如何求非齐次线性方程组Ax=b的通解

合集下载

非齐次方程的通解

非齐次方程的通解

定理 3 设非齐次方程(2)的右端 f ( x)是几个函
数之和, 如 y p y q y f 1 ( x ) f 2 ( x )

y* 1

y* 2
分别是方程,
y p y q y f 1 ( x )
y p y q y f 2 ( x )
的特解,
那么
y* 1
y
* 2
就是原方程的特解.

注 意
设原方程的特解为 y* (a cos x bsin x) x,
将 y*, ( y* ) 代入原方程得
2bcos x 2a sin x cos x
2b 1
2a 0
a0 b 1
2
原方程的一个特解为 y* x sin x
2
故os x C2 sin x 2 sin x
对应的齐次方程的通解为 Y C1e4x C2e2x .
设原方程的特解为 y* k ,
代入原方程得:0-0-8 k =24
k=- 3
原方程的一个特解为 y* 3
故原方程的通解为 y C1e4x C2e2x 3.
例2.求通解 y 2 y 8 y x
解:特征方程 r2 2r 8 0, 特征根 r1 4, r2 2,
(6a x 2b)e x 12 x e x
6a 12
2b 0
a2
b0
原方程的一个特解为 y* 2 x 3 e x,
故原方程的通解为 y (C1 C2 x) e x 2 x 3e x 例6.求 y y cos x
解: 特征方程 r2 1 0,
特征根 r i,
对应的齐次方程的通解为 Y C1 cos x C2 sin x.
1 8

线性方程组的通解

线性方程组的通解

2
(2)若R(A)R(B) 则进一步把B化成行最简形 而对于齐次线性方程组 则把系数矩阵A化成行 最简形 (3)设R(A)R(B) r 把行最简形中 r 个非零 行的首非零元所对应的未知数取作非自由未 知数 其余nr个未知数取作自由未知数 并
令自由未知数分别等于c1 c2 cnr 由B
的行最简形 即可写出含nr个参数的通解
a22 x2
a2n xn 0
(2)
am1 x1 am2 x2 amn xn 0
或用矩阵方程方程组(1)表示为: Ax 0
齐次线性方程组 Ax0 有非零解的判断与求解步骤: (1)对于齐次线性方程组 把它的系数矩阵A 化成行阶 梯形 从A的行阶梯形可同时看出R(A) 若R(A)n , 则齐次线性方程组只有零解
并求一般解。
解:
1 2 5 1
B
3 2
1 0
5 2
2
1 2 5 1
0
5
10
5
0 4 8 -2
1 2 5 1
0
1
2
1
0 4 8 -2
1 2 5 1
0
1
2
1
0 0 0 2
2 时方程组有解。
8
1 2 5 1
B
~
0 0
1 0
2 0
01
1 0 1 -1
15
第三章 矩阵的初等变 换与线性方程组
第六讲 线性方程组的通解
一、非齐次线性方程组的通解 二、齐次线性方程组的通解
1
一、非齐次线性方程组的通解
对于方程组(其中有n个未知数,m个方程)
a11 x1 a12 x2 a1n xn b1
a21 x1 a22 x2 a2n xn b2

线性方程组的解的判定

线性方程组的解的判定

1 2 0
5 7 0
2 5
,
0
得同解方程组:
x1
x2
x3 5x4 2, 2x3 7 x4 5,

:
x1 x2
2
x3 x3
5 7
x4 x4
2, 5,
令 x3=c1, x4=c2, 则方程组的通解为:
x1 c1 5c2 2,
x2 c1 7c2 5,
x3
c1 ,
x4 x4
,
令 x3=c1, x4=c2, 方程组的通解为:
x1
1 3
c1
7 3
c2
x2
5 3
c1
1 3
c2
,
(c1 , c2
R).
x3 c1
x4 c2
求解齐次线性方程组步骤:
将系数矩阵用初等行变换化成行最简形矩阵, 写 出同解方程组(用自由未知量表示) , 即可写出其通解.
对于齐次线性方程组 Amn x 0 有如下推论: 推论1 若 m<n , 方程组 Amn x 0必有非零解. 推论2 若 m=n , 方程组 Amn x 0有非零解的充要 条件是 | A | 0.
三、矩阵方程有解的判定
定理3.3 矩阵方程AX=B有解的充要条件 是 R(A)=R(A|B).
利用此定理可以证明如下的矩阵秩的不等式: 定理3.4 设 AB=C, 则 R(C) min{ R(A), R(B)}.
2个定理的证明均见课本Page90.
x1
b1
记: 系数矩阵为A=(aij),
x
x2
,
b
b2
,
则线性方程组可记为: Ax=b. xn
bm
问题:如何利用系数矩阵 A 和增广矩阵 B=(A|b) 来 讨论线性方程组 Ax=b 的解?

§4.6 非齐次线性方程组有解的条件及解的结构

§4.6  非齐次线性方程组有解的条件及解的结构

)=
r < n ,
X 0 + c1 X 1 + c 2 X 2 + L + c n r X n r , 其 中 X 1 , X 2 , L , X n r 为 导 出 组 A X =0 的 一 个 基 础 解 系 , X 0为 A X = β 的 一 个 特 解 .
上述定理告诉我们判断非齐系线性方程组 AX = β 是 否 有 解 , 以 及 当 有 无 穷 解 时 求 解 % 的 方 法 : 把 增 广 矩 阵 A=(A,β )初 等 行 变 换 化 为 J o r d a n 阶 梯 形 B ,不 妨 设 为 1 0 ... 0 b11 ... b1,n r 0 1 0 0 b b 2,n r 21 ... ... ... ... ... ... ... 0 0 0 1 br 1 ... br ,n r B = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... ... ... ... ... ... ... 0 0 0 0 0 0 0
问 λ 取何值时 , 有解 ? 有无穷多个解 ?
作初等行变换, 解 对增广矩阵 B = ( A, b ) 作初等行变换,
λ B =1 1 1 1 1
λ
1
λ
1 1 λ ~1 2 λ λ
λ λ λ 1 λ
1பைடு நூலகம்
2
1
1
1
1 λ λ 1 2 ~ 0 λ 1 1 λ λ λ 0 1 λ 1 λ2 1 λ2 2 1 1 λ λ 2 ~ 0 λ 1 1 λ λ λ 2 2 3 0 0 2 λ λ 1+ λ λ λ
% R ( A ) = R ( A ) = 2,故 有 无 穷 多 个 解 . x 3 , x 4 , x 5为 自 由 变 量 , 分 别 代 入 值 (1,0,0),(0,1,0),(0,0,1)解 的 导 出 组 AX=0的 一 个 基 础 解 系

