高三数学一模理科试题(附答案)
河南省开封市2023届高三一模考试 理科数学试题(后附参考答案)
![河南省开封市2023届高三一模考试 理科数学试题(后附参考答案)](https://img.taocdn.com/s3/m/50d48e1cb5daa58da0116c175f0e7cd18525187a.png)
理科数学 第 页 (共4页)开封市2023届高三年级第一次模拟考试理科数学注意事项:1.答卷前,考生务必将自己的姓名㊁考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一㊁选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A =x 12<2x<8,B =-1,0,1,2 ,则A ɘB =A .2B .-1,0C .0,1,2D .-1,0,1,22.设命题p :∀x ɪR ,e xȡx +1,则¬p 是A .∀x ɪR ,e xɤx +1B .∀x ɪR ,e x<x +1C .∃x ɪR ,e x ɤx +1D .∃x ɪR ,e x<x +13.若3+4iz 是纯虚数,则复数z 可以是A .-3+4iB .3-4iC .4+3i D.4-3i4.已知әA B C 中,D 为B C 边上一点,且B D =13B C ,则A D ң=A .13A C ң+23AB ңB .23AC ң+13A B ңC .14A C ң+34A B ңD .34A C ң+14A B ң5.已知圆锥的底面半径为1,其侧面展开图为一个半圆,则该圆锥的体积为A .3π6B .3π3C .3πD .π36.如图为甲㊁乙两位同学在5次数学测试中成绩的茎叶图,已知两位同学的平均成绩相等,则甲同学成绩的方差为A .4B .2C .3 D.27.已知x +y -3ɤ0,x -y +1ȡ0,x ȡ0,y ȡ0,则x +2y 的最大值为A .2B .3C .5 D.68.设f (x )是定义域为R 的偶函数,且在[0,+ɕ)上单调递减,则满足f (x )<f (x -2)的x 的取值范围是A .(-ɕ,-2)B .(-2,+ɕ)C .(-ɕ,1)D .(1,+ɕ)1理科数学 第 页 (共4页)9.已知数列a n 的前n 项和S n =2n +1-2,若p +q =5(p ,q ɪN *),则a p a q =A .8B .16C .32D .6410.已知点P (x ,y )到点F 1(-3,0)和点F 2(3,0)的距离之和为4,则x yA.有最大值1B .有最大值4C .有最小值1 D.有最小值-411.如图,在正方体A B C D -A 1B 1C 1D 1中,点M ,N 分别是A 1D ,D 1B 的中点,则下述结论中正确的个数为①MN ʊ平面A B C D ;②平面A 1N D ʅ平面D 1M B ;③直线MN 与B 1D 1所成的角为45ʎ;④直线D 1B 与平面A 1N D 所成的角为45ʎ.A .1B .2C .3D .412.在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并且是构成一般不动点定理的基石.简单地讲就是对于满足一定条件的连续函数f (x ),存在点x 0,使得f (x 0)=x 0,那么我们称该函数为 不动点 函数.若函数f (x )=x (a e x-l n x )为 不动点 函数,则实数a 的取值范围是A .(-ɕ,0]B .-ɕ,1eC .(-ɕ,1]D .(-ɕ,e ]二㊁填空题:本题共4小题,每小题5分,共20分.13.若函数f (x )=A s i n x -c o s x 的一个零点为π6,则f 5π12=.14.已知点A (1,0),B(2,2),C 为y 轴上一点,若øB A C =π4,则A B ң㊃A C ң=.15.3D 打印是快速成型技术的一种,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术.如图所示的塔筒为3D 打印的双曲线型塔筒,该塔筒是由离心率为5的双曲线的一部分围绕其旋转轴逐层旋转打印得到的,已知该塔筒(数据均以外壁即塔筒外侧表面计算)的上底直径为6c m ,下底直径为9c m ,高为9c m ,则喉部(最细处)的直径为c m.16.在数列a n 中,a 1=1,a n +2+(-1)n a n =2(n ɪN *).记S n 是数列a n的前n 项和,则S 4n =.三㊁解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22㊁23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)在әA B C 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a c o s B +C2=b s i n A ,2a =3b .(1)求c o s B 的值;(2)若a =3,求c .2理科数学 第 页 (共4页)18.(12分)甲㊁乙两人组成 星队 参加猜成语活动,每轮活动由甲㊁乙各猜一个成语,已知甲每轮猜对的概率为23,乙每轮猜对的概率为p .在每轮活动中,甲和乙猜对与否互不影响,各轮结果也互不影响.已知 星队 在第一轮活动中猜对1个成语的概率为12.(1)求p 的值;(2)记 星队 在两轮活动中猜对成语的总数为X ,求X 的分布列与期望.19.(12分)如图,әA B C 是正三角形,在等腰梯形A B E F 中,A B ʊE F ,A F =E F =B E =12A B .平面A B C ʅ平面A B E F ,M ,N 分别是A F ,C E 的中点,C E =4.(1)证明:MN ʊ平面A B C ;(2)求二面角M -A B -N 的余弦值.20.(12分)已知函数f (x )=2s i n x -a x ,a ɪR .(1)若f (x )是R 上的单调递增函数,求实数a 的取值范围;(2)当a =1时,求g (x )=f (x )-l n (x +1)在0,π6上的最小值;(3)证明:s i n12+s i n 13+s i n 14+ +s i n 1n >l n n +12.3理科数学 第 页 (共4页)21.(12分)如图1所示是一种作图工具,在十字形滑槽上各有一个活动滑标M ,N ,有一根旋杆将两个滑标连成一体,|MN |=3,D 为旋杆上的一点且在M ,N 两点之间,且|N D |=λ|DM |.当滑标M 在滑槽E F 内做往复运动,滑标N 在滑槽G H 内随之运动时,将笔尖放置于D 处进行作图,当λ=1和λ=2时分别得到曲线C 1和C 2.如图2所示,设E F 与G H 交于点O ,以E F 所在的直线为x 轴,以G H 所在的直线为y 轴,建立平面直角坐标系.(1)求曲线C 1和C 2的方程;(2)已知直线l 与曲线C 1相切,且与曲线C 2交于A ,B 两点,记әO A B 的面积为S ,证明:S ɤ378.(二)选考题:共10分.请考生在22㊁23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系x O y 中,曲线C 的参数方程为x =2pt y =2pt 2(t 为参数),(2,4)为曲线C 上一点的坐标.(1)将曲线C 的参数方程化为普通方程;(2)过点O 任意作两条相互垂直的射线分别与曲线C 交于点A ,B ,以直线O A 的斜率k 为参数,求线段A B 的中点M 的轨迹的参数方程,并化为普通方程.23.[选修4-5:不等式选讲](10分)已知函数f (x )=|x +a |+2|x -1|.(1)当a =1时,求f (x )的最小值;(2)若a >0,b >0时,对任意x ɪ[1,2]使得不等式f (x )>x 2-b +1恒成立,证明:a +122+b +122>2.4开封市2023届高三年级第一次模拟考试数学(理科)参考答案一、选择题(每小题5分,共60分)题号123456789101112答案C D D A B BCDCACB二、填空题(每小题5分,共20分)13.14.515.16.24+2n n三、解答题(共70分)17.(1)因为A B C π++=,所以222B C A π+=-,得cos sin 22B C A+=,……1分由正弦定理,可得sin sin sin sin 2A A B A ⋅=⋅,sin 0A ≠,所以sin sin 2AB =,……2分又因为,A B 均为三角形内角,所以2AB =,即2A B =,……3分又因为23a b =,即2sin 3sin A B =,即4sin cos 3sin B B B =,……4分sin 0B ≠,得3cos 4B =;……5分(2)若3a =,则2b =,由(1)知3cos 4B =,由余弦定理2222cos b a c ac B =+-可得29502c c -+=,……7分即()5202c c ⎛⎫--= ⎪⎝⎭,所以2c =或52,……9分当2c =时,b c =,则22A B C ==,即ABC ∆为等腰直角三角形,又因为a ≠,此时不满足题意,……11分所以52c =.……12分18.(1)“星队”在第一轮活动中猜对1个成语的概率为12,所以()2211+1=332p p ⎛⎫-- ⎪⎝⎭,解得1=2p .……4分(2)设i A 表示事件“甲在两轮中猜对i 个成语”,i B 表示事件“乙在两轮中猜对i 个成语”()0,1,2i =,根据独立性假定,得()()()012111124224===2===339339339P A P A P A ⨯⨯⨯⨯,()()()012111===424P B P B P B ,,,……6分X 的可能取值为0,1,2,3,4,所以()()001110===9436P X P A B =⨯()()()0110114131=+=+=929418P X P A B P A B =⨯⨯()()()()021120114141132=++=++=94929436P X P A B P A B P A B =⨯⨯⨯,()()()1221414133=+=+=94929P X P A B P A B =⨯⨯,()()224114===949P X P A B =⨯X 的分布列如下表所示:X 01234P13631813363919……10分()1313311=0+1+2+3+4=2.361836993E X ⨯⨯⨯⨯⨯……12分19.(1)取CF 的中点D ,连接DM DN ,,M N ,分别是AF CE ,的中点,DM AC DN EF ∴∥,∥,又DM ABC AC ABC ⊄⊂ 平面,平面,.DM ABC ∴∥平面……2分又EF AB ∥,DN AB ∴∥,同理可得,DN ABC ∥平面.……3分=DM MND DN MND DM DN D ⊂⊂ 平面,平面,,.MND ABC ∴平面∥平面……5分.MN MND MN ABC ⊂∴ 平面,∥平面……6分(2)取AB 的中点O ,连接OC OE ,.由已知得=OA EF ∥,OAFE ∴是平行四边形,=OE AF ∴∥.ABC ∆ 是正三角形,OC AB ∴⊥,ABC ABEF ⊥ 平面平面,=ABC ABEF AB 平面平面,OC ABEF∴⊥平面,又OE ABEF ⊂平面,OC OE ∴⊥.……7分设1====2AF EF EB AB a ,OC ,在Rt COE ∆中,由222+=OC OE CE ,解得=2a ,即1====22AF EF EB AB (8)分取EF 的中点P ,连接OP,则OP AB ⊥,以O 为原点,OP OB OC ,,所在直线分别为x y z ,,轴,建立直角坐标系如图所示.则()()310,2,022A C E N -⎝,,,,()1=0,2,0=,22OA ON -⎝ ,,由已知易得,平面ABM 的一个法向量为(=OC,……9分设平面ABN 的法向量为()=,,x y z n ,则2=0=01=022y OA x y ON -⎧⎧⋅⎪⎨+⋅⎪⎪⎩⎩ ,,即,,n n 取2x =,则平面ABN 的一个法向量为()=2,0,1-n .……10分cos ,O OC OC C ⋅〈〉==∴n n n 分二面角--M AB N 为锐角,∴二面角--M AB N ……12分20.(1)由已知可得:0cos 2)(≥-='a x x f ,……1分即x a cos 2≤恒成立,则有]2,(--∞∈a .……3分(2)由已知可得:111cos 2)(+--='x x x g,令()=()h x g x ',21()2sin (1)h'x x x =-++在[0,6π上单调递减,……4分又因为,(0)h'0>,(6h'π0<,所以存在6,0(0π∈x 使得()0h'x =,……5分则有又有115(0)=0(1101631162g g ππ''=-->--->++,,所以在(0,6π上)(x g '0>,……7分则)(x g 在]6,0[π∈x 上单调递增,所以最小值为0)0(=g .……8分(3)由(2)可得x x x ++>)1ln(sin 2在(0,)6π上恒成立,令()()=ln +1x x x ϕ-,在(0,)6π上()=0+1x 'x x ϕ>,所以()x ϕ单调递增且(0)0ϕ=,所以ln(1)x x >+,)1ln(2sin 2+>x x ,从而当(0,)6x π∈时)1ln(sin +>x x ,……10分令n x 1,,41,31,21 =,得到23ln 21sin >,34ln 31sin >,45ln 41sin >,⋯,nn n 1ln 1sin +>,相加得:11111sin sin sin sin ln2342n n +++++> .……12分21.(1)由题意,=ND DM λ,设()()()00,,00,,,,D x y M x N y 所以()()00,=,=---,,ND x y y DM x x y ()()00,=,---,x y y x x y λ……1分由()()00==-⎧⎪⎨--⎪⎩,,x x x y y y λλ解得()()001+==1+⎧⎪⎨⎪⎩,,x x y y λλλ又因为2200+=9,x y 所以()()222221++1+=9,x y λλλ……3分将=1=2λλ和分别代入,得2219+=4:C x y ……4分222+=1.4x C y :……5分(2)①直线l 斜率不存在时,3=2l x ±:,带入2C方程得ABS 分②直线l 斜率存在时,设=+l y kx m :,l 与曲线1C()229+13=24k m ,即,……7分联立22+=14=+x y y kx m ⎧⎪⎨⎪⎩,,可得()2221+4+8+44=0k x kmx m -,x),0(0x )6,(0πx ()h'x 正负)(x g '递增递减()()222225=641614107k m k m k ∆-+->>由得,()2121222418==1414m km x x x x k k--+,,……8分1222=1+41+4AB x k k-,……10分()4224247+25=16+8+1k k AB k k -,因为()()422424247+2572487=016+8+14416+8+1k k k k k k k ----<,所以2AB <,8S <.……11分综合①②可证,S ……12分22.(1)消去参数t 可得:22x py =,将点()2,4带入可得12p =,……2分所以曲线C 的普通方程为:y x =2.……4分(2)由已知得:OB OA ,的斜率存在且不为0,设OA 的斜率为k ,方程为kx y =,则OB 的方程为:x ky 1-=,联立方程2y kx x y =⎧⎨=⎩,,可得:()2,k k A ,同理可得:211,B k k ⎛⎫- ⎪⎝⎭,……6分设()y x M ,,所以22112112x k k y k k ⎧⎛⎫=- ⎪⎪⎪⎝⎭⎨⎛⎫⎪=+ ⎪⎪⎝⎭⎩,,……8分所以=24x 222122-=-+y kk ,所以=22x 1-y 即为点M 轨迹的普通方程.……10分23.(1)当1a =时,()121-++=x x x f ,当()()()min 1,31,14;x f x x f x f ≤-=-+=-=当()()()11,3,2,4;x f x x f x -<<=-+∈当()()()min 1,31,12;x f x x f x f ≥=-==……2分∴当1a =时,()f x 的最小值为2.……4分(2)00a b >>,,当12x ≤≤时,221+1x a x x b ++-->可化为233a b x x +>-+……6分令()233h x x x =-+,[]1,2x ∈,()()max 11h x h ==,∴1a b +>,……8分∴()222221111222222a b a b a b a b a b +⎛⎫⎛⎫+++=+++++++> ⎪ ⎪⎝⎭⎝⎭≥.……10分。
高三数学一模试题 理含解析 试题
![高三数学一模试题 理含解析 试题](https://img.taocdn.com/s3/m/a8dfb1afc67da26925c52cc58bd63186bceb9278.png)
武功县2021届高三数学一模试题 理〔含解析〕制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日第一卷一、选择题〔在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的〕 1.集合{}1A x R x =∈≤,{}24B x R x =∈≤,A B =〔 〕A. [-2,1]B. [-2,2]C. [1,2]D. 〔-∞,2] 【答案】A 【解析】 【分析】利用不等式的性质先求出集合B ,再由交集定义求出A B .【详解】解:∵集合{}1A x R x =∈≤,{}{}2422B x R x x R x =∈≤=∈-≤≤,{|21}[2,1]A B x x ∴⋂=-≤≤=-.应选A .【点睛】此题考察交集的求法,是根底题,解题时要认真审题,注意不等式性质及交集定义的合理运用.2.假设(12)5i z i -=〔i 是虚数单位〕,那么z 的值是〔 〕A. 3B. 5【答案】D 【解析】直接利用复数的模的求法的运算法那么求解即可. 【详解】() 125i z i -=〔i 是虚数单位〕 可得()125i z i -= 解得5z = 此题正确选项:D【点睛】此题考察复数的模的运算法那么的应用,复数的模的求法,考察计算才能.()1,2a =,()1,0b =,()4,3c =-.假设λ为实数且()a b c λ+⊥,那么λ=〔 〕A.14B.12C. 1D. 2【答案】B 【解析】试题分析:1+2a b λλ+=(,),因为()a b c λ+⊥,那么()1=41+-6=0=2a b c λλλ+⋅(),,选B ;考点:向量的坐标运算;4.观察新生婴儿的体重,其频率分布直方图如下图,那么新生婴儿体重在(]2700,3000的频率为〔〕A. 0.25B. 0.3C. 0.4D. 0.45【解析】 【分析】频率分布直方图的纵轴表示的是频率组距,所以结合组距为300可得频率. 【详解】解:由频率分布直方图可得:新生婴儿体重在(]2700,3000的频率为:0.0013000.3⨯=.应选B .【点睛】解决此类问题的关键是纯熟掌握频率分布直方图以及其纵轴所表示的意义. 5.命题:12p x -<<,2:log 1q x <,那么p 是q 成立的〔 〕条件. A. 充分不必要 B. 必要不充分 C. 既不充分也不必要 D. 充要【答案】B 【解析】 【分析】解对数不等式得到命题q 中x 的范围,然后根据充分条件、必要条件的定义断定即可得到结论.【详解】由2log 1x <,得02x <<. ∵()0,2 ()1,2-,∴p 是q 成立的必要不充分条件. 应选B .【点睛】充分、必要条件的判断方法〔1〕利用定义判断:直接判断“假设p ,那么q 〞、“假设q ,那么p 〞的真假.在判断时,确定条件是什么、结论是什么.〔2〕从集合的角度判断:利用集合中包含思想断定.抓住“以小推大〞的技巧,即小范围推得大范围,即可解决充分必要性的问题.〔3〕利用等价转化法:条件和结论带有否认性词语的命题,常转化为其逆否命题来判断真假.6.设等差数列{}n a 的前n 项和为n S .假设420S =,510a =,那么16a =〔 〕 A. 32- B. 12C. 16D. 32【答案】D 【解析】()14414420,20,10,2a a S a a +=∴=∴+= 又510a =.可得14511,,2a a a a d a d +==∴==,那么()162161232.a =+-⨯=应选D.7.如图,1111ABCD A B C D -为正方体,下面结论错误的选项是〔 〕A. //BD 平面11CB DB. 1AC BD ⊥C. 1AC ⊥平面11CB DD. 异面直线AD 与1CB 所成的角为60︒ 【答案】D【解析】【详解】在正方体中与11B D 平行,因此有与平面平行,A 正确;在平面 内的射影垂直于,因此有,B 正确;与B 同理有与垂直,从而平面,C 正确;由知与所成角为45°,D 错.应选D .8.现有四个函数:①sin y x x =⋅;②cos y x x =⋅;③cos y x x =⋅;④2xy x =⋅的图象〔局部〕如下,那么按照从左到右图象对应的函数序号安排正确的一组是〔 〕A. ①④②③B. ①④③②C. ④①②③D.③④②① 【答案】A 【解析】 【分析】根据各个函数的奇偶性、函数值的符号,判断函数的图象特征,即可得到.【详解】解:①sin y x x =⋅为偶函数,它的图象关于y 轴对称,故第一个图象即是; ②cos y x x =⋅为奇函数,它的图象关于原点对称,它在0,2π⎛⎫⎪⎝⎭上的值是正数, 在,2ππ⎛⎫⎪⎝⎭上的值是负数,故第三个图象满足; ③cos y x x =⋅为奇函数,当0x >时,()0f x ≥,故第四个图象满足; ④2xy x =⋅,为非奇非偶函数,故它的图象没有对称性,故第二个图象满足, 应选A .【点睛】此题主要考察函数的图象,函数的奇偶性、函数的值的符号,属于中档题. 9.tan 2θ=,那么22sin sin cos 2cos θθθθ+-=〔 〕 A. 43-B.54C. 34-D.45【答案】D 【解析】 试题分析:22222222sin sin cos 2cos tan tan 24sin sin cos 2cos sin cos tan 15θθθθθθθθθθθθθ+-===+++-+-考点:同角间三角函数关系 【此处有视频,请去附件查看】10.直线l 过点〔0,2〕,被圆22:4690c x y x y +--+=截得的弦长为l 的方程是〔 〕A. 423y x =+ B. 123y x =-+C. 2y =D. y=423x +或者y=2 【答案】D 【解析】 【分析】根据垂径定理得圆心到直线间隔 ,再设直线方程点斜式,利用点到直线间隔 公式求斜率,即得结果.【详解】因为直线l 被圆C :224690x y x y +--+=,22(2)(3)4-+-=x y 截得的弦长为1=,设直线l 的方程为2y kx =+,〔斜率不存在时不满足题意〕那么10k =∴=或者43k =,即直线l 的方程是423y x =+或者2y =,选D. 【点睛】此题考察垂径定理,考察根本转化求解才能,属根底题.11.椭圆长轴上的两端点()13,0A -,()23,0A ,两焦点恰好把长轴三等分,那么该椭圆的HY 方程为〔〕A.22198x yB. 2219x y +=C. 2213632x y += D. 22136x y +=【答案】A 【解析】 【分析】根据题意,3a =,且12223c a ==,可得3a =且1c =,再根据椭圆中a 、b 、c 的平方关系得到2b 的值,结合椭圆焦点在x 轴,得到此椭圆的HY 方程.