几种IGBT驱动电路的保护电路原理图
IGBT驱动电路设计分析
IGBT驱动电路设计分析摘要:IGBT在变流器中应用广泛,而驱动器对安全、可靠应用器件至关重要。
文章分析了IGBT驱动电路主要的功能及工作原理并通过试验对部分功能进行验证分析,对驱动电路设计有一定指导意义。
关键词:IGBT;驱动电路;保护电路0引言IGBT驱动电路的任务是将控制器输出的PWM信号,转换为作用在IGBT栅射极之间的电压信号,从而使IGBT导通或关断。
性能良好的驱动电路,不仅可以缩短IGBT的开关时间,减小损耗,而且保护电路可以抑制过电压,并在故障时关断IGBT以保护器件和维护整个系统的安全。
本文从IGBT特性出发,针对IGBT驱动板,分析其主要的功能及工作原理并通过试验对部分功能进行验证分析。
1.IGBT工作特性IGBT是MOSFET与双极晶体管的复合器件[1],简化等效电路见图1,是压控型器件。
但IGBT存在着结电容及杂散电感,使得IGBT的驱动波形与理想驱动波形有差异。
图1 N沟道IGBT简化等效电路图IGBT的开关是由栅极电压来控制的。
当在栅极加正向电压时,MOSFET内形成沟道,并为PNP晶体管提供基极电流,进而使IGBT导通。
当在栅极上施加反向电压时MOSFET的沟道消除,PNP晶体管和基极电流被切断,IGBT被关断。
图2驱动电路结构图2 .IGBT驱动电路结构及功能介绍2.1IGBT驱动结构框图本文基于英飞凌FZ1600R17KE3器件,进行驱动电路设计。
驱动电路结构如图2所示:在框图中电源电路既实现了电源的隔离又为驱动电路提供了合适的正负电压;下方的驱动电路接收PWM信号,其通过信号隔离进入逻辑和功率放大电路,进而驱动IGBT的通断,通过设置有源箝位、短路保护等对器件进行保护。
2.2信号电气隔离IGBT驱动电路电气隔离常用的三种方式[2]:⑴光耦隔离方式光耦的隔离原理见图3,输入信号为高电平时,发光二极管上发出光信号,光敏三极管接收光信号后导通并产生电平信号,从而实现“电—光—电”的转换。
各种IGBT驱动电路
专题---讨论igbt驱动电路|电源网864x490 - 92KBigbt模块驱动电路图533x358 - 18KB[图]三相逆变器中IGBT的几种驱动电路的分析控制308x278 - 10KBigbt驱动电路图|驱动电路433x383 - 44KB几种驱动电路的分析339x248 - 18KBigbt驱动电路 - 电子发烧友网610x321 - 69KB某新型大功率三相半桥加热IGBT驱动电路817x523 - 49KB图3(a)+igbt驱动电路400x331 - 21KB【图】脉冲变压器隔离驱动igbt电路原理图电源电392x260 - 15KBigbt驱动电路和缓冲电路的设计660x354 - 62KB请问大家igbt驱动电路都有哪些型号,哪些公司在853x655 - 215KBigbt驱动电路_资讯_中国igbt网手机版174x199 - 5KBigbt应用电路:由集成电路tlp250构成的驱动器电路800x521 - 43KB电磁炉igbt管驱动单元电路工作原理519x397 - 26KB请问大家IGBT驱动电路都有哪些型号,哪些公司在1018x692 - 95KB电源电路图+igbt驱动电路800x764 - 62KB奉献一款好的IGBT驱动电路908x642 - 183KBigbt驱动保护电路的设计和性能分析323x227 - 3KB【图】igbt电路原理图电源电路608x316 - 36KB并简化igbt驱动器的原理图340x234 - 7KBigbt驱动电路,igbt驱动电路图,igbt驱动电路的选432x332 - 22KBigbt驱动电路,igbt驱动电路图,igbt驱动电路的选846x430 - 56KBIGBT模块,可控硅整流桥 IGBT驱动电路 - FF20500x375 - 15KBigbt驱动电路,igbt驱动电路图,igbt驱动电路的选811x354 - 75KB适合感应加热电源的IGBT驱动电路-电子电路图504x446 - 68KB用于有源电力滤波器的IGBT驱动电路图_电路图500x408 - 33KB一种适合感应加热电源的IGBT驱动电路,采用IX737x557 - 73KB下桥臂IGBT驱动电路图-原理图-模拟电子-电子510x412 - 63KB单电源供电的IGBT驱动电路在铁路辅助电源系551x319 - 62KB艾美特电磁炉IGBT驱动电路分析 -广电电器网-571x361 - 27KBIGBT驱动电路M57962L的剖析 - 泉州玉伙电子580x390 - 50KBIGBT驱动电路609x361 - 30KB求MOSFET/IGBT驱动电路1069x805 - 117KB。
IGBT保护电路
