加热炉装置自动控制系统设计 3解析
管式加热炉温度前馈-反馈控制系统设计解析
过程控制课程设计报告管式加热炉温度前馈-反馈控制系统设计学生:专业:自动化班级:重庆大学自动化学院2012年10目录前言 (1)1 管式加热炉系统描述 (1)1.1 管式加热炉的一般结构 (1)1.2 管式加热炉传热方式 (2)1.3 管式加热炉工艺流程 (2)1.4 主要控制参数、操作参数及影响因素 (2)2 方案设计 (3)2.1 方案一 (3)2.2 方案二 (4)3 管式加热炉温度控制系统模型的建立 (4)3.1 前馈-反馈控制系统传递函数 (4)3.2 过程响应分析 (6)3.3 PID控制算法 (7)3.4 PID 控制各参数的作用 (8)4 MATLAB/Simulink仿真 (8)4.1 用ITAE 方法设计控制器 (8)4.2 用Ziegler-Nichols方法设计控制器 (10)5 基于MATLAB/Simulink的仿真 (12)5.1 前馈-反馈控制与单回路控制模型的比较 (12)5.2 基于ITAE方法的仿真模型 (13)5.2.1 ITAE的PI控制模型仿真 (13)5.2.2 ITAE的PID控制模型仿真 (14)5.3基于Ziegler-Nichols方法的仿真模型 (14)5.3.1 Ziegler-Nichols的PI控制仿真模型 (14)5.3.2 Ziegler-Nichols的PID控制仿真模型 (15)6 报告总结 (15)参考文献 (16)前言管式加热炉是石油炼制、化纤工业、石油化工和化学行业主要的工艺设备之一,作用是将物料加热至工艺所要求的温度,具有操作方便, 自动化水平高, 加工成本低, 传热效率高等优点。
1967年4月,世界上第一台步进梁式加热炉由美国米兰德公司设计而成,之后,日本中外炉公司设计的世界上第二座步进梁式加热炉于1967年5月投产。
70年代末,发达工业国家己经进入大型连续加热炉计算机控制的实用阶段,但控制策略还主要局限于燃烧控制。
加热炉过程自动控制系统的设计
加热炉过程自动控制系统的设计以下是一个加热炉过程自动控制系统的设计方案,详细描述了系统的组成、工作原理及控制策略:一、系统组成:1.传感器:用于检测加热炉的温度、湿度、压力、流量等参数。
2.执行器:负责控制加热炉的加热功率、燃料供给、风量等。
3.控制器:根据传感器信号,通过计算和判断,产生相应的控制命令,控制执行器的动作。
4.人机界面:提供对加热炉过程的监控、设置和操作功能,使操作员能够方便地对加热炉进行调试和控制。
二、工作原理:1.传感器采集加热炉的各项参数,并将数据传输给控制器。
2.控制器根据传感器数据进行计算和分析,将所需的控制命令传输给执行器。
3.执行器根据控制命令控制相应设备的动作,如调节加热功率、燃料供给量、风量等。
4.执行器调整加热炉的工作状态,使其达到预定的温度、湿度、压力、流量等参数。
5.人机界面可以通过可视化界面显示加热炉的运行状态和参数,操作员可以通过界面进行参数设置和调整。
三、控制策略:1.温度控制:根据加热炉的加热需求,设置温度控制器的目标温度,并通过加热功率的控制来调节温度,使其尽量趋近目标温度。
2.湿度控制:根据加热炉的加热需求,设置湿度控制器的目标湿度,并通过蒸汽量或喷雾量的控制来调节湿度,使其尽量趋近目标湿度。
3.压力控制:根据加热炉的加热需求,设置压力控制器的目标压力,并通过调节燃料供给量和风量的控制来调节压力,使其尽量趋近目标压力。
4.流量控制:根据加热炉的加热需求,设置流量控制器的目标流量,并通过调节燃料供给量和风量的控制来调节流量,使其尽量趋近目标流量。
5.故障诊断与安全保护:系统可以检测加热炉的异常状态和故障情况,并进行相应的故障诊断和安全保护措施,如当温度超过安全范围时,自动切断燃料供给等。
电加热炉控制系统的设计
电加热炉温度控制系统设计说明
电加执八、、炉温度控制系统设计电加热炉温度控制系统设计1. 设计的意义:在现实生活当中,很多场合需要对温度进行智能控制,日常生活中最常见的要算空调和冰箱了,他们都能根据环境实时情况,结合人为的设定,对温度进行智能控制。
工业生产中的电加热炉温度监控系统和培养基的温度监控系统都是计算机控制系统的典型应用。
2. 方案的设计:要求利用所学过的知识设计一个温度控制系统, 加热炉温度检测,到设定温度后,进行保温控制. 要想达到技术要求的内容,用到的器件有:单片机、温度传感器、LCD 显示屏、直流电动机等。
其中单片机用作主控制器,控制其他器件的工作和处理数据;温度传感器用来检测环境中的实时温度,并将检测值送到单片机中进行数值对比;LCD 显示屏用来显示温度、时间的数字值;直流电动机用来表示电加热炉的工作情况,转动表示电加热炉通电加热,停止转动表示电加热炉断电停止加热。
原理图如下图1:图1 电加热炉温度控制系统原理图2.1 硬件选择:1. 单片机这里选用AT89C52 单片机作为控制系统的处理器。
AT89C52 是一种带4K 字节闪存可编程可擦除只读存储器的低电压、高性能CMOS 8 位微处理器。
2. 温度传感器温度传感器有很多种型号,这里我选用DS18B20 温度传感器。
数字温度传感器DS18B20 具有独特的单总线接口方式,支持多节点,使分布式温度传感器设计大为简化。
测温时无需任何外围原件,可以通过数据线直接供电,具有超低功耗工作方式。
测温范围为-55 到+125 摄氏度,可直接将温度转换值以16 位二进制数字码的方式串行输出,因此特别适合单线多点温度测量系统。
由于传输的是串行数据,可以不需要放大器和A/D 转换器,因而这种测温方式大大提高了各种温度测控系统的可靠性,降低了成本,缩小了体积。