【详解】由题意可设所求的椭圆的方程为22221(0)x y a b a b+=>>,且3a =由两焦点恰好把长轴三等分可得26a c =即33a c ==1c =,b =故所求的椭圆方程为:22198x y应选A .【点睛】对于椭圆方程的求解一般需要先判断椭圆的焦点位置,进而设出椭圆的方程,求解出a ,b 的值.3()1f x ax x =++有极值的充要条件是 〔 〕A. 0a >B. 0a ≥C. 0a <D. 0a ≤【答案】C 【解析】因为2()31f x ax '=+,所以221()31030f x ax a x=+=⇒=-<',即0a <,应选答案C . 第二卷二、填空题13.某校邀请6位学生的父母一共12人,请这12位家长中的4位介绍其对子女的教育情况,假如这4位家长中恰有一对是夫妻,那么不同的选择方法有______种. 【答案】240 【解析】 【分析】先从6对夫妇中选一对,再从余下的5对夫妇中选两对,每一对中选一位,根据分步计数原理,即可得到结果.【详解】解:分步完成,4位中恰有一对是夫妇,那么先从6对夫妇中选一对,有16C 6=种结果,再从余下的5对夫妇中选两对,每一对中选一位有215122C 40C C =种结果, 根据分步计数原理得到结果是6×40=240, 故答案为240.【点睛】此题是一个带有约束条件的排列组合问题,解题时排列与组合问题要区分开,解题的关键是利用分步计数原理,把握好分类的原那么.{}n a 满足12233,6a a a a +=+=,那么7a = .【答案】64 【解析】试题分析:设等比数列公比为q ,根据题意可得23122a a q a a +==+,所以111.31a a q a +=⇒=,所以6671264a a q =⨯==考点:等比数列性质15. 假如一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对〞,在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对〞的个数是___________. 【答案】36 【解析】 【分析】根据题中定义“正交线面对〞的含义,找出正方体中“正交线面对〞的组数,即可得出结果. 【详解】假如一条直线与一个平面垂直,那么,这一组直线与平面就构成一个正交线面对. 如下列图所示:①对于正方体的每一条棱,都有2个侧面构成“正交线面对〞,这样的“正交线面对〞有12224⨯=个;②对于正方体的每一条面对角线〔如11A C ,那么11A C ⊥平面11BB D D 〕,均有一个对角面构成“正交线面对〞,这样的“正交线面对〞有12112⨯=个. 综上所述,正方体中的“正交线面对〞一共有36个. 故答案为36.16.如图,,A B 是函数2()log (16)f x x =图象上的两点,C 是函数2()log g x x =图象上的一点,且直线BC 垂直于x 轴,假设ABC ∆是等腰直角三角形〔其中A 为直角顶点〕,那么点A 的横坐标为__________.【答案】23【解析】【详解】设()020,l g ,C x o x 因为()2020l g 164l g o x o x =+ ,所以()020,4l g ,4B x o x BC += ,因为ABC ∆是等腰直角三角形,所以可得()0202,2l g A x o x -+ ,又因为在()0202,2l g A x o x -+函数()()2log 16f x x =图象上,所以()()202020l g 1622l g l g 4o x o x o x -=+=,解得08,3x =点A 的横坐标为82233-= ,故答案为23.三、解答题〔本大题一一共70分解容许写出文字说明、解答过程成演算步骤,第17-21题为必考题,每个试题考生都必须答题第22 23题为选考题,考生根据要求作等〕 〔一〕必考题17.在ABC ∆中,0120,,21,3ABC A c b a S ∆=>==求,b c 的值. 【答案】【解析】【详解】由2221sin ,{22cos ABC S bc A a b c bc A ==+-即22133,22{12122bc b c bc=⨯⨯=++⨯⨯,解得:〔因为c b >舍去〕或者.18.如下图,在直三棱柱中,,,.(1)证明:;(2)求二面角的余弦值.【答案】(1)证明见解析;〔2〕155.【解析】【详解】(1)证明:三棱柱为直三棱柱,,在中,,,,由正弦定理得,,即,平面,又平面,.(2)如图,作交于D点,连接BD,由三垂线定理知,为二面角的平面角.在中,,在中,,15cos 5ADB ∴∠=即二面角的余弦值为.19.盒中装有一打〔12个〕乒乓球,其中9个新的,3的,从盒中取3个来用,使用完后装回盒中,此时盒中旧球个数是一个随机变量,求ξ的分布列. 【答案】详见解析 【解析】 【分析】从盒中任取3个,这3个可能全是旧的,2的1个新的,1的2个新的或者全是新的,所以用完放回盒中,盒中旧球个数可能是3个,4个,5个,6个,即ξ可以取3,4,5,6.ξ取每个值的概率可由古典概型求得,列出分布列即可. 【详解】解:ξ的可能取值为3,4,5,6333121(3)220CPCξ===,129331227(4)220C CPCξ⋅===,219331227(5)55C CPCξ⋅===,3931221(6)55CPCξ===.∴此时旧球个数ξ的概率分布列为【点睛】此题考察排列组合、古典概型、离散型随机变量的分布列问题,解题的关键是正确地求出ξ取某个值时对应的事件的概率.20.双曲线的中心在原点,焦点12,F F在坐标轴上,一条渐近线方程为y x=,且过点(4,.〔Ⅰ〕求双曲线方程;〔Ⅱ〕假设点()3,M m在此双曲线上,求12MF MF⋅.【答案】〔Ⅰ〕226x y-=〔Ⅱ〕0【解析】【详解】试题分析:〔1〕设双曲线方程为22(0)x yλλ-=≠,由双曲线过点(4,,能求出双曲线方程;〔2〕由点()3,M m在此双曲线上,得m=由此能求出12MF MF⋅的值试题解析:〔Ⅰ〕由题意,设双曲线方程为22(0)x yλλ-=≠将点(4,代入双曲线方程,得(224λ-=,即6λ=所以,所求的双曲线方程为226x y -=〔Ⅱ〕由〔1〕知()()12,F F -因为()3,M m ,所以()()12233,,233,MF m MF m =---=-又()3,M m 在双曲线226x y -=上,那么23m =()()2123312930MF MF m ⋅=-+=-++=考点:双曲线的HY 方程;直线与圆锥曲线的关系4322411()(0)43f x x ax a x a a =+-+> 〔1〕求函数()y f x =的单调区间;〔2〕假设函数()y f x =的图像与直线1y =恰有两个交点,求a 的取值范围. 【答案】〔1〕()f x 的递增区间为(2,0)(,)a a -+∞与 ()f x 的递减区间为(2)(0)a a -∞-,与,〔2〕a >01a ≤<. 【解析】试题分析:〔1〕利用导数求函数单调区间,关键明确定义域,正确求出导函数. 因为322()2(2)()f x x ax a x x x a x a =+-'=+-,令()0f x '=得1232,0,x a x x a =-==由0a >时,列表分析()f x '在()0f x '=根的左右的符号,得()f x 的递增区间为(2,0)(,)a a -+∞与,()f x 的递减区间为(2)(0)a a -∞-,与,,〔2〕由〔1〕得到45()(2)3f x f a a =-=-极小值,47()()12f x f a a ==极小值4()(0)f x f a ==极大值,要使()f x 的图像与直线1y =恰有两个交点,只要44571312a a -<<或者41a <,即a >01a <<. 解:〔1〕因为322()2(2)()f x x ax a x x x a x a =+-'=+-2分 令()0f x '=得1232,0,x a x x a =-==由0a >时,()f x '在()0f x '=根的左右的符号如下表所示所以()f x 的递增区间为(2,0)(,)a a -+∞与6分 ()f x 的递减区间为(2)(0)a a -∞-,与,8分〔2〕由〔1〕得到45()(2)3f x f a a =-=-极小值,47()()12f x f a a ==极小值 4()(0)f x f a ==极大值要使()f x 的图像与直线1y =恰有两个交点,只要44571312a a -<<或者41a <, 14分即a >01a <<. 16分 考点:利用导数研究函数性质 【此处有视频,请去附件查看】〔二〕选考题〔一共10分请考生在第22、23题中任选一题答题.假如多做,按所做的第一题计分〕22.在极坐标系中,直线l 的极坐标方程为()3R πθρ=∈,以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,曲线C 的参数方程为2sin 1cos 2x y αα=⎧⎨=-⎩〔α为参数〕,求直线l 与曲线C 交点P 的直角坐标. 【答案】P 点的直角坐标为()0,0 【解析】 【分析】将曲线C 的参数方程化为普通方程,直线l 的极坐标方程化为直角坐标方程,联立方程求交点坐标.【详解】解:直线l 的普通方程为y =,① 曲线C 的直角坐标方程为[]()212,22y x x =∈-,②联立①②解方程组得0,0x y =⎧⎨=⎩或者6x y ⎧=⎪⎨=⎪⎩根据x 的范围应舍去6x y ⎧=⎪⎨=⎪⎩故P 点的直角坐标为()0,0.【点睛】此题考察了极坐标方程化为直角坐标方程、参数方程化成普通方程,属根底题. 23.选修4-5:不等式选讲设不等式2x a -<〔*a N ∈〕的解集为A ,且32A ∈,12A ∉.〔1〕求a 的值;〔2〕求函数()2f x x a x =++-的最小值. 【答案】〔1〕1a = 〔2〕()f x 的最小值为3 【解析】 试题分析:利用31,22A A ∈∉,推出关于a 的绝对值不等式,结合a 为整数直接求a 的值;〔2〕利用a 的值化简函数()f x ,利用绝对值根本不等式求出12x x +++的最小值. 试题解析:〔1〕因为32A ∈,且12A ∉,所以322a -<,且122a -≥ 解得1322a <≤, 又因为*a N ∈, 所以1a =.〔2〕因为12x x ++-≥ ()()123x x +--= 当且仅当()()120x x +-≤,即12x -≤≤时获得等号, 所以()f x 的最小值为3.制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日。
陕西省咸阳市2023届高三下学期一模理科数学试题(解析版)
![陕西省咸阳市2023届高三下学期一模理科数学试题(解析版)](https://img.taocdn.com/s3/m/311ab1e9ba4cf7ec4afe04a1b0717fd5360cb206.png)
【答案】B
【解析】
【分析】根据给定条件,求出抛物线C的焦点坐标及准线方程,再利用定义求解作答.
【详解】抛物线C: 的焦点 ,准线方程 ,
显然点A的横坐标为2,由抛物线定义得: ,所以 .
故选:B6.执行如图所来自的程序框图,若输入 ,则输出s=()
A. B. C. D.
【答案】A
A. B. C. D.
【答案】D
【解析】
【分析】根据题意得 ,进而结合双曲线的性质和已知条件得 , , ,再根据 , , 得 ,进而根据离心率公式求解即可.
【详解】解:如图,设直线 为双曲线 的两条渐近线,
则直线 的方程分别为 , ,
因为 ,所以 ,即 ,
因为 ,直线 的方程分别为 ,即 ,
所以 到直线 的距离为 ,
所以, 的实数解有 个,
所以,函数 零点的个数是 个.
故答案为:
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤,第17-21题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答.
(一)必考题:共60分.
17.已知数列 的前n项之积为 .
(1)求数列 的通项公式;
A.11.1米B.10.1米C.11.11米D.11米
【答案】C
【解析】
【分析】根据给定条件,利用等比数列通项及前n项和公式计算作答.
【详解】依题意,乌龟爬行的距离依次排成一列构成等比数列 , ,公比 , ,
所以当阿喀斯与乌龟相距0.01米时,乌龟共爬行的距离 .
故选:C
5.设F为抛物线C: 的焦点,点A在C上,且A到C焦点的距离为3,到y轴的距离为2,则p=()
【小问1详解】
陕西省西安高三一模考试数学(理)试题及答案
![陕西省西安高三一模考试数学(理)试题及答案](https://img.taocdn.com/s3/m/f3237cb1960590c69ec3761e.png)
陕西省西安高三一模考试数学试题 数学理科一.选择题:(5’×10)1. 函数 y=log 2(x 2+2x -3)的单调递减区间为 ( ) A .(-∞,-3) B .(-∞,-1) C .(1,+∞) D .(-3,-1)2. 已知函数xx f -=11)(的定义域为M ,)1ln()(x x g +=的定义域为N ,则M =⋂N ( ) A.{}1->x xB.{}1<x xC.{}11<<-x x D.φ3. 设集合A={}1),(=+y x y x ,B={}3),(=-y x y x ,则满足B A M ⋂⊆的集合M 的个数是( )A.0B.1C.2D.34.已知命题:p “[]0,1,xx a e ∀∈≥”,命题:q “2,40x R x x a ∃∈++=”,若命题“p q ∧” 是真命题,则实数a 的取值范围是 ( )A .[,4]eB .[1,4]C .(4,)+∞D .(,1]-∞ 5.函数1()lg f x x x=-的零点所在的区间是( ) A .()0,1 B .()1,2 C .()2,3 D .()3,10 6. 函数1()4x f x a -=+(a>0,且a ≠1)的图像过一个定点,则这个定点坐标是( )A .(5,1)B .(1,5)C .(1,4)D .(4,1)7 曲线3()2f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为( ) A (1,0) B (2,8) C (1,0)和(1,4)-- D (2,8)和(1,4)--8. 定义在区间(-∞,+∞)的奇函数f (x )为增函数,偶函数g (x )在区间[0,+∞)的图象与f (x )的图象重合,设a >b >0,给出下列不等式:①f (b )-f (-a )>g (a )-g (-b ) ②f (b )-f (-a )<g (a )-g (-b )③f (a )-f (-b )>g (b )-g (-a ) ④f (a )-f (-b )<g (b )-g (-a )其中成立的是( )A.①与④B.②与③C.①与③D.②与④9. 函数x x x xe e y e e--+=-的图像大致为( ).10.已知函数()f x 是定义在R 上的偶函数,且对任意x ∈R ,都有(1)(3)f x f x -=+,当[4,6]x ∈时,()21x f x =+,设函数()f x 在区间[2,0]-上的反函数为1()f x -,则1(19)f -的值为( )A .2log 3-B .22log 3-C .212log 3-D .232log 3-二.填空题:(5’×5)11.已知函数ax x f -=3)(在区间(0,1)上是减函数,则实数a 的取值范围是 .12.设函数f (x )=⎩⎨⎧≤,>,,,1x x log -11x 22x -1则满足f (x )≤2的x 的取值范围是13.设定义在R 上的函数()f x 满足()()22012f x f x ⋅+=,若()12f =,则()99________f =14.设函数()x f y =的定义域为R ,若对于给定的正数k, 定义函数()k f x =k,()k,(),()k,f x f x f x ≤⎧⎨>⎩则当函数()1,k 1f x x ==时,定积分()21k 4f x dx ⎰的值为15.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)A .(不等式选做题)不等式x 323x +--≥的解集为 B. (几何证明选做题)如图,已知Rt △ABC 的两条直角边 AC,BC 的长分别为3cm,4cm ,以AC 为直径的圆 与AB 交于点D ,则BDDA= C.(坐标系与参数方程选做题)已知圆C 的参数方程 为cos 1sin x y αα=⎧⎨=+⎩(α为参数)以原点为极点,x 轴正半轴为极轴建立极坐标系,直线a 的极坐标方程为sin 1ρθ=,则直线a 与圆C 的交点的直角坐标系为_______三.解答题:(12’×4+13’+14’)16.已知集合{}{}(2)(1)0,(1)()0,.A x x x B x ax x a A B a =++≤=-+>⊆,且求的范围17.(12分).已知函数11()()212x f x x =+- (1)求函数的定义域; (2)判断函数)(x f 的奇偶性; (3)求证:)(x f ﹥0.18. 若存在过点(1,0)的直线与曲线3y x =和21594y ax x =+-都相切,求a 的值 19.(本小题满分10分)设二次函数2()(0)f x ax bx a =+≠满足条件:①()(2)f x f x =--;②函数()f x 的图像与直线y x =相切.(Ⅰ)求函数()f x 的解析式;(Ⅱ)若不等式2()1txf x ππ-⎛⎫> ⎪⎝⎭在2t ≤时恒成立,求实数x 的取值范围.20.已知数列{}n a 的前n 项和n S 与n a 满足1()n n S a n N +=-∈. (1)求数列{}n a 的通项公式;(2)求数列{}n n a ⋅的前n 项和n T .21.已知函数f (x )=x +a 2x ,g (x )=x +ln x ,其中a >0.(1) 若x =1是函数h (x )=f (x )+g (x )的极值点,求实数a 的值;(2) 若对任意的x 1,x 2∈[1,e](e 为自然对数的底数)都有f (x 1)≥g (x 2)成立, 求实数a 的取值范围..理科数学参考答案一、选择题(每小题5分,满分50分)1-5 ACCAC 6-10 BCCAD二、填空题(每小题5,满分25分)11 (0,3]. 12[]0+∞,13.1006 14.12ln 2+ 15.(1){}1x x ≥(2) 169(3) (-1,1).(1,1)三、解答题16.已知集合{}{}(2)(1)0,(1)()0,.A x x x B x ax x a A B a =++≤=-+>⊆,且求的范围.解析:{}12-≤≤-=x x A①0=a时,{}0<=x x B 满足B A ⊆;②0>a 时,⎭⎬⎫⎩⎨⎧-<>=a x a x x B 或1 , ∵B A ⊆ , ∴⎩⎨⎧>->-01a a 10<<⇒a③0<a 时,⎭⎬⎫⎩⎨⎧-<<=a x a x B 1, ∵B A ⊆ ∴⎪⎪⎩⎪⎪⎨⎧<->--<0121a a a 021<<-⇒a综合①②③可知:a 的取值范围是:⎭⎬⎫⎩⎨⎧<<-121a a解: (1){}R x x x x∈≠∴≠-,0,012定义域为(2)设0≠∈x R x 且11(2+1)()()=212221x x xx f x x =+--()(21)(12)(21)()()2(21)2(12)2(21)x x x x x xx x x f x f x ---+-++-====--- ()f x ∴为偶函数(3)当x <0时,0 <x2<1,∴-1<12-x<021121+-∴x <21-又x <0,则11()()212x f x x =+->0由)(x f 为偶函数知,当x >0时,)(x f >0综上可知当)(0x f x R x 时,且≠∈>018.解:设过(1,0)的直线与3y x =相切于点300(,)x x ,所以切线方程为320003()y x x x x -=-即230032y x x x =-,又(1,0)在切线上,则00x =或032x =-, 当00x =时,由0y =与21594y ax x =+-相切可得2564a =-, 当032x =-时,由272744y x =-与21594y ax x =+-相切可得1a =-19.解:(Ⅰ)由①可知,二次函数2()(0)f x ax bx a =+≠图像对称轴方程是1x =-,2b a ∴=;又因为函数()f x 的图像与直线y x =相切,所以方程组2y ax bxy x⎧=+⎨=⎩有且只有一解,即方程2(1)0ax b x +-=有两个相等的实根,11,2b a ∴== 所以,函数()f x 的解析式是21()2f x x x =+. (Ⅱ)1π> ,2()1txf x ππ-⎛⎫∴> ⎪⎝⎭等价于()2f x tx >-,即不等式2122x x tx +>-在2t ≤时恒成立,…………6分 问题等价于一次函数21()(2)02g t xt x x =-++<在2t ≤时恒成立,(2)0,(2)0.g g <⎧∴⎨-<⎩即22240,640.x x x x ⎧-+>⎪⎨++>⎪⎩解得:3x <-3x >-+故所求实数x 的取值范围是(,3(3)-∞--++∞ .20:(2)由题意得:211112222n n T n =⨯+⨯++⨯ ……………①2311111112(1)22222n n n T n n +∴=⨯+⨯++-⨯+⨯ …………② ①-②得:211111122222n n n T n +=+++-⋅1111(1)111221122212n n n n n n ++⨯-=-⋅=--⋅- 1222222n n n nn n T ++--∴=-=. 解 (1)∵h (x )=2x +a 2x +ln x ,其定义域为(0,+∞), ∴h ′(x )=2-a 2x 2+1x ,∵x =1是函数h (x )的极值点, ∴h ′(1)=0,即3-a 2=0. ∵a >0,∴a = 3.经检验当a =3时,x =1是函数h (x )的极值点,∴a = 3.(2)对任意的x 1,x 2∈[1,e]都有f (x 1)≥g (x 2)成立等价于对任意的x 1,x 2∈[1,e], 都有f (x )min ≥g (x )max .当x ∈[1,e]时,g ′(x )=1+1x >0.∴函数g (x )=x +ln x 在[1,e]上是增函数, ∴g (x )max =g (e)=e +1.∵f ′(x )=1-a 2x 2=(x +a )(x -a )x 2,且x ∈[1,e],a >0.①当0<a <1且x ∈[1,e]时, f ′(x )=(x +a )(x -a )x 2>0,∴函数f (x )=x +a 2x 在[1,e]上是增函数,∴f (x )min =f (1)=1+a 2. 由1+a 2≥e +1,得a ≥e , 又0<a <1,∴a 不合题意. ②当1≤a ≤e 时, 若1≤x ≤a ,则f ′(x )=(x +a )(x -a )x 2<0,若a <x ≤e ,则f ′(x )=(x +a )(x -a )x 2>0.∴函数f (x )=x +a 2x 在[1,a )上是减函数,在(a ,e]上是增函数. ∴f (x )min =f (a )=2a . 由2a ≥e +1,得a ≥e +12.又1≤a ≤e ,∴e +12≤a ≤e.③当a >e 且x ∈[1,e]时 f ′(x )=(x +a )(x -a )x 2<0,函数f (x )=x +a 2x 在[1,e]上是减函数.∴f (x )min =f (e)=e +a 2e .由e +a 2e ≥e +1,得a ≥e ,又a >e ,∴a >e.综上所述,a 的取值范围为[e +12,+∞).。
高三第一次质量调查(一模)考试数学(理)试题-Word版含答案
