线性代数高等代数知识点总结优秀课件

合集下载

高等代数知识点总结课件

高等代数知识点总结课件
详细描述
二阶行列式计算较为简单,直接按照定义进行计算即可。三 阶行列式可以利用代数余子式展开,也可以利用对角线法则 进行计算。高阶行列式可以利用递推法或化简法进行计算。
矩阵的秩的定义与性质
总结词
矩阵的秩是矩阵中线性无关的行(或列) 向量的个数,具有一些重要的性质。
VS
详细描述
矩阵的秩具有一些重要的性质,如秩的传 递性、秩的唯一性、秩的性质等。矩阵的 秩可以用来判断线性方程组的解的情况, 如当系数矩阵的秩等于增广矩阵的秩时, 线性方程组有解。
利用秩判断线性方程组解的情况
总结词
利用矩阵的秩可以判断线性方程组解的情况。
详细描述
当系数矩阵的秩等于增广矩阵的秩时,线性 方程组有解;当系数矩阵的秩小于增广矩阵 的秩时,线性方程组无解;当系数矩阵的秩 大于增广矩阵的秩时,线性方程组有无穷多 解。此外,利用矩阵的秩还可以判断线性方 程组解的个数和类型。
逆矩阵的性质
逆矩阵是唯一的;逆矩阵与原矩阵的乘积为单位矩阵;逆矩阵的逆矩阵是原矩阵。
逆矩阵的求法
高斯消元法、伴随矩阵法、初等变换法等。
线性方程组的解法
高斯消元法
将增广矩阵转化为上三角矩阵,从而得到解。
回带求解
将得到的上三角矩阵的解回代到原方程组中, 得到未知数的值。
克拉默法则
当方程组系数行列式不为0时,可以用克拉默 法则求解唯一解。
准型有助于简化二次型的计算和性质研究。
二次型的正定性判断
总结词
正定性判断是确定二次型是否为正定的过程, 正定的二次型具有一些重要的性质。
详细描述
正定性判断是二次型研究中的一个重要问题。 一个二次型被称为正定的,如果它对应于一 个正定矩阵。正定的二次型具有一些重要的 性质,如存在唯一的极小值点,且该极小值 点是全局最小值点。此外,正定的二次型还 具有一些几何意义,如对应于一个凸多面体

线性代数高等代数知识点总结

线性代数高等代数知识点总结
一、行列式知识概述
一、知识结构框图
概念
性质
行列式 展开 计算
证|A|=0
应用
精品PPT
概念 不同行不同列的元素的乘积的代数和。
性质
经转置行列式的值不变; 互换两行行列式变号; 某行有公因子可提到行列式符号外;
拆成行列式的和; 消法变换。
精品PPT
展开
n
D, 当i j,
aki Akj
k 1
D ij
精品PPT
运算
行 列 式
矩阵
初等变换 和标准形
特殊 矩阵
精品PPT
转置
取逆
伴随
加法 (A+B)T=AT+BT
数乘 (kA)T= k AT (kA)1= k1A1 (kA)*= kn1A*
乘法 (AB)T= BT AT (AB) 1= B1 A1 (AB)*= B*A*
转置 (AT)T=A
(AT) 1=(A1)T (AT)*=(A*)T
精品PPT
证|A|=0
AX=0有非零解; 反证法;
R(A)<n; A可逆; |A|= - |A|; A的列向量组线性相关; 0是A的特征值;
精品PPT
应用
AX=0有非零解; 伴随矩阵求逆法;
克拉姆法则; A可逆的证明; 线性相关(无关)的判定; 特征值计算。
精品PPT
二、特殊行列式的值
1.三角行列式
精品PPT
本章所需掌握的题型:
行列式计算(重点) 1、具体阶数行列式计算 2、较简单的n阶行列式计算
与行列式定义、性质有关的问题
需利用行列式进行判定的问题 如:1、“Crammer”法则判定方程组的解况
2、矩阵可逆性 3、向量组相关性(向量个数=向量维数) 4、两个矩阵相似的必要条件 5、矩阵正定、半正定的必要条件