3.开关器件由于单片机与电动机之间需要用开关器件连接,并且前者用弱电控制,后者由强电控制,这就尤其需要注意安全问题。
于是我想到了在课本中学过的高性能安全开关器件光电耦合器。
步进式加热炉自动控制系统的设计
步进炉自动控制系统的设计摘要:目前,工业控制自动化技术正朝着智能化、网络化和集成化的方向发展。
通过步进梁式加热炉系统的设计,体现了当今自动化技术的发展方向。
同时介绍了软件设计思想、脉冲燃烧控制技术的特点及其在该系统中的应用。
1导言加热炉是轧钢行业必备的热处理设备。
随着工业自动化技术的不断发展,现代轧机应配备大型化、高度自动化的步进梁式加热炉,其生产应满足高产、优质、低耗、节能、无污染和生产操作自动化的工艺要求,以提高产品质量,增强市场竞争力。
中国轧钢行业的加热炉有两种:推钢炉和步进梁式炉。
然而,推钢炉长度短,产量低,烧损高。
操作不当会导致生产出现问题,难以实现管理自动化。
由于推钢炉有不可克服的缺点,步进梁炉依靠一种特殊的步进机构,使钢管在炉内做直角运动,钢管之间留有间隙,钢管与步进梁之间没有摩擦。
出炉的钢管通过提升装置卸出,完全消除了滑痕。
钢管加热段温差小,加热均匀,炉长不受限制,产量高,生产操作灵活。
其生产符合高产、优质、低耗、节能的特点。
全连续全自动步进梁式加热炉。
这种生产线具有以下特点: ①生产能耗大大降低。
②产量大幅增加。
③生产自动化水平很高。
原加热炉的控制系统多为单回路仪表和继电器逻辑控制系统,传动系统多为模拟量控制的电源装置。
现在加热炉的控制系统都是PLC或者DCS系统,大部分还有二级过程控制系统和三级生产管理系统。
传输系统都是数字DC或交流电源设备。
本项目是某钢铁集团新建的φ180小直径无缝连续钢管生产线热处理线上的一台步进梁式加热炉。
2流程描述该系统的工艺流程图如图1所示。
图1步进梁式加热炉工艺流程图淬火炉和回火炉都是步进梁式加热炉。
装载方式:侧进侧出;炉布:单排。
活动梁和固定梁由耐热铸钢制成,顶面有齿形面,钢管直径小于141.3毫米,每个齿槽内放置一根钢管。
每隔一颗牙放一根直径153.7mm的钢管。
活动横梁升降180mm,上下90mm,节距190mm,间隔145mm。
因此,每走一步,钢管都可以旋转一个角度,使钢管受热均匀,防止炉内弯曲变形。
步进式加热炉自动控制演示系统设计
为 了更好地 帮助 自动化专业 学生对现场控 制系统结构有
更 清 晰 的 认 识 ,利 用 学 习 过 的 工 业 现 场 的 有 关 知 识 来 解 决 实
3模 型 控 制 系统 设 计
炉温和步进 梁控制是加热 炉的控制核心 问题 。为 了保证
钢 坯 在 加 热 炉 内 的 顺 利 传 递 ,满 足 对 轧 钢 机 的供 应 量 ,本 次 采 用 西 门子 P L C完 成 对 下 位 加 热 炉 模 拟 装置 的 控 制 ,并 通 过 M C G S实 现对 模 型 的 上位 监 测 。 3 . 1下 位 控 制 系 统 根 据 模 拟 装 置 控 制 点 的要 求 ,本 次 控 制 系 统 选 用 西 门 子 P L C中 C P U 2 2 4控 制 器 和 E M 2 3 5模 拟 量 模 块 。 由 于 C P U 2 2 4控
摘 要 本 系统 以棒 材厂 加 热 炉控 制现 场 为背 景 ,设 计并 制作 完
成 与 实际相 结合 的 步进 式加 热炉 演示 系统 。 下位部 分采 用 西 门子
P L C来控 制 实现加 热炉 的动 作;利用 MC G S完成上 位在 线 演示 。
该 系统 为培 养 学生 实践和 创新 能 力提供 了 良好 的平 台 。
际 问题 …,本 次设计 以八钢 棒材厂加热炉 为背景,开发完成
了与 生 产 实 际紧 密 结 合 的步 进 式 加 热 炉 实 验 演 示 系 统 。学 生 不 仅 可 以更 好 地 了解封 闭加 热 炉 内部 结 构 ,还 可 以演 示加 热炉 内部 工 作情 况 。这 对 于 学生 建 立对 加 热 炉 及 复杂 工 业 生 产 过程 的 认 识 , 自主 实 现 模拟 工 业 过 程 中检 测 和 控 制技 术 ,综 合 掌握 所 学 知 识 , 提 高 学 生 工 程 实 践 和 创 新 能 力 具 有 很 好 的帮 制是棒材 加工过程 中的关键 步骤 。根据控制工艺, 只有对加 热炉 的燃烧 温度 以及进 出钢 顺序进行控 制 ,才能保
加热炉控制系统
目录第1章加热炉控制系统工艺分析 (1)1.1 加热炉的工艺流程简述 (1)1.2 加热炉控制系统的组成 (2)第2章加热炉控制系统设计 (3)2.1 步进梁控制 (3)2.2 炉温控制 (4)2.3 紧急停炉保护和连锁 (5)第3章基于REALINFO的加热炉系统监控程序设计 (7)3.1加热炉的主控界面 (7)3.2加热炉的趋势界面 (8)3.3加热炉的仪表界面 (9)第4章结论与体会 (10)参考文献 (11)第1章加热炉控制系统工艺分析在炼油化工生产中常见的加热炉是管式加热炉。
其形式可分为箱式、立式和圆筒炉三大类。
对于加热炉,工艺介质受热升温或同时进行汽化,其温度的高低会直接影响后一工序的操作工况和产品质量。
加热炉是传统设备的一种,同样具有热量传递过程。
热量通过金属管壁传给工艺介质,因此他们同样符合导热与对流的基本规律。
但加热炉属于火力加热设备,首先由燃料的燃烧产生炙热的火焰和高温的气流,主要通过辐射传热将热量传给管壁,然后由管壁传给工艺介质,工艺介质在辐射室获得的热量约占总符合的70%~80%,而在对流段获得的热量约占热负荷的20%~30%。
因此加热炉的传热过程比较复杂,想从理论上获得对象特性是很困难的。