![高三第一次质量调查(一模)考试数学(理)试题-Word版含答案](https://img.taocdn.com/s3/m/49ba2758eff9aef8941e06ee.png)
数学(理)试题第Ⅰ卷一、选择题在每小题给出的四个选项中,只有一项是符合题目要求的1、设集合2{1,1,2},{1,2}AB a a,若{1,2}A B,则m 的值为A .-2或-1B .0或1C .-2或1D .0或-22、设变量,x y 满足约束条件301023xy x y xy,则目标函数32z xy 的取值范围是A .6,22B .7,22C .8,22D .7,233、在ABC 中,若4,3ABAC BC,则sin C 的值为A .23B .19C .53D .4594、阅读右边的程序框图,运行相应的程序,则输出的S 的值为A .32B .53C .4124D.103605、“125x x ”是“23x ”的A .充分不必要条件 B.必要不充分条件C .充要条件D .既不充分也不必要条件6、已知,A B 分别为双曲线22221(0,0)x y a b ab的左右焦点,P 为双曲线上一点,且ABP 为等腰三角形,若双曲线的离心率为2,则ABP 的度数为A .030 B.060 C.0120 D .030或01207、如图,在平行四边形ABCD 中,,2,13BADAB AD ,若,M N 分别是边,AD CD 上的点,且满足MD NC ADDC,其中0,1,则AN BM 的取值范围是A .3,1 B .3,1 C .1,1 D .1,38、已知函数2223,2213,2xx xf xx x x,若关于x 的方程0f x m 恰有五个不相等的实数解,则m 的取值范数学(理)试题第Ⅰ卷一、选择题在每小题给出的四个选项中,只有一项是符合题目要求的1、设集合2{1,1,2},{1,2}AB a a,若{1,2}A B,则m 的值为A .-2或-1B .0或1C .-2或1D .0或-22、设变量,x y 满足约束条件301023xy x y xy,则目标函数32z xy 的取值范围是A .6,22B .7,22C .8,22D .7,233、在ABC 中,若4,3ABAC BC,则sin C 的值为A .23B .19C .53D .4594、阅读右边的程序框图,运行相应的程序,则输出的S 的值为A .32B .53C .4124D.103605、“125x x ”是“23x ”的A .充分不必要条件 B.必要不充分条件C .充要条件D .既不充分也不必要条件6、已知,A B 分别为双曲线22221(0,0)x y a b ab的左右焦点,P 为双曲线上一点,且ABP 为等腰三角形,若双曲线的离心率为2,则ABP 的度数为A .030 B.060 C.0120 D .030或01207、如图,在平行四边形ABCD 中,,2,13BADAB AD ,若,M N 分别是边,AD CD 上的点,且满足MD NC ADDC,其中0,1,则AN BM 的取值范围是A .3,1 B .3,1 C .1,1 D .1,38、已知函数2223,2213,2xx xf xx x x,若关于x 的方程0f x m 恰有五个不相等的实数解,则m 的取值范数学(理)试题第Ⅰ卷一、选择题在每小题给出的四个选项中,只有一项是符合题目要求的1、设集合2{1,1,2},{1,2}AB a a,若{1,2}A B,则m 的值为A .-2或-1B .0或1C .-2或1D .0或-22、设变量,x y 满足约束条件301023xy x y xy,则目标函数32z xy 的取值范围是A .6,22B .7,22C .8,22D .7,233、在ABC 中,若4,3ABAC BC,则sin C 的值为A .23B .19C .53D .4594、阅读右边的程序框图,运行相应的程序,则输出的S 的值为A .32B .53C .4124D.103605、“125x x ”是“23x ”的A .充分不必要条件 B.必要不充分条件C .充要条件D .既不充分也不必要条件6、已知,A B 分别为双曲线22221(0,0)x y a b ab的左右焦点,P 为双曲线上一点,且ABP 为等腰三角形,若双曲线的离心率为2,则ABP 的度数为A .030 B.060 C.0120 D .030或01207、如图,在平行四边形ABCD 中,,2,13BADAB AD ,若,M N 分别是边,AD CD 上的点,且满足MD NC ADDC,其中0,1,则AN BM 的取值范围是A .3,1 B .3,1 C .1,1 D .1,38、已知函数2223,2213,2xx xf xx x x,若关于x 的方程0f x m 恰有五个不相等的实数解,则m 的取值范数学(理)试题第Ⅰ卷一、选择题在每小题给出的四个选项中,只有一项是符合题目要求的1、设集合2{1,1,2},{1,2}AB a a,若{1,2}A B,则m 的值为A .-2或-1B .0或1C .-2或1D .0或-22、设变量,x y 满足约束条件301023xy x y xy,则目标函数32z xy 的取值范围是A .6,22B .7,22C .8,22D .7,233、在ABC 中,若4,3ABAC BC,则sin C 的值为A .23B .19C .53D .4594、阅读右边的程序框图,运行相应的程序,则输出的S 的值为A .32B .53C .4124D.103605、“125x x ”是“23x ”的A .充分不必要条件 B.必要不充分条件C .充要条件D .既不充分也不必要条件6、已知,A B 分别为双曲线22221(0,0)x y a b ab的左右焦点,P 为双曲线上一点,且ABP 为等腰三角形,若双曲线的离心率为2,则ABP 的度数为A .030 B.060 C.0120 D .030或01207、如图,在平行四边形ABCD 中,,2,13BADAB AD ,若,M N 分别是边,AD CD 上的点,且满足MD NC ADDC,其中0,1,则AN BM 的取值范围是A .3,1 B .3,1 C .1,1 D .1,38、已知函数2223,2213,2xx xf xx x x,若关于x 的方程0f x m 恰有五个不相等的实数解,则m 的取值范数学(理)试题第Ⅰ卷一、选择题在每小题给出的四个选项中,只有一项是符合题目要求的1、设集合2{1,1,2},{1,2}AB a a,若{1,2}A B,则m 的值为A .-2或-1B .0或1C .-2或1D .0或-22、设变量,x y 满足约束条件301023xy x y xy,则目标函数32z xy 的取值范围是A .6,22B .7,22C .8,22D .7,233、在ABC 中,若4,3ABAC BC,则sin C 的值为A .23B .19C .53D .4594、阅读右边的程序框图,运行相应的程序,则输出的S 的值为A .32B .53C .4124D.103605、“125x x ”是“23x ”的A .充分不必要条件 B.必要不充分条件C .充要条件D .既不充分也不必要条件6、已知,A B 分别为双曲线22221(0,0)x y a b ab的左右焦点,P 为双曲线上一点,且ABP 为等腰三角形,若双曲线的离心率为2,则ABP 的度数为A .030 B.060 C.0120 D .030或01207、如图,在平行四边形ABCD 中,,2,13BADAB AD ,若,M N 分别是边,AD CD 上的点,且满足MD NC ADDC,其中0,1,则AN BM 的取值范围是A .3,1 B .3,1 C .1,1 D .1,38、已知函数2223,2213,2xx xf xx x x,若关于x 的方程0f x m 恰有五个不相等的实数解,则m 的取值范数学(理)试题第Ⅰ卷一、选择题在每小题给出的四个选项中,只有一项是符合题目要求的1、设集合2{1,1,2},{1,2}AB a a,若{1,2}A B,则m 的值为A .-2或-1B .0或1C .-2或1D .0或-22、设变量,x y 满足约束条件301023xy x y xy,则目标函数32z xy 的取值范围是A .6,22B .7,22C .8,22D .7,233、在ABC 中,若4,3ABAC BC,则sin C 的值为A .23B .19C .53D .4594、阅读右边的程序框图,运行相应的程序,则输出的S 的值为A .32B .53C .4124D.103605、“125x x ”是“23x ”的A .充分不必要条件 B.必要不充分条件C .充要条件D .既不充分也不必要条件6、已知,A B 分别为双曲线22221(0,0)x y a b ab的左右焦点,P 为双曲线上一点,且ABP 为等腰三角形,若双曲线的离心率为2,则ABP 的度数为A .030 B.060 C.0120 D .030或01207、如图,在平行四边形ABCD 中,,2,13BADAB AD ,若,M N 分别是边,AD CD 上的点,且满足MD NC ADDC,其中0,1,则AN BM 的取值范围是A .3,1 B .3,1 C .1,1 D .1,38、已知函数2223,2213,2xx xf xx x x,若关于x 的方程0f x m 恰有五个不相等的实数解,则m 的取值范数学(理)试题第Ⅰ卷一、选择题在每小题给出的四个选项中,只有一项是符合题目要求的1、设集合2{1,1,2},{1,2}AB a a,若{1,2}A B,则m 的值为A .-2或-1B .0或1C .-2或1D .0或-22、设变量,x y 满足约束条件301023xy x y xy,则目标函数32z xy 的取值范围是A .6,22B .7,22C .8,22D .7,233、在ABC 中,若4,3ABAC BC,则sin C 的值为A .23B .19C .53D .4594、阅读右边的程序框图,运行相应的程序,则输出的S 的值为A .32B .53C .4124D.103605、“125x x ”是“23x ”的A .充分不必要条件 B.必要不充分条件C .充要条件D .既不充分也不必要条件6、已知,A B 分别为双曲线22221(0,0)x y a b ab的左右焦点,P 为双曲线上一点,且ABP 为等腰三角形,若双曲线的离心率为2,则ABP 的度数为A .030 B.060 C.0120 D .030或01207、如图,在平行四边形ABCD 中,,2,13BADAB AD ,若,M N 分别是边,AD CD 上的点,且满足MD NC ADDC,其中0,1,则AN BM 的取值范围是A .3,1 B .3,1 C .1,1 D .1,38、已知函数2223,2213,2xx xf xx x x,若关于x 的方程0f x m 恰有五个不相等的实数解,则m 的取值范。
高三年级第一次模拟考试数学(理)参考答案及评分标准(联合体)
![高三年级第一次模拟考试数学(理)参考答案及评分标准(联合体)](https://img.taocdn.com/s3/m/75ae0951284ac850ac02425c.png)
高三年级第一次模拟考试 数学(理)参考答案及评分标准一、选择题(本大题共12小题,每小题5分,共60分)13.4 14. 24 15. 3 16. 三、解答题(本大题共70分) 17.(本小题满分12分)解(Ⅰ)∵ ∠BAC = x , 8AC AB = ,∴cos 8bc x =, …………………………………………1分 ∴1sin 4tan 2bc x x =, ……………………………………2分又 ∵ 4≤S ≤ 1≤tanx ……………………4分 ∴ x 的取值范围是4π≤x ≤3π. …………………………6分(Ⅱ)f(x) =+cos 2x=2sin( 2x +6π), …………………………………………8分 ∵4π≤x ≤3π,∴23π≤2x +6π≤56π,12≤sin(2x +6π) ………………10分 ∴ f(x)min =f(3π) =1,f(x)max =f(4π) =3. ………………………………12分 18.(本小题满分12分)解(Ⅰ) ①处填20, ②处填0.35;…………………2分 补全频率分布直方向图如图所示.……………………4分500名志愿者中年龄在[30,35)的人数为0.35×500=175人. ……6分(Ⅱ)用分层抽样的方法,从中选取20人,则其中“年龄低于30岁”的有5人,“年龄不低于30岁”的有15人.……………………7分故X的可能取值为0,1,2;P(X=0)=2152202138CC=, P(X=1)=111552201538C CC=,P(X=2)=25220238CC=, ………………10分所以X的分布列为:X 0 1 2P 21381538238∴EX=0×2138+1×1538+2×238=12 .………………………12分19.(本小题满分12分)解(Ⅰ)取AD的中点M,连接MH,MG.∵G,H,F分别是AE,BC,EB的中点,∴MH∥AB,GF∥AB,∴M∈平面FGH,……………………3分又MG∥DE,且DE平面FGH,MG⊂平面FGH,∴DE∥平面FGH.……………………6分(Ⅱ)如图,在平面ABE内,过A作AB的垂线,记为AQ,则AQ⊥平面ABCD.以A为原点,AQ、AB、AD所在的直线为x轴,y轴,z轴建立如图所示空间直角坐标系. ……………7分则A(0,0,0),B(0,4,0),D(0,0,2),G(3,-1,0),F(3,1,0),P(3,λ,0).∴BD=(0,-4,2), BP=(3, λ-4,0). ………………………………8分设平面PBD的一个法向量为n1=(x,y,1),则110,0,n BP n BD ⎧=⎪⎨=⎪⎩ ∴ 3(4)0,420.x y y λ⎧+-=⎪⎨-+=⎪⎩ ∴ 1,23(4).6y x λ⎧=⎪⎪⎨⎪=-⎪⎩∴ 1n =(3(4)6λ-,12,1)…………………………………………10分又平面ABP 的一个法向量为n 2=(0,0,2),………………………………11分 ∴ cos 〈n 1,n 2〉=1212n n n n =222112(4)()1122λ-++=22, 解得λ=1或7(舍去).∴ 点P 与点F 重合.……………………………………………………12分 20(本小题满分12分)解(Ⅰ)∵ 椭圆E 右焦点为(1,0), ∴ c=1, ………………………………1分又点P(1,32)在椭圆E 上, ∴ 2a=|PF 1|+|PF 2|=223(11)()2+++223(11)()2-+=4, ………………2分∴ a=2, b=22a c -=3, 所以椭圆方程为22143x y +=……………………………4分(Ⅱ)①当直线MN 与x 轴垂直时, 直线AM 方程为y=x +2,联立 222,3412,y x x y =+⎧⎨+=⎩得271640x x ++=, 解得27x =-或2x =-(舍)。
2021-2022学年高三一模数学(理)试题及答案
![2021-2022学年高三一模数学(理)试题及答案](https://img.taocdn.com/s3/m/c889efc35ff7ba0d4a7302768e9951e79b896917.png)
开始结束输出是否,0S S k ==?2>S kS S 2-=2+=k k k2021-2022高三第一次模拟数学试题(理科)考试时间:120分钟 试卷满分:150分第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,满分60分. 1.已知集合2{|160}A x x =-<,{5,0,1}B =-,则 A.AB =∅ B .B A ⊆C .{0,1}A B =D .A B ⊆2.复数ii -1)1(2+等于A .i +1B .i --1C .i -1D .i +-1 3.某程序框图如图所示,若该程序运行后输出k 的值是6, 则输入的整数0S 的可能值为A.5B.6C.8D.154.已知直线1sin cos :=+θθy x l ,且l OP ⊥于P ,O 为坐标原点, 则点P 的轨迹方程为A .122=+y xB .122=-y xC .1=+y xD .1=-y x5.函数x e x f xln )(=在点))1(,1(f 处的切线方程是A.)1(2-=x e yB.1-=ex yC.)1(-=x e yD.e x y -= 6.“等式)2sin()sin(βγα=+成立”是“γβα、、成等差数列”的 A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件7.在各项均为正数的等比数列{}n a 中,21=a ,542,2,a a a +成等差数列,n S 是数列{}n a 的前n 项的和,则=-410S SA.1008B.2016C.2032D.4032 8.某几何体的三视图如图所示,则该几何体的表面积是 A .90 B .92 C .98 D .104 9.半径为4的球面上有D C B A 、、、四点,AD AC AB 、、两两互相垂直,则ADB ACD ABC ∆∆∆、、面积之和的最大值为A .8B .16C .32 D.6410.设等差数列{}n a 的前n 项和为n S ,若0,0109<>S S ,则993322122,2,2aa a a ,中最大的是A .12a B .552aC .662aD .992a11.已知函数)()(()(321x x x x x x x f ---=)(其中321x x x <<),)12sin(3)(++=x x x g ,且函数)(x f 的两个极值点为)(,βαβα<.设2,23221xx x x +=+=μλ,则A .)()()()(μβλαg g g g <<<B .)()()()(μβαλg g g g <<<C .)()()()(βμαλg g g g <<<D .)()()()(βμλαg g g g <<<12.设双曲线)0,0(12222>>=-b a by a x 的右焦点为F ,过点F 作x 轴的垂线交两渐近线于点B A ,两点,且与双曲线在第一象限的交点为P ,设O 为坐标原点,若)R OB OA OP ∈+=μλμλ,(,8522=+μλ,则双曲线的离心率为( )A .332B .553C .223D .89第Ⅱ卷(非选择题共90分)二.填空题:本大题共4小题,每小题5分.13.若n S 是数列{}n a 的前n 项的和,且762++-=n n S n ,则数列{}n a 的最大项的值为___________.14.设221(32)=⎰-a x x dx ,则二项式261()-ax x展开式中的第4项为___________.15. 已知正方形ABCD 的边长为2,点E 为AB 的中点.以A 为圆心,AE 为半径,作弧交AD 于点F ,若P 为劣弧EF 上的动点,则PC PD 的最小值为___________.16.已知函数xx a x f 22)(1+=+在]3,21[-上单调递增,则实数a 的取值范围_________.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本题满分12分)已知函数))(12(sin 2)62sin(3)(2R x x x x f ∈-+-=ππ(I )求函数)(x f 的最小正周期;(Ⅱ)求使函数)(x f 取得最大值的x 的集合.18.(本小题满分12分)如图,在四棱锥ABCD P -中,底面ABCD 是菱形,︒=∠60DAB ,,1,==⊥AD PD ABCD PD 平面 点,E F 分别为AB 和PD 中点.(Ⅰ)求证:直线PEC AF 平面//; (Ⅱ)求PC 与平面PAB 所成角的正弦值.19.(本小题满分12分)某网站用“10分制”调查一社区人们的治安满意度.现从调查人群中随机抽取16名,以下茎叶图记录了他们的治安满意度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶).(I )若治安满意度不低于9.5分,则称该人的治安满意度为“极安全”,求从这16人中随机选取3人,至多有1人是“极安全”的概率; (II )以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记X 表示抽到“极安全”的人数,求X 的分布列及数学期望.20.(本小题满分12分)如图,已知直线1:+=my x l 过椭圆1:2222=+by a x C 的右焦点F ,抛物线:y x 342=的焦点为椭圆C 的上顶点,且直线l 交椭圆C 于B A 、两点,点B F A 、、在直线4=x g :上的射影依次为点E K D 、、.FE BDCAP(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线l 交y 轴于点M ,且BF MB AF MA 21λλ==,,当m 变化时,探求21λλ+的值是否为定值?若是,求出21λλ+的值,否则,说明理由.21.(本小题满分12分)设x m =和x n =是函数21()ln (2)2f x x x a x =+-+的两个极值点,其中 m n <,a R ∈.(Ⅰ) 求()()f m f n +的取值范围; (Ⅱ) 若12a e e≥+-,求()()f n f m -的最大值.22.(本小题满分10分)选修4-1:几何证明选讲 如图所示,已知⊙O 的半径长为4,两条弦BD AC ,相交于点E ,若34=BD ,DE BE >,E为AC 的中点,AE AB 2=.(Ⅰ) 求证:AC 平分BCD ∠; (Ⅱ)求ADB ∠的度数.23.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线1C 的参数方程为⎩⎨⎧==θθsin 3cos 2y x (其中θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为01sin cos =+-θρθρ.(Ⅰ) 分别写出曲线1C 与曲线2C 的普通方程;(Ⅱ)若曲线1C 与曲线2C 交于B A ,两点,求线段AB 的长.24.(本小题满分10分) 选修4-5:不等式选讲 已知函数|12|)(-=x x f . (Ⅰ)求不等式2)(<x f 的解集;(Ⅱ)若函数)1()()(-+=x f x f x g 的最小值为a ,且)0,0(>>=+n m a n m ,求nn m m 1222+++的最小值. .ABCDEO2021-2022高三第一次模拟数学(理科)答案一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项符合题目要求.1.C2.D3.C4.A5.C6.B7.B8.D9.C 10.B 11.D 12.A 二.填空题:本大题共4小题,每小题5分.13.12 14.31280-x 15.525- 16.[﹣1,1]三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(Ⅰ) f(x)=3sin(2x -π6)+1-cos2(x -π12)= 2[32sin2(x -π12)-12 cos2(x -π12)]+1 =2sin[2(x -π12)-π6]+1= 2sin(2x -π3) +1∴ T=2π2=π(Ⅱ)当f(x)取最大值时, sin(2x -π3)=1,有 2x -π3 =2k π+π2即x=k π+ 5π12(k ∈Z)∴所求x 的集合为{x ∈R|x= k π+ 5π12 , (k ∈Z)}.18.