如何求非齐次线性方程组Axb的通解

如何求非齐次线性方程组Axb的通解

如何求非齐次线性方程组Axb的通解
如何求非齐次线性方程组A x=b的通解
解答:由非齐次线性方程组的解的结构知识,只要求出它的一个解和对应的齐次线性方程组的基础解系,其具体步骤如下:
(1)用初等行变换将增广矩阵化为行最简形矩阵;
(2)写出同解方程组(用自由未知量表示所有未知量的形式);
(3)读出右端常数项(即自由未知量全部取零),则求出Ax=b的一个解;
(4)读出自由未知量的系数(相当于一个自由未知量取1,其余自由未知量取0),则求出Ax=0的基础解系;
(5)写出所求通解.。

线性代数-非齐次线性方程组

线性代数-非齐次线性方程组

充分性:若r(A)=r(A|b) ,即d r+1 =0,则(*)有解。
把这 r 行的第一个非零元所对应的未知量作为 非自由未知量, 其余n r个作为自由未知量,
即可得方程组的一个解. 并令 n r 个自由未知量任意取值,
定理1更常用的描述是:
此乃第三章的 精华所在
定理1’
对n 元非齐次线性方程组 Amn x b ,
Ch3 矩阵的秩与线性方程组
第 二节
(非)齐次线性方程组
一、线性方程组有解的 判定
二、线性方程组的解法
对于m个方程n个未知数的线性方程组
a11 x1 a12 x 2 a1n x n b1 a 21 x1 a 22 x 2 a 2 n x n b2 ........................................... a x a x a x b m2 2 mn n m m1 1
解 对增广矩阵 A 进行初等变换,
r12 ( 3) 1 2 3 1 1 1 2 3 1 1 r ( 2) A 3 1 5 3 2 13 0 5 4 0 1 2 1 2 2 3 r23 ( 1) 0 5 4 0 1 0 0 2
2 当 1时,
1 1 2 A ~ 0 1 1 1 2 0 0 1 2 1 1 1 1 2 ~ 0 1 1 0 0 ( 2 ) 1 2
问取何值时, 有唯一解? 无解?有无穷多个解 ?
解一 对增广矩阵 A ( A, b) 作初等行变换,
A 1 1

1

如何求非齐次线性方程组Ab的通解

如何求非齐次线性方程组Ab的通解

如何求非齐次线性方程组
A b的通解
The following text is amended on 12 November 2020.
如何求非齐次线性方程组Ax=b的通解
解答:由非齐次线性方程组的解的结构知识,只要求出它的一个解和对应的齐次线性方程组的基础解系,其具体步骤如下:
(1)用初等行变换将增广矩阵化为行最简形矩阵;
(2)写出同解方程组(用自由未知量表示所有未知量的形式);
(3)读出右端常数项(即自由未知量全部取零),则求出Ax=b的一个解;
(4)读出自由未知量的系数(相当于一个自由未知量取1,其余自由未知量取0),则求出Ax=0的基础解系;
(5)写出所求通解.。

【文献综述】关于非齐次线性方程组Ax=b两类解法的对比

【文献综述】关于非齐次线性方程组Ax=b两类解法的对比

文献综述信息与计算科学关于非齐次线性方程组Ax=b两类解法的对比矩阵理论既是学习经典数学的基础,又是一门最有实用价值的数学理论。

它不仅是数学的一个重要的分支,而且业已成为现代各科技领域处理大量有限维空间形式与数量关系的强有力的工具。

特别是计算机的广泛应用,为矩阵论的应用开辟了广阔的前景。

广义逆矩阵是对逆矩阵的推广。

若A为非奇异矩阵,则线性方程组Ax=b的解为x=A^(-1)b,其中A的A的逆矩阵A^(-1)满足A^(-1)A=AA^(-1)=I(I为单位矩阵)。

若A 是奇异阵或长方阵,Ax=b可能无解或有很多解。

若有解,则解为x=Xb+(I-XA)у,其中у是维数与A的列数相同的任意向量,X是满足AXA=A的任何一个矩阵,通常称X为A的广义逆矩阵,用A^g、A^-或A^(1)等符号表示,有时简称广义逆。

线性方程组的逆矩阵解法一般只适用于一种特殊情况,即适用于系数矩阵为方阵的时候,用于一般的线性方程组,可以应用矩阵的广义逆来研究并表示它的解而且与其它解法相比解的讨论更完整,表达形式更简洁系统本文探讨了线性方程组的广义逆矩阵解法。

对一般的线性方程组,可以应用矩阵的广义逆来研究并表示它的解而且与其它解法相比解的讨论更完整,表达形式更简洁系统。

本文通过运用相关定理,进行线性方程组的广义逆矩阵解法和初等矩阵法的对比。

这对于我们理解相关广义逆矩阵的应用会有帮助。

白素英(2010)在《关于非齐次线性方程组 A x=b两类解法的对比》一文中给出相容的非齐次线性方程组的两种不同的解法,即矩阵的初等变换法及广义逆矩阵法,并证明了两种方法通解的等价性,通过实例给出了惟一的极小范数解。