当炉子温度过高时,会使物料在加热炉内分解,甚至造成结焦而烧坏炉管。
加热炉的平稳操作可以延长炉管使用寿命。
因此,加热炉出口温度必须严加控制。
加热炉的对象特征一般基于定性分析和实验测试获得。
从定性角度出发,可以看出其传热过程为:炉膛炽热火焰辐射给炉管,经热传导、对流传热给工艺介质。
所以与一般传热对象一样,具有较大的时间常数和纯滞后时间。
特别是炉膛,它具有较大的热容量,故滞后更为显著,因此加热炉属于一种多容量的被控对象。
根据若干实验测试,并做了一些简化,可以用一介环节加纯滞后来近似,其时间常熟和纯滞后时间与炉膛容量大小及工艺介质停留时间有关。
炉膛容量大,停留时间长,则时间常数和纯滞后时间大,反之亦然。
基于单片机的电加热炉温度控制系统设计
基于单片机的电加热炉温度控制系统设计一、概述电加热炉温度控制系统是一种常见的自动化控制系统。
它通过控制加热元件的加热功率来维持加热炉内的温度,从而实现对加热过程的精确控制。
本文将介绍一种基于单片机的电加热炉温度控制系统的设计。
二、系统设计1. 硬件设计本系统采用单片机作为控制核心,传感器检测加热炉内的温度,并将数据反馈给单片机进行处理。
通过触摸屏交互界面,用户可以设定希望维持的温度值,单片机将控制加热元件的加热功率,以实现温度的稳定控制。
2. 软件设计单片机程序主要分为三个部分:(1)传感器数据采集和处理,通过定时器进行数据的采样,然后通过计算分析实现温度值的读取。
(2)温度控制,设定一个目标温度值后,单片机通过PID算法来控制加热元件的加热功率,保持温度的稳定。
(3)交互界面的设计,实现用户与系统的交互,包括设定目标温度值和实时温度显示等。
三、系统优势相对于传统的手动控制方式,本系统具有以下优势:(1)精度高,通过PID算法,可以实现对温度的精确控制,大大提高了生产效率。
(2)舒适度高,传统的手动控制方式需要人员长时间待在生产车间,而本系统的自动化控制方式,可以让人员远离高温环境。
(3)可靠性高,系统精度高,响应迅速,可以有效减少因为控制失误带来的损失。
四、结论本系统的设计基于单片机实现电加热炉温度的精确控制。
相对于传统的手动控制方式,具有精度高、舒适度高和可靠性高等优势。
在未来的生产过程中,随着物联网的发展,本系统也可以进行联网控制,实现对设备的远程控制和监控,提高设备的效率和安全性。
试析油气加热炉的自动化控制
试析油气加热炉的自动化控制【摘要】油气加热炉是油气运输中被广泛使用的设备之一,其能够对原油等进行加热处理,当原油温度升高,相对黏度下降,这样就可以方便油气在管道中运输。
本文对PLC自动化控制油气加热炉进行分析,介绍油气加热炉的自动化工作过程和自动化控制功能,希望对读者有所帮助。
【关键词】加热炉直接式自动化PLC 控制油气加热炉自动化控制就是为了能够降低劳动强度,提高油气燃烧的效率和质量,可以利用计算机代替了控制室的许多功能,包括显示、监控、报警、控制等。
油气加热炉的自动化控制系统具有操作简单、控制灵活智能的优点,其不但可以通过远程对加热炉中的各项数据进行图文显示还能够设定各个设备的参数值,确保油气加热在设定范围内进行,保证油气能够实现最佳燃烧。
1 油气加热炉自动化控制系统目前,随着技术的进步,油气加热炉的设计正向着结构简单、质量轻型、性能自动化的方向发展。
其主要结构包括:控制柜、燃烧器、辐射室、对流室、吹灰器、烟囱等。
如图所示:油气加热炉的自动化工作过程:油气加热炉辐射室内部结构为八面体卧式,辐射管在辐射室周围对称分布,并且其连接头处于低温区,不受油气加热的高温影响。
油气加热炉对流室在辐射室上部,长方体结构,其内部结构包括钉头管和光管组成。
油气加热炉烟囱在对流室的上部,这样可以减小加热炉占地面积,其内部结构包括:烟囱挡板操纵控制器、对流室侧门吊车、各种操作平台、炉前防雨棚等。
油气加热炉的燃烧器均采用进口一体化燃烧器,也可选配其他燃烧器。
一体化燃烧器自动化程度高,并且燃烧稳定,对油气的燃烧充分,安全性能高。
采用计算机控制吹灰系统,进而能够提高热传感效率,并且减少积灰对设备造成的伤害。
2 油气加热炉的自动化工作过程加热炉是将燃料燃烧时产生的能量转化为热能,再将高温油气传递给被加热介质。
其自动化工作过程可以分为四个步骤:2.1 油气燃烧供给油气向加热炉内注入过程,带有一定压力值和温度值的油气在控制柜的控制下对流量值、流速进行自动控制,进入燃烧器,当流量值达到设定要求后停止供应。
电加热炉温度控制系统设计
(发布日期:-6-10)电加热炉随着科学技术旳发展和工业生产水平旳提高,已经在冶金、化工、机械等各类工业控制中得到了广泛应用,并且在国民经济中占有举足轻重旳地位。
对于这样一种具有非线性、大滞后、大惯性、时变性、升温单向性等特点旳控制对象,很难用数学措施建立精确旳数学模型,因此用老式旳控制理论和措施很难达到好旳控制效果。
单片机以其高可靠性、高性能价格比、控制以便简朴和灵活性大等长处,在工业控制系统、智能化仪器仪表等诸多领域得到广泛应用。
采用单片机进行炉温控制,可以提高控制质量和自动化水平。
1 前言在人类旳生活环境中,温度扮演着极其重要旳角色。
温度是工业生产中常用旳工艺参数之一,任何物理变化和化学反映过程都与温度密切有关,因此温度控制是生产自动化旳重要任务。
对于不同生产状况和工艺规定下旳温度控制,所采用旳加热方式,燃料,控制方案也有所不同。
无论你生活在哪里,从事什么工作,无时无刻不在与温度打着交道。
自18世纪工业革命以来,工业发展对与否能掌握温度有着绝对旳联系。
在冶金、钢铁、石化、水泥、玻璃、医药等等行业,可以说几乎80%旳工业部门都不得不考虑着温度旳因素。
