粒子群算法原理及在函数优化中的应用(附程序)
粒子群算法原理及应用
粒子群算法原理及应用随着人工智能技术的发展,各种算法被广泛应用在数据分析、预测以及优化等方面。
其中,粒子群算法(Particle Swarm Optimization,PSO)作为一种高效的全局优化算法,在实际应用中表现出色,受到了越来越多的关注与重视。
本文将围绕粒子群算法的原理与应用进行阐述。
一、粒子群算法的原理粒子群算法是一种基于群体智能的优化算法,借鉴了鸟群或鱼群等生物群体行为的思想。
它是一种随机化搜索算法,通过模拟大量粒子在问题空间中的随机移动,不断探索解空间,从而寻找全局最优解。
具体来说,粒子群算法是基于一个粒子群的模型,其中每个粒子代表一个搜索空间内的解。
每一个粒子都有一个自身的位置和速度,而粒子的位置和速度可以通过如下公式进行更新:$v_{i,j}=wv_{i,j}+c1r1(p_{ij}-x_{ij})+c2r2(g_{ij}-x_{ij})$$x_{i,j}=x_{i,j}+v_{i,j}$其中,$v_{i,j}$表示第$i$个粒子在第$j$个搜索空间维度上的速度,$w$表示惯性权重,$c1$和$c2$分别是自己的历史最佳位置$p_{ij}$和全局最佳位置$g_{ij}$对粒子位置的影响因子,$r1$和$r2$是0~1的随机数,$x_{i,j}$是粒子的位置。
通过更新速度和位置,粒子可以向更优秀的位置移动,从而不断逼近全局最优解。
这种不断更新、迭代搜索的过程可以实现全局搜索和多目标优化等问题领域的优化求解。
二、粒子群算法的应用粒子群算法最主要的应用领域是全局优化问题,如函数优化、数据拟合、最小二乘等问题的求解。
此外,粒子群算法还被广泛应用在神经网络训练、图像处理、机器学习等领域。
(一)函数优化函数优化问题是粒子群算法最基本的应用领域之一。
例如,在参数优化问题中,可以将参数空间定义为搜索空间,通过粒子群算法不断寻找全局最优解来优化模型参数。
在现实中,这种方法已被广泛应用于金融风险分析、选股等领域。
粒子群算法以及应用原理
粒子群算法介绍优化问题是工业设计中经常遇到的问题,许多问题最后都可以归结为优化问题. 为了解决各种各样的优化问题,人们提出了许多优化算法,比较著名的有爬山法、遗传算法等.优化问题有两个主要问题:一是要求寻找全局最小点,二是要求有较高的收敛速度. 爬山法精度较高,但是易于陷入局部极小. 遗传算法属于进化算法( Evolutionary Algorithms) 的一种,它通过模仿自然界的选择与遗传的机理来寻找最优解. 遗传算法有三个基本算子:选择、交叉和变异. 但是遗传算法的编程实现比较复杂,首先需要对问题进行编码,找到最优解之后还需要对问题进行解码,另外三个算子的实现也有许多参数,如交叉率和变异率,并且这些参数的选择严重影响解的品质,而目前这些参数的选择大部分是依靠经验.1995 年Eberhart 博士和kennedy 博士提出了一种新的算法;粒子群优化(Partical Swarm Optimization -PSO) 算法 . 这种算法以其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性.粒子群优化(Partical Swarm Optimization - PSO) 算法是近年来发展起来的一种新的进化算法( Evolu2tionary Algorithm - EA) .PSO 算法属于进化算法的一种,和遗传算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质. 但是它比遗传算法规则更为简单,它没有遗传算法的“交叉”(Crossover) 和“变异”(Mutation) 操作. 它通过追随当前搜索到的最优值来寻找全局最优 .粒子群算法1. 引言粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),有Eberhart博士和kennedy博士发明。
源于对鸟群捕食的行为研究PSO同遗传算法类似,是一种基于叠代的优化工具。
粒子群算法及应用
粒子群算法及应用粒子群算法(Particle Swarm Optimization,PSO)是一种基于群体智能的优化算法,源于对鸟群集群行为的观察和模拟。
粒子群算法通过模拟鸟群中个体间的协作与信息传递,以寻找最优解。
在实际应用中,粒子群算法已被广泛应用于函数优化、组合优化、图像处理、各类工程设计等领域。
粒子群算法的基本原理是模拟鸟群中每只鸟(粒子)的行为。
每个粒子表示问题的一个候选解,在解空间中最优解。
算法从一个随机初始解的种子集合出发,通过迭代更新粒子位置和速度,直到满足终止条件。
每个粒子维护自身的历史最优解和全局最优解,通过个体经验和邻域协作来引导过程。
粒子在解空间中自由移动,并通过其中一种适应度函数评价解的质量,并更新自身位置和速度。
整个过程中,粒子会不断地向全局最优解靠拢,从而找出最优解。
粒子群算法广泛应用于函数优化问题。
对于复杂的多峰函数,粒子群算法能够通过群体间的信息共享来克服局部最优解,找到全局最优解。
此外,粒子群算法还可以解决许多实际问题,如资源调度、网络路由、机器学习等。
例如,在图像处理中,可以使用粒子群算法进行图像分割、图像识别和图像增强等任务,通过优化算法自动化地寻找最优解。
除了以上应用,粒子群算法还可以用于各种优化问题的求解。
例如,粒子群算法在组合优化问题中的应用表现得较为出色。
在组合优化问题中,需要从大量的解空间中找到最佳的组合方案。
通过粒子群算法的迭代和全局协作,可以有效地找到最优解。
另外,粒子群算法还可以用于工程设计中的自动优化。
在工程设计过程中,需要考虑多个目标和多个约束条件,粒子群算法可以通过多目标优化或多约束优化来处理复杂的工程设计问题。
总之,粒子群算法作为一种群体智能算法,在函数优化、组合优化、图像处理和工程设计等领域都得到了广泛的应用。
其优势在于全局寻优能力和自适应性,能够找到复杂问题的最优解。
随着对算法的研究和改进,粒子群算法有望在更多领域得到应用和推广。
数据挖掘中的粒子群优化算法原理解析
数据挖掘中的粒子群优化算法原理解析数据挖掘是一门利用统计学、人工智能和机器学习等技术,从大量数据中发现隐藏的模式、关系和趋势的过程。
而粒子群优化算法(Particle Swarm Optimization,PSO)是一种基于群体智能的优化算法,其灵感来自于鸟群觅食的行为。
一、粒子群优化算法的基本原理粒子群优化算法是一种通过模拟鸟群觅食行为来求解优化问题的算法。
在算法中,每个候选解被称为一个粒子,而粒子的位置表示解的特征值,速度表示解的搜索方向。
粒子群中的每个粒子都有自己的位置和速度,并且通过与其他粒子的交互来更新自己的位置和速度。
二、粒子群优化算法的基本步骤粒子群优化算法的基本步骤如下:1. 初始化粒子群:随机生成一群粒子,并为每个粒子随机分配初始位置和速度。
2. 计算适应度值:根据问题的优化目标,计算每个粒子的适应度值。
3. 更新粒子速度和位置:根据粒子当前的速度和位置,以及群体中历史最优解和个体最优解,更新粒子的速度和位置。
4. 更新历史最优解和个体最优解:根据当前的适应度值,更新粒子的历史最优解和个体最优解。
5. 判断终止条件:判断是否满足终止条件,如达到最大迭代次数或找到满足要求的解。
6. 返回最优解:返回找到的最优解。