1.3.2 IGBT短路保护电路策略从IGBT短路波形图可知,当IGBT短路发生时,电流上升至IGBT的4倍额定电流,驱动保护电路要将这个电流关断,这时的电流值比逆变器正常电流高4倍以上,势必产生很高的电压尖峰。
为了防止电压尖峰损坏IGBT,需要引入有源钳位电路。
因此,大功率IGBT短路保护电路的控制策略:(1)短路保护电路;(2)有源钳位电路。
1.3.3 大功率IGBT驱动电路的设计规范大功率IGBT驱动电路的设计规范:(1)采用隔离变压器;(2)采用Vcesat饱和压降进行短路检测和管理,包括软关断动作,以及采用不同的门极电阻进行开通和关断。
由于大功率IGBT驱动电路复杂,本文以瑞士CONCEPT公司最新推出的第二代SCALE-2模块2SC0435T作为核心部件,设计驱动电路。
与第一代SCALE-1模块2SD315A比较,2SC0435T改进了短路保护功能,增加了有源钳位功能。
2 大功率IGBT短路保护电路设计2.1 SCALE模块的内部结构SCALE模块内部主要由三个功能模块构成,即逻辑驱动转化接口LDI、电气隔离模块和智能栅极驱动IGD。
第一个功能模块是由辅助电源和信号输入两部分组成。
其中信号输入部分主要将控制器的PWM信号进行整形放大,并根据需要进行控制,之后传递到信号变压器,同时检测从信号变压器返回的故障信号,将故障信号处理后发送到故障输出端;辅助电源的功能是将输入的直流电压经过单端反激式变换电路,转换成两路隔离电源供给输出驱动放大器使用。
第二个功能模块是电气隔离模块,由两个传递信号的脉冲变压器和传递功率的电源变压器组成。
防止功率驱动电路中大电流、高电压对一次侧信号的干扰。
第三个功能模块是驱动信号输出模块,IGD主要对信号变压器的信号进行解调和放大,对IGBT的短路和过流进行检测,并进行故障存储和短路保护。
2.2 一代SCALE-1短路保护电路图3所示为CONCEPT第一代SCALE-1的经典IGBT保护电路,工作原理是:(1)当IGBT关断时,T1导通,电流源1被T1旁路,Ca的点位被钳在低位,比较器不翻转。
IGBT驱动电路设计与保护
IGBT模块驱动及保护电路设计1 引言IGBT是MOSFET与双极晶体管的复合器件。
它既有MOSFET易驱动的特点,又具有功率晶体管电压、电流容量大等优点。
其频率特性介于MOSFET与功率晶体管之间,可正常工作于几十kHz频率范围内,故在较高频率的大、中功率应用中占据了主导地位。
IGBT 是电压控制型器件,在它的栅极?发射极间施加十几V的直流电压,只有μA级的漏电流流过,基本上不消耗功率。
但IGBT的栅极?发射极间存在着较大的寄生电容(几千至上万pF),在驱动脉冲电压的上升及下降沿需要提供数A的充放电电流,才能满足开通和关断的动态要求,这使得它的驱动电路也必须输出一定的峰值电流。
IGBT作为一种大功率的复合器件,存在着过流时可能发生锁定现象而造成损坏的问题。
在过流时如采用一般的速度封锁栅极电压,过高的电流变化率会引起过电压,为此需要采用软关断技术,因而掌握好IGBT的驱动和保护特性是十分必要的。
2 栅极特性IGBT的栅极通过一层氧化膜与发射极实现电隔离。
由于此氧化膜很薄,其击穿电压一般只能达到20~30V,因此栅极击穿是IGBT失效的常见原因之一。
在应用中有时虽然保证了栅极驱动电压没有超过栅极最大额定电压,但栅极连线的寄生电感和栅极-集电极间的电容耦合,也会产生使氧化层损坏的振荡电压。
为此。
通常采用绞线来传送驱动信号,以减小寄生电感。
在栅极连线中串联小电阻也可以抑制振荡电压。
由于IGBT的栅极-发射极和栅极-集电极间存在着分布电容Cge和Cgc,以及发射极驱动电路中存在有分布电感Le,这些分布参数的影响,使得IGBT 的实际驱动波形与理想驱动波形不完全相同,并产生了不利于IGBT开通和关断的因素。
这可以用带续流二极管的电感负载电路(见图1)得到验证。
(a)等效电路(b)开通波形图1 IGBT开关等效电路和开通波形在t0时刻,栅极驱动电压开始上升,此时影响栅极电压uge上升斜率的主要因素只有Rg和Cge,栅极电压上升较快。
IGBT驱动电路解说
1.IGBT驱动电路的要求驱动电路的作用是将单片机输出的脉冲进展功率放大,以驱动IGBT,保证IGBT的可靠工作,驱动电路起着至关重要的作用,图1为典型的PWM信号控制图腾柱电路以驱动IGBT开通与关断。
对IGBT驱动电路的根本要求如下:图1 IGBT典型驱动电路○1触发脉冲要有足够快的上升速度和下降速度,即脉冲沿前后要陡峭;○2栅极串联电阻Rg要恰当,Rg过小,关断时间过短,关断时产生的集电极尖峰电压过高,Rg过大,器件开关速度降低,开关损耗增大。
)要恰当,增大删射正偏压对减小开通损耗与导通损耗○3栅极-射极电压(VGE有利,但也会使IGBT承受短路时间变短,续流二极管反向恢复电压增大。
因此正偏压要适当,通常为+15V。