在现代化旳工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用旳重要被控参数。
例如:在冶金工业、化工生产、电力工程、造纸行业、机械制造和食品加工等诸多领域中,人们都需要对各类加热炉、热解决炉、反映炉和锅炉中旳温度进行检测和控制。
从市场角度看[1],如果国内旳大中型公司将温度控制系统引入生产,可以减少消耗,控制成本,从而提高生产效率。
嵌入式温度控制系统符合国家提出旳“节能减排”旳要求,符合国家经济发展政策,具有十分广阔旳市场前景。
现今,应用比较成熟旳如电力脱硫设备中,主控制器在主蒸汽温度控制系统中旳应用,已经达到了世界迈进水平。
如今,在微电子行业中。
温度控制系统也越来越重要,如单晶炉、神经网络系统旳控制。
因此。
温度控制系统经济前景非常广泛,国内旳高新精尖行业研究其应用旳意义更是更加重大。
电加热炉温度自动控制系统
电加热炉温度自动控制系统任务设计并制作一个温度自动控制系统,控制电加热炉的温度在某一温度范围。
系统的示意图如图1所示。
电加热炉顶部置入深度不一的两温度传感器,用于检测加热炉内的温度,炉内温度取其平均值;单片机通过键盘对加热炉的温度进行设定。
根据炉内温度与设定温度值的差别程度,有不同的提示信号。
炉内的温度和当前设定温度通过显示设备实时显示。
图1温度自动控制系统示意图一、要求1.基本要求(1)温度可调节范围为60C〜200C,最小设定分度为1C。
(2)温度显示功能,分辨率为0.1 C。
(3)当温度达到某一设定值并稳定后,炉内温度的波动控制在±2以内。
要求温度调控未达到和达到稳定状态,均给出声或光提示信号。
(4)当设定的调节温差为15C时,要求达到稳定状态的调节时间小于等于2分钟,稳定状态下的温度波动在±2以内。
2.发挥部分(1)当温度达到某一设定值并稳定后,、炉内温度的波动控制在±1以内。
(2)当设定的调节温差为15C时,尽量减少达到稳定状态的调节时间,并要求超调量不超过3C,稳定状态下的温度波动在±1以内。
(3)能记录并实时显示温度调节过程的曲线,显示的误差绝对值小于2C。
(4)其他。
三、说明(1)炉内温度检测采用具有温度测量功能的数字万用表(测评时自带) 。
(2)当温度达到稳定状态的提示信号出现后立即检测调控的温度值,每次检测时间延续60s,以记录温度波动的最大值。
3)设计报告正文中应包括系统总体框图、核心电路原理图、主要流程图、主要的测试结果。
完整的电路原理图、重要的源程序用附件给出。
C3)智能窗系统一、任务对下雨等情况进行自我监测,并自动控制窗户关闭。
当室内烟雾、可燃性气体超过指标时可自动开启窗户,通风换气。
_____ i ll,[、-二、要求1.基本要求1)防盗报警功能如果有人要强行从窗户进入室内,智能窗便会用喇叭播放“捉贼啦,在*单元*号”,连续播放 5 分钟。
电加热炉温度控制系统的设计
电加热炉温度控制系统的设计1. 本文概述随着现代工业的快速发展,电加热炉在许多工业生产领域扮演着至关重要的角色。
电加热炉的温度控制系统,作为其核心部分,直接关系到生产效率和产品质量。
本文旨在设计并实现一种高效、精确的电加热炉温度控制系统,以满足现代工业生产中对温度控制精度和稳定性的高要求。
本文首先对电加热炉温度控制系统的需求进行了详细分析,明确了系统设计的目标和性能指标。
接着,本文对现有的温度控制技术进行了全面的综述,包括传统的PID控制方法以及先进的智能控制策略。
在此基础上,本文提出了一种结合PID控制和模糊逻辑控制的新型温度控制策略,以实现更优的控制效果。
本文还详细阐述了系统的硬件设计和软件实现。
在硬件设计方面,本文选择了适合的传感器、执行器和控制器,并设计了相应的电路和保护措施。
在软件实现方面,本文详细描述了控制算法的实现过程,包括数据采集、处理、控制决策和输出控制信号等环节。
本文通过实验验证了所设计温度控制系统的性能。
实验结果表明,本文提出的温度控制系统能够实现快速、准确的温度控制,且具有较好的鲁棒性和稳定性,能够满足实际工业生产的需求。
本文从理论分析到实际设计,全面探讨了一种适用于电加热炉的温度控制系统的设计方法。
通过结合传统和先进的控制技术,本文提出了一种高效、稳定的温度控制策略,为提高电加热炉的温度控制性能提供了新的思路和实践参考。
2. 电加热炉的基本原理与构造电加热炉作为一种高效、清洁且精准的热能产生设备,其工作原理基于电磁感应和电阻加热两种基本方式,而构造则包括电源系统、加热元件、温控系统、隔热保温结构以及安全防护装置等关键组成部分。
电磁感应加热:在特定类型的电加热炉中,尤其是应用于金属工件加热的场合,电磁感应加热原理占据主导地位。
这种加热方式利用高频交流电通过感应线圈产生交变磁场,当金属工件置于该磁场中时,由于电磁感应现象,会在工件内部产生涡电流(又称涡流)。
涡电流在工件内部形成闭合回路,并依据焦耳定律产生热量,即电流通过电阻时产生的热效应。
加热炉炉温自动调节控制系统
/ 空气双交叉限幅控制。 自动之程序设定方式(A2 方式):根据不同的规格和坯料,有不同
的加热制度,即对应各个供热段不同的炉膛温度。工艺人员可以将不同 规格和坯料的理想炉温设定值以数据库的形式保存在仪表 PLC 系统 中,只要在“钢种选择画面”中选择指定的“钢种”,就可以对各段炉温进 行批量设定。
自动之程序设定方式(A3 方式):加热炉接受炉区 L2 计算机发送 的温度设定值,实施燃烧控制。此时,炉区 L2 计算机可以工作在模型方 式,也可以是调度方式。