线性代数总复习PPT 很全!.ppt

线性代数总复习PPT  很全!.ppt
m
x11 x22 xmm 0有非零解
线性方程组1,2 ,
,m
x1
0非零解
xm
R1,2, ,m m m是向量个数
判别法 1
n个n元1,2 ,
,
线性
n
相关
1,2 ,
,n
0
r1,2 , ,n n
n个n元1,2 ,
,
线性无关
n
1,2 ,
,n
0
r1,2 , ,n n
判别法 2
n阶方阵A可逆 A 0 A E
存在方阵B,使AB E,或BA E 秩 Ann n
A的行(列)向量组线性无关。 齐次线性方程组Ann X 0仅有零解 A的特征值全部 0
可逆矩阵的性质
设A,B都是n阶可逆矩阵,k是非零数,则
1
A1 1 A,
3 AB 1 B 1 A1
线性相关,则必可由1,2 ,
,
线性
m
表示,
并且表法惟一。
3、秩(A)= 列向量组的秩 = 行向量组的秩
定理
向量
可由1,2 ,
,
线性表示
m
x11 x22 xmm 有解
线性方程组1,2 ,
,m
x1
有解
xm
R1,2 , ,m R1,2 , ,m,
定理
向量组1,2 ,
,
线性相关
证明 设 x11 x22 x33 0
1.

x11 2 3 x21 2 x32 3 0
x1 x2 1 x1 x2 x3 2 x1 x3 3 0
因为1
,2
,3
线性无关,所以
x1 x1
x2 x2
x3

高等代数课件--第三章 线性方程组§3.3 线性相关性

高等代数课件--第三章 线性方程组§3.3 线性相关性

(*)
只有零解;向量1,2,…,s组线性相关的充 要条件是齐次线性方程组(*)有非零解.
在向量个数为n时,根据Cramer法 则,前一结论可改写 已知i=(ai1, ai2,…, ain), i=1,2,…,n, 则
1,2,…,s线性无关|aij|0
1,2,…,s线性相关|aij|=0
任意添加一个向量(如果还有的话),所得
的部分向量组都线性相关,则此部分组称
为一个极大线性无关组。
等价定义:
设1, 2,…,s为Pn中的一个向量组,它 的一个部分组i1, i2,…,ir若满足
i) i1, i2,…,ir线性无关
ii) 对任意的j (1 j s), j可经i1, i2,…, ir 线性表出 则称i1, i2,…,ir为向量组1, 2,…,s的一个
§3.3 线性相关性
一个十分重要的概念
一、线性组合
定义: 对于向量,1, 2, …,s ,如果存 在P上的数k1,k2,…,ks使
= k11+ k22+ …+kss
则称向量为向量组1, 2, …,s的一个 线性组合.另一种称呼是,可以由向 量组1, 2, …,s线性表出。
极大线性无关组(简称极大无关组)
性质:
1) 通常一个向量组的极大无关组不唯 一。. 2) 一个线性无关的向量组的极大无关组就 是其自身.
3)一个向量组的任意两个极大无关组都等 价. 4) 一个向量组的任意两个极大无关组都含 有相同个数的向量.
2. 向量组的秩
定义 向量组的极大无关组所含向量
个数称为这个向量组的秩.
性质
1) 单独一个向量线性相关当且仅当它是零 向量;单独一个向量线性无关当且仅当它 是非零向量. 2) 一向量组线性相关的充要条件是其中 至少有一个向量可由其余向量线性表出.

高等代数知识点总结课件

高等代数知识点总结课件

行列式的展开定理
• 总结词:行列式的展开定理是行列式计算的核心,它提供了计算行列式 值的有效方法。
• 详细描述:行列式的展开定理指出,一个$n$阶行列式等于它的主对角线上的元素的乘积与其它元素乘积的代数和的相 反数。具体来说,对于一个$n$阶行列式$|\begin{matrix} a{11} & a{12} & \cdots & a{1n} \ a{21} & a{22} & \cdots & a{2n} \ \vdots & \vdots & \ddots & \vdots \ a{n1} & a{n2} & \cdots & a{nn} \end{matrix}|$,其值等于 $a{11}A{11} + a{21}A{21} + \cdots + a{n1}A{n1}$,其中$A{ii}$表示去掉第$i$行和第$i$列后得到的$(n-1)$阶行列 式的值。
04
线性函数与双线性函数
线性函数的定义与性质
线性函数的定义
线性函数是数学中的一种函数,其图 像为一条直线。在高等代数中,线性 函数是指满足 f(ax+by)=af(x)+bf(y) 的函数。
线性函数的性质
线性函数具有一些重要的性质,如加 法性质、数乘性质、零元素性质和负 元素性质等。这些性质在解决实际问 题中具有广泛的应用。
欧几里得空间与酉空间
欧几里得空间
欧几里得空间是一个几何空间,它满足 欧几里得几何的公理。在欧几里得空间 中,向量的长度和角度都可以用实数表 示。
VS
酉空间
酉空间是一种特殊的线性空间,它满足酉 几何的公理。在酉空间中,向量的长度和 角度都可以用复数表示。酉空间在量子力 学、信号处理等领域有广泛应用。

