A =S=2890mm 2。

钢轨强度计算

钢轨强度计算

线路设计:设计要求:线路采用采用60kg/m 的标准轨更换线路原50kg/m 钢轨,标准轨的长度为25m ,钢轨的材质采用PD3全长淬火轨轨;轨枕采用J —2型混凝土枕,每公里铺设1840根;道床采用碎石道碴,设计道床厚度为350mm ;设计行驶速度为140km/h ,运行行驶速度为120km/h ;钢轨支座刚度D :检算刚度1D =30000N/mm ,检算轨下基础2D =70000N/mm ;运营条件:采用DF 4型内燃机车。

4.3.1 钢轨强度计算4.3.1.1 钢轨弯矩计算1、轨道刚比系数K 值计算 10000005431840a ==mm 3000055.2543D a μ===Mpa52.110E =⨯Mpa 4287910J =⨯mm 40.00123K ===mm-12、最不利轮位及max P μ∑计算4DF 型机车前后有两个转向架,每个转向架为三个轴,前后转向架最近轴距为8.4米,当kx>6时u,η都很小。

计算表明,当轴距大于5m 以上时,相邻轮子影响很小,可以不计。

因此,寻找引起最大弯矩的最不利轮位时,只要用一个转向架的三个轴分别做为计算轮来求最不利轮位。

而且还应注意到转向架的三个轴轮重一样,轴距亦相同,所以1、3轮引起的弯矩应该相同,只要考虑其中一个即可。

这样只要在1、2轮中找最不利轮了。

所以分别以动1,动2为计算轮,计算其P μ∑(见表4-1)P μ∑计算表 表4-1表中看出,Ⅰ(Ⅲ)轮为最不利轮位,P μ∑=96455.28N 为最大.由此作为计算弯矩和应力并进行强度检算.3、计算钢轨静弯矩M :01196455.2819604731440.00123M P K μ==⨯=⨯∑N ·mm 4、计算钢轨动弯矩dM0.4V 0.4140=0.56100100α⨯==在R=600的曲线上允许超高△h =75mm,所以0.0020.002750.15h β=⋅∆=⨯= 横向水平力系数f=1.45 (查表3-7)1(1)(1)d o M M f αβα=+++19604731(10.560.15) 1.45(10.12)=⨯++⨯⨯+54443122= N ·mm 4.3.1.2 计算钢轨截面动态应力d σ根据公式:dd M W σ=,3291W cm =头,3375W cm =底所以在曲线地段:96544431221029110d σ--⨯=⨯头187.09=Mpa(压)96544431221037510d σ--⨯=⨯底145.18=Mpa(拉)在直线地段319604731(10.560.15)(10.12) 1.2510291d σ-⨯++⨯+⨯=⨯头122.61=Mpa95.15d σ=底Mpa 4.3.1.3 允许应力计算对于PD3,496s Mpa σ= K=1.3 3496[]381.541.3Kσσ===Mpa 因为25m 长钢轨温度应力51t σ=Mpa 所以187.0951238.09t d σσ+=+=头Mpa []σ<4.3.2 道床和基面强度计算4.3.2.1 轨枕顶面压力d R根据公式:d d R y μα=⋅⋅ (公式4-2)1、P η∑最大值计算(1)、计算K 值 10000005431840a ==mm 70000128.9543μ==Mpa52.110E =⨯Mpa 4287910J =⨯mm 40.0015K ===mm -1(2)、列表计算max P η∑4DF 型机车前后有两个转向架,每个转向架为三个轴,前后转向架最近轴距为8.4米,当kx>6时u,η都很小。

轨道强度稳定性计算

轨道强度稳定性计算

目录.................................................................. 错误!未定义书签。

轨道强度、稳定性计算 (2)1.1设计资料: (2)1.2 轨道强度、稳定性计算的基本原理 (2)1.2.1.轨道强度计算的基本原理 (2)1.2.2.稳定性计算的基本原理 (3)1.3 轨道各部件强度验算 (5)1.3.1SS1(客)电力机车 (5)1.3.2DF4B(货)内燃机车 (10)轨道强度、稳定性计算1.1设计资料:线路条件:曲线半径R=1500m ,钢轨:60kg/m ,U74钢轨,25m 长的标准轨;轨枕:Ⅱ型混凝土轨枕1760根/m ;道床:碎石道砟,厚度为40cm ;路基:既有线路;钢轨支点弹性系数D :检算钢轨强度时取30000N/mm ;检算轨下基础时取70000N/mm ;由于钢轨长度为25m ,钢轨类型为60kg/m ,故温度应力a 51t MP =σ,不计钢轨附加应力。

机车类型:SS1(客)电力机车,三轴转向架,轮载115KN ,轴距2.3m ,机车构造速度95km/hDF4B (货)内燃机车,三轴转向架,轮载115KN ,轴距1.8m ,机车构造速度120km/h1.2 轨道强度、稳定性计算的基本原理1.2.1.轨道强度计算的基本原理目前,最常用的检算轨道强度方法称为准静态计算方法。

所谓准静态计算方法,就是应用静力计算的基本原理,对轨道结构尽力计算,然后根据轨轮系统的动力学特性,考虑为轮载、钢轨绕度、弯矩和轨枕反力等的动力增值问题。

轨道强度准静态计算包括以下三项内容:I 、 轨道结构静力计算II 、 轨道结构强度的动力计算——准静态计算 III 、 检算轨道结构各部件的强度 1) 强度检算的基本假设:a) 假设列车运行时,车轮荷载在轨道各部件中所引起的应力应变与量值相当的静荷载所引起的应力应变想等,即车轮荷载具有准静态性质。