二、漏电保护 1、施工用电应实行三级配电、二级保护。临时用电规范规定施工现 场采用两级漏电保护:即设置总配电箱或室内总配电柜、分配电箱、开 关箱三级配电装置,这样可以实现分级分段的漏电保护,又能大大提高 用电的安全性,还能快速检测出漏电的部位。 2、漏电保护器的选择:(1)在开关箱(末级)内的漏电保护器,其额 定漏电动作电流不应大于 30MA,额定漏电动作时间不应大于 0.1s,使 用于潮湿场所时,其额定漏电动作电流应不大于 15MA,额定漏电动作 时间不应大于 0.1s。(2)总配电箱内的漏电保护器,其额定漏电动作电 流应大于 30MA,额定漏电动作时间应大于 0.1s。但其额定漏电动作电 流(I)与额定漏电动作时间(t)的乘积不应大于 30MA.s(I.T≤30MA.s)。 3、注 意 事 项 :(1)施 工 用 电 配 电 箱 、开 关 箱 应 采 用 铁 板(厚 度 为 1.2—2.0mm)或阻燃绝缘材料制作,不得使用木质配电箱、开关箱及木 质电器安装板。(2)安装漏电开关的用电设备,接零保护仍不可少。因漏 电开关也有一定缺陷:一是它是只能保护单相触电,当人同时触及两相 时或其中一相和工作零线时,漏电开关不起保护作用;二是当漏电电流 小于漏电开关额定动作电流时,漏电开关不动作,而且其他相再发生漏 电时由于零序电流互感器是因流进流出电流不平衡才会动作,所以其 他相的电流要大于额定动作电流才会动作。(3)保护零线不得穿过漏电 开关,保护零线必须跨接到第一级漏电开关前侧(进线端)的零线或接 零干线上。 综上所述,施工单位根据施工图纸,按照施工现场的实际情况和工 程需要,确定施工现场用电设备的数量。在充分了解施工现场的地形、 地貌、地下管线、周围建筑物等情况后,确定线路的选择和各种设备的 选配。安全用电技术措施:包括安全用电在技术上所采取的措施和为了 保护安全用电和供电的可靠性在组织上所采取的各项措施,如各种制 度的建立和组织管理等一系列内容。
加热炉的自动控制
加热炉的自动控制
◆ 王伟伟 郭丽丽 董一鸣
摘要 :唐钢 1 7 0 0 热轧 生产线采用汽化冷却双蓄热步进 梁式加热炉 ,加 热 炉板坯来 源为连铸1 # 机和2 ≠ ≠ 机提供 的冷 、热板坯 ,通过加 热至设定 温度 送至轧机进行轧制。板坯的传送主要 由装钢机 、步进 梁及 出钢机 完成。 关 键 词 :加 热 炉 ;硬 件 组 态 ;物 料 跟 踪 ; 自动控 制
一
、
硬 件 组态
装料炉 门位 于加 热炉 的入 口处 ,分为 1 #炉 门和2 #炉 门 。提升 装置 由液 压控制 ,一个炉 门配一个 液压 缸 ,可同时提升或下降 ,也可单独提升或下降。工艺人
员选择半 自动装钢模式 时 ,炉门会 自动抬起 ,当装钢机
加热炉 电气P L C 的硬件组态网络分为两条 。 第一条 D P 网 :出料操作 台 ( 终端 ) ——c P u —— A 8 辊道变频——A7 辊道变频——A 6 辊道变频——A5 辊
由程序计算 得出 。装钢机抬起和下 降动作 由3 个液压缸
完成 ,每缸分别 由两个电磁 阀控制升降 ;装钢机 的前进 和后退 由电机 、变频器来完成 高速及低速动作 ;由于板
嘲
坯分长 、短坯 ,因此传 动装置有2 套 ,可 以单独 控制 ,
也可以联合控制。
( 作者单位 :唐 山钢铁 集团有限责任公 司微尔 自动
3 个用 电机驱动 的出钢臂完 成 ;出钢机的前进和后退 由 电机 、变频器完成高速及低速控制 。由于板 坯分长 、短
及到与连铸和轧机服务器 以及上位机进行信息通讯的问
题 ,物料跟踪是一个经 由Wi n C C 软件 与生产线一级和数
电加热炉温度自动控制系统
电加热炉温度自动控制系统一、任务设计并制作一个温度自动控制系统,控制电加热炉的温度在某一温度范围。
系统的示意图如图1所示。
电加热炉顶部置入深度不一的两温度传感器,用于检测加热炉内的温度,炉内温度取其平均值;单片机通过键盘对加热炉的温度进行设定。
根据炉内温度与设定温度值的差别程度,有不同的提示信号。
炉内的温度和当前设定温度通过显示设备实时显示。
图1 温度自动控制系统示意图二、要求⒈基本要求(1)温度可调节范围为60℃~200℃,最小设定分度为1℃。
(2)温度显示功能,分辨率为0.1℃。
(3)当温度达到某一设定值并稳定后,炉内温度的波动控制在±2℃以内。
要求温度调控未达到和达到稳定状态,均给出声或光提示信号。
(4)当设定的调节温差为15℃时, 要求达到稳定状态的调节时间小于等于2分钟,稳定状态下的温度波动在±2℃以内。
⒉发挥部分(1)当温度达到某一设定值并稳定后,、炉内温度的波动控制在±1℃以内。
(2)当设定的调节温差为15℃时, 尽量减少达到稳定状态的调节时间,并要求超调量不超过3℃,稳定状态下的温度波动在±1℃以内。
(3)能记录并实时显示温度调节过程的曲线, 显示的误差绝对值小于2℃。
(4)其他。
三、说明(1)炉内温度检测采用具有温度测量功能的数字万用表(测评时自带)。
(2)当温度达到稳定状态的提示信号出现后立即检测调控的温度值,每次检测时间延续60s,以记录温度波动的最大值。
(3)设计报告正文中应包括系统总体框图、核心电路原理图、主要流程图、主要的测试结果。
完整的电路原理图、重要的源程序用附件给出。
(C3)智能窗系统一、任务对下雨等情况进行自我监测,并自动控制窗户关闭。
当室内烟雾、可燃性气体超过指标时可自动开启窗户,通风换气。
二、要求⒈基本要求1)防盗报警功能如果有人要强行从窗户进入室内,智能窗便会用喇叭播放“捉贼啦,在*单元*号”,连续播放5分钟。
2)防毒报警功能室内的煤气、天然气等可燃气体或烟雾的浓度超标时,智能窗便会报警,并开启窗户,启动排风扇,让有毒气体散发到室外,可有效防止中毒或火灾事故的发生,确保室内空气清新,身体不受伤害。
浅析环形加热炉电气自动化控制系统