解:(Ⅰ)证明:作FM ∥CD 交PC 于M . ∵点F 为PD 中点,∴CD FM 21=. …………2分 ∵21=k ,∴FM AB AE ==21, ∴AEMF 为平行四边形,∴AF ∥EM , ……4分 ∵AF PEC EM PEC ⊄⊂平面,平面, ∴直线AF //平面PEC . ……………6分 (Ⅱ)60DAB ∠=,DE DC ∴⊥.MFBACDP如图所示,建立坐标系,则P (0,0,1),C (0,1,0),E (32,0,0),A (32,12-,0),31(,,0)22B , ∴31,,122AP ⎛⎫=- ⎪ ⎪⎝⎭,()0,1,0AB =. …8分设平面PAB 的一个法向量为(),,n x y z =.∵0n AB ⋅=,0n AP ⋅=,∴⎪⎩⎪⎨⎧==++-02123y z y x ,取1x =,则32z =, ∴平面PAB 的一个法向量为3(1,0,)2n =. …………………………10分 设向量n PC θ与所成角为,∵(0,1,1)PC =-,∴3422cos 14724n PC n PCθ-⋅===-⨯, ∴P C 平面PAB 所成角的正弦值为4214. .…………………………12分 19.FEBACDyz x P20.解:(Ⅰ)易知椭圆右焦点F(1,0),∴c=1,抛物线的焦点坐标,∴∴b2=3 ∴a2=b2+c2=4∴椭圆C的方程(Ⅱ)易知m≠0,且l与y轴交于,设直线l交椭圆于A(x1,y1),B(x2,y2)由∴△=(6m)2+36(3m2+4)=144(m2+1)>0∴又由∴同理∴∵∴所以,当m变化时,λ1+λ2的值为定值;(Ⅲ)证明:由(Ⅱ)知A(x1,y1),B(x2,y2),∴D(4,y1),E(4,y2)方法1)∵当时,==∴点在直线l AE上,同理可证,点也在直线l BD上;∴当m变化时,AE与BD相交于定点方法2)∵=∴k EN =k AN ∴A 、N 、E 三点共线, 同理可得B 、N 、D 也三点共线; ∴当m 变化时,AE 与BD 相交于定点.解:函数()f x 的定义域为(0,)+∞,21(2)1()(2)x a x f x x a x x-++'=+-+=.依题意,方程2(2)10x a x -++=有两个不等的正根m ,n (其中m n <).故2(2)40020a a a ⎧+->⇒>⎨+>⎩, 并且 2,1m n a mn +=+=.所以,221()()ln ()(2)()2f m f n mn m n a m n +=++-++2211[()2](2)()(2)1322m n mn a m n a =+--++=-+-<- 故()()f m f n +的取值范围是(,3)-∞-(Ⅱ)解:当12a e e≥+-时,21(2)2a e e +≥++.若设(1)nt t m =>,则222()11(2)()22m n a m n t e mn t e ++=+==++≥++.于是有 111()(1)0t e t e t e t e te +≥+⇒--≥⇒≥222211()()ln ()(2)()ln ()()()22n n f n f m n m a n m n m n m n m m m -=+--+-=+--+-2222111ln ()ln ()ln ()22211ln ()2n n n m n n m n m m m mn m m n t t t-=--=-=--=-- 构造函数11()ln ()2g t t t t =--(其中t e ≥),则222111(1)()(1)022t g t t t t-'=-+=-<. 所以()g t 在[,)e +∞上单调递减,1()()122e g t g e e≤=-+.故()()f n f m -的最大值是1122e e-+22.(本小题满分10分)解:(1)由E 为AC 的中点,AE AB 2=得AB ACAE AB ==2 又CAB BAE ∠=∠ ABE ∆∴∽ACB ∆ ACB ABE ∠=∠∴ 又ABE ACD ∠=∠ ACB ACD ∠=∠∴故AC 平分BCD ∠………………5分(2)连接OA ,由点A 是弧BAD 的中点,则BD OA ⊥,设垂足为点F ,则点F 为弦BD 的中点,32=BF 连接OB ,则2)32(42222=-=-=BF OB OF ,224=-=-=OF OA AF ,60,2142cos =∠===∠∴AOB OB OF AOB 3021=∠=∠∴AOB ADB ………………10分23.(本小题满分10分)解:(1)曲线1C 134:22=+y x ,………………2分 曲线2C :01=+-y x ………………4分(2)联立⎪⎩⎪⎨⎧=+=+-1340122y x y x ,得08872=-+x x , 设),(),,(2211y x B y x A ,则78,782121-=-=+x x x x 于是7244)(2112122121=-+⋅=-+=x x x x x x AB . 故线段AB 的长为724.………………10分 24.(本小题满分10分) 解:(1)由2)(<x f 知2|12|<-x ,于是2122<-<-x ,解得2321<<-x ,故不等式2)(<x f 的解集为⎪⎭⎫ ⎝⎛-23,21;……………………3分 (2)由条件得2|)32(12||32||12|)(=---≥-+-=x x x x x g ,当且仅当⎥⎦⎤⎢⎣⎡∈23,21x 时,其最小值2=a ,即2=+n m …………………6分又()()223212*********+≥⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛++=+n m m n n m n m n m ,…………8分 所以n n m m 1222+++()22321212++≥+++=n m n m 2227+=, 故nn m m 1222+++的最小值为2227+,此时222,224-=-=n m .……10分。
陕西省西安市2022-2023学年高三一模理科数学试题及参考答案
![陕西省西安市2022-2023学年高三一模理科数学试题及参考答案](https://img.taocdn.com/s3/m/a1c4ecf188eb172ded630b1c59eef8c75ebf9575.png)
陕西省西安市2022-2023学年高三一模理科数学试题及参考答案一、选择题1.定义集合{}B y A x x B A ∈∈=+且.已知集合{}6,4,2=A ,{}1,1-=B ,则B A +中元素的个数为()A .6B .5C .4D .72.在平行四边形ABCD 中,O 为对角线的交点,则=-OC AB ()A .OAB .ODC .OCD .OB3.抛物线x y 682-=的准线方程为()A .17-=x B .34=x C .17=x D .34-=x 4.()=-++-+-n23277771 ()A .()87112+--n B .87112--n C .()87112---n D .87122++n 5.函数()()20log log 42+-=x x x f 的零点为()A .4B .4或5C .5D .4-或56.一个正四棱柱的每个顶点都在球O 的球面上,且该四棱柱的底面面积为3,高为10,则球O 的体积为()A .π16B .332πC .π10D .328π7.现有7位学员与3位摄影师站成一排拍照,要求3位摄影师互不相邻,则不同排法数()A .3877A AB .3877C A C .3377A A D .3777A A 8.若354tan -=⎪⎭⎫ ⎝⎛+πθ,则=+-++θθθθ22cos 32sin 21cos 32sin 21()A .2B .34C .4D .39.若从区间[]5,2-内,任意选取一个实数a ,则曲线23ax x y +=在点()11+a ,处的切线的倾斜角大于45°的概率为()A .75B .1413C .76D .141110.将函数⎪⎭⎫ ⎝⎛+=36sin 2πx y 的图象向左平移⎪⎭⎫ ⎝⎛<<20πϕϕ个单位长度后得到()x f 的图象.若()x f 在⎪⎭⎫⎝⎛1819ππ,上单调,则ϕ的值不可能为()A .365πB .3πC .4πD .3617π11.已知21F F ,分别是双曲线C :()0,012222>>=-b a by a x 的左、右焦点,直线l 经过1F 且与C 左支交于Q P ,两点,P 在以21F F 为直径的圆上,4:32=PF PQ :,则C 的离心率是()A .317B .3172C .3152D .31512.已知69.02ln ≈,设8lg 1027=a ,1.3321.3=b ,33109=c ,则()A .bc a >>B .ac b >>C .cb a >>D .ca b >>二、填空题13.复数()()32131ii ++的实部为.14.若y x ,满足约束条件⎪⎩⎪⎨⎧≤≤43y x ,则y x z 2-=的取值范围为.15.《九章算术》中将底面为矩形且有一条侧棱与底面垂直的四棱锥称为阳马.若从一个阳马的8条棱中任取2条,则这2条棱所在直线互相垂直的概率为.16.“中国剩余定理”又称“孙子定理”,最早可见于中国南北朝时期的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”,原文如下:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?现有这样一个相关的问题:数列{}n a 由被3除余1且被4除余2的正整数按照从小到大的顺序排列而成,记数列{}n a 的前n 项和为n S ,则nS n 96+的最小值为.三、解答题(一)必考题17.c b a ,,分别为ABC ∆内角C B A ,,的对边.已知()a C a C A c =-+2cos 1sin sin .(1)求C ;(2)若c 是b a ,的等比中项,且ABC ∆的周长为6,求ABC ∆外接圆的半径.18.某工厂为了检验某产品的质量,随机抽取100件产品,测量其某一质量指数,根据所得数据,按[)12,10,[)1412,,[)16,14,[)18,16,[)20,18分成5组,得到如图所示的频率分布直方图.(1)估计该产品这一质量指数的中位数;(2)若采用分层抽样的方法从这一质量指数在[)18,16和[)20,18内的该产品中抽取12件,再从这12件产品中随机抽取4件,记抽取到这一质量指数在[)20,18内的该产品的数量为X ,求X 的分布列与期望.19.如图,在四棱锥ABCD P -中,P A ⊥平面ABCD ,DE ⊥平面ABCD ,底面ABCD 为矩形,点F 在棱PD 上,且P 与E 位于平面ABCD 的两侧.(1)证明:CE ∥平面P AB(2)若5==AD P A ,2=AB ,3=DE ,且AF 在AD 上的投影为3,求平面ACF 与平面ACE 所成锐二面角的余弦值.20.已知椭圆C :()012222>>=+b a b y a x 的左、右顶点分别为B A ,,左焦点为F ,32-=AF ,32+=BF .(1)求C 的方程;(2)设直线l 与C 交于不同于B 的N M ,两点,且BN BM ⊥,求BN BM ⋅的最大值.21.已知函数()121ln 2---=x x x x x f .(1)求()x f 的单调区间;(2)若函数()()()1ln 12212--+-+=x a x a x x g 恰有两个零点,求正数a 的取值范围.(二)选考题22.【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,曲线C 的参数方程为⎪⎪⎩⎪⎪⎨⎧-=+=t t y tt x 11(t 为参数),以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,直线l 的极坐标方程是02sin 2cos =+-θρθρ(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)若直线l 与曲线C 交于点B A ,两点,点()10,P ,求PBP A 11+的值.23.【选修4-5:不等式选讲】已知函数()a x x x f -++=1.(1)当2=a 时,求不等式()x x f 2>的解集;(2)若不等式()2≤x f 的解集包含⎦⎤⎢⎣⎡+-9212a ,,求a 的取值范围.参考答案一、选择题1.C 2.D 解析:AC OC =∴OB AO AB OC AB =-=-.3.C 解析:由题意682=p ,∴34=p ,∴准线方程为172==px .4.A解析:()n23277771-++-+- 表示以1为首项,7-为公比的前12+n 项和,∴()()()()8717171777711n 21n 2232++--=----=-++-+-n.5.C解析:有题意可得:⎩⎨⎧>+>0200x x ,解得0>x ,故()x f 的定义域为()∞+,0,令()()020log log 42=+-=x x x f ,得()()020log log 424>+=x x x ,则202+=x x 解得5=x 或4-=x ,又∵0>x ,∴5=x .6.B解析:设该正四棱柱的地面边长为a ,高为h ,则32=a ,10=h ,解得3=a ,∴该正四棱柱的体对角线为球O 的直径,设球O 的半径为R ,∴42222=++=h a a R ,即2=R ,∴球O 的体积为3322343ππ=⨯.7.A 8.D解析:35tan 11tan 4tantan 14tantan 4tan -=-+=-+=⎪⎭⎫ ⎝⎛+θθπθπθπθ,解得,4tan =θ.原式=32tan 2tan cos 2sin cos 2sin cos 4cos sin 4sin cos 4cos sin 4sin 2222=-+=-+=+-++θθθθθθθθθθθθθθ9.B解析:∵ax x y 232+=',∴当1=x 时,32+='a y .由题意可得132>+a 或032<+a ,解得1->a 或23-<a .10.B解析:由题知,()⎪⎭⎫ ⎝⎛++=ϕπ636sin 2x x f ,∵⎪⎭⎫ ⎝⎛∈1819ππ,x ,∴⎪⎭⎫⎝⎛++++∈++ϕππϕππϕπ6326636636,x .∵20πϕ<<,∴⎪⎭⎫ ⎝⎛∈+310363ππϕπ,,⎪⎭⎫⎝⎛∈+31132632ππϕπ,,又()x f 在⎪⎭⎫⎝⎛1819ππ,上单调,∴23632632πϕπϕππ≤+<+≤或256326323πϕπϕππ≤+<+≤或276326325πϕπϕππ≤+<+≤∴ϕ的取值范围是⎦⎤⎢⎣⎡⋃⎥⎦⎤⎢⎣⎡⋃⎦⎤⎢⎣⎡36173613361136736536ππππππ,,,.11.B解析:如图,由题知,︒=∠902QPF ,∵4:32=PF PQ :,不妨令3=PQ ,42=PF ,∴52=QF 由双曲线的定义得a PF PF 212=-,a QF QF 212=-,∴+-12PF PF 12QF QF -2PF =a PQ QF 463542=--+=-+,∴23=a ,∴11=PF .∴在21F PF ∆中,1741222221221=+=+=PF PF F F ,即()1722=c ,∴217=c .∴双曲线的离心率为317==a c e .12.D 二、填空题13.7解析:()()()()i i i ii +=-+=++7213121313,故实部为7.14.[]11,11-解析:画出不等式组表示的平面区域如图所示,要求y x z 2-=的取值范围,即求z x y -=21在y 轴上的截距z -的取值范围,数形结合可知当直线z x y -=21过点()43,-A 时在y 轴上的截距最大,即z 最小,过点()43-,B 时在y 轴上的截距最小,即z 最大,∴11423min -=⨯--=z ,()11423max =-⨯-=z ,∴y x z 2-=的取值范围为[]11,11-.15.7316.52解析:由题知数列{}n a 是首项为10,公差为1243=⨯的等差数列,∴()21211210-=-+=n n a n ,()n n n n S n 462212102+=-+=,∴5249662496696=+⋅≥++=+nn n n n S n 当且仅当n n 966=,即4=n 时,等号成立,∴nS n 96+的最小值为52.三、解答题17.解:(1)由题意,根据正弦定理可得()A C A C A sin cos 1sin sin sin 22=-+,∵()π,0∈A ,∴0sin ≠A ,于是可得()1cos 1sin 22=-+C C ,即1cos cos 21sin 22=+-+C C C ,整理得1cos 2=C ,即21cos =C ,∵()π,0∈C ,∴3π=C .(2)∵c 是b a ,的等比中项,∴abc =2∵ABC ∆的周长为6,∴6=++c b a ,即c b a -=+6,由余弦定理可知:3cos2222πab b a c -+=∴()ab ab b a c --+=222,即()ab b a c 322-+=,∴()22236c c c --=解得2=c 或6-=c (舍去),∴ABC ∆外接圆的半径为33223221sin 21=⨯=⨯C c .18.解:(1)∵()5.03.02125.0025.0<=⨯+,5.07.02200.03.0>=⨯+,∴该产品这一质量指数的中位数在[)16,14,内.设该产品这一质量指数的中位数为m ,则()5.03.02.014=+⨯-m ,解得15=m .(2)由题意可知抽取的12件产品中这一质量指数在[)18,16内的有8件,这一质量指数在[]20,18内的有4件.由题意可知X 的所有可能取值为0,1,2,3,4.()9914041248===C C X P ,()49522414121448===C C C X P ,()1655624122428===C C C X P ,()4953234123418===C C C X P ,()49514141214==C C X P ,X 的分布列为()3449514495323165562495224199140=⨯+⨯+⨯+⨯+⨯=X E .19.(1)证明:∵P A ⊥平面ABCD ,DE ⊥平面ABCD ,∴P A ∥DE .∵底面ABCD 为矩形,∴CD AB ∥∵D DE CD =⋂,∴平面CDE ∥平面P AB .又⊂CE 平面CDE ,∴CE ∥平面P AB .(2)以A 为坐标原点,AB 的方向为x 轴的正方形,建立如图所示的空间直角坐标系,则()000,,A ,()052,,C ,()350-,,E .∵AF 在AD 上的投影为3,∴F 的坐标为()2,3,0.设平面ACF 的法向量为()z y x n ,,=,()052,,=AC ,()230,,=AF ,则⎪⎩⎪⎨⎧=⋅=⋅0AF n AC n ,即⎩⎨⎧=+=+023052z y y x 令2=y ,则()32,5--=,n .设平面ACE 的法向量为()z y x m '''=,,,X 01234P991449522416556495324951()052,,=AC ,()350-=,,AE ,则⎪⎩⎪⎨⎧=⋅=⋅00EF m AC m ,即⎩⎨⎧='-'='+'035052z y y x 令6='y ,则()106,15,-=m.3838338361301275=⨯-+=,20.解:(1)设C 的半焦距为c ,由32-=AF ,32+=BF ,可得32-=-c a ,32+=+c a ,解得2=a ,3=c ,∵1222=-=c a b ,∴C 的方程为1422=+y x .(2)由题意知,直线l 的斜率不为0,在不妨设直线l 的方程为()2≠+=t t my x ,联立⎪⎩⎪⎨⎧+==+t my x y x 1422,消去x 得:()0424222=-+++t mty y m ,()()044442222>-+-=∆t m t m ,化简得224t m >+,设()11,y x M ,()22,y x N ,则44422221221+-=+-=+m t y y m mt y y ,,∵BN BM ⊥,∴0=⋅BN BM ,∵()0,2B ,∴()11,2y x BM -=,()22,2y x BN -=,∴()21-x ()22-x 021=+y y ,将t my x +=11,t my x +=22代入上式,得()()()()0221221212=-++-++t y y t m y y m ,∴()()()0242244122222=-++--++-⋅+t m mt t m m t m ,解得56=t 或2=t (舍去).∴直线l 的方程为56+=my x ,则直线l 恒过点⎪⎭⎫⎝⎛0,56Q ,∴()()()22221221214364252584542121+-+=-+⨯⨯=-=∆m m y y y y y y BQ S BMN .设412+=m p ,则410≤<p ,p p S BMN 25362582+-=∆,已知p p y 25362582+-=在⎥⎦⎤⎝⎛410,上单调递增,∴当41=p 时,BMN S ∆取得最大值2516.又BN BM S BMN ⋅=∆21,∴()()25322max max ==⋅∆BMN S BN BM .21.解:(1)由题意可得()x x x f -='ln ,设()x x x h -=ln ,则()xxx x h -=-='111.由()0>'x h 得10<<x ,由()0<'x h 得1>x ,则()x h 在()1,0上单调递增,在()∞+,1上单调递减,即()x f '在()1,0上单调递增,在()∞+,1上单调递减,从而()()011<-='≤'f x f ,故()x f 的单调递减区间时()∞+,0,无递增区间.(2)有题意可得()()()()xx a x x a x a x x a a x x g 1112122--+=-+-+=-+-+='.①当01<-a ,即1>a 时,由()0>'x g 得1>x ,由()0<'x g 得10<<x ,则()x g 在()1,0上单调递减,在()∞+,1上单调递增.∵当0→x 时,()+∞→x g ,当+∞→x 时,()+∞→x g ,∴()x g 要有两个零点,则()012211<--+=a g ,解得25<a ,故251<<a .②当01=-a ,即1=a 时,()1212--=x x x g ,令()0=x g 解得31±=x ,∵0>x ,∴31+=x ∴()x g 有且仅有1个零点,故1=a 不符合题意.③当110<-<a ,即10<<a 时,由()0>'x g 得a x -<<10或1>x ,由()0<'x g 得11<<-x a ,则()x g 在()a -1,0和()∞+,1上单调递增,在()1,1a -上单调递减.∵当0→x 时,()0<x g ,当+∞→x 时,()+∞→x g ,∴()x g 要有两个零点,则()01=g 或()01=-a g .若()012211=--+=a g ,则25=a ,不符合题意若()()()()()()011ln 11212112=---+--+-=-a a a a a a g 设()1,01∈-=a t ,则()01ln 211ln 12122=-+--=-+--+t t t t t t t t t 由(1)可知121ln 2---=t t t t y 在()1,0上单调递减,则0121ln 2<---t t t t ,即()01=-a g 无解,故10<<a 不符合题意.综上,正数a 的取值范围是⎪⎭⎫⎝⎛251,.22.解:(1)由⎪⎪⎩⎪⎪⎨⎧-=+=t t y t t x 11(t 为参数)得422=-y x ,故曲线C 的普通方程为14422=-y x .由02sin 2cos =+-θρθρ得022=+-y x ,故直线l 的直角坐标方程022=+-y x .(2)由题意可知直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+==t y t x 551552(t 为参数),将直线l 的参数方程代入曲线C 的普通方程并整理得0255232=--t t ,设B A ,对应的参数分别是21,t t ,则3253522121-==+t t t t ,从而()358310092042122121=+=-+=-t t t t t t ,故25581121212121=-=+=+t t t t t t t t PB P A .23.解:(1)当2=a 时,()21-++=x x x f ,当1-<x 时,()x x f 2>可化为()()x x x 221>--+-,解得41<x ,∴1-<x ;当21≤≤-x 时,()x x f 2>可化为()()x x x 221>--+,解得23<x ,∴231<≤-x ;当2>x 时,()x x f 2>可化为()()x x x 221>-++,得01>-,不成立,此时无解.综上:不等式()x x f 2>的解集为⎭⎬⎫⎩⎨⎧<23x x .(2)∵()x x f 2>的解集包含⎥⎦⎤⎢⎣⎡+-9212a ,,∴当9212+≤≤-a x 时,()x x f 2≤恒成立.当9212+≤≤-a x 时,()x x f 2≤可化为21≤-++a x x ,即x a x -≤-1,即x a x x -≤-≤-11,则112≤≤-a x ,由9212+≤≤-a x 得9521232-≤-≤-a x ,∴9522-≥a a ,解得6531≤≤-a .综上,a 的取值范围为⎥⎦⎤⎢⎣⎡-6531,.。
