让你的数据传得更远:常见天线的性能与区别

合集下载

天线的主要性能指标和相关知识

天线的主要性能指标和相关知识

天线的主要性能指标1、方向图:天线方向图是表征天线辐射特性空间角度关系的图形。

以发射天线为例,从不同角度方向辐射出去的功率或场强形成的图形。

一般地,用包括最大辐射方向的两个相互垂直的平面方向图来表示天线的立体方向图,分为水平面方向图和垂直面方向图。

平行于地面在波束最大场强最大位置剖开的图形叫水平面方向图;垂直于地面在波束场强最大位置剖开的图形叫垂直面方向图。

描述天线辐射特性的另一重要参数半功率宽度,在天线辐射功率分布在主瓣最大值的两侧,功率强度下降到最大值的一半(场强下降到最大值的0.707倍,3dB衰耗)的两个方向的夹角,表征了天线在指定方向上辐射功率的集中程度。

一般地,GSM定向基站水平面半功率波瓣宽度为65° 在120°的小区边沿,天线辐射功率要比最大辐射方向上低9-10dB。

2、方向性参数不同的天线有不同的方向图,为表示它们集中辐射的程度,方向图的尖锐程度,我们引入方向性参数。

理想的点源天线辐射没有方向性,在各方向上辐射强度相等,方向是个球体。

我们以理想的点源天线作为标准与实际天线进行比较,在相同的辐射功率某天线产生于某点的电场强度平方E2与理想的点源天线在同一点产生的电场强度的平方E02的比值称为该点的方向性参数D=E2/E02»3、天线增益增益和方向性系数同是表征辐射功率集中程度的参数,但两者又不尽相同。

增益是在同一输出功率条件下加以讨论的,方向性系数是在同一辐射功率条件下加以讨论的。

由于天线各方向的辐射强度并不相等,天线的方向性系数和增益随着观察点的不同而变化,但其变化趋势是一致的。

一般地,在实际应用中,取最大辐射方向的方向性系数和增益作为天线的方向性系数和增益。

另外,表征天线增益的参数有dBd和dBi。

DBi是相对于点源天线的增益,在各方向的辐射是均匀的;dBd相对于对称阵子天线的增益dBi=dBd+2.15。

相同的条件下,增益越高,电波传播的距离越远。

主流卫星通信天线对比

主流卫星通信天线对比

常用卫星通信天线介绍(一)原文:寇松江(爱科迪)★★★★(7020207)添加点图片天线是卫星通信系统的重要组成部分,是地球站射频信号的输入和输出通道,天线系统性能的优劣影响整个通信系统的性能。

地球站与卫星之间的距离遥远,为保证信号的有效传输,大多数地球站采用反射面型天线。

反射面型天线的特点是方向性好,增益高,便于电波的远距离传输。

反射面的分类方法很多,按反射面的数量可分为双反射面天线和单反射面天线;按馈电方式分为正馈天线和偏馈天线;按频段可分为单频段天线和多频段天线;按反射面的形状分为平板天线和抛物面天线等。