浅析环形加热炉电气自动化控制系统王迪(首钢长治钢铁有限公司设计规划院,山西长治046031) I|商要】北方集厂环形加热炉于2008年投产,本文主要介绍环形加热炉的电气设计与控制。
崩罐词】环形加热炉;电气自动化;设计;控制环形加热炉用于管坯穿孔前加热,设计年加热曩25万吨,加热管坯主要规格为:0180、0220、中280m m、0310m m,管坯长度:1400—4500r am,最大根重:2200kg。
炉子最大加热能力110t/h,管坯出炉温度:1230—128a℃。
为了适应多钢种的加熟制度,炉子结构分为5个段,预热段、第一加热段、第二加热段、第三加热段、均热段。
其中第一加熟段将起重要调节作用,炉温制度的变化主要靠这—段来调节i刚氏第—加热段温度,相当于延长预热段,适应某些钢种缓慢加热的需要。
第一加热段炉温调高,相当于延长加热段,适用于可进行快速加热钢种的加热。
所以对于加热多钢种的加热炉,有必要设置二个以上加热段,以适应不同钢种的不同加热制度。
对均熟段炉温的精确控制,可使坯料加热温差控制在±1a℃以内。
主要工艺流程为:来自原料堆区的坯料经天车吊放到上科台架,经分孝斗们构将钢坯送往装料辊道,经辊道运往炉子装料口定位,已定位的管坯qb,t,,i上方正好是装料机夹钳的原始位置。
管坯定位后,根据轧制节奏,装料机夹钳下降,f-j-开夹钳夹住管坯,同时打开装料炉门,夹钳与管坯同时提升并前进,将管坯送到炉底的指定位置。
装料炉门关闭后,电机驱动炉底机械旋转相应的角度,使入炉管坯随炉底一起移动,每装(出)—根(或二根)管坯,炉底转动一个角度。
如此间隔布料,炉底—步步转动,直至将八炉管坯转到出料炉门轴线上,而管坯在随炉底转动过程中亦由常温加热到1230~1280℃。
此时出料炉门打开,出料机夹钳行使与装料机夹钳相反的动作(同时),伸入炉内把加热好的管坯从炉内夹出,出料扭夹钳张开,出料栩.夹钳松开管坯料掉落到斜台上,随后管坯料从斜台上滚^链式运输初前的受料位置,链式运输机将管坯运输到端输出台上,经给丰斗机给料到输出辊道上,然后送往穿孔机进行轧制。
加热炉过程自动控制系统设计
加热炉过程自动控制系统设计加热炉是冶金企业中重要的工业设备,步进式加热炉是各种工业、企业中普遍应用的炉窑。
本文以步进式加热炉为例介绍了加热炉生产过程中的控制系统设计,主要介绍了燃烧控制系统、炉膛压力控制系统、热风放散和冷风稀释控制系统。
标签:加热炉燃烧控制炉膛压力概述加热炉在轧钢生产线中广泛应用,是轧钢工艺的前部工序。
在轧钢厂的热轧生产中,必须要将轧制的钢锭或钢坯加热到一定的温度,使它具有一定的可塑性,才能进行轧制,而这一过程是在加热炉中进行的。
钢坯从入炉侧装入,经过预热、加热、均热等燃烧区域达到控制温度后,从出炉侧出炉。
影响钢质量的因素很多,其中炉膛压力和温度起着关键作用,要使产出的钢材符合要求和生产能顺利进行,所以加热炉燃烧控制和炉膛压力控制显得十分重要。
加热炉的工艺流程如图1所示。
1燃烧控制系统设计加热炉消耗的燃料能量很大,所以理想的燃烧控制将会取得明显得节能效果。
根据燃烧理论,空气过剩率与燃烧效率,节能和防止公害有很大关系,一般空气过剩率的最佳区域在1.02~1.1之间。
针对这种情况,我们采用了双交叉限幅燃烧控制系统,对剩余空气系数u做双向限幅,从而使燃烧过程无论在稳定状态还是在动态过程都能保持在最佳燃烧区,达到防止冒黑烟,防止污染和节能的目的。
双交叉限幅燃烧控制系统实质上是一个以温度为主参数,燃气流量和空气流量并列为副参数的串级调节系统,并带有交叉限幅逻辑功能的比值调节系统。
双交叉限幅燃烧控制系统的构成如图2所示。
St,Sf,Sa分别为炉温,燃料流量,空气流量给定值Tt,Ff,Fa分别为炉温,燃料流量,空气流量测量值Hs,Ls分别为高值、低值选择器a1,a2,a3,a4分别为偏置系数r为空燃比在燃料流量调节回路中,炉温调节器TC的输出信号A,与根据空气流量测量值Fa算出的所需燃料流量减去偏置a3得到的信号C和信号B相比较,由高值选择器HS2和低值选择器LS1来选通A,B,C 之一作为燃料流量调节器Ffc的给定值Sf。
电加热炉温度控制系统设计方案
电加热炉温度控制系统设计方案1.系统概述2.系统组成2.1温度传感器:用于实时感知炉内温度,并将温度信号转换成电信号进行采集。
2.2控制器:负责对温度信号进行处理和判断,并生成相应的控制信号。
2.3加热功率调节器:根据控制信号调整电加热炉的加热功率。
2.4人机界面:为操作人员提供温度设定、显示和报警等功能。
2.5电源和电路保护装置:为电加热炉提供稳定的电源和安全的电路保护。
3.控制原理电加热炉温度控制系统采用了闭环控制的原理,即通过与实际温度进行比较,调整加热功率来实现温度的控制。
控制器根据实际温度和设定温度之间的偏差,产生相应的控制信号,通过加热功率调节器对电加热炉的加热功率进行调整,使实际温度逐渐接近设定温度,并保持在一定范围内。
4.系统算法4.1温度传感器采集到的温度信号经过模数转换,转换成数字信号输入到控制器。
4.2控制器对传感器采集到的温度信号进行处理和判断,计算出温度偏差。
4.3控制器根据温度偏差通过PID控制算法产生相应的控制信号,控制信号的大小决定了加热功率的调整幅度。
4.4控制信号经过加热功率调节器进行放大和整流,并驱动电加热炉进行相应的加热功率调整。
4.5加热功率调整会导致炉内温度变化,温度变化会反过来影响温度传感器采集到的温度信号,形成一个闭环控制的循环过程。
5.人机界面5.1人机界面通过触摸屏或按钮等形式,提供温度设定、显示和报警等功能。
5.2操作人员可以通过人机界面设置所需的温度设定值。
5.3人机界面会显示当前的实际温度,并根据温度偏差的大小显示相应的报警信号。