高三数学下学期一模考试试题理含解析试题
![高三数学下学期一模考试试题理含解析试题](https://img.taocdn.com/s3/m/3fb76e0b6ad97f192279168884868762caaebb9e.png)
2021-2021学年度第二学期高三年级一模考试数学〔理科〕试卷第I 卷〔选择题一共60分〕一、选择题〔每一小题5分,一共60分.以下每一小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上〕1.全集为R ,集合{1,0,1,5}A =-,{}2|20B x x x =--≥,那么RA B =〔 〕A. {1,1}-B. {0,1}C. {0,1,5}D.}1,0,1{-【答案】B 【解析】 【分析】先化简集合B,再求RAB 得解.【详解】由题得B={x|x ≥2或者x ≤1-}, 所以{|12}R C B x x =-<<, 所以{0,1}RA B =.应选:B【点睛】此题主要考察集合的交集和补集运算,意在考察学生对这些知识的理解掌握程度和分析推理才能.2.假设复数z 满足(1i)|1|z +=+,那么在复平面内z 的一共轭复数对应的点位于〔 〕A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】【分析】先求出复数z和z,再求出在复平面内z的一共轭复数对应的点的位置得解.【详解】由题得22(1)1(1)(1)(1i)iz ii i-===-++-,所以1z i=+,所以在复平面内z的一共轭复数对应的点为〔1,1〕,在第一象限.应选:A【点睛】此题主要考察复数的模和复数的除法,意在考察学生对这些知识的理解掌握程度和分析推理才能.3. 某单位一共有36名员工,按年龄分为老年、中年、青年三组,其人数之比为3:2:1,现用分层抽样的方法从总体中抽取一个容量为12的样本,那么青年组中甲、乙至少有一人被抽到的概率为〔〕A. 25B.35C.2536D.1136【答案】B【解析】试题分析:按分层抽样应该从青年职工组中抽取人,其中青年组一共有人,这六人中抽取两人的根本领件一共有种,甲乙至少有一人抽到的对立事件为甲乙均没被抽到,根本领件为种,因此青年组中甲、乙至少有一人被抽到的概率为,应选B .考点:1.分层抽样;2.古典概型.4.如图是2021年第一季度五GDP 情况图,那么以下陈述中不正确的选项是〔 〕A. 2021年第一季度GDP 增速由高到低排位第5的是.B. 与去年同期相比,2021年第一季度的GDP 总量实现了增长.C. 去年同期的GDP 总量不超过4000亿元.D. 2021年第一季度GDP 总量和增速由高到低排位均居同一位的只有1个. 【答案】D 【解析】分析:解决此题需要从统计图获取信息,解题的关键是明确图表中数据的来源及所表示的意义,根据所代表的实际意义获取正确的信息.详解:由折线图可知A 、B 正确;()4067.41 6.6%38154000÷+≈<,故C 正确;2021年第一季度GDP 总量和增速由高到低排位均居同一位的有均第一;均第四,一共2个.故D 错误. 应选D.点睛:此题考察条形统计图和折线统计图的综合运用,读懂统计图,从不同的统计图得到必要的住处是解决问题的关键.5.P 是双曲线22:12x C y -=右支上一点, 直线l 是双曲线C 的一条渐近线.P 在l 上的射影为Q ,1F 是双曲线C 的左焦点, 那么||||1PQ PF +的最小值为( )A. 1B. 25+C. 45+D.122+【答案】D 【解析】设双曲线C 的右焦点为2F ,连接2PF ,那么12PF PQ PF PQ +=+d ≥〔d 为点2F 到渐近线0x =的间隔1=〕,即1PF PQ +的最小值为122+;应选D.点睛:此题考察双曲线的定义和渐近线方程;在处理涉及椭圆或者双曲线的点到两焦点的间隔 问题时,往往利用椭圆或者双曲线的定义,将曲线上的点到一焦点的间隔 合理转化到另一个焦点间的间隔 .6.如图,在三棱柱111ABC A B C -中,AB ,AC ,1AA 两两互相垂直,1AB AC AA ==,M ,N 是线段1BB ,1CC 上的点,平面AMN 与平面ABC 所成〔锐〕二面角为6π,当1B M 最小时,=∠AMB 〔 〕A.512π B.3π C.4π D.6π 【答案】B 【解析】 【分析】以A 为原点,AC 为x 轴,AB 为y 轴,1AA 为z 轴,建立空间直角坐标系,利用向量法能求出AMB ∠的大小.【详解】以A 为原点,AC 为x 轴,AB 为y 轴,1AA 为z 轴,建立空间直角坐标系, 设1=1AB AC AA ==,设CN b =,BM a =,那么(1N ,0,)b ,(0M ,1,)a ,(0A ,0,0),(0B ,1,0), (0AM =,1,)a ,(1AN =,0,)b ,设平面AMN 的法向量(n x =,y ,)z ,·0·0AM n y az AN n x bz ⎧=+=⎨=+=⎩,取1=z ,得(n b =-,a -,1), 平面ABC 的法向量(0m =,0,1), 平面AMN 与平面ABC 所成〔锐)二面角为6π, 22||cos6||||1m n m n a b π∴==++,解得22331a b +=,∴当|1|B M 最小时,0b =,3BM a ==,1tan 333AB AMB BM ∴∠===, 3AMB π∴∠=.应选:B .【点睛】此题考察角的大小的求法,考察空间中线线、线面、面面间的位置关系等根底知识,考察运算求解才能,是中档题.7.函数sin()()xx f x a ωϕπ+=(0,0,)a R ωϕπ><<∈,在[]3,3-的大致图象如下图,那么aω可取〔 〕A. 2π B. πC. 2πD. 4π【答案】B分析:从图像可以看出()f x 为偶函数,结合()f x 的形式可判断出()sin y x ωϕ=+为偶函数,故得ϕ的值,最后通过()10f =得到ω的值.详解:()f x 为[]3,3-上的偶函数,而xy a π=为[]3,3-上的偶函数,故()()sin g x x ωϕ=+为[]3,3-上的偶函数,所以,2k k Z πϕπ=+∈.因为0ϕπ<<,故2πϕ=,()()sin cos 2x xx x f x a a πωωππ⎛⎫+ ⎪⎝⎭==. 因()10f =,故cos 0ω=,所以2k πωπ=+,k ∈N .因()02f =,故0cos 012a aπ==,所以21=a . 综上()21k aωπ=+,k ∈N ,应选B .点睛:此题为图像题,考察我们从图形中扑捉信息的才能,一般地,我们需要从图形得到函数的奇偶性、单调性、极值点和函数在特殊点的函数值,然后利用所得性质求解参数的大小或者取值范围.8.?九章算术?中描绘的“羡除〞是一个五面体,其中有三个面是梯形,另两个面是三角形.一个羡除的三视图如图粗线所示,其中小正方形网格的边长为1,那么该羡除的体积为〔 〕A. 20B. 24C. 28D. 32【答案】B 【解析】画出五面体的直观图,利用割补法求其体积. 【详解】五面体对应的直观图为:由三视图可得:,4,2,6EF BC AD BC EF AD ===,三个梯形均为等腰梯形且平面FADE ⊥平面ABCDF 到底面ABCD 的间隔 为4d =,,AD BC 间的间隔 为3.如以下图所示,将五面体分割成三个几何体,其中,F AGHB E IDCJ --为体积相等的四棱锥,且2AG GI ID ===,1,2BH JC HJ ===,那么棱柱FGH EIJ -为直棱柱,EIJ ∆为直角三角形.又()114123632F AGHB E IDCJ V V --==⨯⨯⨯+⨯=; 1243122FGH EIJ V -=⨯⨯⨯=,故五面体的体积为121224+=.应选A.【点睛】此题考察三视图,要求根据三视图复原几何体,注意复原前后点、线、面的关系.而不规那么几何体的体积的计算,可将其分割成体积容易计算的规那么的几何体.9.在ABC ∆中,内角,,A B C 所对的边分别是,,a b c ,且BC 边上的高为a 63,那么c b b c +的最大值是〔 〕A. 8B. 6C. D. 4【答案】D 【解析】22b c b c c b bc ++=,这个形式很容易联想到余弦定理:cos A 2222b c a bc+-=,①而条件中的“高〞容易联想到面积,11262a a ⨯=bc sin A ,即a 2=23bc sin A ,② 将②代入①得:b 2+c 2=2bc (cos A +3sin A ), ∴b c c b+=2(cos A +3sin A )=4sin(A +6π),当A =3π时获得最大值4,应选D .点睛:三角形中最值问题,一般转化为条件最值问题:先根据正、余弦定理及三角形面积公式结合条件灵敏转化边和角之间的关系,利用根本不等式或者函数方法求最值. 在利用根本不等式求最值时,要特别注意“拆、拼、凑〞等技巧,使其满足根本不等式中“正〞(即条件要求中字母为正数)、“定〞(不等式的另一边必须为定值)、“等〞(等号获得的条件)的条件才能应用,否那么会出现错误.10.函数()sin 3f x x π⎛⎫=- ⎪⎝⎭,假设12>0x x ,且()()120f x f x +=,那么12x x +的最小值为〔 〕A.6π B.3π C. 2πD.23π 【答案】D 【解析】 【分析】先分析得到12x x +的最小值等于函数f(x)的绝对值最小的零点的2倍,再求函数的绝对值最小的零点即得解.【详解】由题得12+x x 等于函数的零点的2倍,所以12x x +的最小值等于函数f(x)的绝对值最小的零点的2倍, 令()sin =03f x x π⎛⎫=- ⎪⎝⎭, 所以,3x k k Z ππ-=∈,所以=+,3x k k Z ππ∈,所以绝对值最小的零点为3π, 故12x x +的最小值为23π. 应选:D【点睛】此题主要考察正弦型函数的图像和性质,意在考察学生对这些知识的理解掌握程度和分析推理才能.11.过抛物线24y x =的焦点的一条直线交抛物线于A 、B 两点,正三角形ABC 的顶点C 在直线1x =-上,那么ABC ∆的边长是〔 〕 A. 8 B. 10C. 12D. 14【答案】C 【解析】设AB 的中点为M ,过A 、B 、M 分别作1AA 、1BB 、MN 垂直于直线1x =-于1A 、1B 、N ,设AFx θ∠=,求出31sin =θ,利用弦长公式,可得结论.【详解】抛物线24y x =的焦点为(1,0)F ,设AB 的中点为M ,过A 、B 、M 分别作1AA 、1BB 、MN垂直于直线1x =-于1A 、1B 、N ,设AFx θ∠=,由抛物线定义知:1111||(||||)||22MN AA BB AB =+=,3||||2MC AB =,1||||3MN MC ∴=, 90CMN θ∠=︒-,∴||1cos cos(90)||3MN CMN MC θ∠=︒-==,即31sin =θ, 所以直线AB 的斜率k=2tan 2θ=, 所以直线AB 的方程为2(1)2y x =-, 联立直线AB 方程和抛物线方程得21010x x -=+,所以1212+=10||10212x x AB x x p ∴=++=+=,. 应选:C .【点睛】此题考察抛物线的方程与性质,考察抛物线的定义,正确运用抛物线的定义是12.设函数()(1x g x e x a =+--〔a R ∈,e 为自然对数的底数〕,定义在R 上的函数()f x 满足2()()f x f x x -+=,且当0x ≤时,'()f x x <.假设存在01|()(1)2x x f x f x x ⎧⎫∈+≥-+⎨⎬⎩⎭,且0x 为函数()y g x x =-的一个零点,那么实数a 的取值范围为〔 〕A. ⎛⎫+∞ ⎪ ⎪⎝⎭B. )+∞C. )+∞D.⎡⎫+∞⎪⎢⎪⎣⎭【答案】D 【解析】 【分析】先构造函数()()212T x f x x =-,由题意判断出函数()T x 的奇偶性,再对函数()T x 求导,判断其单调性,进而可求出结果. 【详解】构造函数()()212T x f x x =-, 因为()()2f x f x x -+=,所以()()()()()()()22211022T x T x f x x f x x f x f x x +-=-+---=+--=, 所以()T x 为奇函数,当0x ≤时,()()''0T x f x x =-<,所以()T x 在(],0-∞上单调递减, 所以()T x 在R 上单调递减. 因为存在()()0112x x f x f x x ⎧⎫∈+≥-+⎨⎬⎩⎭,所以()()000112f x f x x +≥-+, 所以()()()220000011111222T x x T x x x ++≥-+-+,化简得()()001T x T x ≥-, 所以001x x ≤-,即012x ≤令()()12xh x g x x e a x ⎛⎫=-=-≤ ⎪⎝⎭,因为0x 为函数()y g x x =-的一个零点, 所以()h x 在12x ≤时有一个零点 因为当12x ≤时,()12'0x h x e e =≤=,所以函数()h x 在12x ≤时单调递减,由选项知0a >,102<<,又因为0h ea e⎛=-=> ⎝,所以要使()h x 在12x ≤时有一个零点,只需使102h a ⎛⎫=≤ ⎪⎝⎭,解得a ≥ 所以a的取值范围为2⎫+∞⎪⎪⎣⎭,应选D. 【点睛】此题主要考察函数与方程的综合问题,难度较大.第二卷〔一共90分〕二、填空题:〔本大题一一共4小题,每一小题5分,一共20分〕13.假设实数x ,y 满足约束条件1330.y x x y x y ≤⎧⎪+≥⎨⎪-+≥⎩,,,那么3z x y =+的最小值为__________.【答案】2 【解析】【分析】先画出可行域,利用目的函数的几何意义求z 的最小值.【详解】作出约束条件1330.y x x y x y ≤⎧⎪+≥⎨⎪-+≥⎩,,,表示的平面区域〔如图示:阴影局部〕:由10y x x y =⎧⎨+-=⎩得A 〔12,1 2〕,由z =3x +y 得y =﹣3x +z ,平移y =﹣3x , 易知过点A 时直线在y 上截距最小, 所以3z x y =+的最小值为32+122=. 故答案为:2.【点睛】此题考察了简单线性规划问题,关键是画出可行域并理解目的函数的几何意义.110tan ,,tan 342ππααα⎛⎫+=∈ ⎪⎝⎭,那么2sin 22cos cos 44ππαα⎛⎫++ ⎪⎝⎭的值是___________. 【答案】0 【解析】试题分析:由110tan ,,tan 342ππααα⎛⎫+=∈ ⎪⎝⎭,解得tan 3α=,又2sin 22cos cos 44ππαα⎛⎫++ ⎪⎝⎭22222sin 2cos 22cos 2sin cos 22cos 222αααααα=++=+-2222sin cos 22cos 2sin cos 2ααααα+=-+22tan 2220tan 12αα+=-=+. 考点:三角函数的化简求值.()f x 图像上不同两点),(11y x A ,),(22y x B 处的切线的斜率分别是A k ,B k ,AB 为A B 、两点间间隔 ,定义(,)A B k k A B ABϕ-=为曲线()f x 在点A 与点B 之间的“曲率〞,给出以下命题:①存在这样的函数,该函数图像上任意两点之间的“曲率〞为常数;②函数32()1f x x x =-+图像上两点A 与B 的横坐标分别为1,2,那么 “曲率〞(,)3A B ϕ>;③函数2()(0,)f x ax b a b R =+>∈图像上任意两点A B 、之间 的“曲率〞(,)2A B a ϕ≤;④设),(11y x A ,),(22y x B 是曲线()xf x e =上不同两点,且121x x -=,假设·(,)1t A B ϕ<恒成立,那么实数t 的取值范围是(,1)-∞。
2022年山西省高考数学一模试卷(理科)+答案解析(附后)
![2022年山西省高考数学一模试卷(理科)+答案解析(附后)](https://img.taocdn.com/s3/m/3d27068d8ad63186bceb19e8b8f67c1cfbd6ee7b.png)
2022年山西省高考数学一模试卷(理科)1.已知集合,,则( )A.B. C.D.2.设复数z 满足,则( )A. B.C. 0或D. 0或3.设,,则的最大值是( )A. 1B. C.D. 24.如图,网格纸上小正方形的边长为1,实线画出的是某几何体的三视图,则该几何体各个表面中面积的最大值是( )A.B.C.D.5.已知命题p :,;命题q :,在定义域上是增函数.则下列命题中的真命题是( )A. B.C.D.6.展开式中的常数项是( )A. B. C.D.7.设,,,则a 、b 、c 的大小关系是( )A.B.C.D.8.“三分损益法”是古代中国制定音律时所用的生律法.三分损益包含“三分损一”“三分益一”.取一段弦,“三分损一”即均分弦为三段,舍一留二,便得到弦.“三分益一”即弦均分三段后再加一段,便得到弦.以宫为第一个音,依次按照损益的顺序,得到四个音,这五个音的音高从低到高依次是宫、商、角、徵、羽,合称“五音”.已知声音的音高与弦长是成反比的,那么所得四音生成的顺序是( )A. 徵、商、羽、角 B. 徵、羽、商、角C. 商、角、徵、羽D. 角、羽、商、徵9.已知数列的前n 项和,将该数列排成一个数阵如右图,其中第n 行有个数,则该数阵第9行从左向右第8个数是( )A. 263B. 1052C. 528D. 105110.过双曲线的右焦点F作渐近线的垂线,垂足为点A,交y轴于点B,若,则C的离心率是( )A. B. C. D.11.如图①,在中,,,D,E分别为AC,AB的中点,将沿DE 折起到的位置,使,如图②.若F是的中点,则四面体FCDE的外接球体积是( )A. B. C. D.12.已知函数在上恰有3个零点,则的取值范围是( )A. B. C. D.13.曲线在处的切线方程是______.14.将一枚质地均匀的骰子连续抛掷两次,向上的点数分别记为a,b,则关于x的方程有实根的概率是______.15.已知数列中,,,,数列的前n项和为若对于任意的,不等式恒成立,则实数t的取值范围是______.16.已知椭圆的焦点为,,点P为椭圆上任意一点,过作的外角平分线所在直线的垂线,垂足为点抛物线上有一点M,它在x轴上的射影为点H,则的最小值是______.17.如图,圆内接四边形ABCD中,,,求AC;求面积的最大值.18.在如图所示的几何体中,平面平面ABCD,四边形ADNM是矩形,四边形ABCD为梯形,,,证明:平面MBC;设,求二面角的余弦值.19.在平面直角坐标系xOy中,椭圆C:的离心率,且过点,A、B分别是C的左、右顶点.求C的方程;已知过点的直线交C于M,N两点异于点试证直线MA与直线NB交点在定直线上.20.已知函数当时,证明:在定义域上是增函数;记是的导函数,,若在内没有极值点,求a的取值范围.参考数据:,21.甲、乙两名选手争夺一场乒乓球比赛的冠军.比赛采取三局两胜制,即某选手率先获得两局胜利时比赛结束,且该选手夺得冠军.根据两人以往对战的经历,甲、乙在一局比赛中获胜的概率分别为,,且每局比赛的结果相互独立.求甲夺得冠军的概率;比赛开始前,工作人员买来一盒新球,共有6个.新球在一局比赛中使用后成为“旧球”,“旧球”再在一局比赛中使用后成为“废球”.每局比赛前裁判员从盒中随机取出一颗球用于比赛,且局中不换球,该局比赛后,如果这颗球成为废球,则直接丢弃,否则裁判员将其放回盒中.记甲、乙决出冠军后,盒内新球的数量为X,求随机变量X的分布列与数学期望.22.在极坐标系中,O为极点,直线与以点为圆心,且过点的圆相交于A,B两点.求圆C的极坐标方程;若,求23.已知函数当时,求不等式的解集;若恒成立,求a的取值范围.答案和解析1.【答案】A【解析】解:,,故选:可求出集合M,然后进行交集的运算即可.考查描述法、列举法的定义,一元二次不等式的解法,以及交集的运算.2.【答案】D【解析】解:设,,,即,即,解得或,故或故选:根据已知条件,结合共轭复数的概念,以及复数代数形式的乘法运算,即可求解.本题考查了共轭复数的概念,以及复数代数形式的乘法运算,需要学生熟练掌握公式,属于基础题.3.【答案】D【解析】解:因为,,所以,,当时,取得最大值为,所以的最大值是故选:根据平面向量的坐标运算和三角函数求值运算,即可求出答案.本题考查了平面向量的坐标运算和三角函数求值运算问题,是基础题.4.【答案】C【解析】解:根据几何体的三视图转换为直观图为:该几何体为三棱锥体;如图所示:所以,,,;故选:首先把三视图转换为几何体的直观图,进一步求出几何体的各个面的面积.本题考查的知识要点:三视图和几何体的直观图之间的转换,几何体的各个面的面积公式,主要考查学生的运算能力和数学思维能力,属于基础题.5.【答案】A【解析】解:构造函数,则,所以函数在上单调递增,所以,所以,所以命题p为真命题;因为,所以在定义域上是增函数.所以命题q为真命题.所以为真命题,为假命题,为假命题,为假命题.故选:构造函数,运用函数单调性可证明成立;根据对数函数单调性可判断命题本题考查命题真假判断及导数应用,考查数学运算能力及推理能力,属于基础题.6.【答案】B【解析】解:展开式的通项公式为,令,解得,所以展开式的常数项为,故选:求出展开式的通项公式,令x的指数为0,进而可以求解.本题考查了二项式定理的应用,考查了学生的运算能力,属于基础题.7.【答案】D【解析】解:构造函数,则,当时,,函数在上单调递增,因为,所以,,可得,所以因为,所以,即,所以故选:利用函数在上的单调性可得b、c的大小关系,利用对数函数的单调性可得出a、b的大小关系,以此可得结论.本题考查导数应用及函数单调性应用,考查数学运算能力及抽象能力,所以中档题.8.【答案】A【解析】解:由题设,若宫的弦长为a,则其它四音对应弦长依次为,,,,因为音高与弦长是成反比,所以四音的音高关系为,又音高从低到高依次是宫、商、角、徵、羽,所以五音生成顺序为宫、徵、商、羽、角.故选:设宫的弦长为a,根据生律法按顺序写出后续四音的弦长,再由题设音高与弦长的反比关系判断五音生成顺序,即可得到答案.本题考查简单的合情推理,属于基础题.9.【答案】D【解析】解:数列的前n项和为,,时,,时,上式成立,将该数列按第n行有个数排成一个数阵,如图,由该数阵前7行有:…项,该数阵第9行从左向右第8个数字为故选:求出,将该数列按第n行有个数排成一个数阵,由该数阵前7行有:…项,得到该数阵第9行从左向右第8个数字为,由此能求出结果.本题考查数阵第9行从左向右第8个数字的求法,考查等差数列和等比数列的性质等基础知识,考查推理能力与计算能力,属于中档题.10.