下文对一些常用的天线作简单介绍。

1.抛物面天线抛物面天线是一种单反射面型天线,利用轴对称的旋转抛物面作为主反射面,将馈源置于抛物面的焦点F上,馈源通常采用喇叭天线或喇叭天线阵列,如图1所示。

发射时信号从馈源向抛物面辐射,经抛物面反射后向空中辐射。

由于馈源位于抛物面的焦点上,电波经抛物面反射后,沿抛物面法向平行辐射。

接收时,经反射面反射后,电波汇聚到馈源,馈源可接收到最大信号能量。

图1 抛物面天线抛物面天线的优点是结构简单,较双反射面天线便于装配。

缺点是天线噪声温度较高;由于采用前馈,会对信号造成一定的遮挡;使用大功率功放时,功放重量带来的结构不稳定性必须被考虑。

2.卡塞格伦天线卡塞格伦天线是一种双反射面天线,它由两个发射面和一个馈源组成,如图2所示。

主反射面是一个旋转抛物面,副反射面为旋转双曲面,馈源置于旋转双曲面的实焦点F1上,抛物面的焦点与旋转双曲面的焦点重合,即都位于F2点。

从从馈源辐射出来的电磁波被副反射面反射向主反射面,在主反射面上再次被反射。

由于主反射面的焦点与副反射面的焦点重合,经主副反射面的两次反射后,电波平行于抛物面法向方向定向辐射。

对经典的卡塞格伦天线来说,副反射面的存在遮挡了一部分能量,使得天线的效率降低,能量分布不均匀,必须进行修正。

修正型卡塞格伦天线通过天线面修正后,天线效率可提高到0.7—0.75,而且能量分布均匀。

天线和微波技术中的天线类型介绍

天线和微波技术中的天线类型介绍

天线和微波技术中的天线类型介绍天线是通信领域中广泛使用的一种设备,用于收发无线电波信号。

在微波技术中,天线的类型多种多样,每一种天线都有其独特的优点和适用场景。

本文将介绍几种常见的天线类型,在简要介绍其原理和特点的同时,还将探讨其在不同的应用领域中的应用。

一、偶极天线偶极天线是最基本和最常用的天线类型之一。

其结构简单,通常由一对互相对称的导体构成。

偶极天线主要用于接收和发射无线电波,其工作频率范围广泛,从几千赫兹到数百吉赫兹不等。

偶极天线的优点是易于制造,而且天线本身不需要进行特殊的解耦设计。

这使得它成为了无线通信和广播领域的理想选择。

二、方向性天线方向性天线是一种具有明确辐射方向的天线类型。

它主要通过限制天线在特定方向上的辐射能量,以便更好地集中信号。

方向性天线常用于无线通信系统中,用于增加信号传输的距离和强度。

基于不同的设计原理,方向性天线可以分为常见的两种类型:定向天线和定向性天线。

定向天线通过定向辐射辐射能量,以便将信号集中在特定区域内。

而定向性天线则可以通过电子调谐和信号处理技术,自动跟踪信号源的方向。

三、扩束天线扩束天线是一种通过集中信号辐射以提高天线增益的天线类型。

它主要通过在发射和接收器之间添加反射器和透镜等装置来实现辐束。

扩束天线的应用非常广泛,例如在雷达系统中用于提高目标探测和跟踪的准确性,或者在卫星通信系统中用于增加信号传输的距离和质量。

四、天线阵列天线阵列是由多个天线单元组成的天线系统。

它通过联合操作单个天线单元,以实现更大的增益、更高的信噪比和更好的指向性。

天线阵列的设计复杂度相对较高,但是其在无线通信、雷达、卫星通信和航空导航等领域中的应用价值巨大。

五、微带天线微带天线是一种以微带线和介质基片作为支撑结构的天线。

其结构紧凑、制造成本低廉,被广泛应用于卫星通信、无线电频段标签系统和手机通信等领域。

微带天线具有宽带性能、较好的辐射特性和方便的制造工艺,是当今天线设计的热点研究领域之一。

手机天线的分类和性能对比

手机天线的分类和性能对比

三、内、外置天线比较

目前手机天线主要就内置及外置天线两种,内置天线客观上必然 比外置天线弱。天线的架设都是 尽量远离地面和建筑物的,天线接 近参考地的时候,大部分能量将集中在天线和参考地之间,而 无法 顺利发射,所以天线发射,需要一个“尽量开放”的空间。而手机电路 版就是手机天线的参 考地,让天线远离手机其他电路,是提高手机 天线发射效率的关键。
二、内置天线
特点: (1)可以做得非常小,不易损坏; 可以将其安放在手机中远离人脑 的一面,而在靠近人脑的部分贴 上反射层、保护层来减小天线对 人体的辐射伤害。 (2)可以安装多个,很方便组阵, 从而实现手机天线的智能化,这 一点对移动通信系统来说非常有 用。
内置天线的形式特别多,包括微带贴片天线、缝隙 天线 、IFA天线和倒L天线、PIFA、陶瓷天线等等。 但目前的主流天线主要有两种:PIFA天线、 MONOPOLE单极天线。

单极天线
螺旋天线
外置天线 PCB印制螺旋天线 拉杆天线
(1)单级天线
传统的外置天线一般为单极天线,虽然制作简单,但是尺 寸较大,不便于携带。
(2)螺旋天线及PCB印制螺旋天线
螺旋线是一种慢波结构,螺旋天线实际也是一种 慢波化的单极天线。由于螺旋线的作用,减小了电磁 波沿螺旋线传播的相速度,因此天线的长度可以缩短。 也正是由于螺旋线的慢波结构,使得天线的带宽 窄,天线的储能大,辐射效率降低。 PCB板螺旋天线实际是一种变形的螺旋天线,利 用PCB板的介电常数进一步降低天线的尺寸而已。

但受到实际环境限制以及大家追求携带方便的要求,手机的设 计就必须在电气方面做出妥协。实 际上,所有的GSM手机的接收发 送电路的增益都是可以根据环境变化而自动调节的,能通过合 理的 参数设定,会自动补偿有关的损失。所以,就手机整体而言,在信 号比较好情况下,内天线 和外天线并不能看出差别。

(整理)几种天线的比较.

(整理)几种天线的比较.

天线是卫星通信系统的重要组成部分,是地球站射频信号的输入和输出通道,天线系统性能的优劣影响整个通信系统的性能。

地球站与卫星之间的距离遥远,为保证信号的有效传输,大多数地球站采用反射面型天线。

反射面型天线的特点是方向性好,增益高,便于电波的远距离传输。

反射面的分类方法很多,按反射面的数量可分为双反射面天线和单反射面天线;按馈电方式分为正馈天线和偏馈天线;按频段可分为单频段天线和多频段天线;按反射面的形状分为平板天线和抛物面天线等。