为了保证在C-E间遇到噪声时可靠关断,关断时必须在栅极施加负偏压,以防止受到干扰时误开通和加快关断速度,减小关断损耗,幅值一般为-〔5~10〕V。
○4当IGBT处于负载短路或过流状态时,能在IGBT允许的时间通过逐渐降低栅极电压自动抑制故障电流,实现IGBT的软关断。
驱动电路的软关断过程不应随输入信号的消失而受到影响。
下面从以上四个方面分析三种驱动模块电路〔驱动电路EXB841/840、SD315A集成驱动模块、M57959L/M57962L厚膜驱动电路〕的特性。
2.驱动电路EXB841/8402.1.EXB841驱动芯片的部特性及其原理EXB841驱动芯片是可作为600V400A或者1200V300A以下的IGBT驱动电路,具有单电源、正负偏压、过流检测及保护、软关断等特性。
驱动模块导通与关断时间都在1.5µs以。
最大允许的开关频率为40KHz。
EXB 系列驱动器的各引脚功能如下:脚 1 :连接用于反向偏置电源的滤波电容器;脚 2 :电源〔+ 20V 〕;脚 3 :驱动输出;脚4 :用于连接外部电容器,以防止过流保护电路误动作〔大多数场合不需要该电容器〕;脚 5 :过流保护输出;脚 6 :集电极电压监视;脚 7 、 8 :不接;脚 9 :电源地;脚 10 、 11 :不接;脚 14 、 15 :驱动信号输入〔一,+〕;图2驱动电路EXB841/840EXB841 由放大局部、过流保护局部和5V 电压基准局部组成。
IGBT模块电路结构
IGBT模块电路结构2.1 单管模块一般说来,单管IGBT模块其额定电流比较大,是由多个IGBT芯片和快恢复二极管(FRD)芯片在模块内部并联而成,其电路结构如图1所示。
表1给出了美国IR公司在中国的合资公司西安爱帕克公司生产的单管IGBT模块型号及电性能参数。
图1 单管电路结构图2 半桥电路结构2.2 半桥模块半桥IGBT模块也称为2单元模块,是一个桥臂,其内部电路结构如图2所示。
表2给出了西安爱帕克公司生产的半桥IGBT模块型号及电性能参数。
两只半桥IGBT模块可组成全桥(H桥)逆变电路。
2.3 高端模块高端IGBT模块其内部电路结构如图3(a)和图3(b)所示。
图3(a)为斩波器应用电路结构,图3(b)为感应加热应用电路结构。
表2给出了西安爱帕克公司生产的高端IGBT 模块型号及电性能参数。
图3(a) 高端电路结构图3(b) 高端电路结构2.4 低端模块低端IGBT模块其内部电路结构如图4(a)图4(b)所示。
图4(a)为斩波器应用电路结构,图4(b)为感应加热应用电路结构。
表2给出了西安爱帕克公司生产的低端IGBT 模块型号及电性能参数。
3 IGBT模块驱动保护要点3.1 IGBT栅极驱动电压Uge理论上Uge≥Uge(th),即栅极驱动电压大于阈值电压时IGBT即可开通,一般情况下阈值电压Uge(th)=5~6V。
为了使IGBT开通时完全饱和,并使通态损耗最小,又具有限制短路电流能力,栅极驱动电压Uge需要选择一个合适的值。
当栅极驱动电压Uge增加时,通态压降减小,通态损耗减小,但IGBT承受短路电流能力减小;当Uge太大时,可能引起栅极电压振荡,损坏栅极。
当栅极驱动电压Uge减小时,通态压降增加,通态损耗增加,但IGBT承受短路电流能力提高。
为获得通态损耗最小,同时IGBT又具有较好的承受短路电流能力,通常选取栅极驱动电压Uge≥D*Uge(th),系数D=1.5、2、2.5、3。
当阈值电压Uge(th)为6V时,栅极驱动电压Uge则分别为9V、12V、15V、18V;栅极驱动电压Uge折中取12V~15V为宜,12V最佳。
IGBT MOSFET原理和保护方法
IGBT的保护方法IGBT有两个电流:电子流和空穴流。
电子流:E极的N+区-------栅极和P型半导体接触面的沟道------很厚的N-区-----P+区C极。
空穴流:C极P+区---------很厚的N-区--------穿过弧形的PN结J2结(J2的PN结对空穴有吸引力、加速作用)--------到达弧形的P区-------在弧形P区内向上-------到达发射极。
发射极金属层把发射区N+和弧形P区的上端短路,使J1的PN结两侧的发射N+和弧形P区上部短路,发射区N+区内的电子,受到PN结的阻挡,不能跨过圆弧状的P区,只能从圆弧P区与栅极之间的沟道流出发射区到达N-区-------P+区的C极。
空穴电流,流过J1---J2之间的弧形P区,向上到达发射,在P区内流动是,P区的电子极小,在P区产生的压降很低,极上图右的Rs很小,PNP管空穴电流在Rs上压降小于0.6V,保证NPN管不导通。
上图右是IGBT的等效电路图:发射极区的电子,通过沟道------即图中的NMOS管------到达PNP管的B极-----PNP 管导通-------产生空穴流:IGBT的C极--------PNP管的发射极------PNP管的C极------Rs------IGBT的E极。