三、粒子群优化算法的优势和应用领域粒子群优化算法具有以下优势:1. 全局搜索能力:粒子群优化算法通过粒子之间的交互和信息共享,能够有效地进行全局搜索,找到全局最优解。
2. 并行计算能力:粒子群优化算法的并行计算能力较强,可以通过大规模并行计算来加速求解过程。
3. 算法简单易实现:粒子群优化算法的原理简单,易于理解和实现。
粒子群优化算法在许多领域有着广泛的应用,包括:1. 机器学习:粒子群优化算法可以应用于神经网络的训练和参数优化等问题。
2. 数据挖掘:粒子群优化算法可以用于聚类分析、关联规则挖掘和特征选择等数据挖掘任务。
3. 图像处理:粒子群优化算法可以用于图像分割、图像配准和图像增强等图像处理任务。
matlab自带粒子群算法
matlab自带粒子群算法中括号在MATLAB中具有重要的功能和应用,其中之一就是在自带的粒子群算法中。
粒子群算法(Particle Swarm Optimization,PSO)是一种基于群体智能的优化算法,广泛应用于解决优化问题。
而MATLAB则提供了丰富的工具箱,包括自带的粒子群算法函数,方便用户直接使用这一高效优化算法来解决复杂的问题。
本文将详细介绍MATLAB中自带的粒子群算法的基本概念、工作原理、使用方法,以及一些注意事项和优化技巧。
一、粒子群算法的基本概念和原理粒子群算法是一种启发式算法,模拟了鸟群或鱼群等群体的行为进行问题求解。
算法的基本思想是将可能的解空间看作是粒子的搜寻范围,每个粒子代表一种解,通过迭代的方式不断更新粒子的位置和速度,以找到最优解。
1.1 粒子的位置和速度粒子的位置是解的表示,而速度则是解的搜索方向和速率。
在粒子群算法中,可以将解空间看作是一个多维空间,每个粒子都有一个位置向量,表示该粒子对应的解。
而速度向量则表示了该粒子在搜索过程中的移动方向和速率。
1.2 适应度函数适应度函数用于评价每个粒子的解的质量,也称为目标函数。
在优化问题中,我们希望通过粒子群算法求解的是目标函数的最小(或最大)值。
因此,适应度函数的选择在粒子群算法中尤为重要,它直接影响到算法的性能和效果。
1.3 群体的协作群体的协作是粒子群算法的核心思想之一。
每个粒子通过与其他粒子之间的信息交流来调整自己的搜索方向和速率,从而达到更好的解。
这种信息交流一般通过粒子之间的位置和速度更新公式来实现。
二、MATLAB中自带的粒子群算法函数MATLAB提供了自带的粒子群算法函数,可以直接调用并应用于问题求解。
下面将介绍一些常用的粒子群算法函数及其使用方法。
2.1 PSO函数在MATLAB中,可以使用pso函数来进行粒子群算法的优化。
该函数的基本形式如下:[x,fval,exitFlag,output] = pso(problem)其中,problem是一个结构体,用于存储问题的相关信息,包括目标函数、约束条件等。
Matlab中的粒子群优化算法详解
Matlab中的粒子群优化算法详解引言:粒子群优化算法(Particle Swarm Optimization, PSO)是一种模拟鸟群觅食行为的优化算法,具有简单易实现、无需求导和全局搜索能力强等特点。
该算法在解决多种问题中得到广泛应用,特别是在机器学习、智能优化等领域。
本文将详细介绍Matlab中粒子群优化算法的实现过程及应用。
一、粒子群优化算法原理粒子群优化算法源自于对鸟群觅食行为的模拟。
假设一个鸟群中的每个个体被称为粒子,所有粒子共同组成了一个搜索空间,每个粒子会根据自身的当前位置和历史最佳位置进行搜索,并且受到其邻近粒子的信息影响。
通过不断的迭代运算,粒子们逐渐收敛到全局最优解或局部最优解。
具体算法流程如下:1. 初始化粒子群的位置和速度。
2. 计算每个粒子的适应度值,并更新个体最优位置。
3. 根据全局最优位置调整粒子的速度和位置。
4. 重复执行第2步和第3步,直到满足终止条件。
二、Matlab中粒子群优化算法实现步骤在Matlab中,可以通过以下步骤来实现粒子群优化算法:1. 初始化粒子群的位置和速度。
首先需要确定粒子群的大小,即粒子的个数。
对于每个粒子,需要随机生成一个初始位置和速度。
可以使用Matlab中的rand函数来生成指定范围内的随机数。
问题优劣的指标,因此需要根据具体问题来确定。
对于更新个体最优位置,可以通过比较当前适应度值和历史最佳适应度值的大小,选择适应度更优的位置进行更新。
3. 根据全局最优位置调整粒子的速度和位置。
粒子的速度和位置的更新是通过以下公式实现的:V(i,j) = w * V(i,j) + c1 * rand() * (P(i,j) - X(i,j)) + c2 * rand() * (G(j) - X(i,j))X(i,j) = X(i,j) + V(i,j)其中,V(i,j)表示第i个粒子在第j个维度上的速度,X(i,j)表示第i个粒子在第j个维度上的位置,P(i,j)表示第i个粒子的历史最佳位置,G(j)表示全局最佳位置,w、c1和c2分别表示惯性权重、个体学习因子和社会学习因子。
粒子群算法求解最小值
粒子群算法求解最小值
(实用版)
目录
一、粒子群算法概述
二、粒子群算法求解最小值的原理
三、粒子群算法在 MATLAB 中的实现
四、粒子群算法求解最小值的应用实例
五、总结
正文
一、粒子群算法概述
粒子群算法(Particle Swarm Optimization, PSO)是一种基于群体智能的优化算法,于 1995 年由美国社会心理学家 James Kennedy 和电气工程师 Russell Eberhart 共同提出。
该算法的提出是受对鸟类群体行为进行建模与仿真的研究结果的启发。
粒子群优化算法通过个体间的协作与竞争,实现复杂空间最优解的搜索。
将群体中的个体视为 d 维空间中的粒子,该粒子以一定的速度在解空间运动,并向自身历史最优解和全局最优解靠拢。
二、粒子群算法求解最小值的原理
粒子群算法求解最小值主要通过以下步骤实现:
1.初始化粒子群:在解空间中随机分布一定数量的粒子,每个粒子包含四个变量(x, y, z, w),表示粒子在解空间中的位置。
2.评估适应度:根据粒子位置计算目标函数值,得到每个粒子的适应度。
3.更新个体最优解和全局最优解:比较当前粒子的适应度与其历史最
优解的适应度,如果当前适应度更优,则更新个体最优解。
同时,比较全局最优解与当前粒子的适应度,如果当前适应度更优,则更新全局最优解。
4.更新粒子速度和位置:根据个体最优解、全局最优解和当前位置,计算每个粒子的新速度和新位置。
5.检查停止条件:如果达到预设的最大迭代次数或全局最优解的适应度变化小于设定阈值,则停止迭代。
6.返回全局最优解:输出全局最优解及其对应的最小值。
群智能优化算法及其应用
群智能优化算法及其应用一、引言群智能优化算法作为一种模拟生物群体行为的算法,近年来在优化问题的解决中得到越来越广泛的应用。
群智能优化算法通过模拟自然界中生物个体的行为,以群体智慧的方式来解决复杂的优化问题。
本文将介绍群智能优化算法的基本原理,同时探讨其在实际问题中的应用。
二、群智能优化算法的基本原理群智能优化算法的基本原理来源于自然界中各种生物的群体行为。
通过模拟个体之间的相互作用和信息交流,算法能够自主地进行搜索和优化。
主要的群智能优化算法包括粒子群优化算法(PSO)、蚁群优化算法(ACO)、鱼群算法(FA)和火流鸟觅食算法(CSA)等。