下文对一些常用的天线作简单介绍。

1.抛物面天线抛物面天线是一种单反射面型天线,利用轴对称的旋转抛物面作为主反射面,将馈源置于抛物面的焦点F上,馈源通常采用喇叭天线或喇叭天线阵列,如图1所示。

发射时信号从馈源向抛物面辐射,经抛物面反射后向空中辐射。

由于馈源位于抛物面的焦点上,电波经抛物面反射后,沿抛物面法向平行辐射。

接收时,经反射面反射后,电波汇聚到馈源,馈源可接收到最大信号能量。

图1 抛物面天线抛物面天线的优点是结构简单,较双反射面天线便于装配。

缺点是天线噪声温度较高;由于采用前馈,会对信号造成一定的遮挡;使用大功率功放时,功放重量带来的结构不稳定性必须被考虑。

2.卡塞格伦天线卡塞格伦天线是一种双反射面天线,它由两个发射面和一个馈源组成,如图2所示。

主反射面是一个旋转抛物面,副反射面为旋转双曲面,馈源置于旋转双曲面的实焦点F1上,抛物面的焦点与旋转双曲面的焦点重合,即都位于F2点。

从从馈源辐射出来的电磁波被副反射面反射向主反射面,在主反射面上再次被反射。

由于主反射面的焦点与副反射面的焦点重合,经主副反射面的两次反射后,电波平行于抛物面法向方向定向辐射。

对经典的卡塞格伦天线来说,副反射面的存在遮挡了一部分能量,使得天线的效率降低,能量分布不均匀,必须进行修正。

修正型卡塞格伦天线通过天线面修正后,天线效率可提高到0.7—0.75,而且能量分布均匀。

目前,大多数地球站采用的都是修正型卡塞格伦天线。

emcrf测试常用天线简介

emcrf测试常用天线简介

emcrf测试常用天线简介EMC 、RF 测试常用天线简介天线在EMC 、RF 测试,测量中运用相当普遍,常用天线如下:1、双锥天线:常用于RSE 替代法测试。

常用工作频段:30MHz~300MHz双锥天线2、对数天线:常用于辐射场地NSA 校准。

常用工作频段:30MHz~1GHz对数天线3、对数周期天线:常用于辐射骚扰/辐射杂散低频测试。

常用工作频段:30MHz~3GHz 对数周期天线4、三环天线:常用于灯具产品磁场辐射测试。

常用工作频段:9KHz~30MHz 三环天线5、喇叭天线:常用于辐射骚扰/辐射杂散高频测试。

常用工作频段:1GHz~18GHz 喇叭天线6、偶极子天线:常用于场地衰减和天线系数的测量中。

常用工作频段:30MHz~4GHz 偶极子天线7、环天线:常用于低频磁场测试。

常用工作频段:9KHz~30MHz 环天线在进行EMC 和RF 测试中,以下的几个基本概念需要有所掌握:天线的极化方向经常有客户问什么是垂直什么是水平啊,天线向周围空间辐射电磁波。

电磁波由电场和磁场构成。

人们规定:电场的方向就是天线极化方向。

一般使用的天线为单极化的。

下图示出了两种基本的单极化的情况天线的极化方向波瓣宽度波束宽度指的是在天线峰值响应的方向上,两个半功率点之间的角度,波束宽度有E面和H面两个分量,两者不一定完全相等,如果某一天线的增益设计为正,则它的波束宽度和增益常常正好相反。

方向图通常都有两个或多个瓣,其中辐射强度最大的瓣称为主瓣,其余的瓣称为副瓣或旁瓣。

在主瓣最大辐射方向两侧,辐射强度降低3 dB (功率密度降低半)的两点间的夹角定义为波瓣宽度(又称波束宽度或主瓣宽度或半功率角)。

波瓣宽度越窄,方向性越好,作用距离越远,抗干扰能力越强。

波瓣宽度天线增益增益是指:在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的信号的功率密度之比。

它定量地描述一个天线把输入功率集中辐射的程度。

无线无线路由器单天线、双天线、三天线等多天线对无线信号强度、.

无线无线路由器单天线、双天线、三天线等多天线对无线信号强度、.

无线无线路由器单天线、双天线、三天线等多天线对无线信号强度、范围的影响是否有增强用事实拆穿双天线成倍增益的神话双天线只能减少覆盖范围内的盲点先看总结:性能的区别主要来自芯片而不是品牌这次参加横评的产品一共14款,但他们的芯片只有4种,而使用相同芯片的产品在性能上的差距根本不大,所以购买前了解产品的芯片组是一个重要环节。

当然也不是说要放弃品牌的概念,各个品牌对产品质量的控制还是不一样,这也会让产品造成很大的差异(主要体现在产品质量)。

现阶段802.11N无线路由器已大幅度超越54M从54M到11N,经历了好几年的时间,不过这次横评我们看到了11N的优势,看到了希望。

实际测试表明,11N产品在产品整体性能上高出54M很多,速度、覆盖都有了质的飞跃。

天线根数与速度没关系虽然这次评测分了两个组,双天线和多天线,但测试结果说明单从速度上来讲,双天线与三天线区别不大。

(天线原理介绍过了,和我们的实际情况是一致的。

当然是同一类芯片的基础上进行比较,不同种类芯片没有可比性)但是覆盖上确实有区别,所以要购买的用户不用总是迷恋多天线,从自己的实际情况出发,一般环境双天线已经足够了。

新的功能将改善人们使用无线网络的习惯譬如WPS快速加密这样的新功能,将会改善人们使用无线网络的习惯,按下终端和路由器上的两个键就会自动连接并加密,拒绝输入繁琐的密码,进一步降低了无线网络的门槛,让用户更轻松使用。

802.11N是构建数字家庭的主干除了改变人们的使用习惯,802.11N的传输速率已经可以完全应付高清影片的流畅传输,而传说中的数字家庭也可以由802.11N网络担当主角,撑起整个平台:无线播放高清媒体文件、无线控制家电产品、各种终端都无线,让你的家远离布线烦恼。

目前产品单调需要更多个性化产品问世不过话又说回来,任何东西都是需要发展的,现在11N可以算是刚刚出道,所以还有许多可以改进的地方,譬如这次评测的产品除了提供无线上网之外,附加功能都比较少,让IT产品更个性,这是一个发展方向,让看不到的无线也能多姿多彩。