因为Rs 极小-------Rs上压降极低-------NPN管不导通。
当过流和过热时,流过Rs的电流特大------Rs上电压超过0.6V------NPN导通-------加速PNP导通-------可控硅直通--------IGBT损坏。
为什么IGBT具有大电流、低内阻、饱和压降低的特点:因为有注入区P+层,G极加高电平后,形成N沟道,发射区N+区内高浓度的电阻从N沟道跑出来,形成电子流,给PNP管提供了基极电流,PNP管导通,注入区P+区向N-区漂移区(电阻率很大)注入空穴,致使漂移区N-区电阻率下降到很低,内阻很低,在饱和导通时饱和电流特大,饱和压降特低。
IGBT高压大功率驱动和保护电路的应用及原理
IGBT高压大功率驱动和保护电路的应用及原理IGBT高压大功率驱动和保护电路的应用及原理通过对功率器件IGBT的工作特性分析、驱动要求和保护方法等讨论,介绍了的一种可驱动高压大功率IGBT的集成驱动模块HCPL-3I6J的应用关键词:IGBT;驱动保护电路;电源IGBT在以变频器及各类电源为代表的电力电子装置中得到了广泛应用。
IGBT集双极型功率晶体管和功率MOSFET的优点于一体,具有电压控制、输入阻抗大、驱动功率小、控制电路简单、开关损耗小、通断速度快和工作频率高等优点。
但是,IGBT和其它电力电子器件一样,其应用还依赖于电路条件和开关环境。
因此,IGBT 的驱动和保护电路是电路设计的难点和重点,是整个装置运行的关键环节。
为解决IGBT的可靠驱动问题,国外各IGBT生产厂家或从事IGBT应用的企业开发出了众多的IGBT驱动集成电路或模块,如国内常用的日本富士公司生产的EXB8系列,三菱电机公司生产的M579系列,美国IR公司生产的IR21系列等。
但是,EXB8系列、M579系列和IR21系列没有软关断和电源电压欠压保护功能,而惠普生产的HCLP一316J有过流保护、欠压保护和1GBT软关断的功能,且价格相对便宜,因此,本文将对其进行研究,并给出1700V,200~300A IGBT的驱动和保护电路。
1 IGBT的工作特性IGBT是一种电压型控制器件,它所需要的驱动电流与驱动功率非常小,可直接与模拟或数字功能块相接而不须加任何附加接口电路。
IGBT的导通与关断是由栅极电压UGE来控制的,当UGE大于开启电压UGE(th)时IGBT导通,当栅极和发射极间施加反向或不加信号时,IGBT被关断。
IGBT与普通晶体三极管一样,可工作在线性放大区、饱和区和截止区,其主要作为开关器件应用。
在驱动电路中主要研究IGBT的饱和导通和截止两个状态,使其开通上升沿和关断下降沿都比较陡峭。
2 IGBT驱动电路要求在设计IGBT驱动时必须注意以下几点。
IGBT驱动电路原理与保护电路
IGBT驱动电路原理与保护电路IGBT(Insulated Gate Bipolar Transistor)驱动电路是一种用于控制和驱动IGBT器件的电路,用于将低功率信号转化为高功率信号,以实现对IGBT器件的控制。
IGBT驱动电路通常由输入电路、隔离电路、输出电路和保护电路组成。
下面将详细介绍IGBT驱动电路的原理和保护电路的作用。
IGBT驱动电路的主要工作原理是通过输入信号的变化来控制IGBT的通断,从而实现对高功率负载的控制。
IGBT驱动电路一般采用CMOS电路设计,以确保高噪声抑制和良好的电磁兼容性。
常见的IGBT驱动电路分为光耦隔离和变压器隔离两种。
光耦隔离驱动电路是将输入信号与输出信号通过光电耦合器隔离,在高功率环境下提供了良好的隔离和保护。
光电耦合器的输入端通常由输入信号发生器驱动,而输出端则连接到IGBT的控制极,实现信号的传输和控制。
光耦隔离驱动电路在功率轻载和带负载的情况下都能提供良好的电气隔离,提高了系统的可靠性和稳定性。
变压器隔离驱动电路是通过变压器来实现输入和输出信号的隔离。
输入信号通过变压器的一侧传输,然后通过变压器的另一侧连接到IGBT的控制极。
变压器隔离驱动电路具有较高的耐受电压和电流能力,并能抵御噪声和干扰的影响。
IGBT保护电路的作用:IGBT是一种高功率开关设备,在工作过程中容易受到电流过大、电压过高、温度过高等因素的影响,导致过热、短路甚至损坏。
因此,为了保护IGBT设备的正常工作和延长其使用寿命,需要在IGBT驱动电路中添加一些保护电路。
常见的IGBT保护电路包括过流保护、过压保护和过温保护。
过流保护电路通过检测IGBT芯片上的电流大小来保护器件的工作。
当电流超过预设值时,保护电路会通过切断电源或降低输入信号的方式来阻止过大电流通过IGBT。
这样可以防止IGBT芯片发生过热和失效。
过压保护电路通过监测IGBT器件上的电压来保护该器件的工作。
当电压超过正常工作范围时,保护电路会通过切断电源或降低输入信号的方式来阻止过高电压对IGBT芯片的损害。