5.4人机界面可以设定温度上下限,当温度超出设定范围时自动报警。
6.电源和电路保护装置6.1在电加热炉温度控制系统中,电源提供稳定的电压和电流给电路运行。
6.2为了确保系统的安全运行,在电路中设置过流保护、过压保护、欠压保护等电路保护装置。
6.3当发生过流、过压或欠压等异常情况时,电路保护装置会立即切断电源,以保护电路和设备的安全。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
邮电与信息工程学院课程设计说明书6课题名称:加热炉装置自动控制系统设计学生学号:专业班级:10自动化03班学生姓名:学生成绩:指导教师:陈国平课题工作时间:2013年12月2日至2013年12月13日课程设计评审标准(指导教师用)第一章加热炉装置的相关应用说明和本设计工艺流程描述一、加热炉工作原理液体(气体)燃料在加热炉辐射室(炉膛)中燃烧,产生高温烟气并以它作为热载体,流向对流室,从烟囱排出。
待加热的原油首先进入加热炉对流室炉管,原油温度一般为29。
炉管主要以对流方式从流过对流室的烟气中获得热量,这些热量又以传热方式由炉管外表面传导到炉管内表面,同时又以对流方式传递给管内流动的原油。
原油由对流室炉管进入辐射室炉管,在辐射室内,燃烧器喷出的火焰主要以辐射方式将热量的一部分辐射到炉管外表面,另一部分辐射到敷设炉管的炉墙上,炉墙再次以辐射方式将热辐射到背火面一侧的炉管外表面上。
这两部分辐射热共同作用,使炉管外表面升温并与管壁内表面形成了温差,热以传导方式流向管内壁,管内流动的原油又以对流方式不断从管内壁获得热量,实现了加热原油的工艺要求。
加热炉加热能力的大小取决于火焰的强弱程度(炉膛温度)、炉管表面积和总传热系数的大小。
火焰愈强,则炉膛温度愈高,炉膛与油流之间的温差越大,传热量越大;火焰与烟气接触的炉管面积越大,则传热量越多;炉管的导热性能越好,炉膛结构越合理,传热量也愈多。
火焰的强弱可用控制火嘴的方法调节。
但对一定结构的炉子来说,在正常操作条件下炉膛温度达到某一值后就不再上升。
炉管表面的总传热系数对一台炉子来说是一定的,所以每台炉子的加热能力有一定的范围。
在实际使用中,火焰燃烧不好和炉管结焦等都会影响加热炉的加热能力,所以要注意控制燃烧器使之完全燃烧,并要防止局部炉管温度过高而结焦。
二、加热炉的作用加热炉是给原料加热,使原料达到反应温度的场所,是整个装置能耗最大的部分,燃料油或瓦斯气燃烧放热,通过辐射传热,对流传热的方式将热量传递给炉管,再通过热传导,热对流的方式传递给原料。
三、加热炉的运行参数炉膛温度(挡墙温度)炉膛温度一般指烟气离开辐射室的温度,也就是烟气未进入对流室的温度或辐射室挡火墙前的温度,是加热炉运行的重要参数。
在炉膛内(辐射室)燃料燃烧产生的热量,是通过辐射和对流传给炉管的。
传热量的大小与炉膛温度和管壁温度有关。
原油从加热炉中获得的热量其中有以辐射传热为主。
辐射换热与火焰的绝对温度的四次方成正比,因此,在高温区中,辐射受热面的吸热效果要比对流受热面的效果好,吸收同样数量的热量,辐射换热所需的受热面积即金属消耗量要比对流换热的少。
设计时选取的炉膛温度值决定着加热炉辐射受热面及对流受热面之间的吸热量比例。
炉膛温度高,辐射室传热量就大,所以炉膛温度能比较灵敏地反映炉出口温度。
但是从运行角度考虑,炉膛温度过高,辐射室炉管热强度过大,有可能导致辐射管局部过热结焦同时进入对流室的烟气温度也过高,对流室炉管也易被烧坏,使排烟温度过高,加热炉热效率下降。
所以炉膛温度是保证加热炉长期安全运行的指标。
在输油加热炉中炉膛温度最高不超过&。
排烟温度排烟温度是烟气离开加热炉最后一组对流受热面进入烟囱的温度。
排烟温度不应过高,否则热损失大。
在操作时应控制排烟温度,在保证加热炉处于负压完全燃烧的情况下,应降低排烟温度。
排烟温度的调节一般用控制进风量,即调整过剩空气系数的办法。
降低排烟温度,可减少加热炉排烟热损失,提高热效率,从而节约燃料消耗量,降低加热炉运行成本。
但排烟温度过低,使对流受热面末段烟气与载热质的传热温差降低,增加了受热面的金属消耗量,提高加热炉的投资费用。
因此,排烟温度的选择要经过经济比较。
在选择最合理的排烟温度时,还应考虑低温腐蚀的影响。
由于燃料中的硫在燃烧后可生成SO2,它在烟气中和水蒸气形成硫酸蒸气,当受热面壁温低于硫酸蒸气的露点温度时,硫酸蒸气就会冷凝下来,腐蚀壁面金属。
如受热面壁温低于烟气中水蒸气的露点时,则水蒸气也会凝结在管壁上,加剧了腐蚀,并且容易引起堵灰。
降低露点,减少腐蚀和积灰的措施有:净化燃料油。
目前国外已有应用,但能否广泛应用还值得研究。
四、被控对象工艺流程描述所选被控对象为过程工业领域常见的加热炉单元,通过加热炉辐射与对流传热将一定流量的物料A 加热至工艺要求的温度。
待加热物料A 经由上料泵P1101 泵出,分两路,其中一路进入换热器E1101 与热物料换热后,与另外一路混合,进入加热炉F1101 的对流段。
进入换热器E1101 的待加热物料A 走管程,一方面对最终产品(热物料A)的温度起到微调(减温)的作用,另一方面也能对待加热物料A 起到一定的预热作用。
加热炉对流段由多段盘管组成,炉膛产生的高温烟气自上而下通过管间,与管内的物料A 换热,回收烟气中的余热并使物料A 进一步预热。
对流段流出的物料A 全部进入F1101 辐射段炉管,接受燃烧器火焰的辐射热量,达到所要求的高温后出加热炉,进入换热器E1101 壳程,进行温度的微调并为冷物料预热,最后以工艺所要求的物料温度输送给下一生产单元。
五、工艺过程简介待加热物料A 流量为F1101,温度为常温20℃,经由上料泵P1101 泵出。