移动通信基站天线基础知识

移动通信基站天线基础知识

移动通信基站天线基础知识移动通信基站天线是移动通信系统中的重要组成部分,其作用是将电信号转化为电磁波,并进行无线传输。

本文将介绍移动通信基站天线的基础知识,包括天线的类型、工作原理、性能指标等内容。

一、天线的类型移动通信基站天线可以根据不同的分类方式进行分类。

根据天线的工作频段,可以分为以下几类:1. 宽频段天线:适用于多频段的通信系统,能够覆盖不同频段的通信需求。

2. 扇形覆盖天线:用于小区域通信,形状呈扇形,信号覆盖范围有限。

3. 定向天线:用于长距离通信,信号传输更远且更稳定,但只能在特定方向进行通信。

4. 等向天线:信号传输范围广且均匀,适用于城市通信等环境。

根据天线的形状和结构,还可以分为以下几类:1. 竖直天线:天线的辐射方向主要朝向地面,适用于城市通信等场景。

2. 水平天线:天线的辐射方向主要朝向水平方向,适用于山区等场景。

3. 室内天线:适用于室内信号覆盖,可提供稳定的室内信号传输环境。

4. 中心天线:用于高速列车、高速公路等移动环境下的通信需求。

二、天线的工作原理移动通信基站天线的工作原理是将电信号转化为电磁波,并进行无线传输。

具体工作原理如下:1. 输入信号处理:接收来自基站设备的电信号,并进行处理,使其符合天线的输入要求。

2. 电信号转换:将输入信号转换为高频电磁波,以便进行无线传输。

3. 辐射和传输:将转换后的电磁波通过天线辐射出去,在空间中传输到指定的接收器。

4. 接收器接收:接收器接收到天线辐射出的电磁波,并将其转换为电信号。

三、天线的性能指标移动通信基站天线的性能指标直接影响着通信系统的性能。

常见的天线性能指标包括:1. 增益:衡量天线的辐射效率,增益越高,传输距离越远。

2. 驻波比:衡量天线的匹配程度,驻波比越小,能量传输效率越高。

3. 方向性:衡量天线在不同方向上的辐射效果,方向性越强,信号传输精度越高。

4. 波瓣宽度:衡量天线在空间中的覆盖范围,波瓣宽度越大,覆盖范围越广。

各类天线定义以及相关指标

各类天线定义以及相关指标

各类天线定义以及相关指标各类天线定义以及相关指标2009年07月11日星期六 15:25天线有五个基本参数:方向性系数、天线效率、增益系数、辐射电阻和天线有效高度。