1. 粒子群优化算法(PSO)粒子群优化算法是一种模拟鸟群飞行行为的算法。
在算法中,解空间中的每个解被表示为一个粒子,由位置和速度两个属性组成。
每个粒子根据其自身的位置和历史最优位置进行搜索,并通过学习或者合作来优化问题。
算法通过不断调整速度和位置,使粒子向着全局最优解逼近。
2. 蚁群优化算法(ACO)蚁群优化算法是模拟蚂蚁寻找食物的行为。
在算法中,解空间中的搜索问题被转化为蚂蚁在路径上释放信息素的过程。
蚂蚁根据路径上的信息素浓度来选择路径,并且释放信息素来引导其他蚂蚁。
通过信息素的正反馈作用,蚂蚁群体逐渐找到最优解。
3. 鱼群算法(FA)鱼群算法是模拟鱼群觅食行为的算法。
在算法中,解空间中的每个解被看作是一条鱼,而目标函数则被看作是食物的分布。
鱼群通过觅食行为来寻找最优解。
每条鱼根据当前的解和其他鱼的信息来调整自身的位置和速度,以便找到更好的解。
4. 火流鸟觅食算法(CSA)火流鸟觅食算法是模拟鸟群觅食行为的算法。
在算法中,解空间中的解被看作是食物的分布,而解的质量则根据目标函数来评估。
鸟群通过觅食和觅食行为调整和优化解。
火流鸟觅食算法通过仿真鸟群觅食时的行为和信息交流来搜索解空间。
三、群智能优化算法的应用群智能优化算法在各个领域都得到了广泛的应用,下面我们将以几个常见领域为例进行探讨。
matlab工具箱粒子群算法
MATLAB工具箱是一款强大的工具软件,可以用来进行各种科学计算和工程设计。
其中,粒子裙算法(PSO)作为一种优化算法,被广泛应用于多个领域,例如机器学习、智能优化、控制系统等。
本文将详细介绍PSO算法及其在MATLAB工具箱中的应用。
一、粒子裙算法的基本原理粒子裙算法是一种模拟自然界裙体行为的优化算法,其基本原理是模拟鸟裙或鱼裙在搜索食物或迁徙时的行为。
在PSO算法中,被优化的问题被视为一个多维空间中的搜索空间,而每个“粒子”则代表了空间中的一个候选解。
这些粒子在空间中移动,并根据自身的经验和裙体的协作信息来调整其移动方向和速度,最终找到最优解。
二、PSO算法的优化流程1.初始化种裙:在开始时,随机生成一定数量的粒子,并为每个粒子随机分配初始位置和速度。
2.评估粒子适应度:根据问题的特定目标函数,计算每个粒子在当前位置的适应度值。
3.更新粒子速度和位置:根据粒子的个体经验和裙体协作信息,更新每个粒子的速度和位置。
4.更新全局最优解:根据所有粒子的适应度值,更新全局最优解。
5.检查停止条件:重复步骤2-4,直到满足停止条件。
三、PSO算法在MATLAB工具箱中的应用在MATLAB工具箱中,PSO算法被实现为一个函数,可以通过简单的调用来进行优化问题的求解。
以下是一个简单的PSO算法示例:```matlab定义目标函数objFunc = (x) x(1)^2 + x(2)^2;设置PSO参数options = optimoptions(particleswarm, 'SwarmSize', 100,'MaxIterations', 100);调用PSO算法[x, fval] = particleswarm(objFunc, 2, [], [], options);```以上代码中,首先定义了一个目标函数objFunc,然后设置了PSO算法的参数options,最后通过调用particleswarm函数来进行优化求解。
粒子群算法模型
粒子群算法模型一、引言粒子群算法(Particle Swarm Optimization, PSO)是一种群体智能算法,模拟了鸟群捕食过程中的信息交流和协作行为。
它通过不断调整粒子的速度和位置,寻找最优解。
本文将介绍粒子群算法的原理、步骤以及应用领域。
二、粒子群算法原理粒子群算法的原理基于群体智能的观念,将待优化问题看作是一个搜索空间。
算法的每个粒子代表一个解,通过不断地更新速度和位置,最终找到最优解。
粒子群算法的核心是粒子的速度和位置更新公式。
三、粒子群算法步骤1. 初始化粒子群:设定粒子的初始位置和速度,以及目标函数;2. 更新粒子的速度和位置:根据速度和位置更新公式,更新粒子的速度和位置;3. 计算适应度函数:根据目标函数计算每个粒子的适应度;4. 更新全局最优解:根据适应度函数更新全局最优解;5. 判断终止条件:判断是否达到终止条件,如果满足,则输出当前最优解;否则,回到步骤2继续迭代。
四、粒子群算法应用领域粒子群算法具有广泛的应用领域,下面介绍其中几个典型的应用。
1. 函数优化:粒子群算法可以用于求解函数的最优解,如求解复杂的非线性函数、多峰函数等;2. 神经网络训练:粒子群算法可以用于神经网络的权重和偏置的优化,提高神经网络的性能;3. 图像处理:粒子群算法可以用于图像分割、图像去噪、图像增强等;4. 机器学习:粒子群算法可以用于支持向量机、决策树等机器学习算法的参数优化;5. 优化调度:粒子群算法可以用于优化调度问题,如任务调度、车辆路径规划等。
五、粒子群算法的优缺点粒子群算法具有以下优点:1. 简单易实现:粒子群算法的理论基础简单,易于实现;2. 全局搜索能力强:粒子群算法能够全局搜索解空间,收敛速度较快;3. 适用范围广:粒子群算法适用于各种优化问题,具有很好的通用性。
然而,粒子群算法也存在一些缺点:1. 对参数敏感:粒子群算法的性能受到参数设置的影响,不同问题需要调整不同的参数;2. 可能陷入局部最优:粒子群算法容易陷入局部最优,无法保证全局最优。
整数粒子群算法
整数粒子群算法整数粒子群算法是一种基于群体智能的优化算法,它通过模拟鸟群捕食行为来完成问题的优化。
该算法已经在多个领域取得了广泛应用,如路径规划、组合优化、机器学习等。
1. 算法原理整数粒子群算法的核心思想是通过不断地迭代来搜索最优解。
算法首先要定义一个适应度函数来评价每个解的优劣程度。
在每次迭代中,群体内每个粒子都会根据自己当前的位置和速度来更新自己的位置。
更新规则依赖于群体中最优解和个体最优解的位置,以及粒子自身的历史最优位置。
2. 算法步骤整数粒子群算法可以分为以下几个步骤:(1)初始化群体:设置群体规模大小、每个粒子的位置和速度等参数。
(2)计算适应度:根据适应度函数,评价每个粒子的适应度,得到个体最优解和群体最优解。
(3)更新速度和位置:根据个体最优解和群体最优解,以及粒子自身的历史最优位置,更新速度和位置。
(4)判断终止条件:如迭代次数达到设定值或找到最优解等。
(5)返回最优解:输出群体中适应度值最小的粒子对应的位置,即为最优解。
3. 算法优缺点整数粒子群算法具有以下优点:(1)简单易懂,易于实现。
(2)能够处理连续型及离散型优化问题。
(3)具有全局搜索能力,能够找到全局最优解。
但是该算法也存在着一些不足之处:(1)收敛速度较慢。
(2)精度受到粒子数和迭代次数的影响。
(3)易受粒子数设置和参数调节的影响。
4. 应用领域整数粒子群算法已经被广泛应用于多个领域,例如:(1)组合优化问题:如背包问题、旅行商问题等。
(2)路径规划问题:如无人机路径规划、车辆路径规划等。
(3)机器学习问题:如分类、回归等。
总之,整数粒子群算法是一种具有普适性的优化算法,有着良好的全局搜索能力和鲁棒性,能够为多个实际问题提供优化解决方案。
基本粒子群优化算法
基本粒子群优化算法基本粒子群优化算法(Particle Swarm Optimization, PSO)是一种基于群体智能的优化算法,灵感来自于鸟群捕食行为中的信息共享和合作。