对于不相客的非齐次线性方程组,用广义逆矩阵法由实例给出了惟一的极小范数最小二乘解。

侯双根(1992)在《广义分块对角矩阵的广义逆矩阵》一文中对广义分块对角矩阵的广义逆矩阵给出了一个运算规则,并且利用它可以简化求广义分块对角矩阵的广义逆矩阵。

已知是非齐次线性方程组ax=b的两个不同的解

已知是非齐次线性方程组ax=b的两个不同的解

已知是非齐次线性方程组ax=b的两个不同的

非齐次线性方程组ax = b,是最常见的线性方程组。

它是由数个方程同时组成的一个线性方程组,其本质是求多个未知量的值来满足指定的方程组。

因此,它可能有两个或多个不同的解,每一个解都可以使当前的线性方程组能够达到解的目的。

非齐次线性方程组的两个不同的解有多种特色。

首先,它们对于原始方程组选择的未知量来说是不同的,这样线性十分方程组就可以满足解的要求。

其次,两个不同的解肯定会改变原始方程组各未知量的取值范围,这是因为两个不同的解值都会影响未知量的取值范围。

此外,两个不同的解也会影响原始方程的正确性,这是因为两个不同的解对同一个方程可能具有不同的正确性。

为了解决非齐次线性方程组ax = b的两个不同的解,可以采用一些数学工具,如求解补充问题。

在求解补充问题时,可以把原始
线性方程组补充成完全齐次线性方程组,从而追求令整个方程组
都具有唯一解。

由于补充问题求解后,原始方程组会取得唯一解,因此两个不同的解就会消失,从而获得正确结果。

总之,非齐次线性方程组ax = b可能有两个或多个不同的解
但也有一些求解方式可以获得唯一解,如补充问题。

因此,要想
得到正确的结果,就应该充分利用数学工具,把非齐次线性方程
组解决得更好。

线代习题答案(4)线性代数答案 北京邮电大学出版社 戴斌祥主编)

线代习题答案(4)线性代数答案 北京邮电大学出版社 戴斌祥主编)

