有理数除法(1)
《有理数除法法则》微课(1)
)= 6
1
3 )= 6
由以下等式
40÷5=
40×
1 5
,
(-18)÷(-3)=
(-18)×
(-
1 3
)= 6
你能得到什么结论或法则?
有理数除法法则:
• 除以一个不等于零的数,等于乘以这 个数的倒数.
用式子可表示为:
1
a÷b=a× b (b≠0)
结论: 两数相除,同号得正,异号得 负,并把绝对值相除,0除以任 何一个不等于0的数都得0。
若两个数的积等于1,那么这两个数互为倒数.
3.分别说出下列有理数的倒数.
1, - 2, 1 , 1.5 , 41 , -1, -0.25 ,
7
32
已知积和其中一个因数,求另一个因数.
积÷因数=另一个因数
1 (3 )(4 )-1 ; 2(-12()3)4
26(-3 )-1; 8 (-186)-3
3(15)(-25)5;
注意: 0不能做除数
口答:先说出商的符号,再说出商 (1)(+12)÷(+4) (2)(-57)÷(+3) (2)(-36)÷(-9) (4)(+96)÷(-16)
有理数的除法
复习引入
1. 有理数的乘法法则 两数相乘,同号得正Leabharlann 异号得负,并把绝对值相乘.
任何数同0相乘,都得0.
注意
运算过程中应先判断积的符号.
几个不等于0的数相乘,积的符号由负 因数的个数决定.当负因数有奇数个时,积 为负;当负因数有偶数个时,积为正。
几个数相乘,有一个因数为0,积就为0.
2.什么是倒数?
5
(
1) 5
-25
4 (3 ) (-9 )-2 ; 7(-27()9)3
人教版数学七年级上册1.4《有理数的除法》(第1课时)教学设计
人教版数学七年级上册1.4《有理数的除法》(第1课时)教学设计一. 教材分析人教版数学七年级上册1.4《有理数的除法》(第1课时)是学生在学习了有理数加减乘运算的基础上,进一步深化对有理数运算的理解和掌握。
本节内容主要介绍了有理数的除法运算,包括同号有理数的除法、异号有理数的除法以及除以0的情况。
通过本节课的学习,学生能够掌握有理数除法的基本运算方法,并能够正确进行计算。
二. 学情分析学生在进入七年级之前,已经初步掌握了有理数的基本概念和加减乘运算。
但是,对于除法运算,学生可能还存在一些困惑和误解。
因此,在教学过程中,教师需要针对学生的实际情况进行引导和讲解,帮助学生理解和掌握有理数的除法运算。
三. 教学目标1.知识与技能目标:学生能够理解有理数除法的基本概念,掌握同号有理数、异号有理数以及除以0的除法运算方法,并能够正确进行计算。
2.过程与方法目标:通过小组合作、讨论交流等方法,培养学生解决问题的能力和团队合作精神。
3.情感态度与价值观目标:激发学生对数学学习的兴趣,培养学生的耐心和细心,使学生能够积极主动地参与数学学习。
四. 教学重难点1.教学重点:学生能够掌握有理数除法的基本运算方法,并能够正确进行计算。
2.教学难点:学生能够理解和掌握同号有理数、异号有理数以及除以0的除法运算方法。
五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,帮助学生理解和掌握有理数除法的基本概念和运算方法。
2.实例讲解法:教师通过具体的例子,解释和说明有理数除法的运算规则,让学生能够直观地理解和掌握。
3.小组合作法:学生分组进行讨论和交流,共同解决问题,培养团队合作精神和解决问题的能力。
六. 教学准备1.教学PPT:教师准备相关的教学PPT,包括有理数除法的运算规则、例题等,以便进行直观的教学展示。
2.练习题:教师准备一些练习题,用于学生在课堂上进行操练和巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾之前学过的有理数加减乘运算,激发学生的学习兴趣,为新课的学习做好铺垫。
2.2.2 有理数的除法(第1课时有理数除法法则) 课件 人教版七年级数学上册
解:
p
形如 q ( p,q 是整数,q ≠ 0) 的数都是有理数;
有理数又都可以写成上述形式 (整数可以看成分母为 1 的
分数).
课本练习
2.化简:
−72
−30
0
(1)
;
(2)
;
(3)
;
9
−45
−75
−72
解: (1)
= (−72) ÷9=−( 72÷9) =−8;
9
−30
2
(2)
= (−30) ÷(−45)= 30÷45 = ;
-3 )
+
)
B. 1×(
D. 1×(
+
)
-
)
)
3.计算下列各式
〔1〕〔-18〕÷6;
〔2〕〔-63〕÷〔-7〕
〔3〕
〔4〕
−
−
;
.
谢谢大家
求有理数的倒数.
2. 经历有理数除法法则的探索过程,会进行有理数的除
法运算.
3. 通过有理数除法法则的导出及运用,体会转化思想.
重点:正确运用法则进行有理数的除法运算.
难点:理解商的符号及其绝对值与被除数和除数的关系.
情景导入
2023年冬季微山岛某周每天上午8时的气温记录如下:
求微山岛这周的平均气温.
6
(6) −
5
÷
2
6
− =
5
5
÷
2 6 5
= × =3.
5 5 2
(3)1÷(−9);
6
2
(6) − ÷ − .