[交通运输]4轨道强度和安全性计算

[交通运输]4轨道强度和安全性计算

p 0.002h
h 允许欠超高。
实用文档
横向水平力系数 f
定义
轨底外缘弯曲应力与轨底中心弯曲应力的比值。
公式
f
0 0 i
2
式中 0 轨底外缘弯曲应力;
i 轨底内缘弯曲应力。
线路平面 横向水平力系数f
曲线半径(m) 直线
>=800 600 500 400 300
1.25
1.45 1.60 1.70 1.80 2.0
130km/h vs 160km/h
实用文档
轨道结构设计内容
轨道结构承载能力设计 静力学分析、计算,主要解决强度计算、永久变形和寿命
计算等问题 动力仿真计算
安全设计 机车车辆脱轨的预防 - 脱轨理论和计算方法(准静态计
算/动力计算)
轨道变形设计 指轨道几何形位的变化,轨道几何不平顺的动、静态标准
4
Q P e x cos x 2
q P e x cos x sin x
2
实用文档
单个集中荷载作用下静力学计算
单个集中荷载作用下 y,M,R 的计算
y
P 8 EJ
3
P 2k
(mm
)
M P kN m
4
R P a kN
2
为便于记忆式 ,进 对行 计简 算化 公 和 处 的 理 x的,函其数 实用文档
实用文档
基本假设
轨道和机车车辆均符合规定的标准要求 钢轨是一根支承在连续弹性基础上的无限长梁 轮载作用于钢轨对称面上,且两股钢轨上荷载相等 两股钢轨可以分开计算 钢轨的竖向抗弯刚度EJx和连续基础刚度对称于轨
道的中心线 不考虑轨道本身自重 轨枕+道床 => 弹性基础 符合Winkler 假设q ky

轨道强度稳定性计算解析

轨道强度稳定性计算解析

目录 (1)轨道强度、稳定性计算 (2)1.1设计资料: (2)1.2 轨道强度、稳定性计算的基本原理 (2)1.2.1.轨道强度计算的基本原理 (2)1.2.2.稳定性计算的基本原理 (3)1.3 轨道各部件强度验算 (5)1.3.1SS1(客)电力机车 (5)1.3.2DF4B(货)内燃机车 (10)轨道强度、稳定性计算1.1设计资料:线路条件:曲线半径R=1500m ,钢轨:60kg/m ,U74钢轨,25m 长的标准轨;轨枕:Ⅱ型混凝土轨枕1760根/m ;道床:碎石道砟,厚度为40cm ;路基:既有线路;钢轨支点弹性系数D :检算钢轨强度时取30000N/mm ;检算轨下基础时取70000N/mm ;由于钢轨长度为25m ,钢轨类型为60kg/m ,故温度应力a 51t MP =σ,不计钢轨附加应力。

机车类型:SS1(客)电力机车,三轴转向架,轮载115KN ,轴距2.3m ,机车构造速度95km/hDF4B (货)内燃机车,三轴转向架,轮载115KN ,轴距1.8m ,机车构造速度120km/h1.2 轨道强度、稳定性计算的基本原理1.2.1.轨道强度计算的基本原理目前,最常用的检算轨道强度方法称为准静态计算方法。

所谓准静态计算方法,就是应用静力计算的基本原理,对轨道结构尽力计算,然后根据轨轮系统的动力学特性,考虑为轮载、钢轨绕度、弯矩和轨枕反力等的动力增值问题。

轨道强度准静态计算包括以下三项内容:I 、 轨道结构静力计算II 、 轨道结构强度的动力计算——准静态计算 III 、 检算轨道结构各部件的强度 1) 强度检算的基本假设:a) 假设列车运行时,车轮荷载在轨道各部件中所引起的应力应变与量值相当的静荷载所引起的应力应变想等,即车轮荷载具有准静态性质。