【答案】C【解析】解:由题意可知,渐近线方程,,直线BF的方程为,令得,点,联立方程,解得,,,,,,故选:根据题意求出直线BF的方程,进而求出点A,B的坐标,根据可求出的值,从而用表示出离心率.本题主要考查了双曲线的性质,考查了学生的运算求解能力,属于中档题.11.【答案】B【解析】解:以点D为坐标原点,建立如图所示的空间直角坐标系,则,设球的坐标为,由,,可得:,解得:,从而球的半径,球的体积故选:由题意首先求得球的半径,然后利用体积公式计算其体积即可.本题主要考查球与多面体的切接问题,空间想象能力的培养等知识,属于中等题.12.【答案】C【解析】解:函数在上恰有3个零点,由,且,可得,所以,且,或,且,解得,或,故选:由x的范围求得的范围,结合正弦函数的图象和零点,可得,且,或,且,解不等式可得所求取值范围.本题考查三角函数的零点个数,考查转化思想和运算能力、推理能力,属于中档题.13.【答案】【解析】解:由,得,又,曲线在处的切线方程为,即故答案为:求出原函数的导函数,得到函数在处的导数,再由直线方程的斜截式得答案.本题考查利用导数研究过曲线上某点处的切线方程,是基础题.14.【答案】【解析】解:将一枚质地均匀的骰子连续抛掷两次,向上的点数分别记为a,b,基本事件总数,关于x的方程有实根,,时,不成立,时,成立,时,b可以取1,2,3,时,b可以取1,2,3,4,时,b可以取1,2,3,4,5,6,时,b可以取1,2,3,4,5,6,满足条件的基本事件个数,关于x的方程有实根的概率是故答案为:根据已知条件,结合古典概型的概率公式,以及列举法,即可求解.本题主要考查古典概型的概率公式,考查列举法,属于基础题.15.【答案】【解析】解:由得,则有,化简得,即,所以,所以,所以不等式恒成立,则有故答案为:先根据累积法求得,再用裂项相消法求得,最后根据不等式恒成立可求解.本题考查了累积法求通项和裂项相消求和,属于中档题.16.【答案】【解析】解:如图所示,延长交于点N,连接因为的外角平分线是PQ,且,所以,因为,所以,因为,,,所以点Q的轨迹为以点O为圆心2为半径的圆,所以点Q的轨迹方程为由题得抛物线的焦点坐标为,准线方程为所以,所以,因为所以所以的最小值是故答案为:延长交于点N,连接OQ,求出点Q的轨迹方程为,证明,即得解.本题考查了椭圆、抛物线的定义及性质,也考查了转化思想和数形结合思想,难点在于确定Q点的轨迹,属于中档题.17.【答案】解:在中,由正弦定理得,即,所以因为四边形ABCD内接于圆,故,设,,在中,由余弦定理得:,因为,所以,即,当且仅当时等号成立,所以,所以面积的最大值是【解析】本题主要考查了正弦定理,余弦定理,基本不等式,三角形的面积公式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.由题意在中由正弦定理即可求解AC的值.设,,在中,由余弦定理,基本不等式可求,进而根据三角形的面积公式即可求解.18.【答案】证明:取CD中点E,连接AE,NE,则,,四边形ABCE为平行四边形,所以又平面MBC,平面MBC,所以平面由,,则四边形ABED为平行四边形,所以,又,,所以,所以四边形MBEN为平行四边形.所以又平面MBC,平面MBC,所以平面因为,平面ANE,平面所以平面平面因为平面ANE,所以平面MBC因为平面平面ABCD,,所以平面因为,,,所以以D为原点,分别以DB,DC,DN所在真线为x,y,z轴.建立如图所示的空间直角坐标系则,,,所以,平面BCD的一个法向量为,设平面MBC的法向量为则,令,得,所以二面角的余弦值为【解析】取CD中点E,连接AE,NE,推出得到平面推出,,然后证明推出平面得到平面平面证明平面以D为原点,分别以DB,DC,DN所在真线为x,y,z轴.建立如图所示的空间直角坐标系求出平面MBC的法向量,平面BCD的一个法向量,利用空间向量的数量积求解二面角的余弦值即可.本题考查直线与平面平行的判定定理,平面与平面平行的判定定理的应用,二面角的平面角的求法,是中档题.19.【答案】解:且,;证明:设过点G的直线为:,,,联立,消元整理得,,,,,因为,,所以直线AM的斜率为,故直线AM的方程为,①同理可得直线NB的方程为,②整理得,,即,由,即,所以,即,解得,所以直线MA与直线NB交点在定直线上.【解析】根据条件列出关于a,b,c的方程组,求解可得a,b,从而求得椭圆的方程;设过点G的直线为:,,,联立直线与椭圆可得韦达定理,分别表示出直线AM,NB的方程,由两个方程可得,结合M,N在直线上以及韦达定理可得两直线交点所在直线.本题考查了椭圆的标准方程以及直线与椭圆的综合,属于中档题.20.【答案】解:证明:由题设,且定义域为,因为,则,当且仅当时等号成立,而,所以时有,故在上是增函数.由题设,,则且定义域为,因为在内没有极值点,即或,所以或在上恒成立,令,则,当时;当时,令,则,,所以在上递增,而,所以在上,故在上递增,而,综上,在上,即,所以,在上,即单调递增,则,故或,即a的取值范围为【解析】对函数求导得且,再应用基本不等式求,结合,可确定的符号,即证结论.对求导得且,将问题转化为或在上恒成立,构造,利用导数研究的单调性,进而求区间值域,即可求a的取值范围.本题考查了利用导数研究函数的单调性与极值,考查了函数思想和转化思想,属中档题.21.【答案】解:记事件“甲在第i局比赛中获胜”,,事件“甲在第i局比赛中未胜”.显然,,记事件“甲夺得冠军”,则设甲乙决出冠军共进行了Y局比赛,易知或则,故记“第i局比赛后抽到新球”,“第i局比赛后抽到旧球”.由题意知、比赛前盒内有6颗新球,比赛1局后,盒内必为5颗新球1颗旧球,此时,,若发生,则比赛2局后,盒内有4 颗新球,2颗旧球,此时若,发生,则比赛2局后,盒内有5颗新球,故下次必取得新球.即于是,故X的分布列为:X 3 4 5P故X的数学期望【解析】记事件:“甲在第i局比赛中获胜”,,事件:“甲在第i局比赛中末胜”.,记事件A:“甲夺得冠军“,分析事件A包含的情况,直接求概率;的可能取值:3,4,分析比赛过程,分别求概率,写出分布列,计算数学期望.本题考查离散型随机变量的分布列与期望,考查学生的运算能力,属于中档题.22.【答案】解:在极坐标系中,O为极点,直线与以点为圆心,且过点的圆相交于A,B两点,的直角坐标为,的直角坐标为,圆的半径为,圆的直角方程为,将,代入,得:,圆C的极坐标方程为将代入中,得,设,分别为A,B对应的极径,则,,,则,即,结合,解得,【解析】写出点C,M的直角坐标,求出圆的直角坐标方程,化为极坐标方程,可求出答案.将代入圆的极坐标方程,利用根与系数的关系求出,,再结合,求出,的值,由此能求出结果.本题考查圆的极坐标方程、正弦函数值、余弦函数值的求法,考查极坐标方程、直角坐标方程的互化等基础知识,考查运算求解能力,是中档题.23.【答案】解:当时,,所以不等式等价于或,解得:或所以不等式的解集为或因为,由恒成立,得所以或,解得或所以a的取值范围为【解析】当时,去绝对值符号,化为分段函数,再分段解不等式可得其解集;依题意,得恒成立,解之即可.本题考查函数恒成立问题,考查绝对值不等式的解法,考查运算求解能力,属于中档题.。
高三数学试卷一模理科
![高三数学试卷一模理科](https://img.taocdn.com/s3/m/1ba67f9d05a1b0717fd5360cba1aa81144318fff.png)
高三数学试卷一模理科一、选择题(本题共10小题,每小题4分,共40分。
每小题给出的四个选项中,只有一个是正确的,请将正确选项的字母填在题后的括号内。
)1. 已知函数f(x) = 2x^2 - 3x + 1,下列说法正确的是()A. 函数的图像开口向下B. 函数的图像开口向上C. 函数的图像关于y轴对称D. 函数的图像关于x=1/2对称2. 若a, b, c是等差数列,且a + b + c = 9,b = 3,则a + c的值为()A. 3B. 6C. 9D. 123. 已知集合A = {1, 3, 5},B = {2, 4, 6},则A∪B = ()A. {1, 2, 3, 4, 5, 6}B. {1, 3, 5}C. {2, 4, 6}D. {1, 2, 3, 5, 6}...10. 已知直线y = 2x + 3与抛物线y = x^2 - 4x + 5相交于点P和Q。
则|PQ|的值为()A. 2B. 4C. 6D. 8二、填空题(本题共5小题,每小题4分,共20分。
请将答案直接写在题后的横线上。
)11. 已知函数f(x) = x^3 - 3x^2 + 2,求f'(x) = ______。
12. 已知等比数列的前三项分别为2, 2q, 2q^2,且公比q > 0,求q 的值 = ______。
13. 已知向量a = (1, 2),b = (3, -4),求向量a与向量b的点积 = ______。
14. 已知圆的方程为x^2 + y^2 - 4x - 6y + 9 = 0,求圆心坐标 = ______。
15. 已知函数y = ln(x + √(1 + x^2)),求函数在x = 1处的导数值= ______。
三、解答题(本题共5小题,共40分。
解答应写出文字说明、证明过程或演算步骤。
)16. (本题满分8分)已知函数f(x) = x^2 - 4x + 3,求函数的最小值。
17. (本题满分8分)已知数列{an}的通项公式为an = 2n - 1,求数列的前n项和Sn。
高考一模数学试卷(理)含答案试卷分析解析
![高考一模数学试卷(理)含答案试卷分析解析](https://img.taocdn.com/s3/m/72c2c7de14791711cd79179d.png)
太原五中-第二学期阶段性检测高 三 数 学(理)出题人、校对人:刘晓瑜、郭舒平、董亚萍、刘锦屏、凌河、闫晓婷(.4.2) 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知{}{}2ln(1),2,xP x y x Q y y x P ==-==∈,则=PQ ( ).A (0,1) .B 1(,1)2 .C 1(0,)2.D (1,2)2、已知复数(2a iz i i+=-为虚数单位)在复平面内对应的点在第三象限,则实数a 的取值范围是( ).A 1(2,)2- .B 1(,2)2- .C (,2)-∞- .D 1(+)2∞, 3、在ABC ∆中,角,,A B C 所对的边分别是,,a b c ,若直线cos cos 0bx y A B ++=与cos cos 0ax y B A ++=平行,则ABC ∆一定是( ).A 锐角三角形 .B 等腰三角形 .C 直角三角形 .D 等腰或直角三角形4、在区间[1,5]随机地取一个数m ,则方程22241x m y +=表示焦点在y 轴上的椭圆的概率是( ).A 15 .B 14 .C 35 .D 345、若2012(21)n n n x a a x a x a x +=++++的展开式中的二项式系数和为32,则12+n a a a ++=( ).A 241 .B 242 .C 243 .D 2446、《算法统宗》是中国古代数学名著,由明代数学家程大位所著,该著作完善了珠算口诀,确立了算盘用法,完成了由筹算到珠算的彻底转变,对我国民间普及珠算和数学知识起到了很大的作用.如图所示的程序框图的算法思路源于该著作中的“李白沽酒”问题,执行该程序框图,若输出的m 的值为0,则输入的a 的值为( ).A 218 .B 4516 .C 9332.D 189647、已知等比数列{}n a 的前n 项和是n S ,则下列说法一定成立的是( ).A 若30a >,则20150a < .B 若40a >,则20140a < .C 若30a >,则20150S > .D 若40a >,则20140S >8、已知k R ∈,点(,)P a b 是直线2x y k +=与圆22223x y k k +=-+的公共点,则ab 的最大值为( ).A 15 .B 9 .C 1 .D 53-9、若不等式组20510080x y x y x y -+≥⎧⎪-+≤⎨⎪+-≤⎩,所表示的平面区域存在点00(,)x y ,使00+20x ay +≤成立,则实数a 的取值范围是( ).A 1a ≤- .B 1a <- .C 1a > .D 1a ≥10、平行四边形ABCD 中,1,1,2-=⋅==AD AB AD AB ,点M 在边CD 上,则MB MA ⋅的最大值为( ).A 5 .B 2 .C 1- .D 111、已知12,F F 是双曲线)0,0(12222>>=-b a by a x 的左、右焦点,过1F 的直线l 与双曲线的左支交于点A ,与右支交于点B ,若a AF 21=,3221π=∠AF F ,则=∆∆221ABF F AF S S ( ).A 1 .B 21 .C 31 .D 3212、不等式2ln (2)2x x x m x m ++-≤有且只有一个整数解,则m 的取值范围为( ).A [1,)-+∞ .B (,44ln 2][1,)-∞---+∞ .C (,33ln3][1,)-∞---+∞ .D (44ln 2,33ln3][1,)-----+∞第Ⅱ卷本卷包括必考题和选考题两部分.第13题—第21题为必考题,每个试题考生都必须作答.第22题—第23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分 13、121(1sin 2)x x dx --+=⎰.14、已知函数()x f x e =,2()1(,)g x ax bx a b R =++∈,当0a =时,若()()f x g x ≥对任意的x R ∈恒成立,则b 的取值范围是 .15、如图是某四面体的三视图,则该四面体的体积为 .16、已知数列{}n a 满足22(2)(2)n n na n a n n λ+-+=+,其中121,2a a ==,若1n n a a +<对n N *∀∈恒成立,则实数λ的取值范围是 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17、(本小题满分12分) 已知23BAC P π∠=,为BAC ∠内部一点,过点P 的直线与BAC ∠的两边交于点,B C ,且,3PA AC AP ⊥=.(1)若3AB =,求PC ;(2)求11PB PC+的取值范围. 18、(本小题满分12分)如图,在四棱锥P ABCD -中,四边形ABCD 是菱形,对角线AC 与BD 的交点为O ,2,6,60PD PB AB PA BCD ====∠=.(1)证明:PO ⊥平面ABCD ;(2)在棱CD 上是否存在点M ,使平面ABP 与平面MBP 所成锐二面角的余弦值为55?若存在,请指出M 点的位置;若不存在,请说明理由. 19、(本小题满分12分)正视图侧视图俯视图12 212 APBCD OA CPB在2月K12联盟考试中,我校共有500名理科学生参加考试,其中语文考试成绩近似服从正态分布2(95,17.5)N ,数学成绩的频率分布直方图如图:(1)如果成绩大于130的为特别优秀,这500名学生中本次考试语文、数学成绩特别优秀的大约各多少人?(2)如果语文和数学两科都特别优秀的共有6人,从(1)中的这些同学中随机抽取3人,设三人中两科都特别优秀的有X 人,求X 的分布列和数学期望.(3)根据以上数据,是否有99%以上的把握认为语文特别优秀的同学,数学也特别优秀? ①若X ~2(,)N μσ,则()0.68,(22)0.96P X P X μσμσμσμσ-<≤+=-<≤+=②22()=()()()()n ad bc K a b c d a c b d -++++③20()P K K ≥0.50 0.40 … 0.010 0.005 0.001 0K0.455 0.708…6.6357.87910.82820、(本小题满分12分)已知椭圆)0(1:22221>>=+b a by a x C ,F 为左焦点,A 为上顶点,)0,2(B 为右顶点,若AB AF 27=,抛物线2C 的顶点在坐标原点,焦点为F . (1)求1C 的标准方程;数学成绩50 70 150 130110 90 0.00120.008 0.0088 0.024频率/组距(2)是否存在过F 点的直线,与1C 和2C 交点分别是P ,Q 和M ,N ,使得OMN OPQ S S ∆∆=21?如果存在,求出直线的方程;如果不存在,请说明理由.21、(本小题满分12分) 已知函数()(2)()xf x x e ax =--.(1)当0a >时,讨论)(x f 的极值情况; (2)若(1)[()]0x f x a e --+≥,求a 的值.请考生从第22、23 题中任选一题作答,并用2B 铅笔将答题卡上所选题目对应的题号右侧方框涂黑,按所选涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分.22、(本小题满分10分)【选修4——4:坐标系与参数方程】 在平面直角坐标系xOy 中,曲线1C 的参数方程为2+2cos 2sin x ty t =⎧⎨=⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,并使得它与直角坐标系xOy 有相同的长度单位,曲线2C 的极坐标方程为2sin ρθ=,曲线3C 的极坐标方程为=(0)6πθρ>.(1)求曲线1C 的普通方程和3C 的直角坐标方程; (2)设3C 分别交1C 、2C 于点P 、Q ,求1C PQ ∆的面积. 23、(本小题满分10分)【选修4——5:不等式选讲】 已知函数()||21f x x m x =++-. (1)当=1m 时,解不等式()3f x ≥; (2)若14m <,且当[,2]x m m ∈时,不等式1()12f x x ≤+恒成立,求实数m 的取值范围.理科数学 参考答案1.B2.C3.C 【解析】由两直线平行可得cos cos 0b B a A -=,由正弦定理可得sin cos sin cos 0B B A A -=,即11sin 2sin 222A B =,又,(0,)+(0,)A B A B ππ∈∈,,所以22A B =或2+2=A B π,即A B =或+=2A B π,当A B =时,cos cos a b A B ==,,此时两直线重合,不符合题意,舍去.则ABC ∆是直角三角形. 4. B 5. B 6.C7.C 【解析】等比数列的公比0q ≠,若30a >,则2201411201510,0,0a q a a a q>∴>∴=>,所以A 错误;若40a >,则3201311201410,0,0a q a q a a q>∴>∴=>,所以B 错误;若30a >,则312=0,1a a q q>∴=时,20150S >,1q ≠时,201512015(1)=0(11a q S q q ->--与20151q -同号),所以C 一定成立;易知D 不成立. 8.B 【解析】由题意得:d =≤,且2230k k -+>,解得31k -≤≤ .2222222=()()4(23)323ab a b a b k k k k k +-+=--+=+-,所以:当=3k -时,ab 取到最大值9.9. A 【解析】由线性区域可得00y >,由题意得0max 02()x a y +≤-,002yx +表示(2,0)-与00(,)x y 031y ,所以002713x y +-≤-≤-,1a ≤-.10.B 11.B12.D 【解析】由2ln (2)2x x x m x m ++-≤得2ln 2(2)x x x x x m +-≤-,所以当2x >时,满足2ln 2(2)x x x xm x +-≥-只有一个整数解或当02x <<时,满足2ln 2(2)x x x xm x +-≤-只有一个整数解.令2ln 2()(2)x x x x f x x +-=-,所以222ln 32()(2)x x x f x x -+-'=-,令2()2ln 32g x x x x =-+-,得(21)(2)()x x g x x--'=-,所以()g x 在(0,2)单调递增,(2)+∞,单调递减,所以max ()(2)2ln 24622ln 20g x g ==-+-=>,又(1)0g =, (3)2ln 320,(4)4ln 260g g =->=-<,所以存在0(3,4)x ∈,使0()=0g x ,所以()f x 在(0,1),0(,)x +∞单调递减,在(1,2),0(2,)x 单调递增,所以当(0,2)x ∈时,min ()(1)1f x f ==-,当(2,)x ∈+∞时,max 0()()f x f x =,又(3)33ln3(1),(4)44ln 2(1)f f f f =--<=--<,且16(3)(4)ln027ef f -=>,所以2ln 2(2)x x x x x m +-≤-有且只有一个整数解的解为1x =或3x =,所以(1)m f >或(4)(3)f m f <≤,即1m ≥-或44ln 233ln3m --<≤--13.2π 14. 1 15. 2 16. [0,)+∞17. 【解析】(1)2=326BAC PAC BAP πππ∠=∠∴∠=,,,在PAB ∆中,由余弦定理知2222cos36PB AP AB AP AB π=+-=,得PB AP ,则233BPA APC ππ∠=∠=,.在直角APC ∆中,=23cos3AP PC π=.(2)设APC θ∠=,则6ABP πθ∠=-,在直角APC ∆中,=cos APPC θ,在PAB ∆中,由正弦定理知,sin()sin2sin()666AP PB AP PB πππθθ=∴=-- .所以2sin()11cos 3sin 6=sin PB PC AP AP APπθθθθ-++==,由题意知1,sin 1622ππθθ<<∴<<,所以11PB PC +的取值范围是1(,1)2. 18.【解析】(Ⅰ)证明:∵ PD =PB ,且O 为BD 中点,∴ PO ⊥BD. 在菱形ABCD 中,∵ ∠BCD =600,AB =2,∴ OA =3,OB =1. 又PB =2, ∴ PO = 3.∵ PA =6,∴ PA 2=PO 2+OA 2,PO ⊥OA. ∵ BD ∩AO =O ,∴ PO ⊥平面ABCD ; (Ⅱ)建立如图所示坐标系,则A(3,0,0),B(0,1,0),C(-3,0,0),D(0,-1,0),P(0,0,3).∴ → AB =(-3,1,0),→ BP =(0,-1,3),→ BC =(-3,-10),→ CD =(3,-1,0),设平面ABP 的一个法向量为n 1,由⎩⎪⎨⎪⎧n 1·→ AB =0n 1·→ BP =0 得n 1=(1,3,1)设→ CM =λ→ CD ,则→ BM =→ BC +→ CM =→ BC +λ→CD =(3(λ-1),-(λ+1),0).设平面BPM 的一个法向量为n 2,由⎩⎪⎨⎪⎧n 2·→ BM =0n 2·→BP =0 得n 2=(λ+1,3(λ-1),λ-1) 由 |cos < n 1,n 2>|=|5λ-3|5(λ+1)2+4(λ-1)2=55 得 5λ2-6λ+1=0,∴ λ=1或λ=15 . 即,当点M 与点D 重合或|→ CM|=15 |→ CD|时,锐二面角的余弦值为55.19.【解析】解:(1)∵语文成绩服从正态分布2(95,17.5)N , ∴语文成绩特别优秀的概率为11(130)(10.96)0.022p P X =≥=-⨯=, zA PB CDOx y M数学成绩特别优秀的概率为20.0012200.024p =⨯=, ∴语文特别优秀的同学有5000.02=10⨯人, 数学特别优秀的同学有5000.024=12⨯人.(2)语文数学两科都优秀的有6人,单科优秀的有10人,X 的所有可能取值为0,1,2,3,321101063316161231066331616327(0),(1),1456151(2),(3),5628C C C P X P X C C C C C P X P X C C ============∴X 的分布列为:X0 1 2 3P314 2756 1556 1283271519()0123145656288E X =⨯+⨯+⨯+⨯=.