5
有理数的除法
1.下列说法正确的是( )A.任何有理数都有倒数B.一个数的倒数小与它本身C.0除以任何数都得0D.两个数的商为0,只有被除数为0 2.下列说法正确的是( )A.任何有理数都有倒数B.一个数的倒数小与它本身C.0除以任何数都得0D.两个数的商为0,只有被除数为0 3.已知有两个有理数的商为负数,那么( ) A.它们的和为负数 B.它们的差为负数 C.它们的积为负数 D.它们的积为正数4、 -2的倒数是 ;-0.2的倒数是 ,负倒数是 。
5. 被除数是21,除数是−7的倒数,则商是 。
6. 若ab<0,b>0,则a 0。
7. 若cab<0,ac>0,则b 0。
8、一个数的相反数是-5,则这个数的倒数是 。
9、若a ·(-5)=58,则a = 。
10.某校招收实验班学生,从5个报名的学生中录取3人,如果有100人报名,那么____人可能被录取。
11.有两个数-4和+6,它们相反数的和除以它们倒数的和的值为多少? 12、(1) (—0.1)÷10; (2) (—271)÷(—145); (3) 61÷(—2.5)(4) (—323)÷(512); (5) (—10)÷(—8)÷(—0. 25); (6) (+48)÷(+6) ;(7) 4÷(-2); (8) (-212)÷(-5)×(-313) (9) 0÷(-1000).13.当a =1.8,b =-2.7,c =-3.6时,分别求下类代数式的值:(1)-3a c ;(2)7ab514.解下列方程:(1)-3.4x =-6.8 (2)-65x =-321. —213 的倒数是 ,相反数是 。
2. 计算(—1)÷(—5)×(—15 )的结果是( )A. —1B. 1C. —125D. —253. 一个数的倒数等于它本身,这个数是( ) A. —1 B. 1 C. 0 D. 1或—14. 下列各式成立的是( )A. 25÷4×(—8)=25÷[4×(—8) ]B. 25÷4×(—8)=25÷(—8) ÷4C. 25÷4×(—8)=25÷(—8)×4D. 25÷4×(—8)=25÷(—4)×8 5. —12 的相反数的倒数是 。
有理数除法 (1)
有理数的除法法则
两个有理数相除,同号得正,异号得负, 并把绝对值相除。 0除以任何非0的数都得0. 注意:0不能作除数。
有理数除法 (1)
例1.依据有理数的除法法则计算:
(1)(-15)÷(-3) (2)12÷(- 1 )
4 (3)(-0.75)÷0.25
想一想
(-12)÷(
1 12
)÷(-100)
2.8 有理数的除法
学习目标
1.理解有理数的除法法则,会实 行有理数的除法运算。
2.体会除法和乘法的关系,会求 一个数的倒数。
3.培养学生观察、归纳、概括和 运算水平。
(-12)÷(-3)= ? 被除数=除数×商 (-3)× 4 =-12
除法是乘 法的逆运
算
(-12)÷(-3)=_____
自主学习
预习数学课本P55—P56 1、完成想一想,把法则补全完整 2、研读例1,体会法则,总结步骤 3、完成做一做,你能得到什么结论? 4、研读例2,总结步骤
想一想
(-18)÷6=_-__3_
5÷(-
1 5
)=-__2_5_
(-27)÷(-9)=__3_
0÷(-2)=__0__
观察上面的算式及计算结果,你有什么 发现?
检测巩固
习题2.12 知识技能1(奇数) 知识技能2 问题解决4
课堂小结
1.除法法则: 两个有理数相除, 同号得正, 异号得负, 并把绝对值相除; 0除以任何非0数都得0. 注意:0不能作除数.
2.除法和乘法之间的关系: 除以一个数, 等于乘以这个数的倒数
作业 全品学练考 课时作业(十八)
(1)1÷(- 2 )与1×(- 5 ) 5
5
2
2
有理数的除法(第一课时)教案
有理数的除法(第一课时)教案
1.知识与技能
①了解有理数除法的定义.
②经历有理数除法法则的过程,会进行有理数的除法运算.
③会化简分数.
2.过程与方法
①通过有理数除法法则的导出及运用,让学生体会转化思想.
②培养学生运用数学思想指导数学思维活动的能力.
3.情感、态度与价值观
在独立思考的基础上,积极参与对数学问题的讨论,能从交流中获益.
重点:正确应用法则进行有理数的除法运算.
难点:怎样根据不同的情况来选取适当的方法求商.
教与学互动设计
(一)创设情境,导入新课
我们在前几节课和大家一起学习了有理数的乘法.并且还由乘法而认识了有理数的倒数问题.那大家知道乘法的
逆运算是什么?该如何计算和应用.这就是本节课我们学习的内容.
(二)合作交流,解读探究
试一试 (-10)÷2=?
交流因为除法是乘法的逆运算,也就是求一个数“?”,使(?)×2=-10
更多精彩推荐:初中gt;初一gt;数学gt;初一数学教案。
有理数的除法(一)
有理数除法法则: 有理数除法法则 除以一个不等于0的数 等于乘这个数的倒数 除以一个不等于 的数,等于乘这个数的倒数 的数 等于乘这个数的倒数.
1 a ÷b = a⋅ (b ≠ 0) b 练习:
(1).(−36) ÷ 9 =-4 1 (2).(−12) ÷ (− ) =+72 6 (3).(+15) ÷ (−3) =-5 1 (4).(−8) ÷ (− ) =+32 4 (5).0 ÷ (−68) =0
例1:计算
例2:化简下列各式:
− 12 − 45 (1). ; (2). 3 − 12 − 12 解 : (1). = −12 ÷ 3 = −4 3 15 − 45 (2). = −45 ÷ (−12) = 4 − 12
例3:计算:
5 5 1 1.( −125 ) ÷ (−5);2. − 2.5 ÷ × ( − ) 7 8 4 5 5 1 解 : ( −125 ) ÷ ( −5) 2. − 2.5 ÷ × ( − ) 7 8 4 5 1 5 8 1 = (125 + ) × = × × 7 5 2 5 4 1 5 1 = 125 × + × =1 5 7 5 1 1 = 25 + = 25 7 7
1 1 1 (3)能否用上述方法解决: 12 ÷ ( − − ) 6 2 3
(1)下面的计算正确吗?你发现了什么?