b) 以速度系数,横向水平力系数,偏载系数分别反映车轮垂直动荷载,横向水平和垂直力偏心,曲线内外轨偏载的影响。

c) 假设轨道及基础均处于线弹性范围,列车轮系作用下轨道各部件的应力应变等于各独轮作用下的应力应变之和。

轨道材料计算公式

轨道材料计算公式

轨道材料计算公式轨道材料是铁路建设中的重要组成部分,其质量和性能直接影响着铁路运输的安全和效率。

因此,对轨道材料的计算和选择至关重要。

本文将介绍轨道材料计算公式的相关内容,帮助读者更好地了解轨道材料的选择和使用。

1. 轨道材料的选择原则。

在选择轨道材料时,需要考虑以下几个方面的因素,强度、耐磨性、抗变形能力、耐腐蚀性和使用寿命。

其中,强度是轨道材料的基本性能之一,也是最为关键的性能指标。

因此,轨道材料的计算公式中,强度是一个重要的参数。

2. 轨道材料的强度计算公式。

轨道材料的强度可以通过以下公式进行计算:σ = M/S。

其中,σ表示轨道材料的强度,单位为兆帕(MPa);M表示轨道材料受到的外部力矩,单位为牛顿·米(N·m);S表示轨道材料的截面积,单位为平方米(m²)。

根据这个公式,可以看出轨道材料的强度与外部力矩和截面积有关。

外部力矩越大,轨道材料的强度要求就越高;截面积越大,轨道材料的强度就越大。

因此,在铁路建设中,需要根据实际情况对轨道材料的强度进行合理的计算和选择。

3. 轨道材料的耐磨性计算公式。

轨道材料的耐磨性是指轨道材料在列车行驶过程中受到的磨损程度。

对于高速铁路来说,轨道材料的耐磨性是一个非常重要的性能指标。

轨道材料的耐磨性可以通过以下公式进行计算:W = F×L。

其中,W表示轨道材料的磨损量,单位为克(g);F表示列车通过轨道的次数,单位为次(次);L表示列车通过轨道的里程,单位为千米(km)。

根据这个公式,可以看出轨道材料的耐磨性与列车通过轨道的次数和里程有关。

列车通过轨道的次数越多,轨道材料的磨损量就越大;列车通过轨道的里程越长,轨道材料的磨损量也就越大。

因此,在铁路建设中,需要根据列车的运行情况对轨道材料的耐磨性进行合理的计算和选择。

4. 轨道材料的抗变形能力计算公式。

轨道材料的抗变形能力是指轨道材料在列车行驶过程中受到的变形程度。

对于高速铁路来说,轨道材料的抗变形能力是一个非常重要的性能指标。

轨道强度计算

轨道强度计算

轨道强度计算在英、美也称轨道应力。

将轨道作为一个工程构筑物,运用力学理论进行分析和计算的方法。

通过计算,保证轨道具有必要的承载能力。

它对轨道各部件的设计起指导作用,并为轨道建筑标准(即轨道类型)的划分,部件的合理配套提供理论依据。

轨道承受的作用力轨道承受列车的各种垂直压力、横向水平力、纵向水平力。

①垂直压力主要来自车轮的静重(静荷载)。

在列车运行时,由于机车车辆的振动,轨道和车轮的不平顺,以及蒸汽机车动轮和主动轮构件的作用,除静荷载外,在垂直方向,轨道还承受许多额外的附加力。

所有这些附加力连同静荷载一起,称为垂直动荷载。

②横向水平力主要是由机车车辆摇摆及作蛇行运动以及它们通过曲线时向外推动而产生的。

③纵向水平力主要包括机车加速、制动时的纵向水平分力,在长大坡道上机车车辆重量的纵向水平分力,以及因钢轨的温度变化而产生的温度力。

计算方法静力计算按照对基础假设的不同,静力计算分为:连续点支承梁的计算和连续基础梁的计算。

在连续点支承梁的计算法中,把钢轨视为一根支承在许多弹性支点上的无限长梁。

弹性支点的沉落值假定与它所受的压力成正比(图1a)。

运用力学理论,任一截面处的钢轨弯矩、压力和挠度都可求得。

如果有许多荷载同时作用于钢轨上,可先分别计算每个荷载对轨道所产生的作用,然后叠加起来。

如需求最大数值时,可选择几个较重的车轮分别置于计算截面上,按照机车车轮的排列进行计算比较求得。

在连续基础梁的计算法中,则把钢轨视为一根支承在连续弹性基础上的无限长梁(图1b)。

同样,用力学理论,可求出钢轨任一截面的弯矩、压力和挠度。

与连续点支承梁方法相比,计算结果相差不多。

但在基础刚度较大时,两种计算结果相差可达10%左右。

轨道强度计算动力计算一直沿用等效静荷载法,即考虑到列车动力作用而把轨道所承受的静荷载适当加大。

动荷载的确定有两种方法:①力素分析法。

对轨道所承受的各种力素进行分析,对每一种力素乘以不同的系数,再以概率理论将其组合起来,以求得可能发生的最大动荷载。

(完整word)轨道强度计算

(完整word)轨道强度计算

轨道强度计算在英、美也称轨道应力。

将轨道作为一个工程构筑物,运用力学理论进行分析和计算的方法。

通过计算,保证轨道具有必要的承载能力。

它对轨道各部件的设计起指导作用,并为轨道建筑标准(即轨道类型)的划分,部件的合理配套提供理论依据。

轨道承受的作用力轨道承受列车的各种垂直压力、横向水平力、纵向水平力。

①垂直压力主要来自车轮的静重(静荷载)。

在列车运行时,由于机车车辆的振动,轨道和车轮的不平顺,以及蒸汽机车动轮和主动轮构件的作用,除静荷载外,在垂直方向,轨道还承受许多额外的附加力。

所有这些附加力连同静荷载一起,称为垂直动荷载.②横向水平力主要是由机车车辆摇摆及作蛇行运动以及它们通过曲线时向外推动而产生的。

③纵向水平力主要包括机车加速、制动时的纵向水平分力,在长大坡道上机车车辆重量的纵向水平分力,以及因钢轨的温度变化而产生的温度力.计算方法静力计算按照对基础假设的不同,静力计算分为:连续点支承梁的计算和连续基础梁的计算。

在连续点支承梁的计算法中,把钢轨视为一根支承在许多弹性支点上的无限长梁。

弹性支点的沉落值假定与它所受的压力成正比(图1a)。

运用力学理论,任一截面处的钢轨弯矩、压力和挠度都可求得。

如果有许多荷载同时作用于钢轨上,可先分别计算每个荷载对轨道所产生的作用,然后叠加起来。

如需求最大数值时,可选择几个较重的车轮分别置于计算截面上,按照机车车轮的排列进行计算比较求得。

在连续基础梁的计算法中,则把钢轨视为一根支承在连续弹性基础上的无限长梁(图1b)。

同样,用力学理论,可求出钢轨任一截面的弯矩、压力和挠度。

与连续点支承梁方法相比,计算结果相差不多.但在基础刚度较大时,两种计算结果相差可达10%左右。

轨道强度计算动力计算一直沿用等效静荷载法,即考虑到列车动力作用而把轨道所承受的静荷载适当加大。

动荷载的确定有两种方法:①力素分析法。

对轨道所承受的各种力素进行分析,对每一种力素乘以不同的系数,再以概率理论将其组合起来,以求得可能发生的最大动荷载。

钢轨强度计算

钢轨强度计算

线路设计:设计要求:线路采用采用60kg/m 的标准轨更换线路原50kg/m 钢轨,标准轨的长度为25m ,钢轨的材质采用PD3全长淬火轨轨;轨枕采用J —2型混凝土枕,每公里铺设1840根;道床采用碎石道碴,设计道床厚度为350mm ;设计行驶速度为140km/h ,运行行驶速度为120km/h ;钢轨支座刚度D :检算刚度1D =30000N/mm ,检算轨下基础2D =70000N/mm ;运营条件:采用DF 4型内燃机车。