这些参数是衡量天线质量好坏的重要指标。

【天线的方向性】是指天线向一定方向辐射电磁波的能力。

它的这种能力可采用方向图,方向图主瓣的宽度,方向性系数等参数进行描述。

所以方向性是衡量天线优劣的重要因素之一。

天线有了方向性,就能在某种程度上相当于提高发射机或接收机的效率,并使之具有一定的保密性和抗干扰性。

【方向性图】方向性图是表示天线方向性的特性曲线,即天线在各个方向上所具有的发射或接收电磁波能力的图形。

实用天线处在三度几何空间中,所以,它的方向性图应该是个立体图。

在这个立体图中,由于所取的截面不同而有不同的方向性图。

最常用的是水平面内的方向性图(即和大地平行的平面内的方向性图)和垂直面内的方向性图(即垂直于大地的平面内的方向性图)。

有的专业书籍上也称赤道面方向性图或子午面方向性图。

【波瓣宽度】有时也称波束宽度。

系指方向性图的主瓣宽度。

一般是指半功率波瓣宽度。

当L/λ数值不同时,其波瓣宽度也不同。

L/λ比值增加时,方向图越尖锐,但当(L/λ)>0.5时,除了与振子轴垂直的方向有最大的主瓣外,还可能出现付瓣。

因此,波瓣宽度越小,其方向性越强,保密性也强,干扰邻台的可能性小。

所以,对于超短波,微波等所用的天线,登记主瓣宽度这一指标,是十分重要的。

【方向性系数】方向性系数是用来表示天线向某一个方向集中辐射电磁波程度(即方向性图的尖锐程度)的一个参数。

为了确定定向天线的方向性系数,通常以理想的非定向天线作为比较的标准。

任一定向天线的方向性系数是指在接收点产生相等电场强度的条件下,非定向天线的总辐射功率对该定向天线的总辐射功率之比。

按照上面的定义,由于定向天线在各个方向上的辐射强度不等,故天线的方向性系数也随着观察点的位置而不同,在辐射电场最大的方向,方向性系数也最大。

天线的主要参数

天线的主要参数

天线的主要参数天线是一种电子设备,用来接收或发射无线电波信号。

它是通信系统的重要组成部分,用于传输和接收无线信号。

天线的主要参数包括增益、频率范围、方向性、带宽、阻抗匹配、极化方式等。

本文将对这些主要参数进行详细介绍。

一、增益天线的增益是指天线辐射或接收信号的能力。

增益越高,天线的辐射或接收能力就越强。

增益通常用分贝(dB)来表示。

天线的增益与其尺寸、形状、辐射模式等因素密切相关。

二、频率范围天线的频率范围是指天线能够工作的频率范围。

不同的天线适用于不同的频率范围。

例如,对于无线电通信系统,常见的频率范围包括2.4GHz、5GHz等。

三、方向性天线的方向性是指天线在空间中辐射或接收信号的特性。

方向性可以分为全向性和定向性。

全向性天线可以在360度范围内辐射或接收信号,而定向性天线只能在特定方向上进行辐射或接收。

定向性天线通常具有较高的增益。

四、带宽天线的带宽是指天线能够工作的频率范围。

带宽越大,天线在不同频率下的性能就越好。

带宽通常用百分比表示。

五、阻抗匹配天线的阻抗匹配是指天线的输入端阻抗与传输线或无线电设备的输出阻抗之间的匹配程度。

阻抗匹配对于天线和设备之间的信号传输非常重要。

如果阻抗不匹配,就会导致信号反射和损耗。

六、极化方式天线的极化方式是指天线辐射或接收信号时电磁波的振动方向。

常见的极化方式包括垂直极化、水平极化和圆极化。

不同的应用场景需要不同的极化方式。

七、天线类型根据不同的应用需求和工作频率,天线可以分为各种类型,包括定向天线、全向天线、扇形天线、饼状天线、螺旋天线等。

不同类型的天线具有不同的特点和适用范围。

八、天线材料天线的性能和特性与其材料密切相关。

常见的天线材料包括金属、塑料、陶瓷等。

不同的材料具有不同的电磁特性,影响天线的性能。

九、天线设计天线的设计是为了满足特定的应用需求和性能要求。

天线设计需要考虑到天线的形状、尺寸、材料、辐射模式等因素,以达到最佳的性能。

天线的主要参数包括增益、频率范围、方向性、带宽、阻抗匹配、极化方式等。

天线的基本参数

天线的基本参数

天线的基本参数
天线是一种用来发射或接收无线电波的装置,它是无线电信号传输的关键部件。

天线是无线电系统的最重要部分,因此其参数决定了无线电系统的性能。

本文将讨论天线的常用参数,包括相对增益、发射功率和功率比等,以便读者了解相关知识。

首先,相对增益是指天线将输入功率转换为输出功率的性能指标。

它的大小可以用分贝dB(dB)来表示,它的值受天线的结构、尺寸等
参数影响。

一般情况下,相对增益越大,天线就能发射出越强的信号。

其次,天线的发射功率也是一个重要参数,它决定了信号传输的质量和距离。

一般情况下,发射功率越高,信号强度就越强,传播距离就越远。

第三,功率比也叫做辐射因数,它描述的是天线发射所有功率所辐射的信号比例。

一般来说,功率比越大,信号传播距离就越远。

还有一些其他重要参数,如天线阻抗,它决定了天线与电路之间电阻的大小,换句话说,天线阻抗会影响信号波形和传播范围。

此外,还有辐射偏振度,它决定了天线不同方向发射的信号强度;还有转动因数,它是指将天线旋转到极端方向时发射功率的百分比。

本文的目的是让读者了解天线的基本参数,它们是构成无线电系统的重要组成部分,比如相对增益、发射功率、功率比等,是决定无线电系统性能的重要指标。

此外,天线阻抗、辐射偏振度和转动因数也是重要的参数。

通过对这些参数的正确设置,可以实现最佳的无线通信效果。

简述低频和高频rfid天线的特点

简述低频和高频rfid天线的特点

简述低频和高频rfid天线的特点RFID(Radio Frequency Identification)是一种无线通信技术,用于识别和跟踪物体。

在RFID系统中,RFID标签是存储和传输数据的设备,而RFID天线则用于与标签进行通信。

根据工作频率的不同,RFID天线可以分为低频和高频。

低频(LF)RFID天线的工作频率范围为125kHz至134.2kHz。

低频RFID系统通常具有较短的读取范围和较慢的数据传输速率。

低频RFID天线的特点如下:1. 读取范围较短:由于低频RFID系统的工作频率较低,其天线的读取范围通常较短,一般在几厘米到一米之间。

这限制了低频RFID 系统在跟踪和识别远距离物体时的应用。

2. 抗干扰能力较强:低频RFID天线对金属和液体的干扰较小,因此适用于在这些环境中进行标签识别和跟踪。

3. 适用于近距离识别:由于低频RFID天线的读取范围较短,它们更适合用于近距离识别应用,如门禁系统、动物标识和车辆识别等。

4. 数据传输速率较慢:由于低频RFID系统的工作频率较低,其数据传输速率通常较慢,一般在每秒几十个比特到几百个比特之间。

这限制了低频RFID系统在需要快速数据传输的应用中的使用。

高频(HF)RFID天线的工作频率范围为13.56MHz。

高频RFID系统通常具有较长的读取范围和较快的数据传输速率。

高频RFID天线的特点如下:1. 读取范围较远:由于高频RFID系统的工作频率较高,其天线的读取范围通常较远,可以达到几厘米到几米甚至更远。

这使得高频RFID系统可以用于跟踪和识别远距离物体。

2. 抗干扰能力相对较弱:高频RFID天线对金属和液体的干扰较低,但仍然比低频RFID天线更容易受到干扰。

因此,在金属或液体环境中使用高频RFID系统时,可能需要采取一些额外的措施来减少干扰。

3. 适用于远距离识别:由于高频RFID天线的读取范围较远,它们更适合用于远距离识别应用,如物流追踪、库存管理和门禁系统等。

无线无线路由器单天线、双天线、三天线等多天线对无线信号强度、范围的影响是否有增强

无线无线路由器单天线、双天线、三天线等多天线对无线信号强度、范围的影响是否有增强

无线无线路由器单天线、双天线、三天线等多天线对无线信号强度、范围的影响是否有增强用事实拆穿双天线成倍增益的神话双天线只能减少覆盖范围内的盲点先看总结:性能的区别主要来自芯片而不是品牌这次参加横评的产品一共14款,但他们的芯片只有4种,而使用相同芯片的产品在性能上的差距根本不大,所以购买前了解产品的芯片组是一个重要环节。

当然也不是说要放弃品牌的概念,各个品牌对产品质量的控制还是不一样,这也会让产品造成很大的差异(主要体现在产品质量)。

现阶段802.11N无线路由器已大幅度超越54M从54M到11N,经历了好几年的时间,不过这次横评我们看到了11N的优势,看到了希望。

实际测试表明,11N产品在产品整体性能上高出54M很多,速度、覆盖都有了质的飞跃。

天线根数与速度没关系虽然这次评测分了两个组,双天线和多天线,但测试结果说明单从速度上来讲,双天线与三天线区别不大。

(天线原理介绍过了,和我们的实际情况是一致的。

当然是同一类芯片的基础上进行比较,不同种类芯片没有可比性)但是覆盖上确实有区别,所以要购买的用户不用总是迷恋多天线,从自己的实际情况出发,一般环境双天线已经足够了。

新的功能将改善人们使用无线网络的习惯譬如WPS快速加密这样的新功能,将会改善人们使用无线网络的习惯,按下终端和路由器上的两个键就会自动连接并加密,拒绝输入繁琐的密码,进一步降低了无线网络的门槛,让用户更轻松使用。