(28 − 49 − 63) ÷ 7 = 28 ÷ 7 − 49 ÷ 7 − 63 ÷ 7 1 1 1 = 28 × − 49 × − 63 × 7 7 7 = 4 − 7 − 9 = −12
1 1 1 1 (2)计算: ( − − ) ÷ ( − ) 12 9 3 36
100 ÷ 50 = 20
有理数的乘法与除法(1)
有理数乘法与除法(1)教学目标1.通过问题的交流探究,归纳出有理数乘法法则,发展抽象能力,建立模型观念;2.经历归纳有理数乘法法则的过程,理解两个有理数相乘与想法意义的量之间的关系;3.会进行有理数的乘法运算;教学重点理解有理数的乘法法则,能熟练地进行有理数的乘法运算.教学难点探索有理数乘法法则的数学活动中,体会有理数乘法的实际意义,发展应用数学知识的意识与能力.教学流程2分钟侯读:有理数的加法法则:同号两数相加,取相同的符号:异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;一个数与0相加仍得这个数。
有理数的减法法则:减去一个数,等于加上这个数的相反数。
情景导学:问题:1:请举例说明小学学过的乘法和除法有哪些?2:小学学过的乘法和除法属于有理数的乘法和除法吗?3:其它有理数的乘法和除法能举个例子吗?会计算吗?4:如何计算(-4)×3 呢?说说你的方法。
交流展学:学生小组讨论情景导学中的问题后进行展示。
精讲点学:归纳:两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数与0相乘,都得0。
计算步骤:两个不为0的数相乘一、定号—同号得正,异号得负;二、定值—并把绝对值相乘。
典例深学:例1计算(-2)×(-16)=(-1 10)×137=(-8.037)×0=情景导学:问题:1.多个有理数的相乘的方法与两个有理数相乘有什么区别与联系?2.算一算,找规律(+1)×(-2)=(+1)×(-2)×(-3)=(+1)×(-2)×(-3)×(-4)=(+1)×(-2)×(-3)×(-4)×(-5)=…(+1)×(-2)×0×(-3)×(-4)×(-5)×…=交流展学:学生小组讨论情景导学中的问题后进行展示。
9.有理数的除法(1)
有理数的除法【目标导航】1. 理解除法是乘法的逆运算;2. 掌握除法法则,会进行有理数的除法运算;3. 经历利用已有知识解决新问题的探索过程.【预习引领】1.有理数的减法法则是什么? 2.两个有理数的乘法法则是什么? 3.在小学我们已经学习了除法运算,小学数的运算范围是怎样的?4.在有理数范围内又怎样进行除法运算呢?这节课共同研究有理数的除法.5.怎样计算8÷(-4)呢? 【要点梳理】知识点一:有理数的除法法则∵(-2)×(-4)=8 ∴8÷(-4)=-2∵8⎪⎭⎫⎝⎛-⨯41=-2 ∴8÷(-4)=8⎪⎭⎫ ⎝⎛-⨯41 同样可得:-9÷23=-9×32(-12)÷(-4)=(-12)⎪⎭⎫⎝⎛-⨯41换其他数的除法进行类似讨论,是否仍有除以a (≠a 0)可以转化为乘a1归纳有理数除法法则:除以一个不等于0的数,等于乘以这个数的倒数. ba b a 1⋅=÷0(≠b 因为一个数与它的倒数的符号相同,所以有理数的除法法则还有另一种说法:两数相除,同号得 ,异号得 ,并把绝对值相 .0除以任何一个不等于0的数,都得 .例1 计算:()1()936÷- ; ()2 ;()3 ()4注:一般被除数的绝对值能整除除数的绝对值时用第二个除法法则较简便. 练习:计算:()()()7631-÷- ()()802-÷()()522603÷- ()()75.1874-÷⎪⎭⎫⎝⎛-例2 化简下列分数: (1)312- (2)1545--(3)3612-练习:化简下列分数:(1)1854- (2)147-- (3)80-知识点二: 乘除混合运算乘除混合运算先将除法化成乘法,然后确定积的符号,最后求出结果. 例3 计算:(1)-313÷213⨯(-2)(2)-34×(-112)÷(-214)练习:(1)()()⎪⎭⎫ ⎝⎛-÷-÷-511412(2)()25.05832-÷⎪⎭⎫⎝⎛-⨯⎪⎭⎫ ⎝⎛-(2)()74431165156⨯⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-⨯-例4 化简b ba a +(ab ≠0)的所有可能的值有 ( )A .1个B .2个C .3个D .4个 点拨:本题含有绝对值符号,故要考虑a 、b的正负情况.当a >0时,a 1aa =;当a <0时,1aa=-.小结:本节课大家一起学习了有理数除法法则.有理数的除法有2种方法,•一是根据除以一个数等于乘以这个数的倒数,二是根据“两数相除,同号得正,异号得负,并把绝对值相除”.一般能整除时用第二种.【课堂操练】1.有理数的除法法则是:_______________ ________ _______.2.两数相除,同号得________,异号得________,并把绝对值_________.3.计算: (1) 0÷(-3)=_________ ;(2) )89(1-÷-=_________ ; (3) -5÷(-5)=_________ ; (4) -43)34(-÷=_________ .4.