高等代数知识点总结 PPT

高等代数知识点总结 PPT

• 复数域上的标准分解定理
在复数域上,每个次数大于1的多项式f都有如下的 标准分解
f a ( x x 1 ) n 1 L ( x x t) n t
其中a是f的常数项, x1,…,xt 是f全部互不相同的根, n1,…,nt分别是这些根的重数.
• 实数域上的标准分解定理
在实数域上,每个次数大于1的多项式f都有如下的
|U V|i1Lim式 U -i1 --L ---i-m - 式 V i-1 -L ---i-m -
1
x1 V x12
M x n1
1
1L
x2 L
x
2 2
L
M
x n1 L
1
xn
x
2 n
(x j xi )
M
1i j n
x n1 n
V 0 x1, ..., xn 互 不 相 同
对单位矩阵做一次初等变换

每个秩数为r的矩阵都等价于
Ir 0
0
0
• 对于m×n矩阵A,B下列条件等价
1. AB,即A可由初等变换化成B
2. 有可逆矩阵P,Q使得PAQ=B
3. 秩A=秩B
4. A,B的标准型相同
可逆矩阵vs列满秩矩阵
对于n阶矩阵A,下列条件等价
1. A是可逆矩阵
2. |A|0
3. 秩A=n
4. 有B使得AB=I或BA=I
f(x)=g(x)q(x)+r(x),r(x)=0或degr(x)<degg(x).
• 最大公因式的存在和表示定理
任意两个不全为0的多项式都有最大公因式,且对 于任意的最大公因式d(x)都有u(x)和v(x)使得
d(x)=f(x)u(x)+g(x)v(x)

线性代数知识点全面总结PPT课件

线性代数知识点全面总结PPT课件

一、向量组的线性相关性主要知识网络图
运算
概念
n 线性表示

判定
向 量 组 的 线
向 量 线性相关
概念
判定 概念
充要条件 充分条件
性 相
线性无关
判定
充要条件
6、n阶方阵的行列式 (1) |AT| = |A|;
(3) |AB| = |A||B| ; (5) |A*| = |A|n-1 .
(2) |kA| = kn|A| ; (4) |A-1| = |A|-1 ;
第6页/共61页
四、典型例题
1、方阵的幂运算 2、求逆矩阵 3、解矩阵方程 4、A*题
第7页/共61页
2.对A经过有限次初等变换得到B, 则A等价B.
~ ~ 求逆,

A E E
A1
A E E 列 A1
用途
求矩阵A的秩、最简型、标准形. 求线第性20方页/程共6组1页的解.
概念 性质
初等方阵
对单位矩阵实施一次初等变换而得到的 矩阵称为初等方阵.
三种初等变换对应三种初等方阵.
初等方阵都是可逆矩阵,其逆仍然是同 种的初等矩阵.
4、若AB = E( 或BA =E ), 则B = A-1 。 5、若A为对称矩阵,则AT =A 。 6、若A为反对称矩阵,则AT=-A 。
第4页/共61页
三、重要公式、法则。
1、矩阵的加法与数乘
(1) A + B = B + A ; (2) (A + B ) + C = A + ( B + C ); (3) A + O = O + A = A; (4) A + (-A) = O; (5) k(lA) = (kl)A ; (6) (k+l)A = kA+ lA ; (7) k( A + B )= kA + kB ; (8) 1A = A, OA = O 。