习题四 (A 类)1. 用消元法解下列方程组.(1) 12341241234123442362242322312338;x x x x ,x x x ,x x x x ,x x x x +-+=⎧⎪++=⎪⎨++-=⎪⎪++-=⎩ (2) 1231231232222524246;x x x ,x x x ,x x x ++=⎧⎪++=⎨⎪++=⎩【解】(1)412213223123(1)14236142362204211021()322313223112338123381423603215012920256214236012920321502562r r r r r r r r r r -⋅---⋅↔--⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=−−−→⎢⎥⎢⎥--⎢⎥⎢⎥--⎣⎦⎣⎦-⎡⎤⎢⎥---⎢⎥−−−−→⎢⎥---⎢⎥--⎣⎦-⎡⎤⎢⎥-⎢⎥⎢⎥---⎢⎥--⎣⎦A b 32434243324142360129200426100112614236142360129201292,001126001126004261007425r r r r r r r +↔++-⎡⎤⎢⎥-⎢⎥−−−→−−−→⎢⎥-⎢⎥⎣⎦--⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥−−−→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦得12342343444236 292 126 7425x x x x x x x x x x +-+=⎧⎪-+=⎪⎨+=⎪⎪=⎩ 所以1234187,74211,74144,7425.74x x x x ⎧=-⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩(2)解②①×2得23③① 得 2x 3=4 得同解方程组由⑥得 3=2,由⑤得 x 2=2x 3=4,由④得 x 1=22x 3 2x 2 = 10,得 (x 1,x 2,x 3)T =(10,4,2)T. 2. 求下列齐次线性方程组的基础解系.(1) 123123123 320 5 03580;x x x ,x x x ,x x x ++=⎧⎪++=⎨⎪++=⎩ (2) 12341234123412345 0 2303 8 0 3970;x x x x ,x x x x ,x x x x ,x x x x -+-=⎧⎪+-+=⎪⎨-++=⎪⎪+-+=⎩(3) 1234512341234 22702345 03568 0;x x x x x ,x x x x ,x x x x ++++=⎧⎪+++=⎨⎪+++=⎩ (4) 123451234512345 222 0 2 320247 0.x x x x x ,x x x x x ,x x x x x +-+-=⎧⎪+-+-=⎨⎪+-++=⎩【解】(1)123123123320503580.x x x ,x x x ,x x x ++=⎧⎪++=⎨⎪++=⎩ 32213123132132132151021021358042000r r r r r r +--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=−−−→−−−→--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦A得同解方程组1323123232333723,23201,202,x x x x x x x x x x x x x ⎧=--=-⎪++=⎪⎧⇒⎨⎨=-=⎩⎪⎪=⎩得基础解系为T71122⎛⎫- ⎪⎝⎭. (2) 系数矩阵为32213142413211511151112302743181027413970414811510274() 2.00000000r r r r r r r r r r r ---------⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=−−−→−−−→⎢⎥⎢⎥--⎢⎥⎢⎥--⎣⎦⎣⎦--⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥⎣⎦A A∴ 其基础解系含有4()2R -=A 个解向量.1342123434342343344331225077222227400110x x x x x x x x x x x x x x x x x x x ⎡⎤⎡⎤⎡⎤---⎢⎥⎢⎥-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-+-=-⎧⎢⎥⎢⎥⎢⎥-⎢⎥⇒==+⎨⎢⎥⎢⎥⎢⎥-+=⎢⎥⎩⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦基础解系为31272,.20110⎡⎤-⎢⎥-⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦(3)213132232112271122723450010114356800202211122701011400007r r r r r r ---⎡⎤⎡⎤⎢⎥⎢⎥=−−−→-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤⎢⎥−−−→-⎢⎥⎢⎥⎣⎦A得同解方程组12345245552270,140,700.x x x x x x x x x x ++++=⎧⎪+-=⎨⎪=⇒=⎩取3410,01x x ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦得基础解系为 (2,0,1,0,0)T,(1,1,0,1,0).(4) 方程的系数矩阵为2131322312221122211213200111247110033312221()2,0011100000r r r r r r R --+----⎡⎤⎡⎤⎢⎥⎢⎥=−−−→---⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦--⎡⎤⎢⎥−−−→=-⎢⎥⎢⎥⎣⎦A A∴ 基础解系所含解向量为n R (A )=52=3个取245x x x ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦为自由未知量 245010,,,001100x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦ 得基础解系 324010,,.101001100--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦3. 解下列非齐次线性方程组.(1) 123123121232122423442;x x x ,x x x ,x x ,x x x ++=⎧⎪-+=⎪⎨-=⎪⎪++=⎩ (2) 12341234123421422221;x x x x ,x x x x ,x x x x +-+=⎧⎪+-+=⎨⎪+--=⎩(3) 123412341234212125;x x x x ,x x x x ,x x x x -++=⎧⎪-+-=-⎨⎪-++=⎩ (4) 12345123452345123457323222623543312x x x x x ,x x x x x ,x x x x ,x x x x x .++++=⎧⎪+++-=-⎪⎨+++=⎪⎪+++-=⎩【解】(1) 方程组的增广矩阵为32213142414324121121112121240322()120303224142034211211121032203220000001200240000r r r r r r r r r r r r ------↔⎡⎤⎡⎤⎢⎥⎢⎥---⎢⎥⎢⎥=−−−→−−−→⎢⎥⎢⎥---⎢⎥⎢⎥---⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥----⎢⎥⎢⎥−−−−→⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦A b得同解方程组3123323231232,21223222,3212 1.x x x x x x x x x x x x =⎧++=⎧⎪+⎪⎪--=⇒==-⎨⎨-⎪⎪=⎩⎪=--=-⎩ (2) 方程组的增广矩阵为312122*********()42212000102111100020r r r r ----⎡⎤⎡⎤⎢⎥⎢⎥=−−−→--⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦A b得同解方程组123444421,00,20,x x x x x x x +-+=⎧⎪⇒=-=⎨⎪-=⎩即123421,0.x x x x +-=⎧⎨=⎩令130x x ==得非齐次线性方程组的特解x T =(0,1,0,0)T .又分别取2310,01x x ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦得其导出组的基础解系为TT1211;,,1,0,0,0,1,022⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭ξξ∴ 方程组的解为121211022110.,001000x k k k k ⎡⎤⎡⎤-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=++∈⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦R(3) 2131121111211112111000221211500004r r r r ----⎡⎤⎡⎤⎢⎥⎢⎥---−−−→--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦()()R R ≠A A ∴ 方程组无解.(4) 方程组的增广矩阵为31413242351111171111173211320122623()01226230122623543311201226231111170122623,000000000000r r r r r r r r --+-⎡⎤⎡⎤⎢⎥⎢⎥-------⎢⎥⎢⎥=−−−→⎢⎥⎢⎥⎢⎥⎢⎥------⎣⎦⎣⎦⎡⎤⎢⎥-----⎢⎥−−−→⎢⎥⎢⎥⎣⎦A b分别令345010,,001100x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦ 得其导出组12345234502260x x x x x x x x x ++++=⎧⎨----=⎩的解为123123511622,,.010001100k k k k k k R ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥++∈⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦令3450x x x ===,得非齐次线性方程组的特解为:x T=(16,23,0,0,0)T,∴ 方程组的解为1231651123622001000010100x k k k -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦其中123,,k k k 为任意常数.4. 