IGBT驱动电路
IGBT驱动电本文在分析了IGBT驱动条件的基础上介绍了几种常见的IGBT驱动电路,设计了一种基于光耦HCPL-316J的IGBT驱动电路。
实验证明该电路具有良好的驱动及保护能力。
绝缘门极双极型晶体管(Isolated Gate Bipolar Transistor简称IGBT)是复合了功率场效应管和电力晶体管的优点而产生的一种新型复合器件,具有输入阻抗高、工作速度快、热稳定性好驱动电路简单、通态电压低、耐压高和承受电流大等优点,因此现今应用相当广泛。
但是IGBT 良好特性的发挥往往因其栅极驱动电路设计上的不合理,制约着IGBT的推广及应用。
因此本文分析了IGBT对其栅极驱动电路的要求,设计一种可靠,稳定的IGBT驱动电路。
IGBT驱动电路特性及可靠性分析门极驱动条件IGBT的门极驱动条件密切地关系到他的静态和动态特性。
门极电路的正偏压uGS、负偏压-uGS和门极电阻RG的大小,对IGBT的通态电压、开关、开关损耗、承受短路能力及du/dt 电流等参数有不同程度的影响。
其中门极正电压uGS的变化对IGBT的开通特性,负载短路能力和duGS/dt电流有较大的影响,而门极负偏压对关断特性的影响较大。
同时,门极电路设计中也必须注意开通特性,负载短路能力和由duGS/dt电流引起的误触发等问题。
根据上述分析,对IGBT驱动电路提出以下要求和条件:(1)由于是容性输出输出阻抗;因此IBGT对门极电荷集聚很敏感,驱动电路必须可靠,要保证有一条低阻抗的放电回路。
(2)用低内阻的驱动源对门极电容充放电,以保证门及控制电压uGS有足够陡峭的前、后沿,使IGBT的开关损耗尽量小。
另外,IGBT开通后,门极驱动源应提供足够的功率,使IGBT 不至退出饱和而损坏。
(3)门极电路中的正偏压应为+12~+15V;负偏压应为-2V~-10V。
(4)IGBT 驱动电路中的电阻RG对工作性能有较大的影响,RG较大,有利于抑制IGBT 的电流上升率及电压上升率,但会增加IGBT 的开关时间和开关损耗;RG较小,会引起电流上升率增大,使IGBT 误导通或损坏。
IGBT电路工作演示稿解析
工作原理 电路分析
工作原理
IGBT(Insulated Gate Bipolar Transistor),绝 缘栅双极型晶体管,是由GTR(双极型三极管) 和MOS(绝缘栅型场效应管)组成的复合全控 型电压驱动式功率半导体器件, 兼有MOSFET 的高输入阻抗和GTR的低导通压降两方面的 优点。GTR饱和压降低,载流密度大,但驱 动电流较大;MOSFET驱动功率很小,开关速 度快,但导通压降大,载流密度小。IGBT综 合了以上两种器件的优点,驱动功率小而饱 和压降低。非常适合应用于直流电压为600V 及以上的变流系统如交流电机、变频器、开 关电源、照明电路、牵引传动等领域。
安全工作区
❖ 安全工作区SOA反映了一个晶体管同时能承受一定电压和电流的能力。 IGBT开通时为正向偏置,其安全工作区称为正向偏置安全工作区简称 FBSOA。 FBSOA于IGBT的导通时间密切关切相关。 FBSOA为矩形方 块。随着导通时间的增加,安全工作区逐渐减小,直流工作时安全工作 最小。这是因为导通时间越长,发热越严重;因而安全工作区越小。
输出 报警
驱动电路 1≦
过电流保护 R 短路保护 控制电源 控制信号 低压保护 检测信号
控制电源
输出 报警
驱动电路 1≦
过电流保护 短路保护 R
控制电源 控制信号 低压保护 检测信号
热敏元件 过热保护 检测温度信号
A B C
M
IPM优势
❖ IPM设有过流和短路保护、欠电压保护、当工作不 正常时,通过驱动电路封锁IGBT的栅极信号同时发 出警报信号;过热保护是通过设置在IPM基板上的 热敏器件检测IGBT芯片温度,当温度超过额定值时, 通过驱动电路栅极信号并报警。
GTR电路分析
三种IGBT驱动电路和保护方法详解
三种IGBT驱动电路和保护方法详解IGBT(Insulated Gate Bipolar Transistor)是一种功率开关器件,具有高压能力和快速开关速度,广泛应用于各类电力电子设备中。
为了保证IGBT的正常工作和延长寿命,需要合理设计驱动电路和采取保护措施。
以下将详细介绍三种常见的IGBT驱动电路和保护方法。
1.全桥驱动电路:全桥驱动电路使用四个驱动器来控制IGBT的开关动作,通过驱动信号的控制确保IGBT的正确触发。
全桥驱动电路的优点是开关速度快、电流能力高、噪音抵抗能力强。
驱动信号的产生可以通过模拟电路或数字电路实现,后者具有更高的可靠性和精准性。
在全桥驱动电路中,还会配备隔离变压器,用于提供与主电源隔离的驱动信号。
保护方法:(1)过温保护:通过测量IGBT芯片的温度,一旦温度超过设定值,即切断IGBT的驱动信号,防止过热损坏。