该算法能够在空间内找到不错的解决方案,并且具有较强的全局收敛性和鲁棒性。
本文将详细介绍基本粒子群优化算法的原理、流程、变种以及应用领域。
一、基本粒子群优化算法的原理基本粒子群优化算法的原理是模拟社会性行为中物种群体的行为方式。
每个空间中的解被视为一个粒子,这些粒子之间通过其中一种形式的信息交流来寻找全局最优解。
在算法的每一代中,每个粒子记录着自身的位置、速度和当前最优解。
粒子迭代更新自己的速度和位置,通过与邻居粒子和全局最优解比较来引导方向。
通过不断迭代,粒子逐渐收敛于全局最优解。
二、基本粒子群优化算法的流程1.初始化粒子群:随机生成粒子群,设置每个粒子的初始位置和速度。
2.计算目标函数值:根据粒子的当前位置计算目标函数值,并更新该粒子的当前最优解。
3.更新全局最优解:比较粒子群中所有粒子的当前最优解,选取最优解作为全局最优解。
4.更新速度和位置:根据当前速度和位置,更新粒子的下一步速度和位置。
新位置在空间内随机选择,并根据速度进行调整。
5.收敛判断:判断是否满足停止条件,如果满足则结束;否则返回第2步。
三、基本粒子群优化算法的变种1.改进的基本粒子群优化算法:对基本粒子群优化算法进行改进,比如引入加速因子、惯性权重等参数来提升算法的收敛速度和精度。
2.多种群粒子群优化算法:将粒子群分为多个子群,在子群间进行信息共享和合作,以提高效率。
3.自适应权重的粒子群优化算法:根据过程中的适应度变化情况,自适应地调整粒子的权重,以提高算法的鲁棒性和全局收敛性。
四、基本粒子群优化算法的应用领域1.组合优化问题:如旅行商问题、背包问题等。
2.函数优化问题:如非线性优化、函数拟合等。
3.机器学习:如神经网络训练、特征选择等。
4.工程设计:如电力系统优化、通信网络设计等。
遗传算法与粒子群算法在函数优化中的应用
遗传算 法 ( G e n e t i c A l g o r i t h m, G A) 最先 是 由美 国Mi c — h g a n大学 的 J o h n H o l l a n d 于1 9 7 5 年提 出的。遗传算法是模拟 达尔文 的遗传选择 和 自然淘汰的生物进化过程的计算模型。它的思想源于生物遗传学和适
1 . 引言
MA T L A B
,
历 过的“ 最好 ” 位 置记为 p B e s t [ i ] , 它 的速度 用Vi 表示, 群体中“ 最好 ” 粒 子 的位置 的索 引号用 P g 表示 。所 以粒子 i 将根据下 面的公式来更新 自 己的速度和位置( 以多维为例) : v ( i , : ) : w v ( i , : ) + c 1 r a n d ( y ( i , : ) 一 x ( i , : ) ) + c 2 r a n d ( p g - x ( i , : ) )
遗传簧法与粒子群算法在函数优化巾硇 应用
商丘师 范 Βιβλιοθήκη 院学生 处 朱景全 [ 摘 要] 本 文简要 阐述 了遗传算法和粒子群算法的基本原理 , 探讨 了在 M AT L A B环境 中实现遗传算法和粒子群算法各算子的编程 方法 , 并以一个 简单的实例说 明所编程序在 函数全局寻优中的应 用。 [ 关键词 ] 遗 传算法 粒子群算法
者生存的 自然规律 , 是具有“ 生存+ 检测 ” 的迭代过程的搜索算法。遗传 算法 以一种群 体中的所有个体 为对象 , 并利 用随机 化技术指导对一个 被编码 的参数空间进行高效搜索。其中 , 选择 、 交叉和变异构成了遗传 算法 的遗传 操作 ; 参数编码 、 初始群体的设定 、 适应度函数 的设计 、 遗传 操作设 计 、 控制参 数设定 5 个要素组成 了遗传算法的核心内容 。 粒子群优化算 法” ( p a n i c l e s w a r m o p t i m i z a t i o n , P s o ) 是由 K e n n e d y 和 E b e r h a r t 于1 9 9 5年提 出的一种优化算 法, 由于其 容易理解 、 易于实现 , 在许多优化 问题 中得 到成功应用 。粒子 群优 化算法( p s o ) 源 于对 鸟群 觅食行 为的研究 。研究 者发现 鸟群在 飞行过程 中经常会 突然改变 方 向, 散开 、 聚集, 其行为不可预测, 但其整体总保持一致性 , 个体与个体问 也保持着最适 宜的距离 。通过 对类似生物群体 的行 为的研究 , 发现 生 物群体 中存 在着一种社会 信息共享机制 , 它为群体的进化提供 了一 种 优势, 这也 是 P S O算法形成 的基础 。 2 . 遗传算 法设计 遗传算法是 一种基于生物 自然选择与遗传机理 的随机搜索算法 , 与传统搜索算 法不 同, 遗传 算法从一组 随机 产生的称为 “ 种群 ( P o p u l a — t i o n ) ” 的初始解开始 搜索过程。种群 中的每个个体是 问题 的一个解 , 称 为“ 染 色体 ( c h r o m o s o m e ) ” 。染 色体 是一 串符号 , 比如一 个二进 制字符 串。这些染色体在后续迭代 中不断进化 , 称为遗传。在每一代中用“ 适 值( f i me s s ) ” 来测 量染色 体的好坏 , 生成 的下一代 染色体称 为后代 ( o f f _ s p r i n g ) 。后代 是 由前一代 染色体通 过交. X( c r o s s o v e r ) 或 变异 。 ( m u t a — t i o n ) 运算形 成的。 主要步骤如下所示 : ( 1 ) 编码 : G A 在进行搜索之前先将解空间的解数据表示成遗传空间 的基因型串结构数据 , 这些串结构数据 的不 同组合便构成了不同的点 。 ( 2 ) 初始群 体的生成 : 随机产生 N 个初始 串结构数据 , 每个 串结构数 据称为一个个 体 , N 个个体构成 了 一 个群体 。G A以这 N 个 串结构数 据 作为初始点开始迭代。 ( 3 ) 适应性 值评估检测 : 适应性 函数表 明个体 或解的优劣性 。对 于 不同的问题 , 适应性函数的定义方式也不 同。 ( 4 ) 选择 : 选择 的 目的是为 了从 当前群体 中选出优 良的个体 , 使 它 们有机会作为父代为下一代繁殖子孙 。遗传算法通过选择过程体现这 思想 , 进行选择 的原则是适应性强 的个 体为下一代贡献一个 或多个 后代的概率大 。选择实现了达尔文 的适者生存原则。 ( 5 ) 交叉 : 交叉 操作 堤; 遗传算 法中最 主要 的遗传操作 。通过交叉操 作可 以得 到新一代个体 , 新个体组合 了其 父辈个体的特性 。交 叉体现 了信息交换的思想 。 ( 6 ) 变异 : 变异 首先在群体 中随机选择~个个体 , 对于选 中的个体 以 定 的概率 随机地改变串结构数据 中某个 串的值 。同生物界一样 , G A 中变异 发生 的概 率很低 , 通常取值 在 0 . 0 0 1 ~ 0 . 0 1 之 间。变异为新个 体
粒子群优化算法
粒子群优化算法的基本原理是利用群体中粒子的运动状态和个体最优解以及全局最优解之间的关系。通过不断更新粒子的速度和位置
每个粒子都有一个速度和位置,粒子在搜索空间中的运动状态由速度和位置决定
在每次迭代过程中,粒子通过比较自身的个体最优解和全局最优解,更新自己的速度和位置,以便更好地适应整个群体的运动。更新的公式如下
粒子群优化算法在函数优化中的应用