某工厂有三个车间,各车间相互提供产品(或劳务),今年各车间出厂产量及对其它车间三车间0.1万元,0.2万元,0.5万元的产品;第二列,第三列类同,求今年各车间的总产量.解:根据表中数据列方程组有112321233130.10.20.4522,0.20.20.30,0.50.1255.6,x x x x x x x x x x x ---=⎧⎪---=⎨⎪--=⎩即 123123130.90.20.4522,0.20.80.30,0.50.8855.6,x x x x x x x x --=⎧⎪-+=⎨⎪-=-⎩解之 123100,70,120;x x x =⎧⎪=⎨⎪=⎩5. λ取何值时,方程组12312321231,,,x x x x x x x x x λλλλλ++=⎧⎪++=⎨⎪++=⎩ (1)有惟一解,(2)无解,(3)有无穷多解,并求解.【解】方程组的系数矩阵和增广矩阵为211111;,11111111λλλλλλλλ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A B|A |=2(1)(2)λλ-+.(1) 当λ≠1且λ≠2时,|A |≠0,R (A )=R (B )=3.∴ 方程组有惟一解212311(1),,.22(2)x x x λλλλλ--+===+++(2) 当λ=2时,312121221111212121221111124112412121212,0333033303360003r r r r r r -↔+---⎡⎤⎡⎤⎢⎥⎢⎥=−−−→−−−→---⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦----⎡⎤⎡⎤⎢⎥⎢⎥→----⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦BR (A )≠R (B ),∴ 方程组无解.(3) 当λ=1时2131111111111111000011110000r r r r B --⎡⎤⎡⎤⎢⎥⎢⎥=−−−→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦R (A )=R (B )<3,方程组有无穷解.得同解方程组123223 3.1,,x x x x x x x =--+⎧⎪=⎨⎪=⎩∴ 得通解为1212123111, ,.100010x x k k k k R x --⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=++∈⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦6. 齐次方程组0020x y z ,x y z ,x y z λλ++=⎧⎪+-=⎨⎪-+=⎩当λ取何值时,才可能有非零解?并求解. 【解】方程组的系数矩阵为1111211λλ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦A|A |=(4)(1)λλ-+当|A |=0即λ=4或λ=1时,方程组有非零解.(i) 当λ=4时,21213123234215134111411411414110155211211093141141031031031000r r r r r r r r r r ↔--⋅-⋅--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=−−−→−−−→--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦--⎡⎤⎡⎤⎢⎥⎢⎥−−→−−−→--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦A得同解方程组112322331340.13031x x x x x k k R x x x ⎡⎤-⎢⎥⎡⎤+-=⎢⎥⎡⎤⎢⎥⇒=∈⎢⎥⎢⎥⎢⎥-+=⎣⎦⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦(ii) 当λ=1时,2121312111111111111111000211211013r r r r r r ↔+------⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=−−−→−−−→---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦A得131232323332,03,30x x x x x x x x x x x=-⎧--=⎧⎪⇒=-⎨⎨+=⎩⎪=⎩ ∴ (123,,x x x )T=k ·(2,3,1)T.k ∈R7. 当a ,b 取何值时,下列线性方程组无解,有惟一解或无穷多解?在有解时,求出其解.(1) 123412341234123423123132236x x x x x x x x x x x x a x x x bx ++-=⎧⎪+++=⎪⎨---=⎪⎪+-+=-⎩ (2) 123423423412340221(3)2321x x x x x x x x a x x b x x x ax +++=⎧⎪++=⎪⎨----=⎪⎪+++=-⎩【解】方程组的增广矩阵为(1)213132414237212311123111123101140()311207101323160172812311123110114001140003273003273006280r r r r r r r r r r a a b b a a b b -------⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=−−−→−−−→⎢⎥⎢⎥------⎢⎥⎢⎥----+-⎣⎦⎣⎦--⎡⎤⎢⎥----⎢⎥−−→⎢⎥------⎢⎥---+⎣⎦A b .5222a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦(i) 当b ≠52时,方程组有惟一解12344(1)326(1),,352352318(1)2(1),.35252a a a a x x b b a a a x x b b +-+=-=-++-++=-+=-++(ii) 当b =52,a ≠1时,方程组无解.(iii) 当b =52,a =1时,方程组有无穷解. 得同解方程组123423434231403274x x x x x x x x x ++-=⎧⎪--+=⎨⎪--=-⎩(*) 其导出组123423434230403270x x x x x x x x x ++-=⎧⎪--+=⎨⎪--=⎩的解为1412423434442,21313.9,91.x x x x x x k k x x x x x x =⎧⎡⎤⎡⎤⎪⎢⎥⎢⎥=⎪⎢⎥⎢⎥=∈⎨⎢⎥⎢⎥=--⎪⎢⎥⎢⎥⎪=⎣⎦⎣⎦⎩R 非齐次线性方程组(*)的特解为取x 4=1, 12345335.32331x x x x ⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥⎢⎥⎣⎦∴ 原方程组的解为5323513.3923131x k k ⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+∈⎢⎥-⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥⎢⎥⎣⎦R(2)32414231111001221()01(3)23211111100122100101012311111001221.0010100010r r r r r r a b a a b a a b a +-+⎡⎤⎢⎥⎢⎥=−−−→⎢⎥---⎢⎥-⎣⎦⎡⎤⎢⎥⎢⎥−−−→⎢⎥-+⎢⎥----⎣⎦⎡⎤⎢⎥⎢⎥⎢⎥-+⎢⎥-⎣⎦A b (i) 当a 1≠0时,R (A )=R (A )=4,方程组有惟一解.12342123.1110b a a x a b x a x b x a -+⎡⎤⎢⎥-⎡⎤⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥+⎢⎥⎢⎥⎣⎦⎢⎥-⎢⎥⎣⎦(ii) 当a 1=0时,b ≠1时,方程组R (A )=2<R (A )=3,∴ 此时方程组无解.(iii) 当a =1,b = 1时,方程组有无穷解. 得同解方程组12342340,22 1.x x x x x x x +++=⎧⎨++=⎩ 取13423433441,221,,,x x x x x x x x x x =+-⎧⎪=--+⎪⎨=⎪⎪=⎩∴ 得方程组的解为12121234111221.,100010x x k k k k x x -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥=++∈⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦R8. 设112224336⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,求一秩为2的3阶方阵B 使AB =0.【解】设B =(b 1 b 2 b 3),其中b i (i =1,2,3)为列向量,由123123()(1,2,3)i i =⇒=⇒==⇒AB A b b b Ab b b b 00为Ax =0的解.求123112224336x x x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦=0的解.由 213123112112224000336000r r r r --⎡⎤⎡⎤⎢⎥⎢⎥=−−−→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A得同解方程组12322332,,,x x x x x x x =--⎧⎪=⎨⎪=⎩∴ 其解为121212312.,1001x x k k k k R x --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=+∈⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦取123120;;,100010--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦b b b则120100010--⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦B9.已知123,,ηηη是三元非齐次线性方程组Ax =b 的解,且R (A )=1及122313111,,,011001⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥+=+=+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ηηηηηη求方程组Ax =b 的通解.