大学 高等代数 线性代数

大学 高等代数 线性代数

其中 ( r2 ( x )) ( r1 ( x )) 或 r2 ( x ) 0 . 若 r2 ( x ) 0 ,用 r2 ( x ) 除 r1 ( x ) ,得
r1 ( x ) q3 ( x )r2 ( x ) r3 ( x ),
……
如此辗转下去,显然,所得余式的次数不断降低, 即
于是有
u( x ) f ( x )h( x ) v( x ) g( x )h( x ) h( x ) f ( x ) | f ( x )h( x )
又 f ( x ) | g( x )h( x ),
f ( x ) | h( x ).
推论
若 f1 ( x ) | g( x ), f 2 ( x ) | g( x ) ,且
证: " " 显然.
" " 设 ( x )为 f ( x ), g( x ) 的任一公因式,则
( x ) f ( x ), ( x ) g( x ), 从而 ( x ) 1, 又 1 ( x ),
( x ) c, c 0.
故 ( f ( x ), g( x )) 1.
………………
ri 2 ( x ) qi ( x )ri-1 ( x ) ri ( x )
……………… rs 3 ( x ) qs1 ( x )rs 2 ( x ) rs1 ( x )
rs 2 ( x ) qs ( x )rs1 ( x ) rs ( x ) rs1 ( x ) qs1 ( x )rs ( x ) 0
( f ( x )、g( x )) u( x ) f ( x ) v( x ) g( x ).
注:
若仅求 ( f ( x )、g( x )) ,为了避免辗转相除时出现

高等代数课件 第三章

高等代数课件 第三章

,
k2
,,
k
s
, i, j
i,.
但(2)正是对(1)施行 i, j 对换而得到的排列。因此,
对(1)施行对换i, j相当于连续施行2s+1次相邻数码的对
换。由(1),每经过一次相邻两数码的对换,排列都改变
奇偶性。由于2s+1是一个奇数,所以(1)与(2)的奇偶性
相反。
定理3.2.3 在n个数码(n>1)的所有n!个排列,
称为三阶行列式, 即
主对角线法
a11 a12 a13 D a21 a22 a23
a31 a32 a33
‘—’三元素乘积取“+”号; ‘—’三元素乘积取“-”号.
a11a22a33 a12a23a31 a13a21a32 a11a23a32 a12a21a33 a13a22a31
二、行列式在线性方程组中的应用
(1) (k1k2kn ) 。然而 (12n) 0 。由上面的讨论
可知
(1)st (1) (12n) (k1k2kn ) (1) (k1k2kn )
引理被证明。
二、行列式的性质
命题3.3.1 行列式与它的转置行列式相等,即D D 命题3.3.2 交换一个行列式的两行(或两列), 行列式改变符号。
(旁边的i和j表示行的序 数)
D的每一项可以写成
(5) a1k1 aiki a jkj ankn
因为这一项的元素位于D1 的不同的行与不同的列,所以它也 (是同5项D)1对在的应D一中着项的D,1符反的号过不是来同(,项1D,)1的(因k1每此ki一Dk j与 项kn也D) ,1含是然D有而的相在一同D项的1,中项并,。且原D行的列不
(1)
如果含有两个未知量两个方程的线性方程组(1)

线性代数总复习讲义PPT课件

线性代数总复习讲义PPT课件
在金融学中,线性代数用于描述资产价格和风险等经济量,以及计算收益 率和波动率等金融指标。
在计算机科学中的应用
01
Байду номын сангаас
02
03
04
线性代数在计算机科学中也有 着广泛的应用,如图像处理、 机器学习和数据挖掘等领域。
线性代数在计算机科学中也有 着广泛的应用,如图像处理、 机器学习和数据挖掘等领域。
线性代数在计算机科学中也有 着广泛的应用,如图像处理、 机器学习和数据挖掘等领域。
100%
相似变换法
通过相似变换将矩阵对角化,从 而得到其特征值和特征向量。
80%
数值计算法
对于一些大型稀疏矩阵,可以使 用数值计算方法来计算其特征值 和特征向量。
特征值与特征向量的应用
01
在物理、工程等领域中,特征值和特征向量被广泛 应用于求解振动、波动等问题。
02
在图像处理中,特征值和特征向量被用于图像压缩 和图像识别。
二次型的应用与优化问题
总结词
了解二次型在解决优化问题中的应用
详细描述
二次型的一个重要应用是在解决优化问题中, 特别是在求解二次规划问题时。通过将问题 转化为二次型的形式,可以方便地应用各种 优化算法进行求解,如梯度下降法、牛顿法 等。此外,二次型在统计分析、机器学习等 领域也有着广泛的应用。
06
矩阵的逆与行列式的值
要点一
总结词
矩阵的逆和行列式的值是线性代数中的重要概念,它们在 解决线性方程组、向量空间和特征值等问题中有着广泛的 应用。
要点二
详细描述
矩阵的逆是矩阵运算的一个重要概念,它表示一个矩阵的 逆矩阵与其原矩阵相乘为单位矩阵。逆矩阵的存在条件是 矩阵的行列式值不为零。行列式的值是一个由n阶方阵构 成的代数式,表示n个未知数的n阶线性方程组的解的系数 。行列式的值可以用来判断线性方程组是否有解以及解的 个数。同时,行列式的值也与特征值和特征向量等问题密 切相关。