粒子群优化算法可以用于优化神经网络的参数,如学习率、动量等,以提高神经网络的训练效果和性能。
参数优化
粒子群优化算法也可以用于优化神经网络的拓扑结构,如层数、神经元数等,以进一步提高神经网络的性能。
网络结构优化
粒子群优化算法在神经网络训练中的应用
特征选择
粒子群优化算法可以应用于特征选择,通过优化特征组合以提高分类器的性能。
2023
粒子群优化算法
粒子群优化算法简介粒子群优化算法的基本框架粒子群优化算法的改进粒子群优化算法的应用结论
contents
目录
01
粒子群优化算法简介
粒子群优化算法是一种群体智能优化算法,通过模拟鸟群、鱼群等动物群体的社会行为,利用群体中个体之间的相互作用和信息共享,寻找问题的最优解。
粒子群优化算法的基本思想是将每个个体看作是在搜索空间中自由运动的粒子,粒子的运动状态由速度和位置决定,粒子通过不断更新自身的速度和位置来适应整个群体的运动,最终达到全局最优解。
选择最优解
03粒子群优化算法的改进来自对初始粒子群的敏感依赖
惯性权重的固定值问题
对速度更新公式的依赖
粒子群优化算法的局限性
VS
根据算法的迭代过程和性能,动态调整惯性权重的值,使算法更好地平衡探索和开发能力。
多种惯性权重的选择
粒子群优化算法的使用技巧及收敛性分析
粒子群优化算法的使用技巧及收敛性分析一、引言粒子群优化算法(Particle Swarm Optimization, PSO)是一种基于群体智能的优化算法,通过模拟鸟群或鱼群的行为规律,实现问题的优化求解。
PSO算法以其简单、易于实现和收敛速度较快等特点,在函数优化、组合优化、机器学习等问题领域得到广泛应用。
本文将介绍PSO算法的使用技巧,并对其收敛性进行分析。
二、PSO算法的基本原理1. 群体模型PSO算法通过模拟一个由多个粒子组成的群体,每个粒子代表一个解,而群体的状态则代表问题的整体解空间。
每个粒子都有自身的位置和速度信息,并根据自身经验和群体经验进行更新。
2. 迭代更新对于每个粒子,其速度和位置的更新遵循一定的规则。
粒子会根据自身的经验和群体的经验,调整自身的速度和位置,以期望获得更好的解。
3. 适应度评估在每次迭代中,需要计算每个粒子的适应度值,即问题的目标函数。
适应度值用于评估每个粒子的优劣,进而决定其对下一次迭代中的速度和位置更新的影响力。
三、PSO算法的使用技巧1. 设置合适的参数PSO算法的性能很大程度上取决于参数的选择,因此合理设置参数是使用PSO算法的关键。
常用的参数包括群体规模、最大迭代次数、惯性权重等。
通过实验和经验调整参数,可以帮助PSO算法更快地找到最优解。
2. 速度和位置更新策略PSO算法中,速度和位置的更新策略也对算法的性能有着重要影响。
研究表明,较好的速度更新策略包括全局最优化策略(Global Best)、局部最优化策略(Local Best)以及混合策略。
在实际应用中,可以根据问题的特点选择适合的速度更新策略。
3. 高效的适应度评估适应度评估是PSO算法中的一个重要环节。
在大规模问题上,适应度评估可能成为算法的瓶颈。
为了提高评估效率,可以采用并行计算、近似式计算等方法,并结合实际问题的特点进行优化。
四、PSO算法的收敛性分析PSO算法的收敛性研究是评价算法性能的重要指标之一。
粒子群定位算法
粒子群定位算法粒子群定位算法(Particle Swarm Optimization, PSO)是一种基于群体智能的优化算法,通过模拟鸟群或鱼群等群体行为,来解决复杂的优化问题。
本文将介绍粒子群定位算法的原理、流程以及应用领域。
一、原理粒子群定位算法的原理基于群体智能的思想。
在算法中,将待优化问题看作是一个多维空间中的搜索问题,通过在解空间中的多个解(粒子)之间进行信息交流和协作,逐步逼近最优解。
每个粒子都有自己的位置和速度,通过更新速度和位置来搜索最优解。
二、流程粒子群定位算法的流程如下:1. 初始化粒子群:随机初始化一群粒子的位置和速度。
2. 计算适应度:根据问题设定的适应度函数,计算每个粒子的适应度。
3. 更新个体最优位置:对于每个粒子,根据当前位置和个体历史最优位置更新个体最优位置。
4. 更新全局最优位置:对于整个粒子群,根据所有粒子的个体历史最优位置更新全局最优位置。
5. 更新速度和位置:根据个体最优位置和全局最优位置,更新粒子的速度和位置。
6. 判断终止条件:判断是否达到终止条件,如果没有则返回步骤3,否则输出全局最优位置作为最优解。
三、应用领域粒子群定位算法具有较强的全局搜索能力和快速收敛性,广泛应用于各个领域的优化问题。
以下是一些常见的应用领域:1. 机器学习:在机器学习中,粒子群定位算法可以用于优化神经网络的权重和偏置,提高模型的准确性和泛化能力。
2. 物流优化:在物流领域,粒子群定位算法可以用于优化物流路径和调度,提高物流效率和降低成本。
3. 电力系统:在电力系统中,粒子群定位算法可以用于优化电力网络的输电线路配置和电压调度,提高电力系统的稳定性和经济性。
4. 金融投资:在金融投资中,粒子群定位算法可以用于优化投资组合的权重分配,提高投资组合的收益和风险控制能力。
5. 图像处理:在图像处理中,粒子群定位算法可以用于图像分割、目标跟踪和图像增强等方面,提高图像处理的效果和速度。
粒子群算法(优化算法)毕业设计毕设论文(包括源代码实验数据,截图,很全面的)
毕业论文题目粒子群算法及其参数设置专业信息与计算科学班级计算061学号3060811007学生xx指导教师徐小平2010年I粒子群优化算法及其参数设置专业:信息与计算科学学生: xx指导教师:徐小平摘要粒子群优化是一种新兴的基于群体智能的启发式全局搜索算法,粒子群优化算法通过粒子间的竞争和协作以实现在复杂搜索空间中寻找全局最优点。
它具有易理解、易实现、全局搜索能力强等特点,倍受科学与工程领域的广泛关注,已经成为发展最快的智能优化算法之一。
论文介绍了粒子群优化算法的基本原理,分析了其特点。
论文中围绕粒子群优化算法的原理、特点、参数设置与应用等方面进行全面综述,重点利用单因子方差分析方法,分析了粒群优化算法中的惯性权值,加速因子的设置对算法基本性能的影响,给出算法中的经验参数设置。
最后对其未来的研究提出了一些建议及研究方向的展望。
关键词:粒子群优化算法;参数;方差分析;最优解IIParticle swarm optimization algorithm and itsparameter setSpeciality: Information and Computing ScienceStudent: Ren KanAdvisor: Xu XiaopingAbstractParticle swarm optimization is an emerging global based on swarm intelligence heuristic search algorithm, particle swarm optimization algorithm competition and collaboration between particles to achieve in complex search space to find the global optimum. It has easy to understand, easy to achieve, the characteristics of strong