4.3.1 钢轨强度计算4.3.1.1 钢轨弯矩计算1、轨道刚比系数K 值计算10000005431840a ==mm 3000055.2543D a μ===Mpa52.110E =⨯Mpa 4287910J =⨯mm40.00123K ===mm-12、最不利轮位及max P μ∑计算4DF 型机车前后有两个转向架,每个转向架为三个轴,前后转向架最近轴距为8.4米,当kx>6时u,η都很小。

计算表明,当轴距大于5m 以上时,相邻轮子影响很小,可以不计。

因此,寻找引起最大弯矩的最不利轮位时,只要用一个转向架的三个轴分别做为计算轮来求最不利轮位。

而且还应注意到转向架的三个轴轮重一样,轴距亦相同,所以1、3轮引起的弯矩应该相同,只要考虑其中一个即可。

这样只要在1、2轮中找最不利轮了。

所以分别以动1,动2为计算轮,计算其P μ∑(见表4-1)P μ∑计算表 表4-1表中看出,Ⅰ(Ⅲ)轮为最不利轮位,P μ∑=96455.28N 为最大.由此作为计算弯矩和应力并进行强度检算.3、计算钢轨静弯矩M :01196455.2819604731440.00123M P K μ==⨯=⨯∑N ·mm 4、计算钢轨动弯矩dM0.4V 0.4140=0.56100100α⨯==在R=600的曲线上允许超高△h =75mm,所以0.0020.002750.15h β=⋅∆=⨯= 横向水平力系数f=1.45 (查表3-7)1(1)(1)d o M M f αβα=+++19604731(10.560.15) 1.45(10.12)=⨯++⨯⨯+54443122= N ·mm 4.3.1.2 计算钢轨截面动态应力d σ根据公式:dd M W σ=,3291W cm =头,3375W cm =底所以在曲线地段:96544431221029110d σ--⨯=⨯头187.09=Mpa(压)96544431221037510d σ--⨯=⨯底145.18=Mpa(拉)在直线地段319604731(10.560.15)(10.12) 1.2510291d σ-⨯++⨯+⨯=⨯头122.61=Mpa95.15d σ=底Mpa 4.3.1.3 允许应力计算对于PD3,496s Mpa σ= K=1.3 3496[]381.541.3Kσσ===Mpa 因为25m 长钢轨温度应力51t σ=Mpa所以187.0951238.09t d σσ+=+=头Mpa []σ<4.3.2 道床和基面强度计算4.3.2.1 轨枕顶面压力d R根据公式:d d R y μα=⋅⋅ (公式4-2)1、P η∑最大值计算(1)、计算K 值10000005431840a ==mm 70000128.9543μ==Mpa52.110E =⨯Mpa 4287910J =⨯mm40.0015K ===mm -1(2)、列表计算max P η∑4DF 型机车前后有两个转向架,每个转向架为三个轴,前后转向架最近轴距为8.4米,当kx>6时u,η都很小。

轨道部件强度计算算例

轨道部件强度计算算例

3、计算轨枕静压力 R j 、
ka 0.00146 × 568 R j = ∑ Pη = ×109543 = 45420( N ) 2 2
下一页
∑ Pη 计算表
轮 计算轮 项 目 动1
P(N ) x(mm)
返回 位 动3 112815 3600 5.256 -0.0018 -203 112815 1800 2.628 -0.0272 -3069 106677 109543
4
4 4 这里,60kg/m 新轨对水平轴的惯性矩 I = 3217 × 10 mm
2、计算 ∑ Pµ 、
分别以动1、动2为计算轮,计算其 ∑ Pµ ,列表进行(见下 页表),由表中看出,动1(或动3)轮 ∑ Pµ = 94967 N 为最大, 也就是最不利轮位,以它作为计算弯矩的依据。
3、计算静弯矩 M j 、
Rd 63135 max σ b = m ' = 1.6 × = 0.313MPa be 275 × 1175
对于碎石道床允许应力 [σ h ] = 0.5MPa ,有
max σ b = 0.313 < [σ h ]

道床强度满足要求。 道床强度满足要求。
(四)路基顶面强度检算
b 275 ctgϕ = × ctg 35o = 196.4(mm) 2 2 ' e 1175 h2 = ctgϕ = × ctg 35o = 839.0(mm) 2 2 h1 =
σ r = 0.11MPa < [σ r ]
型机车通过该曲线时,路基强度满足要求。 东风4型机车通过该曲线时,路基强度满足要求。
β = 0.002∆h = 0.002 × 75 = 0.15
在R=600m的曲线上,横向水平力系数 f ,查表3-4,可得