化简: (1) 721-=___ ; (2) -824=___ ; (3)()824---=___ ; (4)25.075.0-=___ ;(5)1527-=___ ; (6) 3432-=___ .5.倒数等于它本身的数是:________;零________倒数.(填“有”或“没有”).6.如果甲数除以乙数的商为0,那么一定是( )A.甲、乙两数都为零B.乙数为零,而甲数不为零C.甲数为零,而乙数不为零D.乙数为零,而甲数不一定为07.下列说法中错误的是 ( )A.小于-1数的倒数大于它本身B.大于1的数的倒数小于它本身C.一个数的倒数不能等于它本身D.a (a ≠0)的倒数是a1 8.计算:⑴ 911811÷⎪⎭⎫ ⎝⎛- ⑵⎪⎭⎫ ⎝⎛-÷315327⑶()25.2833-÷⎪⎭⎫ ⎝⎛- ⑷25272550÷- (5)()723628÷-⨯ (6)341121353÷⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-÷315327()25.2833-÷⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛-÷⎪⎭⎫ ⎝⎛-352512【课后盘点】1.两个有理数的商是正数,这两个数( ) A.都是负数 B.都是正数 C.至少有一个是正数 D.两数同号2.如果()()110x y +÷-=,那么( ) A.0=x B.0=y C.1-=x 或1≠y D. 1-=x 且1≠y3.若0<ac ,cab ≥0,则有( )A.b ≥0B.b >0C.b ≤0D.b <04.⎪⎭⎫ ⎝⎛-522÷3×31= .5.下列说法中不正确的是( ) A.零不能作除数B.互为倒数的两数乘积等于1C.零没有倒数D.1除以一个数,等于这个数的倒数 6. 的倒数等于本身, 的相反数等于本身, 的绝对值等于本身,•一个数除以 等于本身,一个数除以 等于这个数的相反数. 7.计算题: ⑴ 15(2)()714-÷-⑵ )711(875.3-÷÷⑶ )145()7(23-÷-÷-⑷ 33157-÷+÷-()()()713(5)1(10)(3)(3)834÷-⨯-÷-(6)9(11)3(3)-⨯-÷÷-⑺()()47124748⨯-÷÷-⑻()89441281÷⎪⎭⎫⎝⎛-⨯÷-⑼⎪⎭⎫⎝⎛-÷⨯⎪⎭⎫ ⎝⎛-÷715747328.计算题 ⑴ )711()322()324(-÷-÷-⑵ 7)412(54)721()5(÷-⨯⨯-÷-⑶ )1()2.4()6.5(0)1(1-⨯---÷+-÷⑷ )216132(181-+÷⑸ (-2)313()5(21-⨯-÷)⑹ )25.0()58(32-÷-⨯-⑺ )533(9441272-÷⨯⨯-⑻ )52(4.1431)6.0(43321-⨯÷⨯-⨯÷-9.计算:⑴ 45)53()125(⨯-÷-⑵ )412()211()43(+÷-⨯-⑶ )25.0()53()321(-÷-÷-⑷ 143)91()121(317÷+÷-⨯⑸ )6()7636(-÷-⑹ )2(9449)8110(-÷⨯÷-⑺ ⎥⎦⎤⨯⎢⎣⎡-÷÷--511)3132(433)2113(⑻ )145()2(52825-⨯-÷+-设计:韦业纯10.已知a 、b 互为相反数,c 、d 互为倒数,x 的绝对值为1,求3x -(a +b +cd )-x .11.已知a 、b 、c 在数轴上的位置如图所示:(1)求||a ab +1||b -2||bc bc(2)比较a +b ,b +c ,c -b 的大小,并用“〈”将它们连接起来.【课外拓展】1.联欢会上,小红按照4个红气球,3个黄气球,2•个绿气球的顺序把气球串起来装饰会场,第52个气球的颜色是2.已知 a b c <0,a <c ,ac <0,则下列结论中正确的是( )A. a >0, b >0 ,c <0B. a <0 ,b <0,c >0C. a <0 ,b >0, c >0D. a >0,b <0,c <03.绝对值不大于5的所有整数的积等于 .4.n 个不等于0的有理数的积是负数,那么负因数的个数是( )A. n 个B.奇数个C.偶数个D.1个5.若2006个有理数相乘,其积为0,则这2004个数中( )A .最多有一个数为0B .至少有一个数为0C .恰好有一个数为0D .均为06.计算下列各式:11⨯= ;1111⨯= ;111111⨯= ;11111111⨯= ;(1)你发现了什么规律? (2)你能直接写出11111111111111⨯的结果吗?【趣味数学】以前有一个农民,他有17只羊,临终前,他嘱咐把羊分给三个儿子,他说:“大儿子分一半,二儿子分13,小儿子分14 ,但是不允许把羊杀死或者卖掉”.三个儿子感到很为难,不知怎么分,你能他们分吗?一家公司为了开发某种产品,需要每年向银行存款或取款,到今年,•存取款结果正好为零.如果把向银行的存款数(万元)记为正数,那么向银行的取款数(万元)就应当记为负数;如果把现在起向后的时间(年)记为正数,那么把现在起向前的时间(年)记为负数,在这个问题中,(1)(-100)÷4的实际意义是___________;(2)(-100)÷(-4)的实际意义是_____________.