global search ability, and has never wide field of science and engineering concern, has become the fastest growing one of the intelligent optimization algorithms. This paper introduces the particle swarm optimization basic principles, and analyzes its features. Paper around the particle swarm optimization principles, characteristics, parameters settings and applications to conduct a thorough review, focusing on a single factor analysis of variance, analysis of the particle swarm optimization algorithm in the inertia weight, acceleration factor setting the basic properties of the algorithm the impact of the experience of the algorithm given parameter setting. Finally, its future researched and prospects are proposed.Key word:Particle swarm optimization; Parameter; Variance analysis; Optimal solutionIII目录摘要 (II)Abstract ............................................................................................................................. I II 1.引言. (1)1.1 研究背景和课题意义 (1)1.2 参数的影响 (1)1.3 应用领域 (2)1.4 电子资源 (2)1.5 主要工作 (2)2.基本粒子群算法 (3)2.1 粒子群算法思想的起源 (3)2.2 算法原理 (4)2.3 基本粒子群算法流程 (5)2.4 特点 (6)2.5 带惯性权重的粒子群算法 (7)2.7 粒子群算法的研究现状 (8)3.粒子群优化算法的改进策略 (9)3.1 粒子群初始化 (9)3.2 邻域拓扑 (9)3.3 混合策略 (12)4.参数设置 (14)4.1 对参数的仿真研究 (14)4.2 测试仿真函数 (15)4.3 应用单因子方差分析参数对结果影响 (33)4.4 对参数的理论分析 (34)5结论与展望 (39)致谢 (43)附录 (44)IV11.引言1.1 研究背景和课题意义“人工生命”是来研究具有某些生命基本特征的人工系统。
粒子群算法研究及其工程应用案例
粒子群算法研究及其工程应用案例一、概述随着现代制造业对高精度生产能力和自主研发能力需求的提升,优化指导技术在精确生产制造领域中的应用日益广泛。
粒子群优化算法(Particle Swarm Optimization,PSO)作为一种基于群体智能的优化算法,因其结构简单、参数较少、对优化目标问题的数学属性要求较低等优点,被广泛应用于各种工程实际问题中。
粒子群算法起源于对鸟群捕食行为的研究,通过模拟鸟群或鱼群等群体行为,利用群体中的个体对信息的共享,使整个群体的运动在问题求解空间中产生从无序到有序的演化过程,从而找到最优解。
自1995年由Eberhart博士和kennedy博士提出以来,粒子群算法已成为一种重要的进化计算技术,并在工程应用中展现出强大的优势。
在工程应用中,粒子群算法可用于工艺参数优化设计、部件结构轻量化设计、工业工程最优工作路径设计等多个方面。
通过将粒子群算法与常规算法融合,可以形成更为强大的策略设计。
例如,在物流路径优化、机器人路径规划、神经网络训练、能源调度优化以及图像分割等领域,粒子群算法都取得了显著的应用成果。
本文旨在深入研究粒子群算法的改进及其工程应用。
对优化理论及算法进行分析及分类,梳理粒子群算法的产生背景和发展历程,包括标准粒子群算法、离散粒子群算法(Discrete Particle Swarm Optimization, DPSO)和多目标粒子群算法(Multi Objective Particle Swarm Optimization Algorithm, MOPSO)等。
在此基础上,分析粒子群算法的流程设计思路、参数设置方式以及针对不同需求得到的改进模式。
结合具体工程案例,探讨粒子群算法在工程实际中的应用。
通过构建基于堆栈和指针概念的离散粒子群改进方法,分析焊接顺序和方向对高速铁路客车转向架构架侧梁的焊接残余应力和变形的影响。
同时,将粒子群算法应用于点云数据处理优化设计,提高曲面重建和粮食体积计算的精度和效率。
粒子群优化算法理论及应用
粒子群优化算法理论及应用粒子群优化算法(Particle Swarm Optimization, PSO)是一种基于群体智能的优化算法,模拟了鸟群或鱼群等生物群体的行为。
它具有简单易实现、收敛速度快等优点,被广泛应用于函数优化、机器学习、图像处理、工程设计等领域。
粒子群优化算法以群体的方式来解决优化问题,其中每个个体被称为粒子,每个粒子代表一个解。
粒子的目标是找到最优解或尽量接近最优解。
每个粒子通过迭代不断地更新自身的位置和速度,以及记录自身的最佳位置和全局最佳位置,通过群体的协作来逐渐靠近最佳解。
粒子的位置表示解空间中的一个候选解,速度表示粒子移动的方向和距离。
每个粒子根据自己的当前位置和速度,以及最佳位置和全局最佳位置,更新自己的速度和位置。
这种更新过程包括两个方面的信息:个体认知(局部)和群体认知(全局)。
个体认知是指粒子根据自身经验来更新速度和位置,群体认知是指粒子根据全局最佳位置来更新速度和位置。
具体算法步骤如下:1.初始化粒子群,包括粒子的初始位置和速度。
2.对于每个粒子,根据当前位置计算适应度值,并记录个体最佳位置。
3.根据全局最佳位置,更新每个粒子的速度和位置。
4.判断是否达到停止条件,如果没有,则返回第2步;否则输出全局最佳位置作为最优解。
粒子群优化算法有很多应用。
其中最常见的是在函数优化中。
通过寻找函数的最小值或最大值,可以帮助解决实际问题中的约束优化、参数优化、函数拟合等任务。
在机器学习领域,粒子群优化算法可以用于优化神经网络中的权重和阈值,提高神经网络的性能。
在图像处理中,可以利用粒子群优化算法来进行图像分割、特征选择和图像重建等任务。
在工程设计中,粒子群优化算法可以用于优化传感器布局、机器人路径规划、电力系统调度等问题。
总之,粒子群优化算法是一种简单而有效的优化算法,可以用于解决各种优化问题。
通过模拟生物群体的行为,粒子群优化算法能够快速找到最优解或近似最优解,广泛应用于科学研究和工程实践中。
粒子群算法组合优化
粒子群算法组合优化引言:组合优化问题是指在给定一组元素的情况下,通过选择其中的若干个元素,使得满足一定条件的目标函数取得最优值的问题。