高等代数课件

高等代数课件
线性变换的矩阵表示
对于一个线性变换,如果存在一组基 使得该线性变换在这组基下的矩阵表 示是恒等变换,那么这组基是这线性 变换的一个基底。
CHAPTER 02
线性方程组与矩阵的秩
线性方程组的解法
高斯消元法
通过消元将线性方程组转化为求解单变量方程,是求解线性方程 组的基本方法。
克拉默法则
适用于系数行列式不为零的线性方程组,通过展开式求解。
特征值的计算方法与性质
计算方法
特征多项式f(λ)=|λE-A|,其中E为单位矩 阵,A为给定矩阵。通过求解f(λ)=0得到 的根即为特征值。
VS
性质
特征多项式f(λ)的根即是特征值,f(λ)的阶 数即是矩阵A的阶数。f(λ)无重根,则A有 n个线性无关的特征向量。
特征向量的应用与性质
应用
在矩阵理论中,特征向量的应用广泛,如求解线性方程组、判断矩阵的稳定性、求矩阵的秩等。
性质
对于可逆矩阵A,其逆矩阵的特征向量是A的特征向量的倍数。对于相似矩阵,它们的特征向量是相互正交的。
CHAPTER 04
行列式与高阶矩阵
行列式的定义与性质
总结词
行列式是n阶方阵所有行列的n个代数余子 式的乘积之和,具有丰富的性质。
详细描述
行列式是一种特殊的n阶方阵的函数,其值 按照排列方式决定。行列式的定义可以推广 到任意阶数。行列式具有以下性质
递推公式法:利用递推公式,将高阶行 列式转化为低阶行列式,以便计算。
行列展开法:利用代数余子式的性质, 将行列式按照某一行或某一列展开,转 化为低阶行列式,以便计算。
详细描述
化简法:利用行列式的性质,化简行列 式,将其转化为更简单的形式,以便计 算。
高阶矩阵的运算与性质

线性代数ppt课件

线性代数ppt课件

VS
线性代数的特点
线性代数具有抽象性、实用性、广泛性等 特点,是数学中重要的分支之一。
线性代数的历史背景
线性代数的起源
线性代数起源于17世纪,主要目的 是为了解决线性方程组的问题。
线性代数的发展
随着数学的发展,线性代数逐渐成为 一门独立的数学分支,并在20世纪得 到了广泛的应用和发展。
线性代数的应用领域
转置矩阵
一个矩阵A的转置矩阵是满足$A^T_{ij}=A_{ ji}$的矩阵
行列式与高斯消元
03

行列式的定义及性质
总结词
行列式是线性代数中重要的工具之一,它具有特殊的性质和计算规则。
详细描述
行列式是由一组方阵中的元素按照一定规则组成的,它是一个方阵是否可逆的判断标准,同时也有一 些重要的性质和计算规则,如交换两行或两列、对角线上的元素相乘等。了解行列式的定义和性质是 学习线性代数的基础。
矩阵的运算规则
加法
两个相同大小的矩阵,对应位置的元素相加
数乘
用一个数乘以矩阵的每一个元素
减法
两个相同大小的矩阵,对应位置的元素相减
乘法
要求两个矩阵满足乘法运算的规则,即第一 个矩阵的列数等于第二个矩阵的行数
矩阵的逆与转置
逆矩阵
一个矩阵A的逆矩阵是满足$AA^{-1}=I$的矩阵,其中$I$是单位矩阵
高斯消元法的原理
总结词
高斯消元法是一种解线性方程组的直接方法 ,其原理是将方程组转化为阶梯形矩阵。
详细描述
高斯消元法的基本思想是通过一系列的行变 换将线性方程组转化为阶梯形矩阵,这样就 可以直接求解方程组。高斯消元法包括三种 基本的行变换:将两行互换、将一行乘以非 零常数、将一行加上另一行的若干倍。通过 这些行变换,我们可以将矩阵转化为阶梯形 矩阵,从而求解方程组。