(2)过流保护:通过监测IGBT输入电流,当电流超过额定值时,切断IGBT的驱动信号,避免损坏。
(3)过压保护:检测IGBT的输入电压,当电压超过设定值时,中断驱动信号,以防止损坏。
(4)过电压保护:通过监测IGBT的输出电压,当电压异常升高时,关闭IGBT的驱动信号,避免对后续电路造成损害。
(5)失控保护:当IGBT因为故障或其他原因丧失了晶体管功能时,立即中断其驱动信号,以保护设备安全。
2.半桥驱动电路:半桥驱动电路仅使用两个驱动器来控制一个IGBT的开关动作。
相比于全桥驱动电路,半桥驱动电路简化了驱动电路的设计,成本更低。
但由于只有单个驱动器来控制IGBT,因此其驱动能力和噪音抵抗能力相对较弱。
保护方法:半桥驱动电路的保护方法与全桥驱动电路类似,包括过温保护、过流保护、过压保护、过电压保护和失控保护等。
可以将这些保护方法集成在半桥驱动电路中,一旦触发保护条件,即切断驱动信号,以保护IGBT和其他电路设备。
3.隔离式驱动电路:隔离式驱动电路通过隔离变压器将主电源与IGBT的驱动信号分隔开,能够提高系统的稳定性和安全性。
IGBT模块电路结构
IGBT模块电路结构2.1 单管模块一般说来,单管IGBT模块其额定电流比较大,是由多个IGBT芯片和快恢复二极管(FRD)芯片在模块内部并联而成,其电路结构如图1所示。
表1给出了美国IR公司在中国的合资公司西安爱帕克公司生产的单管IGBT模块型号及电性能参数。
图1 单管电路结构图2 半桥电路结构2.2 半桥模块半桥IGBT模块也称为2单元模块,是一个桥臂,其内部电路结构如图2所示。
表2给出了西安爱帕克公司生产的半桥IGBT模块型号及电性能参数。
两只半桥IGBT模块可组成全桥(H桥)逆变电路。
2.3 高端模块高端IGBT模块其内部电路结构如图3(a)和图3(b)所示。
图3(a)为斩波器应用电路结构,图3(b)为感应加热应用电路结构。
表2给出了西安爱帕克公司生产的高端IGBT 模块型号及电性能参数。
图3(a) 高端电路结构图3(b) 高端电路结构2.4 低端模块低端IGBT模块其内部电路结构如图4(a)图4(b)所示。
图4(a)为斩波器应用电路结构,图4(b)为感应加热应用电路结构。
表2给出了西安爱帕克公司生产的低端IGBT 模块型号及电性能参数。
3 IGBT模块驱动保护要点3.1 IGBT栅极驱动电压Uge理论上Uge≥Uge(th),即栅极驱动电压大于阈值电压时IGBT即可开通,一般情况下阈值电压Uge(th)=5~6V。
为了使IGBT开通时完全饱和,并使通态损耗最小,又具有限制短路电流能力,栅极驱动电压Uge需要选择一个合适的值。
当栅极驱动电压Uge增加时,通态压降减小,通态损耗减小,但IGBT承受短路电流能力减小;当Uge太大时,可能引起栅极电压振荡,损坏栅极。
当栅极驱动电压Uge减小时,通态压降增加,通态损耗增加,但IGBT承受短路电流能力提高。
为获得通态损耗最小,同时IGBT又具有较好的承受短路电流能力,通常选取栅极驱动电压Uge≥D*Uge(th),系数D=1.5、2、2.5、3。
当阈值电压Uge(th)为6V时,栅极驱动电压Uge则分别为9V、12V、15V、18V;栅极驱动电压Uge折中取12V~15V为宜,12V最佳。
IGBT驱动电路设计原理接线图
IGBT驱动电路设计原理接线图IGBT驱动电路设计原理接线图作者:德意志⼯业时间:2015-04-13 11:11IGBT驱动电路的作⽤IGBT驱动电路的作⽤是驱动IGBT模块以能让其正常⼯作,同时对IGBT模块进⾏保护。
IGBT 驱动电路的作⽤对整个IGBT构成的系统来说⾄关重要。
IGBT是电路的核⼼器件,它可在⾼压下导通,并在⼤电流下关断,在硬开关桥式电路中,功率器件IGBT能否正确可靠地使⽤起着⾄关重要的作⽤。
驱动电路就是将控制电路输出的PWM信号进⾏功率放⼤,以满⾜驱动IGBT的要求,驱动电路设计的是否合理直接关系到IGBT的安全、可靠使⽤。
IGBT驱动电路还为IGBT器件提供门极过压、短路保护、过流保护、过温保护、Vce过压保护(有源钳位)、门极⽋压保护,didt保护(短路过流保护的⼀种)。
IGBT驱动电路的设计1. 设计IGBT驱动电路需要考虑的性能参数1)IGBT在电路中承受的正反向峰值电压,可以由下⾯的公式导出:设计驱动电路时需要考虑到2-2.5倍的安全系数,可选IGBT的电压为1200V。
2)在电路中IGBT导通时需要承受的峰值电流,可以由下⾯的公式导出:2.IGBT驱动器的选择在实际电路中,栅极电阻的选择要考虑开关速度的要求和损耗的⼤⼩。
栅极电阻也不是越⼩越好,当栅极电阻很⼩时,IGBT的CE间电压尖峰过⼤栅极电阻很⼤时,⼜会增⼤开关损耗。
所以,选择IGBT驱动器时要在尖峰电压能够承受的范围内适当减⼩栅极电阻。