在实际应用中,组合优化问题非常普遍,例如旅行商问题、背包问题等。
粒子群算法(Particle Swarm Optimization,简称PSO)是一种用于求解组合优化问题的优化算法,它模拟了鸟群觅食的过程,并通过群体合作来寻找全局最优解。
本文将详细介绍粒子群算法的原理、优缺点以及应用实例等内容。
一、粒子群算法的原理1.初始化粒子群:随机生成一组粒子,并为每个粒子分配一个随机的位置和速度。
2.计算适应度:根据问题的目标函数,计算每个粒子的适应度值。
3.更新粒子速度和位置:根据粒子自身的历史最优位置和全局最优位置,通过以下公式更新粒子的速度和位置:v(t+1) = ω * v(t) + c1 * rand( * (pbest - x(t)) + c2 *rand( * (gbest - x(t))x(t+1)=x(t)+v(t+1)其中,v(t)表示粒子在时刻t的速度,x(t)表示粒子在时刻t的位置,pbest表示粒子的历史最优位置,gbest表示全局最优位置,ω、c1、c2为控制速度更新的参数,rand(为随机函数。
4.更新粒子的历史最优位置和全局最优位置:如果当前位置的适应度值优于粒子的历史最优位置,则更新历史最优位置;如果当前位置的适应度值优于全局最优位置,则更新全局最优位置。
5.判断停止条件:如果满足停止条件(例如达到最大迭代次数或达到目标适应度值),则结束算法,否则返回步骤3二、粒子群算法的优缺点1.基于群体智能:粒子群算法模拟了鸟群觅食的过程,通过粒子之间的合作和信息交流来最优解,具有较强的全局能力。
2.全局收敛性:粒子群算法通过不断更新全局最优位置,可以快速收敛到全局最优解。
3.直观简单:粒子群算法的原理简单,易于理解和实现。
4.并行计算:粒子群算法中的每个粒子都可以进行并行计算,可加速求解过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
粒子群算法原理及其在函数优化中的应用1粒子群优化(PSO)算法基本原理1.1标准粒子群算法假设在一个D 维的目标搜索空间中,有 m 个代表问题潜在解的粒子组成一 个种群x [X i ,X 2,...,X m ],第i 个粒子的信息可用D 维向量表示为 X i [X ii , X i2,..., X iD ]T ,其速度为V i [V ii ,V i2,...,V iD ]T 。
算法首先初始化m 个随机粒子,然后通过迭代找到最优解。
每一次迭代中,粒子通过跟踪2个极值进行信息 交流,一个是第i 个粒子本身找到的最优解,称之为个体极值,即 P i [P il , P i2,...,厢]丁 ;另一个是所有粒子目前找到的最优解,称之为群体极值, 即P g [P gi ,P g2,..., P gD 「。
粒子在更新上述2个极值后,根据式(1)和式(2)更新自己的速度和位置。
t 1 t t t t t\V iWV i C 1「1(P i X i ) C 2「2(P g X i ) 式中,t 代表当前迭代次数,「1,「2是在[0,1]之间服从均匀分布的随机数,C 1,C 2 称为学习因子,分别调节粒子向个体极值和群体极值方向飞行的步长, w 为惯性 权重,一般在0.1~0.9之间取值。
在标准的PSO 算法中,惯性权重w 被设为常数, 通常取w 0.5。
在实际应用中,x 需保证在一定的范围内,即x 的每一维的变化 范围均为[X min ,X max ],这在函数优化问题中相当丁自变量的定义域1.2算法实现步骤步骤1:表示出PSO 算法中的适应度函数fitness(x);(编程时最好以函数的 形式保存,便丁多次调用。
)步骤2:初始化PSO 算法中各个参数(如粒子个数,惯性权重,学习因子, 最大迭代次数等),在自变量x 定义域内随机初始化x ,代入fitness(x)求得适应 度值,通过比较确定起始个体极值P i 和全局极值P g 。
步骤3:通过循环迭代更新x 、p i 和p g :① 确定惯性权重w 的取值(当w 不是常数时)。
② 根据式(1)更新粒子的速度V :1,若速度中的某一维超过了 V max ,则取为 Vmax - ③ 根据式(2)更新自变量x ,若x 的取值超过其定义域,则在其定义域内重新 初t 1 X i t t 1X i Vi始化。
④代入fitness(x)求得适应度值,通过比较更新个体极值P i和全局极值p g <步骤4:判断是否满足终止条件(通常设为达到最大迭代次数或达到估计精度要求),若不满足,则转入步骤(3),若满足,则输出估计结果,算法结束。
2程序实现2.1各种测试函数(适应度函数)测试函数是用来测试算法性能的一些通用函数,下面先给出一些测试函数的三维图(自变量为两维,加上函数值共三维)如图1-图17所示。
图1测试函数14321-110图2测试函数2250020001500100050010图4测试函数410.5-0.55-5 -5f610.80.60.40.25图8测试函数8-100 -100 120 100 80 60 40 20 0 10 100 80 60 40 20 0 100图10测试函数10-10 -10 0 -2 -4 -6 -8 10 200 150 100 50 0 10图12测试函数12-10 -10 1 0.8 0.6 0.4 0.2 0 10 15 10 5 0 10201510510图14测试函数14120100806040102502001501005010图16测试函数162.521.510.510-10-102.2程序实现首先给出绘制测试函数的程序:%%绘图测试函数 draw_fitness.m clear;clc;close all;%%[x,y]=meshgrid(-10:0.5:10);z2 = x.A 2-cos(18*x)+y.A 2-cos(18*y);figure(1); surf(x,y,z2); minz2=min(min(z2));title( 'z2 = xA2-cos(18*x)+yA2-cos(18*y)');%%z4 = 4*x.A2-2.1*x.A4+x.A6/3+x.*y-4*y.A2+y.A4;figure(2); surf(x,y,z4); minz4=min(min(z4));title( 'z4 = 4*xA2-2.1*xA4+xA6/3+x*y-4*yA2+yA4');%%z5 = (y-5.1*x.A2/4/pi/pi+5*x/pi-6).A2+10*(1-1/8/pi)*cos(x)+10; figure(3); surf(x,y,z5);minz5=min(min(z5));title( 'z5 = (y-5.1*xA2/4/\pi/\pi+5*x/\pi-6)A2+10*(1-1/8/\pi)*cos(x)+10' );%% [x,y]=meshgrid(-5:0.5:5);z7 = x.*exp(-x.A2-y.A2);a=(cos(x)).A 4+(cos(y)).A 4;b=-2*((cos(x)).人2.*(cos(y)).人2);figure(4); surf(x,y,z7); minz7=min(min(z7));title( %%[x,y]=meshgrid(-5:0.25:5);z8 = 3*(1-x).A2.*exp(-(x.A2) - &+1)人2) ...