线性代数总结精华ppt课件

线性代数总结精华ppt课件
c.单位矩阵:对角数为1的对角矩阵。记为E
d数量矩阵:有数量的对角矩阵 记作 E .
第二章 矩阵
e.三角矩阵:分为上三角和下三角 f.负矩阵:原矩阵乘上负一 g.行最简型,行阶梯型,标准型 4.多元线性方程组与矩阵 a.系数矩阵与增广矩阵 5.矩阵的运算,加法,减法,数乘,乘法,转置,对称阵与反对称阵、 6.方阵行列式(这里要注意方阵行列式的运算规则) 7.伴随矩阵(注意运算规律) 8.共轭矩阵(不太重要)
第三章 向量 用向量的知识解构与重构矩阵
1.向量的定义,向量、向量组和矩阵的关系
2.向量组的线性相关1 a 12 a 2 m a m
3.向量的线性表示:
a.一个向量被向量组线性表示b 1 a 1 2 a 2 m a m
b.一个向量组被另一个向量组线性表示 B=§A 定理 1 向量 b 能由向量组 A 线性表示的充要条件是 R(A) = 联系上一章节学习的线性方程 R(B) , 其中矩阵 A = ( a1 , a2 ,……, am ), B = ( a1 , a2 ,……, am ,b ) . 组的是知识
b.线性方程组解的空间指的是由线性方程组的解的向量满足空间线性运算 及元素线性无关所组成的空间,其次线性方程组的解向量就是一个解空间
定理 6 n 元齐次线性方程组
Ax = 0

的解空间的维数为 n - r ,即 ⑴ 的基础解系含 n - r 个解,其中
R(A) = r.
第三章 向量
1向量的线性表示(主要是线性表示的概念,单个向量、向量组与向量组的 线性表示)
端木奈良 更多学习资源请加QQ:2119658018
线性代数复习指导
The Review Lesson To Linear Algebra

高等代数第7章线性变换PPT课件

高等代数第7章线性变换PPT课件

特征向量定义
对应于特征值m的非零向量x称为A的对应于特征值 m的特征向量。
设A是n阶方阵,如果存在数m和非零n维列向 量x,使得Ax=mx成立,则称m是A的一个特 征值。
求解方法
通过求解特征多项式f(λ)=|A-λE|的根得到特 征值,再代入原方程求解对应的特征向量。
特征多项式及其性质分析
特征多项式定义
量子力学
在量子力学中,特征值和特征向量用 于描述微观粒子的状态和能量级别。
图像处理
在图像处理中,特征值和特征向量可 以用于图像压缩和图像识别等任务。
经济学
在经济学中,特征值和特征向量可以 用于分析和预测经济系统的稳定性和 发展趋势。
04
线性变换对角化条
件及步骤
可对角化条件判断方法
判断矩阵是否可对角化
线性变换的性质与 矩阵性质对应
线性变换的性质如保持加法、 数乘等运算可以通过其对应的 矩阵性质来体现。例如,两个 线性变换的和对应两个矩阵的 和;线性变换的复合对应两个 矩阵的乘积等。
02
线性变换矩阵表示

标准基下矩阵表示法
定义
设V是n维线性空间,e1,e2,...,en 是V的一个基,T是V上的一个线 性变换,则T在基e1,e2,...,en下的 矩阵A称为T在基e1,e2,...,en下的 标准矩阵表示。
计算矩阵的高次幂
对于可对角化的矩阵A,可以利用对角化公式A=PDP^(-1)将A的高次幂转化为对角矩阵D的高次幂, 从而简化计算过程。
求解线性方程组
对于系数矩阵为可对角化矩阵的线性方程组,可以通过对角化将系数矩阵转化为对角矩阵,进而 简化方程组的求解过程。
计算行列式和逆矩阵
对于可对角化的矩阵A,其行列式值等于对角矩阵D的行列式值,逆矩阵可以通过对角化公式求得, 从而简化相关计算。