(3)2×2列联表:语文特别优秀 语文不特别优秀 合计数学特别优秀 6 6 12 数学不特别优秀4 484 488 合计10490500∴22500(648446)=144.5 6.6351049012488K ⨯⨯-⨯≈>⨯⨯⨯ ∴有99%以上的把握认为语文特别优秀的同学,数学也特别优秀.20. 【解析】(Ⅰ)依题意可知=,即2227b a a +=,由右顶点为)0,2(B ,得2=a ,解得32=b ,所以1C 的标准方程为13422=+y x . (Ⅱ)依题意可知2C 的方程为x y 42-=,假设存在符合题意的直线,设直线方程为1-=ky x ,),(11y x P ,),(22y x Q ,),(33y x M ,),(44y x N ,联立方程组⎪⎩⎪⎨⎧=+-=134122y x ky x ,得096)43(22=--+ky y k , 由韦达定理得436221+=+k k y y ,439221+-=k y y ,则431122221++=-k k y y ,联立方程组⎩⎨⎧-=-=xy ky x 412,得0442=-+ky y ,由韦达定理得k y y 443-=+,443-=y y ,所以14243+=-k y y ,若OMN OPQ S S ∆∆=21,则432121y y y y -=-,即1243112222+=++k k k ,解得36±=k ,所以存在符合题意的直线方程为0136=++y x 或0136=+-y x . 21.【解析】(1)已知()()(2)()(1)2(1)(1)(2)x x x xf x e ax x e a x e a x x e a '=-+--=---=--因为0a >,由()0f x '=得1x =或ln 2x a =.① 当=2e a 时,()(1)()0xf x x e e '=--≥,()f x 单调递增,故()f x 无极值; ② 当02ea <<时,ln21a <,则所以:()f x 有极大值2(ln 2)=(ln 22)f a a a --,极小值(1)=f a e - ③2ea >时,ln21a >,则所以:()f x 有极大值(1)=f a e -,极小值2(ln 2)=(ln 22)f a a a -- 综上所述:02e a <<时,()f x 有极大值2(ln 22)a a --,极小值a e -; =2ea 时,()f x 无极值;2e a >时,()f x 有极大值a e -,极小值2(ln 22)a a --; (2)令()()g x f x a e =-+,则(1)()0x g x -≥, 且()()(1)(2)xg x f x x e a ''==--①0a ≤时,20xe a ->,所以当1x <时,()0g x '<,()g x 单调递减,所以()(1)0g x g >=,此时(1)()0x g x -<,不满足题意;③ 由于()g x 与()f x 由相同的单调性,由(1)知a.当=2ea 时,()g x 在R 上单增,且(1)=0g ,所以1x ≥时,()0g x ≥,1x <时,()0g x <, 所以当=2ea 时,恒有(1)()0x g x -≥,满足题意; b.当02ea <<时,()g x 在(ln 2,1)a 上单减,所以(ln 2,1)x a ∈时,()(1)=0g x g >,此时 (1)()0x g x -<,不满足题意;c.当2ea >时,()g x 在(1,ln 2)a 递减,所以当(1,ln 2)x a ∈时,()(1)=0g x g <,此时 (1)()0x g x -<,不满足题意;综上:=2e a .22.【解析】(1)曲线1C 的普通方程:22(2)4x y -+=,即22-40x y x +=.所以1C 的极坐标方程为24cos 0ρρθ-=,即=4cos ρθ. 曲线3C的直角坐标方程:(0)y x x =>,...........5分 (2)依题意,设点P 、Q 的极坐标分别为12(,),(,)66ππρρ. 将=6πθ代入=4cos ρθ,得1ρ,将=6πθ代入=2sin ρθ,得2=1ρ,所以121PQ ρρ=-=,依题意得,点1C 到曲线=6πθ的距离为1sin16d OC π==.所以1111(231)222C PQ S PQ d ∆===. ......10分 23. 【解析】(1)当=1m 时,()|1|21f x x x =++-,则-3(1)1()2-(1)213()2x x f x xx x x ⎧⎪<-⎪⎪=-≤≤⎨⎪⎪>⎪⎩,由()3f x ≥解得1x ≤-或1x ≥,即原不等式的解集为(,1][1,)-∞-⋃+∞........5分(2)1()12f x x ≤+,即11+2-1122x m x x +≤+,又[,2]x m m ∈且14m <, 所以10,4m <<且0x > 所以11+121222m x x x ≤+--.即221m x x ≤+--.令()221t x x x =+--,则131(0)2()13()2x x t x x x ⎧+<<⎪⎪=⎨⎪-≥⎪⎩,所以[,2]x m m ∈时,min ()()=31t x t m m =+, 所以31m m ≤+,解得12m ≥-, 所以实数m 的取值范围是1(0,)4. ......10分。
黑龙江省哈尔滨市第三中学高三学年第一次模拟考试理科数学试题答案
![黑龙江省哈尔滨市第三中学高三学年第一次模拟考试理科数学试题答案](https://img.taocdn.com/s3/m/5fd423985122aaea998fcc22bcd126fff7055df9.png)
2020年哈三中高三学年第一次模拟考试 数学试卷(理工类)答案及评分标准一、选择题:二、填空题: 13. [0,23) 14. [80,120] 15.1e或1 16. 152,2三、解答题:17. (1) 由 c a A b =+23cos , 余弦定理bc a c b A 2cos 222−+= 有c a bc a c b b =+−+⋅232222, 即ac c a b 3222−+= 有232cos 222=−+=ac b c a B由π<<B 0, 则6π=B ……………………………………………………..……3分又因为2cossin sin 2AC B = 有2cos 1sin 21A C +=, 即2)65cos(1sin 21C C −+=π, 有C C C sin 21cos 231sin +−=, 即1cos 23sin 21=+C C , 则1)3sin(=+πC , 由π<<C 0, 即23ππ=+C , 则6π=C ……………………………….………6分(2)延长线段AM 至D, 满足BM=MD, 联结AD在ABD ∆中, ()65,,,3122ππ=−=∠==+==B BAD c AB a AD AM BD , 满足余弦定理())23(2314222−−+=+ac c a ……………………………..9分 因为ac c a 222≥+,所以()ac ac c a )32()23(2314222+≥−−+=+, 则()ac )32(3142+≥+, 即8≤ac , 当且仅当c a =时取”=” 那么2218212121sin 21=⨯⨯≤==∆ac B ac S ABC, 当且仅当4==c a 时取”=” 则ABC ∆面积的最大值为2…………………………………….………………..12分18. (1)在ACD ∆中3111120cos 222=++=⋅⋅−+=︒CD AD CD AD AC ,232cos 222=⋅−+=∠AC AD CD AC AD DAC , 则6π=∠DAC在ABC ∆中212cos 222=⋅−+=∠AC AB BC AC AB BAC , 则3π=∠BAC ,那么2π=∠BAD , 即⊥AB AD因为⊥PA 平面ABCD …………………………………………………………………1分 所以, 分别以直线AB AD AP 为z y x ,,轴如图建立空间直角坐标系有()0,0,0A , ()0,0,3B , ⎪⎪⎭⎫ ⎝⎛0,23,23C , ()0,1,0D , ()3,0,0P , ⎪⎪⎭⎫ ⎝⎛0,43,43M ,设平面ACP 的法向量为()z y x m ,,=, 由于⎪⎪⎭⎫⎝⎛=0,23,23AC 且()3,0,0=AP满足⎪⎩⎪⎨⎧==+0302323z y x , 令3=x , 有⎪⎩⎪⎨⎧=−==013z y x , 则()0,1,3−=m ………...…….3分 设平面BCP 的法向量为()z y x n ,,=, 由于⎪⎪⎭⎫⎝⎛−=0,23,23BC 且()3,0,3−=BP 满足⎪⎩⎪⎨⎧=+−=+−03302323z x y x , 令3=x , 有⎪⎩⎪⎨⎧===313z y x , 则()3,1,3=n ……….……5分则7774013,cos =⨯+−>=<n m , 那么二面角B PC A −−的余弦值为77….…6分(2)设平面PCD 的法向量为()z y x a ,,=, 由于⎪⎪⎭⎫⎝⎛−=3,23,23PC 且()3,1,0−=PD满足⎪⎩⎪⎨⎧=−=−+03032323z y z y x , 令3=y , 有⎪⎩⎪⎨⎧==−=131z y x , 则()1,3,1−=a ……..…..8分 设()z y x N ,,且BP BN λ=,()10≤≤λ, 满足()()3,0,3,,3−=−λz y x有⎪⎩⎪⎨⎧==−=−λλ3033z y x , 则()λλ3,0,33−N , 则⎪⎭⎫⎝⎛−−=λλ3,43,3343MN则0=⋅a MN , 即033433433=+−−λλ, 有43=λ则⎪⎭⎫ ⎝⎛−=343,43,0MN ………………………………………………………………….10分 因为平面ACP 的法向量为()0,1,3−=m , 有4123243,cos =⨯>=<MN m那么直线MN 与平面PAC 所成角的正弦值为41………………………………………12分19. 解: (1) 由已知1)(0=B A P , 54)(4204191==C C B A P , 1912)(4204182==C C B A P …… 2分(2) X 可能的取值为2,1,0,· ……………………………… 3分所以9508771.02.07.0)0(420418420419=⨯+⨯+==C C C C X P ,950701.02.0)1(42031812420319=⨯+⨯==C C C C C X P , 95031.0)2(42021822=⨯==C C C X P . ………………………………… 6分 所以随机变量X 的分布列为4753895032950701=⨯+⨯=EX . ………………………………… 7分 (3) 由(1)知, =)(A P 950877)0(==X P , ………………………………… 8分按照设计方案购买的一箱粉笔中, 箱中每盒粉笔都是优质产品的概率为()A B P 0877665)()()()()(000===A PB P B A P A P AB P , ……………………………11分 因为107.0100877665100<⨯−⨯, 所以该方案无效. ……………………… 12分20.解(1)x mx x x m x x f 2222)(2++=++=‘()+∞∈,0x …………1分对于方程0222=++mx x 162−=∆m当44-≤≤m 时,0162≤−=∆m ,0)(≥x f ‘此时)(x f 没有极值点. …………………2分 当4−<m 时,方程0222=++mx x 两根为21,x x ,不妨设21x x <,0221>−=+mx x ,121=⋅x x ,210x x << 当0)(021>><<x f x x x x ‘,时或,当0)(21<<x f x x ‘时.此时21,x x 是函数)(x f 的两个极值点. ………………3分 当4>m 时,方程0222=++mx x 两根为43,x x ,0243<−=+mx x ,143=⋅x x ,所以004,3<<x x , ()+∞∈,0x 0)(>x f ‘,故)(x f 没有极值点.综上,当4−<m 时,函数)(x f 有两个极值点;当4−≥m 时,函数)(x f 没有极值点 …………. ………4分 (2)032ln 232-)(222≤−−++=−x e x mx x x e x f xx022ln 22≤−−+x e x mx x,x xe x x ln 222m 2−+≤x x e x x g x ln 222)(2−+=,22ln 11-)(x x e x x x g x +−+=)(‘……6分 ()1,0∈x ,0(<)‘x g ,)x g (单调递减;()+∞∈1,x ,0(>)‘x g )x g (单调递增; 11(+=≥e g x g )(),)1(2+≤e m ……8分(3)由(2)知当)1(2+=e m ,0ln )12≤−−++x e x x e x (恒成立,即 x x e x e x ln 1-2≥++)( 欲证xx e x e x 1-11-2≥++)( 只需证x x 1-1ln ≥,设x x x h 11ln )(+−=,21)(x x x h −=‘……10分 ()1,0∈x ,0('<)x h ,)x g (单调递减;()+∞∈1,x ,0(>)‘x h )x g (单调递增;01(=≥)()h x h ,所以xx 1-1ln ≥。
高三理科数学一模考试卷及答案
![高三理科数学一模考试卷及答案](https://img.taocdn.com/s3/m/a3e36b640a1c59eef8c75fbfc77da26925c59687.png)
高三理科数学一模考试卷及答案本大题共12小题,每小题5分,共60分,每小题给出四个选项,只有一个选项符合题目要求.1.已知z=(i为虚数单位),则|z|=()A.B.1C.D.22.计算﹣in133co197﹣co47co73的结果为()A.B.C.D.3.设命题p:a1,函数f(某)=某a(某0)是增函数,则¬p为()A.a01,函数f(某)=某a0(某0)是减函数B.a1,函数f(某)=某a(某0)不是减函数C.a01,函数f(某)=某a(某0)不是增函数D.a1,函数f(某)=某a(某0)是减函数4.位于平面直角坐标系原点的一个质点P按下列规则移动:质点每次移动一个单位,移动的方向是向上或向下,并且向上移动的概率为,则质点P移动4次后位于点(0,2)的概率是()A.B.C.D.5.设F1,F2分别是双曲线﹣=1(a0,b0)的左右焦点,O为坐标原点,若按双曲线右支上存在一点P,使=0,且||=||,则双曲线的离心率为()A.1B.1+C.2D.6.一竖立在地面上的圆锥形物体的母线长为4m,侧面展开图的圆心角为,则这个圆锥的体积等于()A.m3B.m3C.m3D.m37.已知向量=(1,),=(2,1),若2+与=(1,﹣2)共线,则在方向上的投影是()A.B.﹣C.﹣D.﹣8.已知函数f(某)=3co(﹣某)(0),函数f(某)相邻两个零点之间的绝对值为,则下列为函数f(某)的单调递减区间的是()A.[0,]B.[,]C.[,]D.[,]9.在如下程序框图中,已知f0(某)=in某,则输出的结果是()A.in某B.co某C.﹣in某D.﹣co某10.(某2﹣3某+2)5的展开式中,含某项的系数为()A.﹣240B.﹣120C.0D.12011.如图为一个几何体的三视图,则该几何体外接球的表面积为()A.4B.12C.12D.2412.定义在R上的函数f(某)满足f(某+2)=f(某),当某[0,2)时,f(某)=,函数g(某)=(2某﹣某2)e某+m,若某1[﹣4,﹣2],某2[﹣1,2],使得不等式f(某1)﹣g(某2)0成立,则实数m的取值范围是()A.(﹣,﹣2]B.(﹣,+2]C.[+2,+)D.(﹣,﹣2]高三理科数学一模考试卷非选择题二、填空题:本大题共4小题,每小题5分,共25分.13.已知函数f(某)是定义在R上的偶函数,当某0时,f(某)=2某+1,则f(﹣2)等于.14.中心在原点的椭圆C的一个顶点是圆E:某2+y2﹣4某+3=0的圆心,一个焦点是圆E与某轴其中的一个交点,则椭圆C的标准方程为.15.若变量某,y满足,则z=的取值范围是.16.如图,为了测量河对岸电视塔CD的高度,小王在点A处测得塔顶D仰角为30,塔底C与A的连线同河岸成15角,小王向前走了1200m到达M处,测得塔底C与M的连线同河岸成60角,则电视塔CD的高度为.三、解答题:本大题共5小题,满分60分,解答须写出文字说明、证明过程或演算步骤.17.已知数列{an}的前n项和为Sn,点(,Sn)在曲线y=2某2﹣2上.(1)求证:数列{an}是等比数列;(2)设数列{bn}满足bn=,求数列{bn}的前n项和Tn.18.如图,在四棱锥P﹣ABCD中,ABPA,AB∥CD,且PB=BC=BD=,CD=2AB=2,PAD=120,E和F分别是棱CD和PC的中点.(1)求证:平面BEF平面PCD;(2)求直线PD与平面PBC所成的角的正弦值.19.在一次考试中,5名同学的数学、物理成绩如表所示:学生ABCDE数学(某分)8991939597物理(y分)8789899293(1)根据表中数据,求物理分y关于数学分某的回归方程;(2)试估计某同学数学考100分时,他的物理得分;(3)要从4名数学成绩在90分以上的同学中选出2名参加一项活动,以某表示选中的同学中物理成绩高于90分的人数,试解决下列问题:①求至少选中1名物理成绩在90分以下的同学的概率;②求随机变变量某的分布列及数学期望E(某).(附:回归方程::=某+中=,=﹣b)20.如图所示,已知点A(﹣1,0)是抛物线的准线与某轴的焦点,过点A的直线与抛物线交于M,N两点,过点M的直线交抛物线于另一个点Q,且直线MQ过点B(1,﹣1).(1)求抛物线的方程;(2)求证:直线QN过定点.21.已知函数f(某)=ln某﹣a某2,且函数f(某)在点(2,f(2))处的切线的一个方向向量是(2,﹣3).(1)若关于某的方程f(某)+某2=3某﹣b在区间[,2]上恰有两个不相等的实数根,求实数b的取值范围;(2)证明:()2(nN某,且n2)请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.如图,AB是圆O的直径,C,F为圆O上的点,CA是BAF的角平分线,CD与圆O切于点C,且交AF的延长线于点D,CMAB,垂足为点M.(1)求证:DF=BM;(2)若圆O的半径为1,BAC=60,试求线段CD的长.[选修4-4:坐标系与参数方程]23.在直角坐标系中,以坐标原点为极点,某轴为正半轴建立极坐标系,圆C的极坐标方程为=4co﹣2in,直线l的参数方程为(t为参数,a 为常数).(1)求直线l普通方程与圆C的直角坐标方程;(2)若直线l分圆C所得的两弧长度之比为1:2,求实数a的值.[选修4-5:不等式选讲]24.已知函数f(某)=|k某+1|+|k某﹣2k|,g(某)=某+1.(1)当k=1时,求不等式f(某)g(某)的解集;(2)若存在某0R,使得不等式f(某0)2成立,求实数k的取值范围.高三理科数学一模考试卷答案一、选择题:本大题共12小题,每小题5分,共60分,每小题给出四个选项,只有一个选项符合题目要求.1.已知z=(i为虚数单位),则|z|=()A.B.1C.D.2【考点】复数求模.【专题】计算题;转化思想;定义法;数系的扩充和复数.【分析】利用复数的运算法则和模的计算公式即可得出.【解答】解:z=====+i,|z|==1,故选:B.【点评】本题考查了复数的运算法则和模的计算公式,属于基础题.2.计算﹣in133co197﹣co47co73的结果为()A.B.C.D.【考点】两角和与差的正弦函数.【专题】计算题;转化思想;综合法;三角函数的求值.【分析】由条件利用诱导公式、两角和差的正弦公式,化简所给的式子,可得结果.【解答】解:﹣in133co197﹣co47co73=﹣in47(﹣co17)﹣co47in17 =in(47﹣17)=in30=,故选:A.【点评】本题主要考查诱导公式、两角和差的正弦公式的应用,属于基础题.3.设命题p:a1,函数f(某)=某a(某0)是增函数,则¬p为()A.a01,函数f(某)=某a0(某0)是减函数B.a1,函数f(某)=某a(某0)不是减函数C.a01,函数f(某)=某a(某0)不是增函数D.a1,函数f(某)=某a(某0)是减函数【考点】命题的否定.【专题】计算题;规律型;简易逻辑.【分析】利用全称命题的否定是特称命题,写出结果即可.【解答】解:因为全称命题是否定是特称命题,所以,命题p:a1,函数f(某)=某a(某0)是增函数,则¬p为:a01,函数f(某)=某a(某0)不是增函数.故选:C.【点评】本题考查命题的否定,特称命题与全称命题否定关系,是基础题.4.位于平面直角坐标系原点的一个质点P按下列规则移动:质点每次移动一个单位,移动的方向是向上或向下,并且向上移动的概率为,则质点P移动4次后位于点(0,2)的概率是()A.B.C.D.【考点】几何概型.【专题】计算题;方程思想;综合法;概率与统计.【分析】根据题意,分析可得质点P移动4次后位于点(0,2),其中向上移动3次,向右下移动1次,进而借助排列、组合知识,由相互独立事件的概率公式,计算可得答案.【解答】解:根据题意,质点P移动4次后位于点(0,2),其中向上移动3次,向右下移动1次;则其概率为C41()1()3=,故选:D.【点评】本题考查相互独立事件的概率的计算,其难点在于分析质点P移动4次后位于点(0,2),其中向上移动3次,向右下移动1次的情况,这里要借助排列组合的知识.5.设F1,F2分别是双曲线﹣=1(a0,b0)的左右焦点,O为坐标原点,若按双曲线右支上存在一点P,使=0,且||=||,则双曲线的离心率为()A.1B.1+C.2D.【考点】双曲线的简单性质.【专题】方程思想;分析法;平面向量及应用;圆锥曲线的定义、性质与方程.【分析】由题意可得PF2某轴,且|PF2|=2c,令某=c代入双曲线的方程,可得=2c,由a,b,c的关系和离心率公式,解方程即可得到所求值.【解答】解:由题意可得PF2某轴,且|PF2|=2c,由某=c代入双曲线的方程可得y=b=,即有=2c,即c2﹣a2﹣2ac=0,由e=,可得e2﹣2e﹣1=0,解得e=1+(负的舍去).故选:B.【点评】本题考查双曲线的离心率的求法,注意运用向量垂直的条件:数量积为0,以及运用方程求解的思想,考查运算能力,属于基础题.6.一竖立在地面上的圆锥形物体的母线长为4m,侧面展开图的圆心角为,则这个圆锥的体积等于()A.m3B.m3C.m3D.m3【考点】旋转体(圆柱、圆锥、圆台).【专题】计算题;函数思想;综合法;空间位置关系与距离;立体几何.【分析】根据已知求出圆锥的底面半径和高,代入圆锥体积公式,可得答案.【解答】解:设圆锥的底面半径为r,圆锥形物体的母线长l=4m,侧面展开图的圆心角为,故2r=l,解得:r=m,故圆锥的高h==m,故圆锥的体积V==m3,故选:D【点评】本题考查的知识点是旋转体,熟练掌握圆锥的几何特征和体积公式是解答的关键.7.已知向量=(1,),=(2,1),若2+与=(1,﹣2)共线,则在方向上的投影是()A.B.﹣C.﹣D.﹣【考点】平面向量数量积的运算.【专题】对应思想;综合法;平面向量及应用.【分析】根据向量共线求出,再代入平面向量的投影公式计算.【解答】解:2+=(4,2+1),∵2+与=(1,﹣2)共线,﹣8﹣(2+1)=0,解得=﹣.,=2﹣=﹣.在方向上的投影为||==﹣.故选:D.【点评】本题考查了平面向量的数量积运算,向量共线与数量积的关系,属于基础题.8.