[整理]交通工程学题库11版计算题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、已知行人横穿某单行道路所需的时间为9秒以上,该道路上的机动车交通量为410辆/小时,且车辆到达服从泊松分布,试问:①从理论上说,行人能横穿该道路吗?为什么?②如果可以横穿,则一小时内行人可以穿越的间隔数有多少?(提示:e=2.718,保留4位有效数字)。
解:①从理论上说,行人不能横穿该道路。因为该道路上的机动车交通量为:Q=410Veh/h ,则该车流的平均车头时距===
-410
36003600Q h t 8.7805s/Veh ,而行人横穿道路所需的时间t 为9s 以上。由于-t h (8.7805s ) ②但由于该道路上的机动车交通量的到达情况服从泊松分布,而不是均匀分布,也就是说并不是每一个t h 都是8.7805s 。因此,只要计算出1h 内的车头时距t h >9s 的数量,即可得到行人可以穿越的间隔数。按均匀到达计算,1h 内的车头时距有410个(3600/8.7805),则只要计算出车头时距t h >9s 的概率,就可以1h 内行人可以穿越的间隔数。 负指数分布的概率公式为:3600/)(Qt t e t h P ->=,其中t=9s 。 车头时距t h >9s 的概率为:025.136009410718.2718.2)9(-÷⨯-=>=t h P =0.3588 1h 内的车头时距t h >9s 的数量为:3588.0410⨯=147个 答:1h 内行人可以穿越的间隔数为147个。 2、某信号控制交叉口周期长度为90秒,已知该交叉口的某进口道的有效绿灯时间为45秒,进口道内的排队车辆以1200辆/小时的饱和流量通过交叉口,其上游车辆的到达率为400辆/小时,且服从泊松分布,试求:1)一个周期内到达车辆不超过10辆的概率;2)周期到达车辆不会两次停车的概率。 解:题意分析:已知周期时长C 0=90 S ,有效绿灯时间G e =45 S ,进口道饱和流量S =1200 Veh/h 。上游车辆的到达服从泊松分布,其平均到达率=400辆/小时。 由于在信号控制交叉口,车辆只能在绿灯时间内才能通过。所以,在一个周期内能够通过交叉口的最大车辆数为:Q 周期=G e ×S =45×1200/3600=15辆。如果某个周期内到达的车辆数N 小于15辆,则在该周期不会出现两次停车。所以只要计算出到达的车辆数N 小于10和15辆的概率就可以得到所求的两个答案。 在泊松分布中,一个周期内平均到达的车辆数为:10903600400=⨯= ⋅=t m λ 辆 根据泊松分布递推公式m e P -=)0(,)(1 )1(k P k m k P ++=,可以计算出: 0000454.071828.2)0(10==--m e P =,0004540.00000454.01 10)1(=⨯=P 0022700.00004540.0210)2(=⨯= P ,0075667.000227.0310)3(=⨯=P 0189167.00075667.0410)4(=⨯= P ,0378334.00189167.0510)5(=⨯=P 0630557.00378334.0610)6(=⨯=P ,0900796.00630557.07 10)7(=⨯=P 1125995.00900796.0810)8(=⨯=P ,1251106.01125995.09 10)9(=⨯=P 1251106.01251106.01010)10(=⨯=P ,1137691.01251106.011 10)11(=⨯=P 0948076.01137691.01210)12(=⨯=P ,0729289.00948076.013 10)13(=⨯=P 0520921.00729289.01410)14(=⨯=P ,0347281.00520921.015 10)15(=⨯=P 所以: 58.0)10(=≤P , 95.0)15(=≤P 答:1)一个周期内到达车辆不超过10辆的概率为58%;2)周期到达车辆不会两次停车的概率为95%。 3、某交叉口信号周期为40秒,每一个周期可通过左转车2辆,如左转车流量为220辆/小时,是否会出现延误(受阻)?如有延误,试计算一个小时内有多少个周期出现延误;无延 误则说明原因。(设车流到达符合泊松分布)。 解:1、分析题意: 因为一个信号周期为40s 时间,因此,1h 有3600/40=90个信号周期。 又因为每个周期可通过左转车2辆,则1h 中的90个信号周期可以通过180辆左转车,而实际左转车流量为220辆/h ,因此,从理论上看,左转车流量呈均匀到达,每个周期肯定都会出现延误现象,即1h 中出现延误的周期数为90个。但实际上,左转车流量的到达情况符合泊松分布,每个周期到达的车辆数有多有少,因此,1h 中出现延误的周期数不是90个。 2、计算延误率 左转车辆的平均到达率为:λ=220/3600 辆/s , 则一个周期到达量为:m=λt=40*220/3600=22/9辆 只要计算出一个周期中出现超过2辆左转车的概率,就能说明出现延误的概率。 根据泊松分布递推公式m e P -=)0(,)(1 )1(k P k m k P ++=,可以计算出: 0868.0)0(9/22==--e e P m =, 2121.00868.0)9/22()0()1(=⨯=mP P = 2592.02121.02/)9/22()1(2/)2(=⨯=⨯P m P =, 5581.02592.02121.00868.0)2()1()0()2(=++=++≤P P P P = 4419.05581.01)2(1)2(=-=≤-P P = 1h 中出现延误的周期数为:90*0.4419=39.771≈40个 答:肯定会出现延误。1h 中出现延误的周期数为40个。 4、在一单向1车道的路段上,车辆是匀速连续的,每公里路段上(单向)共有20辆车,车速与车流密度的关系符合Greenshields 的线性模型,阻塞的车辆密度为80辆/公里,自由流的车速为80公里/小时,试求: 1)此路段上车流的车速,车流量和车头时距; 2)此路段可通行的最大流速; 3)