轨道强度稳定性计算资料

轨道强度稳定性计算资料

目录............................................................... 错误!未定义书签。

轨道强度、稳定性计算 (2)1.1设计资料: (2)1.2 轨道强度、稳定性计算的基本原理 (2)1.2.1.轨道强度计算的基本原理 (2)1.2.2.稳定性计算的基本原理 (3)1.3 轨道各部件强度验算 (5)1.3.1SS1(客)电力机车 (5)1.3.2DF4B(货)内燃机车 (10)轨道强度、稳定性计算1.1设计资料:线路条件:曲线半径R=1500m ,钢轨:60kg/m ,U74钢轨,25m 长的标准轨;轨枕:Ⅱ型混凝土轨枕1760根/m ;道床:碎石道砟,厚度为40cm ;路基:既有线路;钢轨支点弹性系数D :检算钢轨强度时取30000N/mm ;检算轨下基础时取70000N/mm ;由于钢轨长度为25m ,钢轨类型为60kg/m ,故温度应力a 51t MP =σ,不计钢轨附加应力。

机车类型:SS1(客)电力机车,三轴转向架,轮载115KN ,轴距2.3m ,机车构造速度95km/hDF4B (货)内燃机车,三轴转向架,轮载115KN ,轴距1.8m ,机车构造速度120km/h1.2 轨道强度、稳定性计算的基本原理1.2.1.轨道强度计算的基本原理目前,最常用的检算轨道强度方法称为准静态计算方法。

所谓准静态计算方法,就是应用静力计算的基本原理,对轨道结构尽力计算,然后根据轨轮系统的动力学特性,考虑为轮载、钢轨绕度、弯矩和轨枕反力等的动力增值问题。

轨道强度准静态计算包括以下三项内容:I 、 轨道结构静力计算II 、 轨道结构强度的动力计算——准静态计算 III 、 检算轨道结构各部件的强度 1) 强度检算的基本假设:a) 假设列车运行时,车轮荷载在轨道各部件中所引起的应力应变与量值相当的静荷载所引起的应力应变想等,即车轮荷载具有准静态性质。

补充内容-轨道强度计算

补充内容-轨道强度计算
·2·
(2-4-3)
D 值随材料的性质、路基和道床密度及气候的影响而变化。根据我国的测定数据,混凝土轨枕轨道的
·1·
D 值见表 2-4-3 所示。 混凝土轨枕轨道 D 值 轨道类型及计算部件 轨道特征 D(N/mm) 混凝土枕,橡胶垫板 宽轨枕,橡胶垫板 特 重型、重型 钢轨 30000 50000 轨枕、道床及基床 70000 120000 表 2-4-3 次 重型及以下 钢轨 22000 / 轨枕、道床及基床 42000 /
k 4 EJ
(2-4-9)
式中 β 为钢轨基础与钢轨刚比系数,则(2-4-8)式成为:
d4y + 4β 4 y = 0 dx 4
其特征方程为:
(2-8-10)
λ4 + 4 β 4 = 0
λ的四个根为:
λ 1,2 = (1 ± i ) β λ 3,4 = ( −1 ± i ) β
从而,方程(2-4-10)的通解为:
y = Ae βx cos βx + βe βx sin βx + Ce − βx cos βx + De − βx sin βx 式中 C1 ~ C4 为积分常数,由边界界条件 x → ∞ 时, y= 0, 得 C1 = C2 = 0 ;当 x = 0 时,
kx
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0
对于混凝土轨枕线路,支座弹性系数由橡胶垫板的弹性系数与道床和路基的弹性系数组成。这好似由 三根弹簧分别代表橡胶垫板、道床和路基的弹性系数串联而成为支座的弹性系数。因此, D 可表示为:

2-4-5

电梯导轨强度计算

电梯导轨强度计算

a) 由导向力引起的Y轴方向的弯曲应力计算:
Fx=k1*g*(Q*xQ+P*xP)/(n*H)
= 1076.2 N
My=3*Fx*L/16
= 504449.69 N.mm
σy=My/Wy
= 71.5
Mpa
第一种载荷分布情况(见图1):
相对X轴:xQ=xC+Dx/8 Xc
= 264.5
mm
= 77
mm
= 453.6 = 212633 = 30.1 = 264.5 =0
= 686.0 = 321562.5 = 34.6 = 77 = 200 =0
= 64.7
= 13.11
= 1.859 = 1.847
N N.mm Mpa mm mm
N N.mm Mpa mm mm mm
MPa
MPa
≤σperm=165MPa
A7.2.3 复合应力计算: σm=σx+σy σ=σm+(Fk+k3*M)/A σc=σk+0.9*σm 结论:复合应力计算满足要求!
= 129.2 = 151.8 = 180.99
MPa ≤σperm=205MPa MPa ≤σperm=205MPa MPa ≤σperm=205MPa
A7.2.4 翼缘弯曲应力计算: σf=1.85*Fx/c2
mm 13K轨为10
≤δperm=5 ≤δperm=5
B正常使用、运行时 B7.2.1弯曲应力计算: a) 由导向力引起的Y轴上的弯曲应力计算:
Fx=k2*g*(Q*(xQ-xs)+P*(xP-xs))/(n*H)
My=3*Fx*L/16 σy=My/Wy 第一种载荷分布情况(见图1): 相对X轴:xQ=xC+Dx/8