【解】Ax =b 为三元非齐次线性方程组R (A )=1⇒Ax =0的基础解系中含有3R (A )=31=2个解向量.131223121323110()(),01100110()(),110101-⎡⎤⎡⎤⎢⎥⎢⎥-=+-+==--⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦-⎡⎤⎡⎤⎢⎥⎢⎥-=+-+==-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦ηηηηηηηηηηηη由123,,ηηη为Ax=b 的解1312,⇒--ηηηη为Ax=0的解,且1312(),()--ηηηη线性无关1312,⇒--ηηηη为Ax =0的基础解系. 又[]11223131()()()211112111,011022200112ηηηηηηη=+-+++⎡⎤⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=-+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦∴ 方程组Ax=b 的解为11132121212()()1002.,0101012k k k k k k =+-+-⎡⎤⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=++∈-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦x ηηηηηR10. 求出一个齐次线性方程组,使它的基础解系由下列向量组成.(1) 1223==;1001,-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ξξ(2) 123121232==,=021352132,.⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦ξξξ【解】(1) 1223==1001-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ξξ设齐次线性方程组为Ax =0由12,ξξ为Ax =0的基础解系,可知11121222133223231001x x k k k k x x k x x k -+-⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+=⇒=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦x令 k 1=x 2 , k 2=x 3⇒Ax =0即为x 1+2x 23x 3=0.(2) A (123ξξξ)=0⇒A 的行向量为方程组为12345121232()0021352132x x x x x ⎡⎤⎢⎥---⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥---⎣⎦的解. 即124512345123452302325302220x x x x x x x x x x x x x x -+-=⎧⎪-++-=⎨⎪-++-=⎩的解为 31212120311203123253012111212200111r r r r ------⎡⎤⎡⎤⎢⎥⎢⎥−−−→----⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦得基础解系为1η=( 5 1 1 1 0)T2η=( 1 1 1 0 1)TA =5111011101--⎡⎤⎢⎥--⎣⎦方程为1234123550,0.x x x x x x x x --++=⎧⎨--++=⎩ 11. 证明:线性方程组121232343454515x x a x x a x x a x x ax x a -=⎧⎪-=⎪⎪-=⎨⎪-=⎪-=⎪⎩有解的充要条件是510i i a ==∑.【解】215212345123415123412511000011000011000011100011100001100001100001101011100001100001100001100101r r r r a a a a a a a a a a a a a a a a a a ++-⎡⎤⎢⎥-⎢⎥⎢⎥=-−−−→⎢⎥-⎢⎥⎢⎥-⎣⎦-⎡⎤⎢⎥-⎢⎥⎢⎥-−−−→⎢⎥-⎢⎥⎢⎥-+⎣⎦-⎡⎤⎢⎥-⎢⎥⎢⎥-−−→⎢⎥-⎢⎥⎢⎥-++⎣⎦A 1234511100011000011000011001i i a a a a a =-⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦∑ 方程组有解的充要条件,即R (A )=4=R (A )510i i a =⇔=∑得证.12. 设*η是非齐次线性方程组Ax=b 的一个解,12n r ,,,-ξξξ 是对应的齐次线性方程组的一个基础解系.证明(1)1*n r ,,-,ξξ η线性无关;(2)1++***n r ,,-,ξξ ηηη线性无关. 【 证明】(1) 1*n r ,,-,ξξ η线性无关⇔110*n r n r k k k --+++=ξξ η成立,当且仅当k i =0(i =1,2,…,n r ),k =01111()00*n r n r *n r n r k k k k k k ηη----+++=⇒+++=A ξξA A ξA ξ∵12n r ,,,-ξξξ 为Ax =0的基础解系0(1,2,,)i i n r ξ⇒==-A*0k ⇒=A η由于*0b =≠A η00.k b k ⇒⋅=⇒=.由于12n r ,,,-ξξξ 为线性无关112200(1,2,,)n r n r i k k k k i n r --+⋅++⋅=⇔==-ξξξ∴121*n ,,,-,ξξξ η线性无关.(2) 证1++***n r ,,-,ξξ ηηη线性无关.***11()()0n r n r k k k --⇔+++++=ξξ ηηη成立当且仅当k i =0(i =1,2,…,n r ),且k =0***11()()0n r n r k k k --+++++=ξξ ηηη即*111()0n r n r n r k k k k k ---++++++=ξξ η由(1)可知,11*n ,,-,ξξ η线性无关. 即有k i =0(i =1,2,…,n r ),且100n r k k k k -++=⇒=∴1++***n r ,,-,ξξ ηηη线性无关.(B 类)1.B2. C3. D4. C5. t= 36. R(A)=2;2;27. 设η1,η2,…,ηs 是非齐次线性方程组Ax=b 的一组解向量,如果c 1η1+c 2η2+…+c s ηs 也是该方程组的一个解向量,则c 1+c 2+…+c s = .解:因为η1, η2,…, ηs 是Ax=b 的一组解向量,则A η1=b, A η2=b,…, A ηs =b,又 C 1η1+ C 2η2+…+ C s ηs 也是Ax=b 的一解向量,所以A(C 1η1+…+ C s ηs )=b ,即C 1A η1+ CA η2+…+ C s A ηs =b,即C 1b+ C 2b+…+ C s b=b,(C1+…+C s )b=b,所以C 1+…+ C s =1.8. 设向量组1α=(1,0,2,3),2α=(1,1,3,5),3α=(1,1,a +2,1),4α=(1,2,4,a +8),β=(1,1,b +3,5)问:(1) a ,b 为何值时,β不能由1α,2α,3α,4α线性表出?(2) a ,b 为何值时,β可由1α,2α,3α, 4α惟一地线性表出?并写出该表出式. (3) a ,b 为何值时,β可由1α,2α,3α,4α线性表出,且该表出不惟一?并写出该表出式. 【解】11223344x x x x =+++βαααα (*)314132422321111101121()232433518511111111110112101121012100100225200010r r r r r r r r a b a a b a b a a ----⎡⎤⎢⎥-⎢⎥==−−−→⎢⎥++⎢⎥+⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥−−−→⎢⎥⎢⎥++⎢⎥⎢⎥-++⎣⎦⎣⎦A A b(1) β不能由1α,2α,3α,4α线性表出⇔方程组(*)无解,即a +1=0,且b ≠0.即a =1,且b ≠0.(2) β可由1α,2α,3α,4α惟一地线性表出⇔方程组(*)有惟一解,即a +1≠0,即a ≠1.(*) 等价于方程组12342343443231123121(1)(1)01011111210111121111x x x x x x x a x b a x b b a b x x x x a a a b b b x a a a b a b ba a a βααα+++=⎧⎪-+=⎪⎨+=⎪⎪+=⎩++⇒===+=+=+++⎛⎫=---=-+ ⎪+++⎝⎭++∴=-+++++(3) β可由1α,2α,3α,4α线性表出,且表出不惟一⇔方程组(*)有无数解,即有a +1=0,b =0⇒a =1,b =0.方程组(*)12112342122343142212121x k k x x x x x k k x x x x k x k =-⎧⎪+++==-+⎧⎪⇔⇒⎨⎨-+==⎩⎪⎪=⎩1234,,,k k k k 为常数.∴2111221324(2)(21)k k k k k k =-+-+++βαααα9. 设有下列线性方程组(Ⅰ)和(Ⅱ)(Ⅰ)1241234123264133x x x x x x x x x x +-=-⎧⎪---=⎨⎪--=⎩ (Ⅱ) 123423434521121x mx x x nx x x x x t +--=-⎧⎪--=-⎨⎪-=-⎩(1) 求方程组(Ⅰ)的通解;(2) 当方程组(Ⅱ)中的参数m,n,t 为何值时,(Ⅰ)与(Ⅱ)同解? 解:(1)对方程组(Ⅰ)的增广矩阵进行行初等变换11026110261102641111051725001253110304162101014100120101400125 ------⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥------⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥------⎣⎦⎣⎦⎣⎦--⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦由此可知系数矩阵和增广矩阵的秩都为3,故有解.由方程组142434020x x x x ⎪-=⎨⎪-=⎩ (*) 得方程组(*)的基础解系11121⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ξ令40x =,得方程组(Ⅰ)的特解 2450-⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥⎣⎦η于是方程组(Ⅰ)的通解为k =+ηξx ,k 为任意常数。