802.11N是构建数字家庭的主干除了改变人们的使用习惯,802.11N的传输速率已经可以完全应付高清影片的流畅传输,而传说中的数字家庭也可以由802.11N网络担当主角,撑起整个平台:无线播放高清媒体文件、无线控制家电产品、各种终端都无线,让你的家远离布线烦恼。

目前产品单调需要更多个性化产品问世不过话又说回来,任何东西都是需要发展的,现在11N可以算是刚刚出道,所以还有许多可以改进的地方,譬如这次评测的产品除了提供无线上网之外,附加功能都比较少,让IT产品更个性,这是一个发展方向,让看不到的无线也能多姿多彩。

实用科普!无线路由器不同天线的区别

实用科普!无线路由器不同天线的区别

实用科普!无线路由器不同天线的区别“天线越多覆盖越广,天线越多信号越强,总之天线越多的无线路由器就越好”——觉得很“常识”的朋友可以继续往下看正文了,觉得小编弱爆了小编是那个什么的估计也不会点进来。

还是那句话,我们的干货帖大多数是为了扫盲,欢迎各位大神补充、指正……首先,大家也应该注意到了,老一代无线路由器的天线肯定不会超过一根,这里的“老一代”指的是802.11n协议以前的802.11a/b/g 路由,老的54M产品就只有一根天线。

这样的话,802.11n显然成了一条分水岭,也是从那时开始天线不再只有孤零零的一根(1t1r的150M是个例外),那到底是怎么一回事?这里我们就要提到一项11n 协议之后才得到具体应用的多天线技术,也是无线通信领域一项非常重要的技术——MIMO(Multiple-Input Multiple-Output,多入多出)先来看个例子,有人说,为什么我买了一个最新款的3天线支持802.11ac协议的无线路由器,结果信号强度、覆盖范围甚至连速度都没上去呢?天线不够?告诉你,300根也没用,检查一下你用的接受终端支不支持AC协议吧。

比如你用的iPhone3,这手机可只支持11a/b/g连11n都谈不上,那么即便是你给这货拆了加几根天线也没用。

怎么解决?加装AC网卡或者换终端,总之别再跟天线上较劲。

为什么这样说?首先,Wi-Fi应用的环境是室内,我们常用的802.11系列协议也是针对这种条件来建立的。

由于发射端到接收端之间存在各种各样的障碍物,收发时几乎不存在直射信号的可能。

那怎么办?我们管这个办法叫做多径传输,也叫多径效应。

多径,从字面上也很好理解,就是把增加传输途径。

那么问题来了,既然是多径,传输的路程就有长有短,有的可能是从桌子反射过来的,有的可能是穿墙的,这些携带相同信息但是拥有不同相位的信号辗转最终一起汇集到接收端上。

现代通信用的是存储转发的分组交换,也叫包交换,传输的是码(Symbol)。

各类天线总结

各类天线总结

概述:19世纪30年代,有线电报通信试验成功后,用电磁系统传递信息的电信事业便迅速发展起来。

第一代移动通信(1G)商业化是从20世纪80年代开始的,主要特点是模拟信号频率调制、频分双工和频分多址、基于电路交换技术。

第二代移动通信(2G)采用了数字调制,是多时隙共有一个载波,改进了第一代通信的保密性差、频谱利用率低、通话质量不高等缺点。

第三代移动通信(3G)是一种在第二代移动通信技术基础上进一步演进的以宽带CDMA为主的新一代移动通信。

4G是第四代移动通信及其技术的简称,是继第三代以后的又一次无线通信技术演进,与WLAN于一体并能够传输高质量视频图像的技术产品。

其开发更加具有明确的目标性:提高移动装置无线访问互联网的速度。

无线通信的场强覆盖状况对任何系统都是保证通信质量的先决条件。

基站天线在无线通信系统的覆盖中起着重要的作用,对系统的通信质量、干扰程度甚至对工程投资都有很大影响。

本文对于移动通信中的天线性能进行了比较。

GSM天线技术特点随着社会的发展移动电话越来越普及,人们对通信质量的要求也越来越高。

GSM系统作为第二代移动通信系统,在网络规模不断扩大的情况下,受频率资源的限制,频率复用度必然增加;由于规划或地理位置的原因,在多小区的情况下多会产生同频邻频干扰,参数设置不当,也会严重影响系统运行质量。

所有这些都将使网络服务性能变差。

为使网络资源能够合理配置和使用这就要求移动运营商持续不断地进行网络优化,改善系统性能,提高自己的竟争力,这也是电信企业的生存基础。

下面介绍一种GSM天线:无论是GSM还是CDMA,板状天线是用得最为普遍的一类极为重要的基站天线。

这种天线的优点是:增益高、扇形区方向图好、后瓣小、垂直面方向图俯角控制方便、密封性能可靠以及使用寿命长。

板状天线也常常被用作直放站的用户天线,根据作用扇形区的范围大小,应选择相应的天线型号。

a基站板状天线基本技术指标示例:b:状天线高增益的形成板状天线高增益的形成由于多径传输,使得信号场强的空间分布变得相当复杂,波动很大,有的地方信号场强增强,有的地方信号场强减弱;也由于多径传输的影响,还会使电波的极化方向发生变化。

天线分类和常用天线形态

天线分类和常用天线形态

天线分类和常用天线形态天线是无线通信系统中的重要组成部分,根据其分类和形态的不同,可以分为多种类型的天线。

常见的天线形态有直立天线、倾斜天线、水平天线、垂直天线、平面天线等。

一、天线分类根据天线的用途和工作频率,可以将天线分为以下几类:1.定向天线:定向天线主要用于点对点通信,其辐射方向比较集中,能够实现较远距离的通信。

常见的定向天线有方向天线、片状天线等。

2.全向天线:全向天线主要用于点对多点通信,其辐射方向较为均匀,可以实现较广范围的通信。

常见的全向天线有偶极子天线、螺旋天线等。

3.室内天线:室内天线主要用于室内信号覆盖,常见的室内天线有天线阵列、室内分布天线等,能够提供较好的信号覆盖效果。

4.室外天线:室外天线主要用于室外信号覆盖,常见的室外天线有扇形天线、扇形天线等,能够提供较广范围的信号覆盖。

二、常用天线形态根据天线的形态和结构特点,可以将天线分为以下几种常见形态:1.直立天线:直立天线是一种较为常见的天线形态,其辐射元件与地面垂直,常用于无线通信系统中。