仿照上题,请你举一个实例,使问题的数量为:(1)16÷(-2) (2)(-10)÷(-2)设计:韦业纯资料采撷大数学家维纳的故事维纳(1894─1964)是最早在美洲数学界赢得国际荣誉的大数学家,关于他的轶事多极了.维纳早期在英国,后来赴美国麻省理工学院任职,长达25年.他是校园中大名鼎鼎的人物,人人都想与他套近乎.有一次一个学生问维纳怎样求解一个具体问题,维纳思考片刻就写出了答案.实际上这位学生并不想知道答案,只是问他“方法”.维纳说:“可是,就没有别的方法了吗?”思考片刻,他微笑着随即写出了另一种解法.维纳最有名的故事是有关搬家的事.一次维纳乔迁,妻子熟悉维纳的个性,搬家前一天晚上再三提醒他.她还找了一张便条,上面写着新居的地址,并用新居的房门钥匙换下旧房的钥匙.第二天维纳带着纸条和钥匙上班去了.白天恰有一人问他一个数学问题,维纳把答案写在那张纸条的背面递给人家.晚上维纳习惯性地回到旧居.他很吃惊,家里没人.从窗子望进去,家具也不见了.掏出钥匙开门,发现根本对不上.于是他使劲拍了几下门,随后在院子里踱步.突然发现街上跑来一个小女孩.维纳对她讲:“小姑娘,我真不走运.我找不到家了,我的钥匙插不进去.”小女孩说道:“爸爸,没错,妈妈让我来找你.”有一次维纳的一个学生看见维纳正在邮局寄东西,很想介绍一番.在麻省理工学院真正能与维纳直接说上几句话、握握手,还是十分难得的.但这位学生不知道怎样接近他才好.这时,只见维纳来来回回踱着步,陷于沉思之中.这位学生更担心了,生怕打断了先生的思维,而损失了某个深刻的数学思想.但最终还是鼓足勇气,靠近这个伟人:“早上好,维纳教授!”维纳猛地一抬头,拍了一下前额,说道:“对,维纳!”原来维纳正欲往邮签上写寄件人姓名,但忘记了自己的名字…….有理数的除法【目标导航】【预习引领】【要点梳理】知识点一:有理数的除法法则答案:正;负;除;0例3计算:答案:⑴原式=-4;⑵原式=36 125;⑶原式=233316-⨯=2316-;⑷原式=23489⨯=2318注:一般被除数的绝对值能整除除数的绝对值时用第二个除法法则较简便. 练习:计算:答案:⑴原式=9;⑵原式=0;⑶原式=-25;⑷原式=1 2例4化简下列分数:答案:⑴原式=-4;⑵原式=3;⑶原式=1 3 -练习:化简下列分数:答案:⑴原式=-3;⑵原式=12;⑶原式=0知识点二: 乘除混合运算例3计算:答案:⑴原式=103237⨯⨯=207;⑵原式=334429-⨯⨯=12-练习:答案:⑴原式=3115⎛⎫÷-⎪⎝⎭=-52;⑵原式=28435-⨯⨯=6415-⑶原式=2144561677-⨯⨯⨯=-24例4答案:C【课堂操练】1.答案:除以一个数等于乘以这个数的相反数2. 答案:正;负;除3.计算:答案:⑴原式=0;⑵原式=89;⑶原式=1;⑷原式=9164.化简:答案:⑴原式=-3;⑵原式=-3;⑶原式=3;⑷原式=-3;⑸-95;⑹-125、答案:±1;没有;6.答案:C;7.答案:C8.计算:答案:⑴原式=99810-÷=-8180;⑵原式=233316-⨯=2316-;⑶原式=2743892⨯=;⑷原式=-2227;⑸原式=-14;⑹原式=374114525325-⨯⨯⨯=-【课后盘点】1. 答案:D2. 答案:D3.答案:A4. 答案:415-5. 答案:D6.答案:±1;0;非负数;1;-17.计算题:答案:⑴原式=6;⑵原式=787278-⨯⨯=-3.5⑶原式=-35;⑷原式=359;⑸原式=15110418103156-⨯⨯⨯=-;⑹原式=-11;⑺原式=4;⑻原式=2⑼原式=747142373627⨯⨯⨯=8.计算题答案:⑴原式=14379838864-⨯⨯=-;⑵原式=7491519547-⨯⨯⨯⨯=-;⑶原式=-1+0-4.2=-5.2;⑷原式=1413()18666÷+-=113186⨯=;⑸原式=511052533-⨯⨯=-;⑹原式=286443515-⨯⨯=-;⑺原式=94572204918⨯⨯⨯=;⑻原式=543752335475-⨯⨯⨯⨯⨯=23-9.计算:答案:⑴原式=125144=;⑵原式=12;⑶原式=551004339-⨯⨯=-;⑷原式=2211477931233-⨯⨯⨯=-;⑸原式=167;⑹原式=8144118992⨯⨯⨯=;⑺原式=1311(4)3(1)12435⎡⎤-÷÷-⨯⎢⎥⎣⎦=927362445⎛⎫÷⨯⨯⎪⎝⎭=9445202273627⨯⨯⨯=;设计:韦业纯10.答案:解:根据题意得0a b+=,1cd=,1x=±,当1x=时,原式=3111--=;当1x=-时,原式=-3113-+=-,所以原式的值为-1或-3。
[新人教版七年级上册课件]有理数除法(1)
1 0 4 0 4
除以一个非零的数等于乘以这个正数的倒数。
有理数除法法则:
除以一个数, 等于_________________. 乘以这个数的倒数
1 a÷b=a · (b≠0). b
注意:除法在运算时有 2 个要素要发生变化。
变 1 除 乘 变 2 除数 倒数
例1 计算: (1) (-36) ÷9
观察右侧算式, 两个有理数相除时: 除法能否转化为乘法? 商的符号如何确定? 商的绝对值如何确定?