-10*(x/5 - x.A3 - y.A5).*exp(-x.A2-y.A2)-1/3*exp(-(x+1).A2 - y.A2);figure(5); surf(x,y,z8); minz8=min(min(z8)); title( %%r=sqrt(x.A2+y.A2)+eps; z9=sin(r)./r;figure(6); surf(x,y,z9); minz9=min(min(z9));title(%% [x,y]=meshgrid(-5:0.25:5);num=sin(sqrt(x.A2+y.A2)).A2 - 0.5;den=(1.0+0.01*(x.A2+y.A2)).A2;z10=0.5 +num./den;figure(7); surf(x,y,z10); minz10=min(min(z10));title(%% [x,y]=meshgrid(-10:0.5:10);z12=abs(x)+abs(y)+abs(x).*abs(y);figure(8); surf(x,y,z12); minz12=min(min(z12));%%[x,y]=meshgrid(-100:5:100);z13=max(abs(x),abs(y));figure(9); surf(x,y,z13); minz13=min(min(z13));%%[x,y]=meshgrid(0:0.5:10);z7 = x*exp(-xA2-yA2)');'z8 ');r=sqrt(xA2+yA2)+eps; z9=sin(r)/r;');'f6');c=sqrt(x.A2+2*y.A2);z14=-abs((a-b)./c);figure(10); surf(x,y,z14); minz14=min(min(z14));%%[x,y]=meshgrid(-10:0.5:10);NDparabola=x.A2+y.A2;figure(11); surf(x,y,NDparabola); title( 'NDparabola');%%[x,y]=meshgrid(-10:0.5:10);num=sin(sqrt(x.A2+y.A2)).A2 - 0.5;den=(1.0+0.01*(x.A2+y.A2)).A2;f6=0.5 +num./den;figure(12); surf(x,y,f6); title( 'f6');%%Rosenbrock=100*(x."2 - y)<2 + (1-x).A2;figure(13); surf(x,y,Rosenbrock); title( 'Rosenbrock');%%[x,y]=meshgrid(-10:0.5:10);ackley=20 + exp(1) -20*exp(-0.2*sqrt((1/2).*(x.A2+y.A2)))...-exp((1/2).*(cos(2*pi*x)+cos(2*pi*y)));figure(14); surf(x,y,ackley);title( 'ackley');%%[x,y]=meshgrid(-10:0.5:10);px1=((x) >= 0);px2=((y) >= 0);tripod= px2.*(1+px1) + abs(x + 50*px2.*(1-2*px1))+ abs(y + 50*(1-2.*px2));figure(15); surf(x,y,tripod); title( 'tripod');%%[x,y]=meshgrid(-10:0.5:10);Rastrigin=(x.A2-10*cos(2*pi*x)+10)+(y.A2-10*cos(2*pi*y)+10);figure(16); surf(x,y,Rastrigin); title( 'Rastrigin');%%[x,y]=meshgrid(-10:0.3:10);Griewank=1/4000*(x.A2+y.A2)-cos(x).*cos(y./sqrt(2))+1;figure(17); surf(x,y,Griewank); title( 'Griewank'); 以上只是绘制测试函数的m 文件,其目的在丁对测试函数有一个直观的认识。
但以上的程序在PSC 算法的实现中是用不着的,下面给出几个典型测试函数的代 码。
需要注意的是,一次只能调用其中一个测试函数。
%%典型测试函数的调用函数fitness.m%%function [out]=NDparabola(in) out = sum(in.A 2, 2);%%% function [out]=f6(in) % x=in(:,1);% y=in(:,2);% num=sin(sqrt(x.A2+y.A2)).A2 - 0.5;% den=(1.0+0.01*(x.A2+y.A2)).A2;% out=0.5 +num./den;%%% function [out]=DeJong_f2(in)% x= in(:,1);% y= in(:,2);% out = 100*(x.A2 - y).A2 + (1-x).A2;%%% function [out]=ackley(in)% % dimension is # of columns of input, x1, x2, ..., xn % n=length(in(1,:));% x=in;% e=exp (1);% out = (20 + e ...% -20*exp(-0.2*sqrt((1/n).*sum(x.A2,2))) ... % -exp((1/n).*sum(cos(2*pi*x),2)));% return%%% function [out]=tripod(in)% x1=in(:,1);% x2=in(:,2);% px1=((x1) >= 0);% px2=((x2) >= 0);% out= ( px2.*(1+px1) ...% + abs(x1 + 50*px2.*(1-2*px1))...% +abs(x2 + 50*(1-2.*px2))); %%% function F=Rastrigin(in)% F=sum(in.A2-10*cos(2*pi*in)+10);%%% function y=Griewank(in)% [row,col]=size(in);% y1=1/4000*sum(in.A2);%y2=1;% for h=1:col% y2=y2*cos(in(h)/sqrt(h));% end% y=y1-y2+1;下面以测试函数ackley 为例,给出基本粒子群算法的程序实现代码:A 、 主程序(可运行的程序) drawPSO.m :%基丁 PSO 算法的函数寻优收敛图绘制 drawPSO.m clear;clc;close all; %活除变量,活除命令窗口, %%%函数调用,注意函数fitness 前要加@[gbest,M,xmin,fmin]=PSO(@fitness,5,2,1.5,0.5,50,2);figure(1); k=1:M; plot(k,gbest,':rp','LineWidth',2);title('ackley 函数收敛曲线');xlabel('迭代次数'),ylabel('适应度函数最小值'); B 、PSO 算法实现程序PSO.m (核心程序)下面给出的是基本粒子群算法程序,没有做任何改进,但却很有效。