ax=b的解的三种情况条件

ax=b的解的三种情况条件

ax=b的解的三种情况条件解方程ax=b是基础的线性代数问题,在许多领域中都有广泛的应用。

在解这个方程时,我们可以遇到三种情况:无解、唯一解和无穷解。

为了说明这三种情况,我将从理论和实际应用中提供相关参考内容。

1. 无解的情况:ax=b无解意味着不存在满足该方程的解。

这种情况通常在以下情况下出现:a) 行向量b不在矩阵A的列空间中。

b) 矩阵A是奇异矩阵,即行向量之间存在线性相关关系。

在线性代数的研究中,对于无解的情况,我们通常会考虑到矩阵的秩。

当矩阵A的秩小于向量b的秩时,方程ax=b无解。

这个结论被广泛应用于解方程组、解傅立叶变换等问题中。

2. 唯一解的情况:ax=b有唯一解意味着存在且只存在一组解满足该方程。

这种情况通常在以下情况下出现:a) 矩阵A的行向量线性无关。

b) 矩阵A的列向量线性无关。

在线性代数中,我们可以使用高斯消元法或矩阵的逆来求解唯一解。

这些方法在计算机图形学、机器学习、物理学等领域中得到广泛应用。

例如,在计算机视觉中,我们可以使用线性方程求解来进行图像重构和三维重建。

3. 无穷解的情况:ax=b有无穷解意味着存在无穷多个解满足该方程。

这种情况通常在以下情况下出现:a) 矩阵A的秩小于向量b的秩,同时矩阵A的零空间不为空。

b) 矩阵A是非奇异矩阵,但左侧的向量b不在矩阵A的列空间中。

在线性代数中,我们通常使用矩阵的标准形式(如行阶梯形矩阵)来识别无穷解的存在。

为了求解无穷解,我们可以使用自由变量来构建一个参数化的通解。

这个结果被广泛应用于线性规划、最小二乘法等问题中。

总之,解方程ax=b的三种情况——无解、唯一解和无穷解——在线性代数中有广泛的理论研究和实际应用。

通过矩阵的秩、线性相关性以及矩阵和向量的空间关系,我们可以判断方程是否有解以及是否存在唯一解或无穷解。

在实际应用中,这些概念被广泛应用于计算机科学、物理学、经济学等各种领域中。

齐次线性方程组和非齐次的区别

齐次线性方程组和非齐次的区别

齐次线性方程组和非齐次的区别
齐次线性方程组和非齐次的区别如下:
1、常数项不同:
齐次线性方程组的常数项全部为零,非齐次方程组的常数项不全为零。

2、表达式不同:
齐次线性方程组表达式:Ax=0;非齐次方程组程度常数项不全为零:Ax=b。

扩展资料:
齐次线性方程组求解步骤:
1、对系数矩阵A进行初等行变换,将其化为行阶梯形矩阵;
2、若r(A)=r=n(未知量的个数),则原方程组仅有零解,即x=0,求解结束;
若r(A)=r<n(未知量的个数),则原方程组有非零解,进行以下步骤:
3、继续将系数矩阵A化为行最简形矩阵,并写出同解方程组;
4、选取合适的自由未知量,并取相应的基本向量组,代入同解方程组,得到原方程组的基础解系,进而写出通解。

非齐次线性方程组Ax=b的求解步骤:
(1)对增广矩阵B施行初等行变换化为行阶梯形。

若R(A)<R (B),则方程组无解。

(2)若R(A)=R(B),则进一步将B化为行最简形。

(3)设R(A)=R(B)=r;把行最简形中r个非零行的非0首元所对应的未知数用其余n-r个未知数(自由未知数)表示,并令自由未知数,即可写出含n-r个参数的通解。

线性代数第三章第五节 非齐次线性方程组(2014版)