正数除以正数 负数除以正数 零除以正数 因为 所以
1 8÷4 =2 8 =2 4 1 (-8)÷4 =-2 ( 8) =-2 4 1 0÷4 =0 0 =0 4
1 8 4 8 (-2)×4= -8, 4 1 ( 8)-2. 4 ( 8) (-8)÷ 4= 4
计算:
2 (5) 1 ( ) 5
例3:计算:
5 5 1 1.(125 ) (5); 2. 2.5 ( ) 7 8 4 5 5 1 解 : ( 125 ) ( 5) 2. 2.5 ( ) 7 8 4 5 1 5 8 1 (125 ) 7 5 2 5 4 1 5 1 125 1 5 7 5 1 1 25 25 7 7
例4
化简下列分数:
12 (1) 3 45 (2) 12
分数可以理解 为分子除以分 母.
12 解: (1) 3
=(-12) ÷3=-4 =(-45) ÷(-12)
=45÷12
45 (2) 12
15 = 4
化简:
72 (1) ; 9
30 (2) 45
(3)
0 75
, 并把绝对值相除
2.2.2 有理数的除法(第1课时)人教版数学七年级上册教案
第一章有理数2.2有理数的乘除法2.2.2 有理数的除法第1课时有理数的除法一、教学目标【知识与技能】掌握有理数除法法则,会进行有理数的除法运算以及分数的化简.【过程与方法】通过学习有理数除法法则,体会转化思想,会将乘除混合运算统一为乘法运算.【情感态度与价值观】培养学生勇于探索积极思考的良好学习习惯.二、课型新授课三、课时第1课时四、教学重难点【教学重点】正确应用法则进行有理数的除法运算.【教学难点】灵活运用有理数除法的两种法则.五、课前准备教师:课件、直尺、倒数图片等。
学生:三角尺、练习本、铅笔、圆珠笔或钢笔。
六、教学过程(一)导入新课根据实验测定,高度每增加1km,气温大概下降6℃.某登山运动员攀登某高峰的途中发回信息,报告他所在高度的温度是-15℃,当时地面气温为3℃.请问你能确定登山运动员所在的位置高度吗?(出示课件2)(二)探索新知1.师生互动,探究有理数的除法法则教师问1:小明从家里到学校,每分钟走50米,共走了20分钟,问小明家离学校有多远?学生回答:50×20=100.教师问2:放学时,小明仍然以每分钟50米的速度回家,应该走多少分钟?学生回答:100 ÷50=20.教师问3:从上面这个例子你可以发现,有理数除法与有理数乘法之间满足怎样的关系?学生回答:有理数除法与有理数乘法互为逆运算.教师问4:引入负数后,如何计算有理数的除法呢?例如8÷(-4).师生共同讨论后解答如下:根据除法意义,这就是要求一个数,使它与-4相乘得8.因为(-2)×(-4)=8所以 8÷(-4)=-2 ①另外,我们知道,8×(-)=-2 ②由①、②得 8÷(-4)=8×(-)③③式表明,一个数除以-4可以转化为乘以-来进行,即一个数除以-4, 等于乘以-4的倒数-.教师问5:对于其他的数是不是也可以呢?请完成下面的题目:(出示课件6)学生回答:中间组由上到下答案依次为:-2,-6,4,-8;右边组由上到下5答案依次为:-2,-6,4,-8;5教师问6:上面各组数计算结果有什么关系?由此你能得到有理数的除法法则了吗?学生回答:上面各组数计算结果相等,有理数的除法可以转化为乘法进行计算.教师问7:观察下列两组式子,你能找到它们的共同点吗?(出示课件7)学生回答:除以一个数等于乘以它的倒数.教师问8:除数能为0吗?学生回答:不能为0.教师问9:换其他数的除法进行类似讨论,是否仍有除以a(a≠0)可以转化为乘以呢?[例如(-10)÷(-0.4)]学生做题后回答:仍然可以.总结点拨:从而得出有理数除法法则:(出示课件8)除以一个不等于0的数,等于乘以这个数的倒数.这个法则也可以表示成:a÷b=a·(b≠0),其中a、b表示任意有理数(b≠0)例如:教师问10:利用上面的除法法则计算下列各题.(出示课件9)(1)(–54)÷ (–9);(2)(–27) ÷3;(3)0 ÷ (–7);(4)(–24) ÷(–6).学生回答:(1)6;(2)-9;(3)0;(4)4教师问11:从上面我们能发现商的符号有什么规律?学生回答:同号得正,异号得负.总结点拨:(出示课件10)两数相除,同号得正,异号得负,并把绝对值相除.零除以任何一个不等于零的数,都得零.教师问12:到现在为止我们有了两个除法法则,那么两个法则是不是都可以用于解决两数相除呢?(出示课件11)师生共同解答如下:1. 两个法则都可以用来求两个有理数相除.2. 如果两数相除,能够整除的就选择法则二,不能够整除的就选择用法则一.例1:计算:(出示课件12)(1)(–36) ÷ 9;(2)(-1225)÷(-35) .师生共同解答如下:解:(1)(–36) ÷ 9= –(36×19 )= –4;(2)例2:化简下列各式:(出示课件14)(1) ―123 ;(2)―45―12 .师生共同解答如下:解:(1)(2)例3:计算:(出示课件)(1) (2)师生共同解答如下:解:(1)原式=====点拨:如果有带分数,可以将带分数写成整数部分和分数部分的和,利用分配律进行运算,更加简便.(2)原式== 1点拨:将小数化为分数.总结点拨:1. 有理数除法化为有理数乘法以后,可以利用有理数乘法的运算律简化运算.2. 乘除混合运算往往先将除法化为乘法,然后确定积的符号,最后求出结果(乘除混合运算按从左到右的顺序进行计算).(三)课堂练习(出示课件19-22)1. (–21) ÷7的结果是( )A.3B.–3 C.13D. –132. 计算:(–12) ÷ 3=_______.3. 填空:(1)若a,b互为相反数,且a ≠ b,则ab=________;(2)当a < 0时,|a|a=_______;(3)若a>b,ab<0,则a,b的符号分别是__________.(4)若–3x=12,则x =_____.4.若|2x+6|+|3―y|=0,则xy=_________.5. (1)计算;(2). 计算;(3)计算参考答案:1.B2.-43.(1)-1;(2)-1;(3)a>0,b<0;(4)-44.-1 解析:由题意得,|2x+6|+|3―y|=0,解得x=-3,y=3,所以xy =―33=-1.5.解:(1)原式==(2)原式==(3)原式==(四)课堂小结今天我们学了哪些内容:除以一个不等于0的数,等于乘以这个数的倒数.两数相除,同号得正,异号得负,并把绝对值相除.零除以任何一个不等于零的数,都得零.(五)课前预习预习下节课(1.4.2)36页到37页的相关内容。
有理数的除法(第1课时有理数除法法则)课件(共39张PPT) 七年级数学上册(人教版2024)
这两个法则分别在什么情况下使用?