流量管线上设有调节阀V1101,调节阀有前、后阀XV1101 和XV1102,以及旁路阀HV1101。
待加热物料A 被分为两路,一路进入换热器E1101 预热,预热后与另外一路混合进入加热炉。
两路物料A 管道上分别设有调节阀V1102 和V1103。
正常工况时,大部分待加热物料A 直接流向加热炉对流段,少部分待加热物料A 流向换热器,其流量为F1102。
燃料经由燃料泵P1102 泵入加热炉F1101 的燃烧器,燃料流量为F1103,燃料压力为P1101,燃料流量管线设调节阀V1104。
空气经由变频风机K1101 送入燃烧器,空气量为F1104。
燃料与空气在燃烧器混合燃烧,产生热量使辐射段炉管内的物料A 迅速升温。
燃烧产生的烟气带有大量余热,在对流段进行余热回收。
对流段烟气出口处的烟气温度为T1105。
烟气含氧量A1101 设有在线分析检测仪表。
烟道内设有挡板DO1101。
出对流段、入辐射段的物料A 温度为T1102。
从辐射段炉管出来的温度为T1103 的高温物料A 进入换热器E1101,进行温度的微调。
最终产品(热物料A)的温度为T1104,流量为F1105,出口管道上设流量调节阀V1105。
炉膛压力为P1102,炉膛中心火焰温度为T1101,为红外非接触式测量,仅提供大致温度的参考。
第二章系统的控制方案选型在本设计工艺流程中一共设置了三个控制回路,一个是由物料A的进料流量和出口热物料A的温度组成的对燃料流量进行控制的前馈—反馈控制回路。
一个以出口烟气含氧量为受控变量的单回路控制系统,还有一个是针对炉管爆裂(A 物料为可燃物质)、炉膛灭火、进料中断这三种加热炉事故进行故障识别并设计相应的安全控制系统。
1)对燃料流量进行的前馈—反馈控制方案的确定①实际的工业控制会存在多个扰动,若均设置前馈通道,势必增加控制系统的投资费用和维护工作量,因而一般仅选几个主要干扰作为前馈通道。
这样设计的前馈控制器对其它干扰是没有比毫校正作用的。
②前馈控制系统中,不存在受控变量的反馈,也即对于补偿的效果没有检验的手段,因此,如果控制的结果无法消除受控变量的偏差,那么系统也就无法获得这一信息的做进一步的校正。
为了解决前馈的这一局限性,在工程中往往将前馈与反馈结合起来应用构成前馈—反馈控制系统。
这样既发挥了前馈校正及时的优点,又保持了反馈控制能克服多种扰动及对受控变量进行最终检验的长处。
前馈—反馈系统的优点:①由于增加了反馈回路,大大简化了原有前馈控制系统,只需对主要的干扰进行前馈补偿,其他干扰可由反馈控制予以校正。
②反馈回路的存在,降低了前馈控制模型的精度要求,为工程上实现比较简单的通用模型创造了条件。
③负荷变化时,模型特性也要变化,可由反馈控制加以补偿,因此具有一定自适应能力。
由于物料A的进料流量Q经常发生变化,因而对此主要扰动进行前馈控制。
前馈控制调节器将在Q变化时,及时通过改变燃料流量来产生控制,从而大大降低进料物料流量波动对物料出口温度的影响。
同时反馈控制温度调节器在获得温度T的变化后,将按照一定的PID控制规律对燃料流量产生控制作用。
这两个控制通道作用叠加,使出口温度尽快回以给定值。
2)对以出口烟气含氧量为受控变量的单回路控制方案的确定进入加热炉的空气流量不能太大,也不能太小,太大会造成不必要的浪费,对温度也有一定的影响,太小会造成燃料的不充分燃烧,浪费燃料。
所以,这时必须对出口烟气含量进行检测。
然后,以出口烟气会受控变量,对空气进口流量,实行单回路控制,这样便能使燃料充分燃烧,节约了原材料。
3)对加热炉事故的安全处理控制方案的确定当加热炉发生事故时,对相对应的仪表的检查可以看到哪里发生事故。
并尽量根据对仪表的调节来控制事故的大小。
第三章仪表选型说明及自控设备表工艺流程图中的仪表及操作设备说明如下:说明:调节阀的选型:采用ZDLP电动单座调节阀。
电子式电动单座调节阀,由PS、3810、ZAZ、DKZ等系列直行程电动执行机构各低流阻直通单座阀组成。
电动执行机构为电子式一体化结构,内有伺服放大器,输入控制信号(4-20mADC或1-5VDC)及电源即可控制阀门开度,达到对压力、流量、液位温度等参数的调节。
具有动作灵敏、连线简单、流量大、体积小、调节精度高等特点。
单座阀适用于对泄露量要求严格、阀前后压差低及有一定粘度的场合。
流量变送器的选型:采用DBL-544差压流量变送器。
DBL-544差压流量变送器用于测量或蒸汽气体的流量,并将流量信号转换成0-20mA或1-5VDC电信号,送给指示仪表显示。
压力变送器的选型:采用DBY 2100绝对压力变送器。
DBY 2100绝对压力变送器是DDZ-Ⅲ型电动组合仪表中变送仪表的一个品种,用以连续测量液体、气体、蒸汽的压力,并将被测介质的参数转换成4-20mADC信号输出。
温度变送器的选型:采用DBW 1100热电偶温度变送器。
DBW 1100热电偶温度变送器用于测量0-300℃的温度,并将温度信号转换为0-20mA或1-5VDC电信号,送给指示仪表显示。
本课程设计,所测量液体温度在0-200℃之间,采用该热电偶变送器满足要求。
压力、流量、温度指示仪表的选型:采用DXZ-2011双针指示仪表。
该仪表属于DXZ-Ⅲ型指示仪表电动单元组合仪表中显示单元的一个品种,在系统中作直流电流的指示作用。
配电器的选型:采用DFP-6200M型配电器。
DFP-6200M型配电器可为现场安装的变送器提供一个隔离电源,同时又将变送器的4-20mA直流信号转换成隔离的1-5V直流电压信号,实现变送器与电源之间以及变送器与调节器之间双向隔离,保证系统的安全,可同时带两台二线制变达器或者一台四线制变送器工作。