铁路轨道课程设计---轨道强度、稳定性计算

铁路轨道课程设计---轨道强度、稳定性计算
4.3.1、钢轨强度的检算………………………………………………………16
4.3.2、轨枕弯矩的检算………………………………………………………18
4.3.3、道床顶面应力的检算…………………………………………………20
4.3.4、路基面道床应力的检算………………………………………………20
五、参考文献…………………………………………………………………………2
作用于轨道上的力非常复杂,而且有强烈的随机性和重复性。这些力大体上可分
为垂直于轨面的竖向力、垂直于钢轨的横向水平力和平行于钢轨的纵向水平力
等三种。
3.1.1、竖向力
竖向力的主要组成部分是车轮的轮载。列车在行驶过程中,车轮实际作用于
轨道上的竖直力称为车轮的动轮载。其超出静荷载的部分称为静荷载的动力附
2.《轨道工程》
1.5、完成文件与要求
设计计算书
设计计算书采用统一的封页和计算纸张,按要求填写好任务书,装订后再和
图纸一起放入资料袋中。
指导教师:张鹏飞
附录:机车参数
1、3电力机车,机车构造速度100km/h,三轴转向架,轮载115kN,轴距
2.3+2.0 。
3的轴距
2、4(货)内燃机车,三轴转向架,轮载115kN,轴距1.8m,机车构造速度1
3.3.3、道床应力及路基面应力计算…………………………………………10
四、计算部分………………………………………………………………………11
4.1、计算资料……………………………………………………………………11
4.2、运营车辆为1型电力机车时轨道各部件强度检算……………………11
4.2.1、机车通过曲线轨道的允许速度的确定………………………………11

钢轨接头应力强度计算公式

钢轨接头应力强度计算公式

钢轨接头应力强度计算公式钢轨是铁路运输中不可或缺的重要组成部分,它承担着列车的重量和运行时的各种力的作用。

钢轨接头是铁路线路中连接两根钢轨的重要部分,它的质量和稳定性直接影响着铁路的安全和运行效率。

在铁路运输中,钢轨接头的应力强度是一个重要的参数,它可以用来评估接头的质量和稳定性,为铁路运输的安全提供保障。

钢轨接头的应力强度是指接头在受力作用下的抗压能力。

在铁路运输中,钢轨接头通常会受到列车的重量和运行时的各种力的作用,因此需要具有足够的应力强度,以保证其在运行过程中不会发生破裂或变形。

为了评估钢轨接头的应力强度,工程师们通常会采用一些计算公式来进行分析和评估。

钢轨接头的应力强度计算公式通常包括以下几个方面的因素,接头的材料性能、接头的结构形式、接头的受力情况等。

在实际应用中,工程师们通常会根据具体的情况选择合适的计算公式来进行分析和评估。

首先,接头的材料性能是影响其应力强度的重要因素之一。

钢轨接头通常由高强度合金钢制成,其材料的硬度、强度、韧性等性能直接影响着接头的应力强度。

在计算公式中,工程师们通常会考虑到接头材料的各项性能参数,以确定接头的应力强度。

其次,接头的结构形式也是影响其应力强度的重要因素之一。

钢轨接头通常有多种不同的结构形式,如扣件式接头、熔焊接头等,它们的结构形式不同,其受力情况也会有所不同。

在计算公式中,工程师们通常会根据接头的具体结构形式,选择合适的计算方法来进行分析和评估。

最后,接头的受力情况也是影响其应力强度的重要因素之一。

在铁路运输中,钢轨接头通常会受到列车的重量和运行时的各种力的作用,这些力的大小和方向都会对接头的应力强度产生影响。

在计算公式中,工程师们通常会考虑到接头受力情况的各种因素,以确定接头的应力强度。

综上所述,钢轨接头的应力强度计算公式是评估接头质量和稳定性的重要工具。

在实际应用中,工程师们通常会根据接头的具体情况,选择合适的计算公式来进行分析和评估。

通过科学的计算和评估,可以有效地提高钢轨接头的质量和稳定性,为铁路运输的安全提供保障。

轨道部件强度计算算例

轨道部件强度计算算例
Mj = 1 1 × 94967 = 20120127( N ⋅ mm) Pµ = ∑ 4k 4 × 0.00118
下一页
∑ Pµ 计算表
轮 计算轮 项 目 动1
P(N )
返回 位 动3 112815 3600 4.248 0.0063 711 112815 1800 2.124 -0.1645 -18559 75697 94967
x(mm)
动2
kx
µ (kx )
Pµ (N )
4、计算动弯矩 M d 、
M d = M j (1 + α + β ) f
查表3-3,内燃机车计算钢轨轨底弯曲应力时,速度系数为
0.4V 0.4 × 80 α= = = 0.32 100 100
在R=600m的曲线上,允许欠超高 ∆h = 75mm ,则偏载系数为
β = 0.002∆h = 0.002 × 75 = 0.15
在R=600m的曲线上,横向水平力系数 f ,查表3-4,可得
f = 1.60
则钢轨动弯矩为
M d = 20120127 × (1 + 0.32 + 0.15) × 1.6 = 47322539( N ⋅ mm)
5、计算动弯应力 σ d 1、σ d 2 、
轨道部件强度检算算例
一、原始资料
在XX线上,曲线半径R=600m的既有线区段,其条件如下:
1、轨道条件
钢轨:60kg/m U74 碳素轨(新轨),25m 长标准轨, 轨枕:J-2 型混凝土枕,1760 根/km 道床:碎石道碴,面碴厚 25cm,垫层厚 20cm; 路基填料:砂粘土; 钢轨支座刚度: 检算钢轨 D = 30000 N/mm 检算轨下基础 D = 70000 N/mm