如果两数相除,能够整除的就选择法则2,不能够整除的就选择用法则1.
总结归纳
思考:
到现在为止我们有了两个除法法则,那么两
个法则是不是都可以用于解决两数相除呢?
要点归纳:
1.两个法则都可以用来求两个有理数相除.
2.如果两数相除,能够整除的就选择法则二,
不能够整除的就选择用法则一.
(3)原式=1 8÷(-54)=- ;(4)原式=-[(-9)÷3 6 ]=-(- )= .
练一练
4.化简:
-
(1)
; 解:原式=-9;
-
(2)
;
-
56 7
原式=48=6;
-
(3)
; 原式=-30=-2;
45
3
-
(4) ;
.
原式=-30.
总结归纳
一般地,根据有理数的除法,形如 (p,q 是整数, q ≠0)的数都是
4/5
(-12/25)×(-5/3)=___
-8
-72×(1/9)=___
问题:上面各组数计算结果有什么关系?由此你能
得到有理数的除法法则吗?
观察下列两组式子,你能找到它们的共同点吗?
“÷”变“×”
(1)(+6)÷(+2)= +3
6
1
=
2
+3
互为倒数
“÷”变“×”
(2)(+6)÷(-2)= -3
分层练习-巩固
11. 下列四名同学的说法中,正确的是(
A
)
A. 墨墨:0除以任何一个不等于0的数都得0
有理数的除法-最新经典教案,通用
1.4.2有理数的除法(1)教学设计活动1探究有理数的除法 问题1正数除以负数因为2×(-4)=-8 所以=-2负数除以负数 (-8)÷(-4)因为(2)×(-4)=-8 所以(-8)÷(-4) =2 零除以负数 0÷(-4)因为0×(-4)=0 0÷(-4)=0除以一个负数等于乘以这个负数的倒数。
活动2再次验证结论两者的关系-38÷0=?通过以上式子大小比较,你有什么发现吗?2:讲解新知用自己的语言概括规律并用字母表示注:使用的条件。
给学生给足时间自己探究自己发现,自己验证,此次活动是本节课的核心活动,对学生有一定的难度,有些学生可能不易发现更不会加以修改推广,得到结论,而忽略了使用的条件,此时教师应引导学生注意观察对比,用自己的语言描述发现的规律.直到准确为止。
学生分组讨论,教师深入小组倾听学生的讨论,并注意规范学生的数学语言,并注意学生学生语言的严谨性 此次活动中,教师应重点关注:1.学生在小组活动中的参与意识.2.学生在探究,考虑问题是否全面.3.学生在描述通过探索规律得到的结论,语言是否严密、规范.4.学生在小组讨论交流的过程中,是否敢于发表自己的见解,注意倾听他人的见解,并能重新审视完善自己的想法.(学生活动)让学生对比得出两者相等的关系 老师点评:(1)既然相等我们就可以把除法转换成乘法来进行 运算。
(2)注意转化的方法(3)再次验证加深理解并得出结论(4)-38÷0的结果如何? 学生要说出理由这很重要!教师要关注:1、教师要规范学生的数学语言,并注意学生学生语言的严谨性)41()8(-⨯-)41(0-⨯)41(8-⨯)21()411____()2()411(;31)15____(3)15();41(8_____)4(8-⨯--÷-⨯-÷--⨯-÷教学反思《孤独之旅》教学设计知识目标:理解小说内容,体会孤独的含义。
有理数的除法(一)
1 —— 4
); )
检测题三:
P35 练习
当堂训练:
必做题: P38 3、4、5
选做题: P39
12
自学检测一:
1、除以一个不等于0的数,等于 乘这个数的倒数 —————。 2、两数相除,同号得 正 ,异得 负 , 并把绝对值相 除 ,0除以任何一个不 0 等于0的数,都得 . 1 —— 3、 8÷(-4)= 8×(- 4 );
自我检测二:
运用除法法则计算: (1)(-15)÷(-3); (2)(-12)÷(一 (3)(-8)÷(一
板店中学: 李文英
【学习目标】
1、掌握有理数的除法法则。 2、能够应用有理数的除法法则 熟练地进行除法运算。 3、培养观察、归纳页的内容:思考问题并填空 1、回忆小学学过的除法的意义,(除法是乘法 的逆运算。已知两个因数的积与其中一个因数, 求另一个因数的运算。)及有理数的乘法法则, 思考有理数的除法法则是怎样得到的? 2、回答云图中的问题,并完成34页的填空。 3、看例5,观察两小题的解题过程,思考它们分 别应用有理数除法的哪一种法则?(怎样确定符 号,怎样确定商的。) 5 分钟后,比谁能仿例正确地做对检测题。
1.4.2(1) 有理数的除法
1 8 ÷(-4)= 8 × (- ) 4 1 -12 ÷(-3)= -12 × (- ) 3
由此,你能总结出什么规律? 有理数的除法法则: 除以一个不等于0的数,等于乘这个 数的倒数。 即:
1 a b a b
b 0
8 ÷(-4)= -2
- 12 ÷(-3)= 4
你能总结出有理数除法的符号 法则吗? 有理数除法的符号法则:
b 异号,则 、
a < 0; _____ b
b 0 时,则 若 a 0,
a _____ = 0; b
思维拓展 1
=2(a+b)
0 0 -1
1
-
-1
-b
3或-3或1或-1
再 见
正 ,异号得___ 负 , (1)两数相除,同号得___ 相除 。 并把绝对值_____ 0 。 (2)0除以任何一个不等于0的数,都得___
典型例题 计算: 12 3 (1)(-36)÷9, (2)( 25 )÷( 5 ). 1 12 5 — -36 × 解:原式= — 9 解:原式=(- — )×( ) 25 3 =4 5 =-4
有理数的除法(一)
(-2) ×(-4)= 8
8 ÷(-4)= -2
1 另一方面:8 × (- )= -2 4
1 因此:8 ÷(-4)= 8 × (- ) 4
(-3) × 4 = - 12 - 12 ÷(-3)= 4 1 另一方面:- 12 × (- )= 4 3
1 因此:-12 ÷(-3)= -12 × (- ) 3
课堂练习: 1、下列运算过程正确吗?为什么?