由于电路中的杂散电感会引起开关状态下电压和电流的尖峰和振铃,在实际的驱动电路中,连线要尽量短,并且驱动电路和吸收电路应布置在同⼀个PCB板上,同时在靠近IGBT的GE间加双向稳压管,以箝位引起的耦合到栅极的电压尖峰。
对于⼤功率IGBT,设计和选择驱动基于以下的参数要求:器件关断偏置、门极电荷、耐固性和电源情况等。
门极电路的正偏压VGE负偏压-VGE和门极电阻RG的⼤⼩,对IGBT的通态压降、开关时间、开关损耗、承受短路能⼒以及dv/dt电流等参数有不同程度的影响。
各种IGBT驱动电路
各种IGBT驱动电路
本文将讨论IGBT驱动电路,包括不同型号和公司的驱动
电路,以及一些具体应用的电路原理图和性能分析。
在三相逆变器中,IGBT的驱动电路有多种分析控制方式,需要根据具体应用场景进行选择。
某新型大功率三相半桥加热IGBT驱动电路的电路图如下,通过缓冲电路来保护IGBT,提高其使用寿命。
集成电路TLP250可以构成驱动器电路,适用于IGBT应
用电路。
而电磁炉IGBT管驱动单元电路的工作原理则需要具
体分析。
除了选型和原理的考虑,IGBT驱动电路的保护和性能也
需要进行设计和分析。
以下是一些适合不同应用场景的IGBT
驱动电路图。
FF20可控硅整流桥IGBT驱动电路
适合感应加热电源的IGBT驱动电路
用于有源电力滤波器的IGBT驱动电路图
总之,IGBT驱动电路的设计和选择需要根据具体应用场景进行考虑,同时保护和性能的分析也是必要的。
3120驱动IGBT电路
文件编号:RD09-APP-010 CBB规范HCPL3120驱动IGBT电路(VER:V1.0)拟制:时间:2009-7-17批准:时间:2009-7-17文件评优级别:□A优秀□B良好□C一般1 功能介绍该电路的功能为HCPL3120驱动小功率IGBT 。
2 详细原理图PV-PV+PC1HCPL3120● 原边输入信号:PV+与PV -光耦HCPL3120输入信号PV+和PV -,该信号为同一相上下桥的驱动信号,两个信号以差动方式输入光耦,该方式可以避免驱动信号在出错或干扰时出现上下桥同时导通——直通。
该信号为0~5V 的电平信号。
● 副边电源:+V 对VGND 电压为:+15V -V 对VGND 电压为: -10V +L 对GN 电压为:+15V -L 对 GN 电压为: -10V● 副边输出信号:信号GV+为IGBT 的门极关断与驱动信号。
该信号为-10V ~+15V 的电平信号。
当原边光耦正向导通时,+V 经过电阻R1对IGBT 门极充电,+10V 以后IGBT 导通。
为保证完全可靠导通,减去三极管饱和压降,GV +=15-0.3=14.7V 。
当原边光耦反向截止时,-V 经过电阻R1对IGBT 门极放电,-5V 以后IGBT 关断。
为保证完全可靠关断,-V=-10+0.2=-9.8V 。
其中R1,R3是一个调节开通与关断速度的电阻,其值的大小影响IGBT 的开关损耗,由于过硬与过软的关断都会影响IGBT 的使用寿命,关断时间过长将造成上下桥臂因控制电路上设置的延迟时间不够而短路,反之,开关时间过短,则电流变化率很大,引起很大的尖峰电压Ldi/dt ,并叠加在IGBT 的C 、E 间,同时过快的关断速度会造成很大的du/dt ,经过C 、G 间寄生反馈电容Cres 的作用,易造成IGBT 误导通。
在实际应用中,可根据示波器关断的波形来调节其值。
门极并联1nF电容和反串的16V稳压二极管,限制大电流关断时门极电压过冲,并联7.5K 电阻,对门极电荷泄放。
IGBT驱动的欠压保护电路及过流保护电路
IGBT驱动的欠压保护电路及过流保护电路作者:海飞乐技术时间:2017-06-19 14:321.欠压保护电路一般情况下,IGBT栅极电压V GE需要+15V才能使IGBT进入深饱和。
如果V GE低于10V时,IGBT将工作在线性区,并且很快因过热而被烧坏。
lGBT驱动要求电源电压为正电压不低于10V,负电压不低于-12V,一般欠压保护常用稳压管检测电源电压以保护IGBT。
欠压保护电路如图1所示,采用两只稳压值分别为12V和10V的稳压管Z1和Z2。
图1 欠压保护电路当正负电压均不欠压时,三极管Q6进入饱和导通,比较器LM193反向端电压被拉低,比较器正向电压由电阻分压得到,为5V左山。
所以比较器输出高电平,无欠压故障信号。
当正电压欠压时(低于10V),10V稳压管Z2不能被击穿,使得Q6截止,比较器反向端电压升高,比较器输出低电平故障信号。
当负电压欠压时(低于-12V),12V稳压管Z1阴极大于0,,使得Q6基极电压被拉低而截止,比较器也会输出电平故障信号。
2.过流保护电路通过对流保护检测及措施的研究,驱动电路采用如下过流保护电路:(1)采用饱和压降V CC(sat)检测法,来检测过流和短路情况,并且过流阈值可调,检测过流范围IGBT额定集电极电流1.2倍到10倍;(2)过流保护采用软关断的方法。