线性代数相关知识培训教程PPT课件( 93页)

线性代数相关知识培训教程PPT课件( 93页)
那末 A称为对称阵.
例如A162
6 8
1 0
为对称. 阵
1 0 6
说明 对称阵的元素以主对角线为对称轴对应相
等.
同型矩阵与矩阵相等
1)两个矩阵的行数相等,列数相等时,称为同型矩阵.
例如
1 5
2 6


14 8
3 4
为同型矩阵.
3 7 3 9
Aij (1)i j Mij, Aij叫做元素 aij的代数余子.式
A a i1 A i1 a i2 A i2 a iA n in ( i 1 ,2 , ,n ) A a i1 A j1 a i2 A j2 a iA n jn ( i j)
例1 3 1 1 2 5 1 3 4
p1p2pn
列取 . 和
N阶行列式是一个数,该数是n!项的代数和, 每项为取自表中不同行不同列n个元素的乘 积,符号由这n个元素列标排列的逆序数决定 (行标按自然顺序排列),奇排列带负号,偶排 列带正号.
2. 行列式的性质
1)行列式与它的转置行式列相等,即D DT. 2)互换行列式的两行 (列),行列式变号. 3)如果行列式有两行 (列)完全相同,则此行列式 等于零. 4)行列式的某一行(列)中所有的元素都乘以同 一数k,等于用数k 乘此行列式.
6)逆矩阵
伴随矩阵定义
行列式 A 的各个元素的代数余子式A ij 所
构成的如下矩阵
A11
A


A12
A1n
A21 An1 A22 An2 A2n Ann
称为矩阵 A 的伴随矩阵.
伴随矩阵性质
AA A AA E .
逆矩阵定义

线性代数知识点超强总结63页PPT

线性代数知识点超强总结63页PPT
45、法律的制定是为了保证每一个人 自由发 挥自己 的才能 ,而不 是为了 束缚他 财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
线性代数知识点超强总结
41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理。— —托·富 勒
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A的行最简形为E. A为初等阵的乘积
rAn (满秩) A的行(列)向量组的秩都是n.
A的行(列)向量组线性无关
任一n维向量 都可由行(列)向量组线性表示
A的特征值均不为零 ATP A为1正AP 定阵.E
方阵A与E 相似 A = E
A正定
i >0 p=n A=PTP k>0
判断题:
[ ]1.若A2 ,则A.
线性代数高等代数知识点总结 优秀课件
概念 不同行不同列的元素的乘积的代数和。
性质
经转置行列式的值不变; 互换两行行列式变号; 某行有公因子可提到行列式符号外;
拆成行列式的和; 消法变换。
展开
n
D, 当i j,
aki Akj
k 1
D ij
0,
当i j;
n
D, 当i j,

aik Ajk
k 1
伴随
(A*)*=|A|n2A*
AA*=A*A=|A|I
其它
A-1=|A|-1A* 当A可逆时,
A*=|A|A1
15
行列式
秩数
加法
r(A+B)≤r(A)+r(B)
数乘 |kA|=kn|A|
r(kA)=r(A) (k≠0)
乘法 |AB|=|A||B| r(A)+r(B)-n≤r(AB)≤r(A), r(B)
转置 |AT|=|A|
r(AT)=rA)=n 伴随 |A*|=|A|n1 r(A*)= 1, 若r(A)=n1
0, 若r(A)<n1
其它
定义 性质
若P, Q可逆,则 r(A)=r(PA)=r(AQ) =r(PAQ)
16
初等变换
行变换
列变换
换法变换
倍法变换
消法变换
D ij
0,
当i j.
其中, ij
1, 0,
i j i j
计算
数字 型
抽象 型
三角化法; 重要行列式法; 加边法; 递推法。
用行列式性质; 用矩阵性质; 用特征值; 利用矩阵相似。
【热点】注意与矩阵的运算相联系的一些行列式 的计算及其证明.
证|A|=0
AX=0有非零解; 反证法;
R(A)<n; A可逆; |A|= - |A|; A的列向量组线性相关; 0是A的特征值;