钢轨强度计算

钢轨强度计算

线路设计:DF 4型机车前后有两个转向架,每个转向架为三个轴,前后转向架最近轴距 为8.4米,当kx>6时u, n 都很小。

计算表明,当轴距大于 5m 以上时,相邻轮 子影响很小,可以不计。

因此,寻找引起最大弯矩的最不利轮位时,只要用一个 转向架的三个轴分别做为计算轮来求最不利轮位。

而且还应注意到转向架的三个 轴轮重一样,轴距亦相同,所以1、3轮引起的弯矩应该相同,只要考虑其中一 个即可。

这样只要在1、2轮中找最不利轮了。

所以分别以动1,动2为计算轮, 计算其 P (见表4-1)P计算表表4-1 计算轮 项目轮位艺 P u (N)设计要求:线路采用采用 60kg/m 的标准轨更换线路原50kg/m 钢轨,标准 轨的长度为25m 钢轨的材质采用PD3全长淬火轨轨;轨枕采用J —2型混凝土 枕,每公里铺设1840根;道床采用碎石道碴,设计道床厚度为 350mm 设计行 驶速度为140km/h ,运行行驶速度为 120km/h ;钢轨支座刚度 D :检算刚度 D 1=30000N/mm检算轨下基础D 2=70000N/mm 运营条件:采用DF 4型内燃机车。

4.3.14.3.1.11、a EK2、钢轨强度计算钢轨弯矩计算轨道刚比系数K 值计算 型啤543 mm1840 D 30000 55.2 Mpaa 54352.1 10 Mpa442879 10 mmM ______ 55・2 _______4EJ \ 4 2.1 1052879 104最不利轮位及maX P 计算 -1 0.00123 mm表中看出,1 (川)轮为最不利轮位,P =为最大.由此作为计算弯矩和应 力并进行强度检算.3、计算钢轨静弯矩M o :96455.28 19604731 N • mm4 0.001234、计算钢轨动弯矩M d在R=600的曲线上允许超高△ h =75mm 所以0.002 h 0.002 750.15横向水平力系数f=(查表3-7)M d M o (1)f (1 1)19604731 (1 0.56 0.15) 1.45 (1 0.12)54443122 N • mm 4.3.1.2 计算钢轨截面动态应力1 M oP 4K=0.4V = 1000.4 140 1000.56根据公式:291cm3W底375cm3M dW WJ所以在曲线地段:54443122 10291 10187.09Mpa压)54443122 10375 10145.18Mpa拉)在直线地段19604731 (1 0.56 0.15) (1 0.12) 1.25 3291122.61Mpad底95.15 Mpa4.3.1.3 允许应力计算对于PD3, s496Mpa K=[] 二496K 1.3381.54Mpa因为25m长钢轨温度应力t 51Mpa所以d头187.09 51 238.09Mpa []4.3.2道床和基面强度计算4.3.2.1 轨枕顶面压力尺根据公式:公式4-2)1、P最大值计算(1)、计算K值1000000a 543 mm1840E 2.1 105Mpa70000543128.9 Mpa4 4J 2879 10 mm4128.94 2.1 1052879 104⑵、列表计算max PDF 4型机车前后有两个转向架,每个转向架为三个轴,前后转向架最近轴距 为8.4米,当kx>6时u, n 都很小。

(完整word)轨道钢规格

(完整word)轨道钢规格

铁路钢轨知识:
(1)重型钢轨知识:每米公称重量大于30kg的钢轨.火车钢轨和起重机轨都属重轨。

火车钢轨:用于铺设铁路,要承受火车营运时的压力、冲击载荷和摩擦,要求有足够的强度和一定的韧性。

质量要求严格,除保证其化学成分外,还要求检验力学性能、落锤试验和酸浸低倍组织等。

生产厂有武钢、鞍钢、包钢和攀钢等.起重机轨:即吊车轨,其高度较低,头宽及腰厚尺寸较大,只要求检验化学成分和抗拉强度。

用于铺设起重机大于及小车轨道.生产厂有鞍钢和攀钢。

(2)轻型钢轨知识:是每米公称重量小于或等于30kg的钢轨。

轻轨的质量要求比重轨低,只要求检验其化学成分、抗拉强度、硬度和落锤试验等。

主要用途:轻轨主要用于林区、矿区、工厂及施工现场等处铺设临时运输线路和轻型机车用线路。

铁路钢轨型号:
(1)轻型钢轨型号,材质: Q235,55Q ;规格:30kg/m,24kg/m,22kg/m,18kg/m,15kg/m,12 kg/m,8 kg/m。

(2)重型钢轨型号,材质: 45MN, 71MN;规格:50kg/m, 43kg/m,38kg/m,33kg/m
(2)起重钢轨型号,材质: U71MN;规格:QU70 kg /m ,QU80 kg /m,QU100 kg /m,QU120 kg /m。

以上钢轨型号为常用钢轨型号.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线路设计:
设计要求:线路采用采用60kg/m 的标准轨更换线路原50kg/m 钢轨,标准轨的长度为25m ,钢轨的材质采用PD3全长淬火轨轨;轨枕采用J —2型混凝土枕,每公里铺设1840根;道床采用碎石道碴,设计道床厚度为350mm ;设计行驶速度为140km/h ,运行行驶速度为120km/h ;钢轨支座刚度D :检算刚度
1D =30000N/mm ,检算轨下基础2D =70000N/mm ;运营条件:采用DF 4
型内燃机车。

4.3.1 钢轨强度计算
4.3.1.1 钢轨弯矩计算
1、轨道刚比系数K 值计算
10000005431840a ==mm 3000055.2543
D a μ===Mpa
52.110E =⨯Mpa 4287910J =⨯mm
4
0.00123K =
=
=mm
-1
2、最不利轮位及
max P μ
∑计算
4DF 型机车前后有两个转向架,每个转向架为三个轴,前后转向架最近轴距
为8.4米,当kx>6时u,η都很小。