线性代数第三章第五节 非齐次线性方程组(2014版)
若R(A)=R(A|b)=r<n,则方程组 Amn x b 有无穷多解;
若R(A) R(A|b),则方程组 Amn x b 无 解;
x1 x2 x3 x4 x5 1
例1 设线性方程组
3x1 2x2 x3 x2 2x3 2x4
x4 3x5 6x5 3
a
5x1 4x2 3x3 3x4 x5 b
由于 1,2 , ,nr 线性无关,故 k1 k2 knr 0
所以 *,1 *,2 *, ,nr * 线性无关。
故 线性*无,1关的*解,。2 *, ,nr * 是Ax=b的n-r+1个
3)设x为方程组Ax=b的任一解,则x可表示为:
x k11 k22 knrnr k1( 1 ) k2( 2 ) knr ( nr ) (1 k1 k2 knr ) k1( 1 ) k2( 2 ) knr ( nr )
个元素 Aij 0 (i, j 1,2, ,n) ,故 r( A*) 1
又 AA* A* A | A | I 0 知 A* 的每列元素均
为齐次方程组 Ax 0 的解,但 r( A) n 1 所
以 Ax 0
r( A*) 1
r( A*) 1
n r( A) 1 的基础解系所含解向量的个数不超
1 2 3
矩阵
B
2 3
4 6
6 k
(k为常数),且AB=0,求线
性方程组Ax=0的通解。 解:由于AB=0 故 r( A) r(B) 3 又由a,b,c 不全为零, 可知 r( A) 1
当 k 9 时,r(B) 2 于是 r( A) 1
证明 A1 b, A2 b
A b b 0.
1
2
即x 1 2满足方程Ax 0.

向量组的应用—线性方程组解的结构

向量组的应用—线性方程组解的结构

b1,nr xn 0 , b2,nr xn 0 ,
br,nr xn 0 ,
其中,xr1 ,xr2 , ,xn 是 n r 个自由未知数。特别取
xr1 1 0 0
xr
2
0
, 1

, 0

xn 0 0 1
(2-17)
可得齐次线性方程组的 n r 个解
x r 1 1 r 1 2 nnr
综合(1),(2)知,1 ,2 , ,nr 是齐次线性方程的一组 基础解系,它所含线性无关的解向量的个数恰等于 n r(方程组 中未知数个数减去系数矩阵的秩)。矩阵的秩是确定的,所以通 解中所含任意常数的个数也是确定的。
例1
求齐次线性方程组
2x1x1x52
推论
设 m n 矩阵 A 的秩 R(A) r ,则 n 元齐次线性方程组 Ax 0 的 解集 S 的秩 R(S) n r 。
例2
设 n 元齐次线性方程组 Ax 0 与 Bx 0 同解,证明R(A) R(B) 。

由于方程组 Ax 0与 Bx 0 有相同的解集,设为 S,解集为秩 为 R(S) ,则有 R( A) n R(S) ,R(B) n R(S) ,因此R( A) R(B)。
经济数学
向量组的应用—线性方程组解的结构
齐次线性方程 组 Ax 0 解的 结构
非齐次线性方程 组 Ax b解的结 构
1.1 齐次线性方程组Ax=0 解的结构
齐次线性方程组 Ax 0 的解具有以下性质:
性质1 如果1 ,2 是齐次线性方程组的解,则 1 2 也是齐次线
性方程组的解。
证 因为A(1 2 ) A1 A2 0 0 0 ,所以 1 2是齐次线
1.2 非齐次线性方程组Ax=b 解的结 构

求下面非齐次线性方程组的基础解系和通解

求下面非齐次线性方程组的基础解系和通解

求下面非齐次线性方程组的基础解系和通解
1. 4x1 - 3x2 + x3 = 2. 2x1 - 2x2 + 2x3 = 2
说起非齐次线性方程组,它是一类常见的数学问题,非齐次线性方程组指的是系数矩阵A与自变量x之间的关系式类似Ax=b,但是等号右边的向量b为零。

它可以用来求解复杂的方程。

例如我们考虑下面的非齐次线性方程组:
4x1 - 3x2 + x3 = 2
2x1 - 2x2 + 2x3 = 2
此时系数矩阵A为:
A =
[4 -3 1]
[2 -2 2]
把这两个方程组化简成矩阵相乘的形式:
[4 -3 1][x1] = [2]
[2 -2 2][x2] [2]
解之前,我们可以把矩阵变成上三角形,只需进行几次基本的运算操作,不会改变方程的解。

[4 -3 1][x1] - 3[2 -2 2][x2] [0]
[2 -2 2][x2] [2]
然后特解性解为:
x1 = 1
x2 = 1
x3 = 3
此时基础解系与通解之间的关系如下:
x = x + c1(1,1,1)
1 Specific
即在基础解系的基础上加上一个任意常数c1(1,1,1),就得到了方程组的通解。

总结一下,解决非齐次线性方程组是一个比较头疼的任务,它需要我们通过化简系数矩阵,把矩阵变成上三角形来获得基础解系,然后根据基础解系求得通解。

线性代数非齐次方程求解

线性代数非齐次方程求解


开关 键
传统机械按键设计要点: 1.合理的选择按键的类型, 尽量选择平头类的按键,以
防按键下陷。 2.开关按键和塑胶按键设计 间隙建议留0.05~0.1mm,以
防按键死键。 3.要考虑成型工艺,合理计 算累积公差,以防按键手感
不良。
返回
二、非齐次线性方程组
1. AX = b 的导出组
a11x1 a12 x2 a1n xn b1
a21 x1
a22 x2 a2n xn
b2
am1x1 am2 x2 amn xn bm
设 A =(1, 2, …, n), 即
x11 + x22 + … +xnn = b,
AX = b 有解
b可由1, 2, …, n线性表出
R(A) R(A)
即 AX = b
(AX = 0称为AX = b的 导出组)
0
2
1 5
0
3 10
1
X k11 k22, k1, k2 R.
2021/4/22
11 返回
例2 解 解
x1 2x2 3x3 0
32xx1165xx22
10 x3 7x3
0 0
x1 2x2 4x3 0
1
A
3 2
1
2 6 5 2
3 1
10 7
0 0
4 0
例5 设A为n阶矩阵(n≥2),证明
证 ①若R(A)=n: detA≠0,
n, R( A) n, R( A* ) 1, R( A) n 1,
0, R( A) n 1.
AA* (det A)I ,
| A || A* || (det A)I || A |n | A* || A |n1,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档