1 16 7 7
= - 16÷ 1 =-1
2、练习:书本35页
1.4.2有理数的除法(1)
七年级数学 编号:SX-14-07-016《1.4.2有理数的除法(1)》导学案 编写人:许结华 审核人: 编写时间: 2014.9 班级 组别 组名 姓名 完成等级 更正等级 【学习目标】:1、理解除法是乘法的逆运算; 2、掌握除法法则,会进行有理数的除法运算;3、经历利用已有知识解决新问题的探索过程.【学习重点】:有理数的除法法则 【学习难点】:理解商的符号及其绝对值与被除数和除数的关系 【学法指导】:自学课本第34页,根据问题提示归纳,类比得到有理数的除法法则,并规范的书写过程。
【知识链接】:1、小明从家里到学校,每分钟走50米,共走了20分钟.小明家离学校有 米,列出的算式为 .放学时,小明仍然以每分钟50米的速度回家,应该走 分钟.列出的算式为 2、从上面这个例子可以发现,除法与乘法之间的关系是 【探究新知】 探究一: 1、请你试着填空: ①因为8×9= 所以72÷9=_______ , ②因为(-4) ×(-3)= 所以12÷(-4)=____ __,12÷(-3)=____ __; ③因为2×(-3)= 所以(-6) ÷2=__ ____,(-6)÷(-3)= ; ④因为(-5)×2= 所以(-10) ÷2=__ __,(-10)÷(-5)= ; ⑤因为0 ×(-6)= 所以0 ÷(-6)=______。
思考:观察上面除法运算的结果,它的符号和绝对值与被除数和除数有什么关系?你发现了什么? 2、计算:① 72×91 = ; ② 12×(-41)= ;③(-10)×⎪⎭⎫⎝⎛51-= ;④(-6)×21= ; ⑤ 0×(-61)= 综合1、2的,观察计算结果,你发现了什么?探究二、 、计算:①(-15)÷(-3); ②(-12)÷(一16); ③(-8)÷(一14)探究三、你能总结有理数的除法法则吗?有理数除法运算的步骤是什么?探究四、完成下列计算①(-63)÷7 ② 1÷(-9) ③(-6.5)÷0.13 ④ (-56)÷(-52)【课堂小结】你有什么收获? 【当堂检测】 一.填空题:1、2的倒数是 ;-0.2的倒数是 ,负倒数是 。
有理数的除法(1)【精品课件】
b b
规律:分子、分母以及分数这三者的符号,改变 其中两个,分数的值不变.
活动四:总结反思,布置作业
有理数除法法则
法则一
不能整除
a÷b(b≠0)
能整除
法则二
两数相除,同号得正,异 号得负,并把绝对值相除, 0除以任何一个不等于0的 数,都得0.
化简分数的方法: 分子分母同时除以它们的最大公约数. 有理数乘除混合运算步骤: 乘除混合运算往往先将除法化为乘法, 然后确定积的符号,最后求出结果.
活动三:例题示范,学会应用
例1 计算: (1) (-36) ÷9
(2)
12 25
3 5
解: (1) (-36)÷9=-36÷9 =-4
(2)
12 25
3 5
12 25
ቤተ መጻሕፍቲ ባይዱ
5 3
4 5
知识点2 有理数除法法则的运用
认真看例5的计算过程,比较两题运用除法法 则的方法有什么不同之处.
(1) (-36)÷9=-36÷9=-4
(2) 45 12
解:化简得 15
(4) 0 4 8
解:化简得0
思路点拨
根据有理数的除法法则→用分子除以分母→计算或化简→结果
归纳小结
分数化简的方法 1.把分数转化为除法,利用有理数的除法法则进 行化简. 2.利用分数的基本性质,分子和分母都乘以同一 个数或都除以同一个不为0的数结果不变进行化 简(分子分母同时除以它们的最大公约数).
活动一:创设情境,导入新课
我们在前面学习有理数的减法时,是借助 于逆运算把它转化为加法来进行的.大家知道除 法的逆运算是乘法,那么有理数的除法运算是 不是也是借助于逆运算转化为乘法来进行的呢? 这节课我们就来学习有理数的除法.