每个秩数为r的矩阵都等价于
Ir 0
0
0
• 对于m×n矩阵A,B下列条件等价
1. AB,即A可由初等变换化成B
2. 有可逆矩阵P,Q使得PAQ=B
3. 秩A=秩B
4. A,B的标准型相同
18
多角度看可逆阵
n阶方阵A可逆 A B B A E
A 0 (非退化阵) A x0只 有 零 解 A xb有 唯 一 解
对单位矩阵做一次初等变换
1
1
1
01
1
0
1
1
c
1
1
1
c1
1
对A做一次行变换 = 用相应的初等矩阵左乘以A 对A做一次列变换 = 用相应的初等矩阵右乘以A
17
矩阵等价
• A,B行等价有可逆矩阵P使得A=PB
• 每个矩阵都行等价于唯一一个行最简形矩阵
• A,B等价有可逆矩阵P,Q使得A=PBQ
本章所需掌握的题型:
行列式计算(重点) 1、具体阶数行列式计算 2、较简单的n阶行列式计算
与行列式定义、性质有关的问题
需利用行列式进行判定的问题 如:1、“Crammer”法则判定方程组的解况
2、矩阵可逆性 3、向量组相关性(向量个数=向量维数) 4、两个矩阵相似的必要条件 5、矩阵正定、半正定的必要条件
应用
AX=0有非零解; 伴随矩阵求逆法;
克拉姆法则; A可逆的证明; 线性相关(无关)的判定; 特征值计算。
二、特殊行列式的值
1.三角行列式
a11 a22
* a11
a22
0 a11a22 ann
0
ann *
ann
0
a1n *
a1n
a2(n1)
a2(n1)
n(n1)
(1) 2 a a1n 2(n1) an1
14
转置
取逆
伴随
加法 (A+B)T=AT+BT
数乘 (kA)T= k AT (kA)1= k1A1 (kA)*= kn1A*
乘法 (AB)T= BT AT (AB) 1= B1 A1 (AB)*= B*A*
转置 (AT)T=A
(AT) 1=(A1)T (AT)*=(A*)T
取逆
(A1) 1=A (A1)*=(A*)1
1.错(不满足消去律) 2对 3 错(不满足交换律) 4.错(不一定是方阵) 5.对 6 错 (同4) 7对 8对 9 错(不存在关于加法的公式,同理行列 式也不存在关于加法的公式)
4、若A是n阶可逆矩阵,则 | A1 || A|1
5、若A是n阶矩阵,i(i1,2, ,n) 是A的n个特征值,则
n
| A | i i1
6、若A与B相似,则 | A || B |
行列式的计算(重点)
常用方法:
三角化法 展开降阶法(和消元相结合最为有效) 加边法 归纳法
化为已知行列式(一些有固定形式的行列 式,如:三角形、爪型、“范德蒙”行列式 等)
an1
* an1
0
2.范氏行列式
111
x1 x2 x3
x12
x22
x32
x x x n1
n1
n1
1
2
3
1
xn
xn2
(xi x j )
ni j1
xn1 n
3.箭式行列式
x1 a2 a3 b2 x2 0 b3 0 x3
bn 0 0
an 0
x1
k
n 2
ak bk xk
0
b2
x2 0
b3
0 x3
[ ]2.若A,B为同阶矩,阵 则(AB)T AT BT. [ ]3.若A,B为n阶方阵,则(AB)(AB) A2 B2. [ ]4.若矩阵A,B有AB0,则A 0或B 0. [ ]5.若A,B均为n阶方阵,若AB0,则A 0或B 0. [ ]6.对于任意矩 A,B阵 .有AB BA. [ ]7.若A,B都是 n阶方,阵 则AB BA. [ ]8.若A,B,C为同阶可逆,则 方(A阵BC)1 C1B1A1. [ ]9.若A,B,为同阶可逆,则 方(A阵 B)1 A1B1. [ ]10.A与B可交换的必要条 A,B件 是为 同阶方 . 阵
xn
bn
00
0
0
( x1
n k2
ak bk xk
)
n k2
xk
xn
4.与分块矩阵相联系的准三角行列式
Am O A B Am *
* Bn
O Bn
;
O Am (1)mn A B * Am
Bn *
Bn O .
三、有关行列式的几个重要公式
1、若A是n阶矩阵,则 | kA|kn | A|
2、若A,B是n阶矩阵,则 | AB|| A||B| 3、若A是n阶矩阵,则 | A* || A|n1
相关文档
最新文档