直立天线主要用于广播、电视、移动通信等领域,具有辐射范围广、安装方便等优点。

2.倾斜天线:倾斜天线是一种倾斜安装的天线形态,其辐射元件与地面呈倾斜角度,常用于特定的通信场景。

倾斜天线主要用于山区、高楼大厦等复杂环境中,能够提供更好的信号覆盖效果。

3.水平天线:水平天线是一种水平安装的天线形态,其辐射元件与地面平行,常用于地面通信系统中。

水平天线主要用于无线局域网、无线传感器网络等领域,具有安装方便、信号传输稳定等特点。

4.垂直天线:垂直天线是一种垂直安装的天线形态,其辐射元件与地面垂直,常用于航空通信、雷达等领域。

垂直天线能够提供较好的垂直方向的信号传输效果。

5.平面天线:平面天线是一种平面结构的天线形态,常用于雷达、卫星通信等领域。

平面天线具有辐射范围广、辐射效率高等优点,在通信系统中起到重要作用。

总结:天线是无线通信系统中的重要组成部分,根据其分类和形态的不同,可以分为多种类型的天线。

各种天线天线参数制式详解演示文稿

各种天线天线参数制式详解演示文稿

各类制式分别采用的天线
GSM采用天线 GSM是Global System for Mobile Communications的缩
写,意为全球移动通信系统,是世界上主要的蜂窝系 统之一。
城市一般采用双极化天线、定向天线、中等增益的天线
农村一般采用全向基站覆盖和较高增益的定向天线
CDMA采用天线 CDMA是码分多址的英文缩写(Code Division
CDMA2000采用天线 CDMA2000 是目前2G CDMA的升级,是一
种3G的标准。与目前的2G CDMA相比, CDMA2000更是能够提供几兆bps以上的数 据速度。
应尽量采用宽频段天线全向天线垂直极化天 线
TD-SCDMA采用天线 TD-SCDMA是英文Time Division-Synchronous
天线的几个重要参数
增益是指:在输入功率相等的条件下,实际 天线与理想的辐射单元在空间同一点处所 产生的信号的功率密度之比。它定量地描 述一个天线把输入功率集中辐射的程度。 增益显然与天线方向图有密切的关系,方 向图主瓣越窄副瓣越小,增益越高。
驻波比(SWR)又称电压驻波比(VSWR) Voltage Standing Wave Ratio 驻波比,一般指的就是电压驻波比,是指驻 波的电压峰值与电压谷值之比。 理想的比例为 1:1 ,即输入阻抗相等于传 输线的特性阻抗,但几乎不可能达到。 驻波比越大,反射功率越高,也就是阻抗 不匹配。
天线的工作频率范围(频带宽度)
无论是发射天线还是接收天线,它们总是在一定的频率范 围(频带宽度)内工作的,天线的频带宽度有两种不同的 定义
一种是指:在驻波比SWR ≤ 1.5 条件下,天线的工作频 带宽度;
一种是指:天线增益下降 3 分贝范围内的频带宽度。

精品案例_5G 8T-32T-64T天线性能对比

精品案例_5G 8T-32T-64T天线性能对比

5G 8T-32T-64T天线性能对比目录一、问题描述 (3)二、分析过程 (7)三、解决措施............................................................................................错误!未定义书签。

四、经验总结 (16)无5G 8T-32T-64T天线性能对比【摘要】相比于4G, 5G对通信质量提出了更高的要求:更快的速率,更低的延时和更高的效率。

虽然看上去5G的发展包含了许多新技术的诞生,然而本质上,所有的增益都来源于毫米波的使用。

通信中奈奎斯特第一准则告诉我们,通信速率和带宽是正比关系(奈奎斯特第一准则)。

随着时代的飞速发展,人们的通信需求与日俱增,由于4G所使用的主要是6GHz以下频段,带宽已经是捉襟见肘。

要想加快通信速率,解决带宽的短缺,最直截了当的办法就是向更高的频段开拓,于是毫米波的使用应运而生。

【关键字】5G、毫米波【业务类别】5G一、问题描述众所周知,电磁波的频率和波长符合以下公式:也就是说成反比关系,这也意味着波长越短,频率越高。

显然,根据此公式可以得出上图中的不同频段。

而毫米波,顾名思义指的就是波长为1mm - 10mm之间的电磁波,其频率也是介于30-300GHz间(关于毫米波频段的具体范围还有待讨论,但和我们要讲的内容无关)。