即检测到过流发生时,立即缓慢降低栅极电压,限制集电极电流继续上升,并软关断lGBT,经过固定延时后,再硬关断IGBT(此时软关断电路退出,保证故障情况下可靠关断IGBT)。
图2 过流保护电路图2所示为设计的过流保护电路。
其中RC_refA和PWM信号反向,与IGBT开通时,RC_refA变低,比较器正向端电压V ref由RCA端电压决定,其中通过改变RCA电阻和电容值,可以调节V ref大小以及参考时间长短(即电压下降时间),V ref可调范围为0V-15V。
比较器反向端通过连接检测二极管来检测IGBT饱和压降,IGBT关断时检测的V ce(sat)上升到稳压管Z3电压10V。
IGBT保护电路
UPS中IGBT保护电路分析来源:mopper 作者:mopper更新时间:2010/10/14 14:25:16摘要:一旦发生短路,lGBT的集电极电流增加到超过既定值,则C-E间的电压急剧增加。
根据这种特性,可以将短路时的集电极电流控制在一定的数值以下,但是在IGBT上仍然有外加的高电压、大电流的负荷,必须在尽量短的时间内解除这种负荷。
同时,根据IGBT的短路耐受能力,从发生短路起到电流切断为止的容许时间也受到限制。
第2页:UPS中IGBT保护电路分析(1)过电压的发生原因因为IGBT的交换速度很快,IGBT关断时,或m旺)反向恢复时会产生很高的di/df,由模块周边的配线电感引发Lx(di咐z)电压(关断浪涌电压)。
下面以IGBT关断时的电压波形为例,介绍其发生原因和抑制方法,并对具体的电路实例予以说明。
在如图1•43所示的斩波电路中,Ed为直流电源电压,认为主电路的寄生电感,L、R为负载等。
图1•44为lGBT为关断时的动作波形图。
关断浪涌电压是由于IGBT关断时主电路电流急剧变化,在主电路的寄生电感上诱发高电压而发生的。
关断浪涌电压的峰值可用式行-9)求出:式中,为关断时集电极电流变化率的最大值,当U。
证P超过RBSOA、或UCES时即导致破坏。
2)过电压的抑制方法抑制发生过电压的原因一一关断浪涌电压常用的方法有以下几种:(1)在IGBT中加上保护电路(缓冲电路),吸收浪涌电压。
在缓冲电路的电容器申使用薄膜电容,并配置在IGBT附近,使其吸收高频浪涌电压。
(2)调整IGBT的驱动电路的-U和RG减小di/df。
(3)尽量将电解电容器配置在IGBT的附近,减小配线电感,有时也使用低阻抗型的电容器,效果比较好。
3•缓冲电路的种类与特征缓冲电路分为两种:一种是在所有的元件上以一对一安装缓冲电路的个别缓冲电路;另一种是在直流母线间集中安装的集申式缓冲电路。
1)个别缓冲电路(1)RC缓冲电路如图1•45所示,其特征为:0对关断浪涌电压抑制效果明显。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几种IGBT驱动电路的保护电路原理图
第一种驱动电路EXB841/840
EXB841工作原理如图1,当EXB841的14脚和15脚有10mA的电流流过1us以后IGBT 正常开通,VCE下降至3V左右,6脚电压被钳制在8V左右,由于VS1稳压值是13V,所以不会被击穿,V3不导通,E点的电位约为20V,二极管VD,截止,不影响V4和V5正常工作。
当14脚和15脚无电流流过,则V1和V2导通,V2的导通使V4截止、V5导通,IGBT 栅极电荷通过V5迅速放电,引脚3电位下降至0V,是IGBT 栅一射间承受5V左右的负偏压,IGBT可靠关断,同时VCE的迅速上升使引脚6悬空.C2的放电使得B点电位为0V,则V S1仍然不导通,后续电路不动作,IGBT正常关断。
如有过流发生,IGBT的V CE过大使得VD2截止,使得VS1击穿,V3导通,C4通过R7放电,D点电位下降,从而使IGBT的栅一射间的电压UGE降低,完成慢关断,实现对IGBT的保护。
由EXB841实现过流保护的过程可知,EXB841判定过电流的主要依据是6脚的电压,6脚的电压不仅与VCE 有关,还和二极管VD2的导通电压Vd有关。
典型接线方法如图2,使用时注意如下几点:
a、IGBT栅-射极驱动回路往返接线不能太长(一般应该小于1m),并且应该采用双绞线接法,防止干扰。
b、由于IGBT集电极产生较大的电压尖脉冲,增加IGBT栅极串联电阻RG有利于其安全工作。
但是栅极电阻RG不能太大也不能太小,如果RG增大,则开通关断时间延长,使得开通能耗增加;相反,如果RG太小,则使得di/dt增加,容易产生误导通。
c、图中电容C用来吸收由电源连接阻抗引起的供电电压变化,并不是电源的供电滤波电容,一般取值为47 F.
d、6脚过电流保护取样信号连接端,通过快恢复二极管接IGBT集电极。
e、14、15接驱动信号,一般14脚接脉冲形成部分的地,15脚接输入信号的正端,15端的输入电流一般应该小于20mA,故在15脚前加限流电阻。