计算表明,当轴距大于5m 以上时,相邻轮子影响很小,可以不计。

因此,寻找引起最大弯矩的最不利轮位时,只要用一个转向架的三个轴分别做为计算轮来求最不利轮位。

而且还应注意到转向架的三个轴轮重一样,轴距亦相同,所以1、3轮引起的弯矩应该相同,只要考虑其中一个即可。

这样只要在1、2轮中找最不利轮了。

所以分别以动1,动2为计算轮,计算其P μ

(见表4-1)
P μ∑计算表 表4-1
表中看出,Ⅰ(Ⅲ)轮为最不利轮位,P μ
∑=96455.28N 为最大.由此作为计算
弯矩和应力并进行强度检算.
3、计算钢轨静弯矩
M :
011
96455.2819604731440.00123
M P K μ=
=⨯=⨯∑N ·mm 4、计算钢轨动弯矩d
M
0.4V 0.4140=
0.56100100α⨯==
在R=600的曲线上允许超高△h =75mm,所以
0.0020.002750.15h β=⋅∆=⨯= 横向水平力系数f=1.45 (查表3-7)
1(1)(1)
d o M M f αβα=+++
19604731(10.560.15) 1.45(10.12)=⨯++⨯⨯+
54443122= N ·mm 4.3.1.2 计算钢轨截面动态应力
d σ
根据公式:
d
d M W σ=
,3291W cm =头,3
375W cm =底
所以在曲线地段:
9
6544431221029110d σ--⨯=
⨯头
187.09=Mpa(压)
9
6544431221037510d σ--⨯=
⨯底
145.18=Mpa(拉)
在直线地段
3
19604731(10.560.15)(10.12) 1.2510291d σ-⨯++⨯+⨯=⨯头
122.61=Mpa
95.15d σ=底Mpa 4.3.1.3 允许应力计算
对于PD3,496s Mpa σ= K=1.3 3
496
[]381.541.3
K
σσ==
=Mpa 因为25m 长钢轨温度应力51t σ=Mpa
所以187.0951238.09t d σσ+=+=头Mpa []σ<
4.3.2 道床和基面强度计算
4.3.2.1 轨枕顶面压力d R
根据公式:
d d R y μα
=⋅⋅ (公式
4-2)
1、P η

最大值计算
(1)、计算K 值
10000005431840a ==mm 70000128.9543
μ==Mpa
52.110E =⨯Mpa 4287910J =⨯mm
4
0.0015K =
=
=mm -1
(2)、列表计算
max P η

4DF 型机车前后有两个转向架,每个转向架为三个轴,前后转向架最近轴距
为8.4米,当kx>6时u,η都很小。

计算表明,当轴距大于5m 以上时,相邻轮子影响很小,可以不计。

因此,寻找引起最大弯矩的最不利轮位时,只要用一个转向架的三个轴分别做为计算轮来求最不利轮位。

而且还应注意到转向架的三个轴轮重一样,轴距亦相同,所以1、3轮引起的弯矩应该相同,只要考虑其中一个即可。

这样只要在1、2轮中找最不利轮了。

所以分别以动1,动2为计算轮,计算其∑
η
P (见表4-2)
P η∑计算表 表4-2
表中看出,Ⅰ(Ⅲ)轮为最不利轮位, ∑η
P =108942.24N 为最大.由此作为计
算弯矩和应力并进行强度检算.
(3)、静态挠度
y 计算
00.0015
108942.240.6422128.9
K y P u η=
=⨯=⨯∑mm (4)、动态挠度d
y 计算
0.3140
0.42100α⨯=
= 0.15β=(△h=75mm)
1(1)(1)0.64(10.420.15)(10.12) 1.13d o y y αβα=+++=⨯++⨯+=mm
(5)、轨枕顶面压力
d
R 计算
044958.282K
R P u η=
=∑
1(1)(1)d o R R αβα=+++=44958.28×(1+0.42+0.15)×(1+0.12)=79054.65N
4.3.2.2 轨枕弯矩计算 1、轨中截面正弯矩:
211',1,50028gd
s d s a b M k R k e α⎛⎫
=-== ⎪⎝⎭
mm ,950e =mm ',60150b =轨mm 所以
2500150
1()79054.658919652.9429508
=⨯-⨯=⨯gd M N
2、轨中截面负弯矩
()221143128,L=2500432zd
s d e L La ea M k R L e ⎡⎤+--=-⎢⎥+⎣⎦
mm 所以
()224950325001225005008950500179054.65
4325002950zd
M ⎡⎤
⨯+⨯-⨯⨯-⨯⨯=-⨯⨯⎢⎥⨯+⨯⎣⎦
7484961.54=-N ·mm 4.3.2.3计算道床轨底应力
z
σ
对于Ⅱ型轨枕,有效支承长度'1175e =,257b =mm,m=1.6所以
79054.65 1.60.419'1175257
d z R m b
e σ=
=⨯=⨯Mpa 对于碎石道床允许应力[]
z σ=0.5Mpa,[]0.4190.5z z σσ=<=Mpa,所以满足要

4.3.2.4计算路基面应力
l σ
125735183.522b h ctg ctg ϕ==⨯=mm,2'117535839.022
e h ctg ctg ϕ==⨯=mm
h 计算
=350mm, 该轨道路基顶面处于1h 与2h
之间,所以
84741
0.1422'2350117535
d l R h
e tg tg σϕ=
==⨯⨯⨯Mpa
对既有线[
]
l σ=0.15MPa,[]0.1420.15l l σσ=<=Mpa,满足强度要求
(注:可编辑下载,若有不当之处,请指正,谢谢!)。

相关文档
最新文档