通过使用毫米波(更短的波长),通信的载波频率被大幅提升,因此可以获得远超现有4G LTE频段数十倍以上的广阔频段,也是5G增益的根本由来。

毫米波与Massive MIMO然而另一方面,毫米波也有其明显的缺点。

根据通信中的弗里斯传输公式:Gt,Gr, Pt, Pr分别代表发送,接受的天线增益,功率。

)可以看到,接收功率与波长成正比。

而毫米波更短的波长,也意味着更高的传输损耗(接收功率变小)。

不止如此,毫米波的穿透等能力也大大降低,甚至连雨天的水滴都能对传输造成干扰。

初二物理天线种类与特点分析

初二物理天线种类与特点分析

初二物理天线种类与特点分析天线是无线通信系统不可或缺的组成部分,广泛应用于电视、手机、无线网络等各个领域。

不同的天线类型具有不同的特点和适用范围。

本文将对初二物理中常见的天线类型进行分类,并分析其特点。

Ⅰ. 定向天线定向天线也称为指向性天线,主要用于远距离通信。

其特点是能够将信号发送或接收到特定的方向,减少了信号在其他方向的传播损耗。

A. 管状天线:管状天线由一个长而细的金属柱组成,适用于点对点通信,如卫星通信。

其优点是接收和发送信号的距离较远,性能稳定且容易安装。

缺点是角度固定,难以调整。

B. 双鳍片天线:双鳍片天线常见于无线路由器中,其外形像一把小刀。

它可以发射和接收信号的方向性更强,适用于大范围的无线通信。

C. 网格天线:网格天线由金属网格组成,适用于大范围的信号覆盖。

其特点是工作频率范围较广,使用稳定可靠。

Ⅱ. 螺旋天线螺旋天线是一种特殊的天线形式,常用于扫描卫星电视、雷达和航空通信等领域。

其特点是宽频带、高增益以及抗干扰能力强。

A. 偏振螺旋天线:偏振螺旋天线根据偏振方向的不同分为左旋和右旋两种类型。

其主要应用于雷达、卫星通信和飞机导航等领域。

其优点是能够提供可靠的通信信号,抗干扰性强,缺点是构造复杂,难度较大。

B. 扫描螺旋天线:扫描螺旋天线具有全向性辐射特性,适用于平台航向扫描的应用。

其特点是能够实现快速有效的通信和定位。

Ⅲ. 短波天线短波天线主要用于无线电广播和短波通信。

其特点是适应不同频率范围的信号传输。

A. 长线天线:长线天线也称为长波天线,一般用于低频无线电通信。

其特点是信号传播距离远,适用于覆盖范围较广的通信系统。

B. 短螺旋天线:短螺旋天线适用于高频短波通信,如海上通信、航空通信等。

其优点是体积小、结构简单,适合移动通信设备。

Ⅳ. 电子天线电子天线又称为有源天线,是指利用电子器件控制射频信号的目标信号的辐射性能。

其特点是可以实现动态调整和改变信号的方向性和覆盖范围。

A. 相控阵天线:相控阵天线由多个相互协调的辐射单元组成,可以通过改变辐射单元之间的相位差和振幅来改变信号的方向和形态。

几种天线的比较

几种天线的比较

天线是卫星通信系统的重要组成部分,是地球站射频信号的输入和输出通道,天线系统性能的优劣影响整个通信系统的性能。

地球站与卫星之间的距离遥远,为保证信号的有效传输,大多数地球站采用反射面型天线。

反射面型天线的特点是方向性好,增益高,便于电波的远距离传输。

反射面的分类方法很多,按反射面的数量可分为双反射面天线和单反射面天线;按馈电方式分为正馈天线和偏馈天线;按频段可分为单频段天线和多频段天线;按反射面的形状分为平板天线和抛物面天线等。

下文对一些常用的天线作简单介绍。

1.抛物面天线抛物面天线是一种单反射面型天线,利用轴对称的旋转抛物面作为主反射面,将馈源置于抛物面的焦点F上,馈源通常采用喇叭天线或喇叭天线阵列,如图1所示。

发射时信号从馈源向抛物面辐射,经抛物面反射后向空中辐射。

由于馈源位于抛物面的焦点上,电波经抛物面反射后,沿抛物面法向平行辐射。

接收时,经反射面反射后,电波汇聚到馈源,馈源可接收到最大信号能量。

图1 抛物面天线抛物面天线的优点是结构简单,较双反射面天线便于装配。

缺点是天线噪声温度较高;由于采用前馈,会对信号造成一定的遮挡;使用大功率功放时,功放重量带来的结构不稳定性必须被考虑。

2.卡塞格伦天线卡塞格伦天线是一种双反射面天线,它由两个发射面和一个馈源组成,如图2所示。

主反射面是一个旋转抛物面,副反射面为旋转双曲面,馈源置于旋转双曲面的实焦点F1上,抛物面的焦点与旋转双曲面的焦点重合,即都位于F2点。

从从馈源辐射出来的电磁波被副反射面反射向主反射面,在主反射面上再次被反射。

由于主反射面的焦点与副反射面的焦点重合,经主副反射面的两次反射后,电波平行于抛物面法向方向定向辐射。

对经典的卡塞格伦天线来说,副反射面的存在遮挡了一部分能量,使得天线的效率降低,能量分布不均匀,必须进行修正。

修正型卡塞格伦天线通过天线面修正后,天线效率可提高到0.7—0.75,而且能量分布均匀。

目前,大多数地球站采用的都是修正型卡塞格伦天线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

让你的数据传得更远:常见天线的性能与区别
 在万物互联的大趋势下,无线通信模块成为了各类电子设备中不可或缺的一部分,而模块的通信质量很大程度上取决于天线设计是否合理。

本文介绍了如何选择合适的天线并发挥出天线最佳的性能。

 随着技术的进步,为了节省研发周期,不少厂商都推出各种各样的成品天线。

然而如果工程师选择不当,不仅起不到应有的效果,反而会浪费很多时间与成本在排查调试上,得不偿失。

本文将介绍常用的几种天线并结合在工程中的实际使用经验给出设计建议,以供大家参考。

 接下来为大家介绍常用的天线种类:
 1、板载PCB式天线:采用PCB蚀刻而成,成本低,但是性能有限,可调性好,可大批量用于蓝牙、WiFi无线通信模块。

 2、SMT贴片式:常用的有陶瓷天线,占用面积少,集成度高,容易更换,适用于对空间要求小的产品,但是该类型天线价格稍贵且带宽偏小。

相关文档
最新文档