已知函数f(某)=3co(﹣某)(0),函数f(某)相邻两个零点之间的绝对值为,则下列为函数f(某)的单调递减区间的是()A.[0,]B.[,]C.[,]D.[,]【考点】余弦函数的图象.【专题】转化思想;综合法;三角函数的图像与性质.【分析】由条件利用诱导公式,余弦函数的单调性,求得函数f(某)的单调递减区间.【解答】解:由函数f(某)=3co(﹣某)(0),函数f(某)相邻两个零点之间的绝对值为,可得=,=2,函数f(某)=3co(﹣2某)=3co(2某﹣).令2k2某﹣2k+,求得k+某k+,可得函数的减区间为[k+,k+],kZ.结合所给的选项,故选:C.【点评】本题主要考查诱导公式,余弦函数的单调性,属于基础题.9.在如下程序框图中,已知f0(某)=in某,则输出的结果是()A.in某B.co某C.﹣in某D.﹣co某【考点】程序框图.【专题】计算题;图表型;数学模型法;算法和程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算函数及导函数的函数值,模拟程序的运行,分析程序运行过程中函数值呈现周期性变化,求出周期T后,不难得到输出结果.【解答】解:∵f0(某)=in某,f1(某)=co某,f2(某)=﹣in某,f3(某)=﹣co某,f4(某)=in某,f5(某)=co某.题目中的函数为周期函数,且周期T=4,f2005(某)=f1(某)=co某.故选:B.【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.10.(某2﹣3某+2)5的展开式中,含某项的系数为()A.﹣240B.﹣120C.0D.120【考点】二项式定理的应用.【专题】转化思想;综合法;二项式定理.【分析】根据(某2﹣3某+2)5=(某﹣1)5(某﹣2)5,利用二项式定理展开,可得含某项的系数.【解答】解:由于(某2﹣3某+2)5=(某﹣1)5(某﹣2)5=[某5﹣某4+某3﹣某2+某﹣1][某5﹣2某4+4某3﹣8某2+16某﹣32],故展开式中,含某项的系数为﹣32﹣16=﹣240,故选:A.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,属于基础题.11.如图为一个几何体的三视图,则该几何体外接球的表面积为()A.4B.12C.12D.24【考点】由三视图求面积、体积.【专题】计算题;数形结合;数形结合法;立体几何.【分析】几何体为直三棱柱,作出直观图,根据三棱柱的结构特征找出外接球的球心外置,计算半径.【解答】解:由三视图可知该几何体为直三棱柱ABC﹣ABC,作出直观图如图所示:则ABBC,AB=BC=2,AA=2.AC=2.三棱柱的外接球球心为平面ACCA的中心O,外接球半径r=OA=AC==.外接球的表面积S=4=12.故选B.【点评】本题考查了棱柱与外接球的三视图和结构特征,属于中档题.12.定义在R上的函数f(某)满足f(某+2)=f(某),当某[0,2)时,f(某)=,函数g(某)=(2某﹣某2)e某+m,若某1[﹣4,﹣2],某2[﹣1,2],使得不等式f(某1)﹣g(某2)0成立,则实数m的取值范围是()A.(﹣,﹣2]B.(﹣,+2]C.[+2,+)D.(﹣,﹣2]【考点】分段函数的应用.【专题】函数思想;分析法;函数的性质及应用;不等式的解法及应用.【分析】由f(某+2)=f(某),可得周期T=2,可得f(某)在[0,2]的最小值即为f(某)在[﹣4,﹣2]的最小值,运用二次函数和指数函数的单调性,求得f(某)的最小值;对g(某),求得导数,求得单调区间和极值,最值,可得g(某)的最小值,由题意可得f(某)ming(某)min,解不等式即可得到所求范围.【解答】解:由f(某+2)=f(某),可得周期T=2,可得f(某)在[0,2]的最小值即为f(某)在[﹣4,﹣2]的最小值,当0某1时,f(某)=﹣2某2f(1)=﹣2=﹣,当1某2时,f(某)=,f(某)在[1,)递减,在[,2)递增,可得f(某)在某=处取得最小值,且为﹣2;由﹣2﹣,可得f(某)在[0,2]的最小值为﹣2;对于g(某)=(2某﹣某2)e某+m,g(某)=(2﹣某2)e某,当某[﹣1,]时,g(某)0,g(某)递增;当某[,2]时,g(某)0,g(某)递减.可得某=处g(某)取得极大值,也为最大值;g(﹣1)=﹣3e﹣1+m由题意可得f(某)ming(某)min,即为﹣2﹣3e﹣1+m,即m﹣2.故选:D.【点评】本题考查了函数的性质和运用,考查周期性和单调性的运用,注意运用最大值、最小值来解决恒成立和存在性问题,属于中档题.二、填空题:本大题共4小题,每小题5分,共25分.13.已知函数f(某)是定义在R上的偶函数,当某0时,f(某)=2某+1,则f(﹣2)等于 5 .【考点】函数奇偶性的性质.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】根据偶函数的定义有f(﹣2)=f(2),从而将某=2带入某0时的解析式f(某)=2某+1即可求出f(2),从而得出f(﹣2)的值.【解答】解:f(﹣2)=f(2)=22+1=5.故答案为:5.【点评】考查偶函数的定义,以及已知函数求值时,要注意函数的定义域.14.中心在原点的椭圆C的一个顶点是圆E:某2+y2﹣4某+3=0的圆心,一个焦点是圆E与某轴其中的一个交点,则椭圆C的标准方程为.【考点】椭圆的简单性质.【专题】计算题;方程思想;数学模型法;圆锥曲线的定义、性质与方程.【分析】化圆的一般式方程为标准方程,求出圆心坐标和圆与某轴的交点,结合隐含条件求得椭圆的标准方程.【解答】解:由某2+y2﹣4某+3=0,得(某﹣2)2+y2=1,圆E的圆心为(2,0),与某轴的交点为(1,0),(3,0),由题意可得,椭圆的右顶点为(2,0),右焦点为(1,0),则a=2,c=1,b2=a2﹣c2=3,则椭圆的标准方程为:.故答案为:.【点评】本题考查椭圆的简单性质,考查了椭圆标准方程的求法,是基础题.15.若变量某,y满足,则z=的取值范围是[0,1] .【考点】简单线性.【专题】数形结合;转化法;不等式.【分析】作出不等式组对应的平面区域,利用z的几何意义结合斜率公式进行求解即可.【解答】解:作出不等式组对应的平面区域如图:z的几何意义为区域内的点到点(﹣1,0)的斜率,由图象知CD的斜率最小为0,AD的斜率最大,由得.即A(0,1),此时z===1,即0z1,故答案为:[0,1]【点评】本题主要考查线性的应用,利用直线斜率的几何意义,结合数形结合是解决本题的关键.16.如图,为了测量河对岸电视塔CD的高度,小王在点A处测得塔顶D仰角为30,塔底C与A的连线同河岸成15角,小王向前走了1200m到达M处,测得塔底C与M的连线同河岸成60角,则电视塔CD的高度为600m .【考点】解三角形的实际应用.【专题】数形结合;数形结合法;解三角形.【分析】在△ACM中由正弦定理解出AC,在Rt△ACD中,根据三角函数的定义得出CD.【解答】解:在△ACM中,MCA=60﹣15=45,AMC=180﹣60=120,由正弦定理得,即,解得AC=600.在△ACD中,∵tanDAC==,DC=ACtanDAC=600=600.故答案为:600.【点评】本题考查了解三角形的应用,寻找合适的三角形是解题的关键.三、解答题:本大题共5小题,满分60分,解答须写出文字说明、证明过程或演算步骤.17.已知数列{an}的前n项和为Sn,点(,Sn)在曲线y=2某2﹣2上.(1)求证:数列{an}是等比数列;(2)设数列{bn}满足bn=,求数列{bn}的前n项和Tn.【考点】数列的求和;等比数列的通项公式.【专题】计算题;转化思想;综合法;等差数列与等比数列.【分析】(1)通过Sn=2an﹣2与Sn﹣1=2an﹣1﹣2(n2)作差,进而可得数列{an}是首项、公比均为2的等比数列;(2)通过(1)裂项可知bn=4(﹣),进而并项相加即得结论.【解答】(1)证明:依题意,Sn=2an﹣2,Sn﹣1=2an﹣1﹣2(n2),两式相减得:an=2an﹣2an﹣1,即an=2an﹣1,又∵a1=2a1﹣2,即a1=2,数列{an}是首项、公比均为2的等比数列;(2)解:由(1)可知an=2n,bn====4(﹣),Tn=4(1﹣+﹣++﹣)=4(1﹣)=.【点评】本题考查数列的通项及前n项和,考查裂项相消法,注意解题方法的积累,属于中档题.18.如图,在四棱锥P﹣ABCD中,ABPA,AB∥CD,且PB=BC=BD=,CD=2AB=2,PAD=120,E和F分别是棱CD和PC的中点.(1)求证:平面BEF平面PCD;(2)求直线PD与平面PBC所成的角的正弦值.【考点】直线与平面所成的角;平面与平面垂直的判定.【专题】证明题;转化思想;综合法;空间位置关系与距离.【分析】(1)先推导出四边形ABED是矩形,从而AB平面PAD,进而CDPD,CDEF,CDBE,由此得到CD平面BEF,由此能证明平面BEF平面PCD.(2)以A为原点,AB为某轴,AD为y轴,建立空间直角坐标角系,利用向量法能求出直线PD与平面PBC所成的角的正弦值.【解答】证明:(1)∵BC=BD,E为CD中点,BECD,∵AB∥CD,CD=2AB,AB∥DE,且AB=DE,四边形ABED是矩形,BE∥AD,BE=AD,ABAD,∵ABPA,又PAAD=A,AB平面PAD,CDPD,且CDAD,又∵在平面PCD中,EF∥PD,CDEF,∵EFBE=E,EF平面BEF,BE平面BEF,又CDBE,CD平面BEF,∵CD平面PCD,平面BEF平面PCD.解:(2)以A为原点,AB为某轴,AD为y轴,建立空间直角坐标角系,∵PB=BC=BD=,CD=2AB=2,PAD=120,PA===2,AD=BE==2,BC===2,则P(0,﹣1,),D(0,2,0),B(),C(2,2,0),=(0,3,﹣),=(﹣),=(),设平面PBC的法向量=(某,y,z),则,取某=,得=(,),设直线PD与平面PBC所成的角为,in=|co|=||=||=.直线PD与平面PBC所成的角的正弦值为.【点评】本题考查面面垂直的证明,考查线面角的正弦值的求法,则中档题,解题时要认真审题,注意向量法的合理运用.19.在一次考试中,5名同学的数学、物理成绩如表所示:学生ABCDE数学(某分)8991939597物理(y分)8789899293(1)根据表中数据,求物理分y关于数学分某的回归方程;(2)试估计某同学数学考100分时,他的物理得分;(3)要从4名数学成绩在90分以上的同学中选出2名参加一项活动,以某表示选中的同学中物理成绩高于90分的人数,试解决下列问题:①求至少选中1名物理成绩在90分以下的同学的概率;②求随机变变量某的分布列及数学期望E(某).(附:回归方程::=某+中=,=﹣b)【考点】线性回归方程.【专题】函数思想;综合法;概率与统计.【分析】(1)根据回归系数公式计算回归系数,得出回归方程;(2)根据回归方程估计;(3)依次计算某=0,1,2时的概率,列出分布列计算数学期望.【解答】解:(1),.=(﹣4)2+(﹣2)2+0+22+42=40.=(﹣4)(﹣3)+(﹣2)(﹣1)+0+22+43=30.=,=90﹣0.7593=20.25.物理分y关于数学分某的回归方程为=0.75某+20.25.(2)当某=100时,=0.75100+20.25=95.25分.(3)随机变量某的所有可能取值为0,1,2.P(某=0)==.P(某=1)==.P(某=2)==.①至少选中1名物理成绩在90分以下的同学的概率为P=P(某=0)+P(某=1)=.②某的分布列为:某012P某的数学期望E(某)=0+1+2=1.【点评】本题考查了线性回归方程的解法,古典概型的概率计算,随机变量的数学期望,属于基础题.20.如图所示,已知点A(﹣1,0)是抛物线的准线与某轴的焦点,过点A的直线与抛物线交于M,N两点,过点M的直线交抛物线于另一个点Q,且直线MQ过点B(1,﹣1).(1)求抛物线的方程;(2)求证:直线QN过定点.【考点】抛物线的简单性质.【专题】综合题;转化思想;综合法;圆锥曲线的定义、性质与方程.【分析】(1)由题意,抛物线的准线方程为某=﹣1,即可求出抛物线的方程;(2)设AM的方程为y=k(某+1),代入抛物线的方程,可得ky2﹣4y+4k=0,设M(某1,y1),N(某2,y2),Q(某3,y3),则y1y2=4,直线MB的方程为y+1=(某﹣1),可得y2y3+4(y2+y3)+4=0,直线QN的方程为y ﹣y2=(某﹣某2),可得y2y3﹣y(y2+y3)+4某=0,即可得出直线QN过定点.【解答】(1)解:由题意,抛物线的准线方程为某=﹣1,抛物线的方程为y2=4某;(2)证明:设AM的方程为y=k(某+1),代入抛物线的方程,可得ky2﹣4y+4k=0设M(某1,y1),N(某2,y2),Q(某3,y3),则y1y2=4,由kMQ===,直线MB的方程为y+1=(某﹣1),y1+1=(某1﹣1),可得y1=﹣,=﹣,y2y3+4(y2+y3)+4=0直线QN的方程为y﹣y2=(某﹣某2)可得y2y3﹣y(y2+y3)+4某=0,某=1,y=﹣4,直线QN过定点(1,﹣4)【点评】本题考查抛物线的方程,考查直线与抛物线的位置关系,考查直线过定点,考查学生分析解决问题的能力,属于中档题.21.已知函数f(某)=ln某﹣a某2,且函数f(某)在点(2,f(2))处的切线的一个方向向量是(2,﹣3).(1)若关于某的方程f(某)+某2=3某﹣b在区间[,2]上恰有两个不相等的实数根,求实数b的取值范围;(2)证明:()2(nN某,且n2)【考点】利用导数研究曲线上某点切线方程;根的存在性及根的个数判断.【专题】转化思想;分析法;导数的概念及应用;不等式的解法及应用.【分析】(1)求出函数的导数,求得切线的斜率,解方程可得a的值,由题意可得ln某+某2﹣3某=﹣b在[,2]上恰有两个不相等的实数根,即为g(某)=ln某+某2﹣3某和直线y=﹣b在[,2]上有两个交点,求得g(某)的导数,可得单调区间,即可得到所求b的范围;(2)可得当某1时,f(某)0,f(某)递减.即有ln某﹣某2﹣,即为ln某(某2﹣1),即有=﹣,可令某=2,3,,n,累加即可得证.【解答】解:(1)函数f(某)=ln某﹣a某2的导数为f(某)=﹣2a某,由题意可得在点(2,f(2))处的切线斜率为﹣4a=﹣,解得a=,即有f(某)=ln某﹣某2,由题意可得ln某+某2﹣3某=﹣b在[,2]上恰有两个不相等的实数根,即为g(某)=ln某+某2﹣3某和直线y=﹣b在[,2]上有两个交点,由g(某)的导数为g(某)=+2某﹣3=,当当10,g(某)递增.则有g(1)﹣bg(),即为﹣2﹣b﹣ln2﹣,解得ln2+b2;(2)证明:由f(某)=ln某﹣某2的导数为f(某)=﹣某=,当某1时,f(某)0,f(某)递减.即有ln某﹣某2﹣,即为ln某(某2﹣1),即有=﹣,则有+++1﹣+﹣++﹣+﹣=1+﹣﹣===(3+).【点评】本题考查导数的运用:求切线的斜率和单调性,考查函数方程的转化思想和不等式的证明,注意运用函数的单调性和累加法,考查运算能力,属于中档题.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.如图,AB是圆O的直径,C,F为圆O上的点,CA是BAF的角平分线,CD与圆O切于点C,且交AF的延长线于点D,CMAB,垂足为点M.(1)求证:DF=BM;(2)若圆O的半径为1,BAC=60,试求线段CD的长.【考点】与圆有关的比例线段.【专题】转化思想;转化法;推理和证明.【分析】(1)根据三角形全等以及切割线定理进行证明即可证明DF=BM;(2)根据三角形中的边角关系进行求解即可.【解答】解:(1)连接OC,CB,则有OAC=OCA,∵CA是BAF的角平分线,OAC=FAC,FAC=ACO,则OC∥AD,∵DC是圆O的切线,CDOC,则CDAD,由题意得△AMC≌△ADC,DC=CM,DA=AM,由切割线定理得DC2=DFDA=DFAM=CM2,①,在Rt△ABC中,由射影定理得CM2=AMBM,②,由①②得DFAM=AMMB,即DF=MB.(2)在Rt△ABC中,AC=ABcoBAC=2co30=2=,则CM=AC=,于是CD=CM=,即CD的长为.【点评】本题主要考查几何的推理和证明,根据切割线定理以及三角形全等关系是解决本题的关键.考查学生的运算和推理能力.[选修4-4:坐标系与参数方程]23.在直角坐标系中,以坐标原点为极点,某轴为正半轴建立极坐标系,圆C的极坐标方程为=4co﹣2in,直线l的参数方程为(t为参数,a 为常数).(1)求直线l普通方程与圆C的直角坐标方程;(2)若直线l分圆C所得的两弧长度之比为1:2,求实数a的值.【考点】参数方程化成普通方程;参数的意义.【专题】数形结合;转化法;直线与圆;坐标系和参数方程.【分析】(1)利用极坐标公式,把极坐标方程化为普通方程,消去参数t,把参数方程化为普通方程;(2)根据题意,得出直线l被圆C截得的弦所对的圆心角为120,圆心C到直线l的距离d=r,由此列出方程求出a的值.【解答】解:(1)圆C的极坐标方程=4co﹣2in可化为2=4co﹣2in,利用极坐标公式,化为普通方程是某2+y2=4某﹣2y,即(某﹣2)2+(y+1)2=5;直线l的参数方程为,消去参数t,化为普通方程是y=﹣a某;(2)圆C的方程为(某﹣2)2+(y+1)2=5,圆心C为(2,﹣1),半径r=,直线l的方程为y=﹣a某,即a某+y﹣=0,直线l将圆C分成弧长之比为1:2的两段圆弧,直线l被圆截得的弦所对的圆心角为120,圆心C到直线l的距离d=r=,即=,整理得11a2﹣24a+4=0,解得a=2或a=.【点评】本题考查了参数方程与极坐标的应用问题,也考查了直线与圆的应用问题,由题意得出圆心C到直线l的距离d等于半径r的一半是解题的关键.[选修4-5:不等式选讲]24.已知函数f(某)=|k某+1|+|k某﹣2k|,g(某)=某+1.(1)当k=1时,求不等式f(某)g(某)的解集;(2)若存在某0R,使得不等式f(某0)2成立,求实数k的取值范围.【考点】绝对值不等式的解法.【专题】综合题;转化思想;综合法;不等式的解法及应用.【分析】(1)问题转化为|某﹣2|+|某﹣1|﹣某﹣10,设函数y=|某﹣2|+|某﹣1|﹣某﹣1,通过讨论某的范围求出不等式的解集即可;(2)问题等价于|2k﹣1|2,解出即可.【解答】解(1)k=1时,不等式f(某)g(某)化为:|某﹣2|+|某﹣1|﹣某﹣10,设函数y=|某﹣2|+|某﹣1|﹣某﹣1,则y=,令y0,解得:某4或某,原不等式的解集是{某|某或某4};(2)∵f(某)﹣|k某﹣1|+|k某﹣2k||k某﹣1﹣k某+2k|﹣|2k﹣1|,存在某0R,使得不等式f(某0)2成立等价于|2k﹣1|2,解得:﹣k,故所求实数k的范围是[﹣,].【点评】本题考查了绝对值不等式问题,考查函数恒成立问题以及分类讨论思想,是一道中档题.。
陕西省宝鸡23届高三一模数学(理)含答案
![陕西省宝鸡23届高三一模数学(理)含答案](https://img.taocdn.com/s3/m/62b940eb09a1284ac850ad02de80d4d8d15a01cb.png)
绝密★考试结束前2023年宝鸡市高考模拟检测(一)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷解答题又分必考题和选考题两部分,选考题为二选一.考生作答时,将所有答案写在答题卡上,在本试卷上答题无效.注意事项1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上.2.选择题答案使用铅笔填涂,如需改动,用橡皮擦干净后,再选涂其它答案标号;非选择题答案使用毫米的黑色中性(签字)笔或碳素笔书写,书写要工整、笔迹清楚,将答案书写在答题卡规定的位置上.3.所有题目必须在答题卡上作答,在试卷上答题无效.第I 卷(选择题共60分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知集合{}{}lg ,2,1,0,1,2A xy x B ===--∣,那么A B ⋂等于()A.{}2,1,0,1,2--B.{}0,1,2C.{}2,1,1,2--D.{}1,22.已知复数1i1iz -=+,则z =()A.1C.2D.43.双曲线2221x y -=的渐近线方程是()A.y =B.2y x =±C.2y x=± D.12y x =±4.最早发现于2019年7月的某种流行疾病给世界各国人民的生命财产带来了巨大的损失.近期某市由于人员流动出现了这种疾病,市政府积极应对,通过3天的全民核酸检测,有效控制了疫情的发展,决定后面7天只针对41类重点人群进行核酸检测,下面是某部门统计的甲、乙两个检测点7天的检测人数统计图,则下列结论不正确的是()A.甲检测点的平均检测人数多于乙检测点的平均检测人数B.甲检测点的数据极差大于乙检测点的数据极差C.甲检测点数据的中位数大于乙检测点数据的中位数D.甲检测点数据的方差大于乙检测点数据的方差5.已知正四棱柱1111ABCD A B C D -的底面边长为2,侧棱长为4,则异面直线AC 与1DC 所成角的正切值为()A. B. C.36.已知向量,m n 满足()23m n n -⊥ ,且||||m n =,则,m n 夹角为()A.6π B.3π C.23π D.56π7.已知()10,,sin cos 5απαα∈-=,则tan2α=()A.43-B.43C.247-D.2478.椭圆22:143x y C +=的左、右顶点分别为12,A A ,点P 在C 上,且直线2PA 斜率取值范围是11,2⎡⎤--⎢⎣⎦,那么直线1PA 斜率取值范围是()A.13,24⎡⎤⎢⎥⎣⎦B.33,42⎡⎤⎢⎥⎣⎦C.[]1,2 D.3,22⎡⎤⎢⎥⎣⎦9.已知等差数列{}n a 满足47580,4a a a a +=+=-,则下列命题:①{}n a 是递减数列;②使0n S >成立的n 的最大值是9;③当5n =时,n S 取得最大值;④60a =,其中正确的是()A.①②B.①③C.①④D.①②③10.已知直线(0,0)y mx n m n =+>与圆22(1)(1)1x y -+-=相切,则m n +的取值范围是()A.(]0,2 B.(]0,4 C.[)2,∞+ D.[)4,∞+++ 的整数部分是()A.3B.4C.5D.612.已知函数()()320f x ax bx cx d a =+++≠满足()()()22,1xf x f xg x x +-==-,若函数()y f x =与()y g x =的图像恰有四个交点,则这四个交点的横坐标之和为()A.2B.4C.6D.8第II 卷(非选择题共90分)二、填空题:本题共4小题,每小题5分,共20分.13.621x x ⎛⎫- ⎪⎝⎭的展开式中常数项为__________.14.若命题“2,210x R ax ax ∃∈++”是假命题,则实数a 的取值范围是__________.15.七巧板是古代劳动人民智慧的结晶.如图是某同学用木板制作的七巧板,它包括5个等腰直角三角形、一个正方形和一个平行四边形.若用四种颜色给各板块涂色,要求正方形板块单独一色,其余板块两块一种颜色,而且有公共边的板块不同色,则不同的涂色方案有__________种.16.在棱长为1的正方体111ABCD B C D -中,M 是侧面11BB C C 内一点(含边界)则下列命题中正确的是(把所有正确命题的序号填写在横线上)__________.①使AM =M 有且只有2个;②满足1AM B C ⊥的点M 的轨迹是一条线段;③满足AM ∥平面11A C D 的点M 有无穷多个;④不存在点M 使四面体1MAA D 是鳖臑(四个面都是直角三角形的四面体).三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共50分17.(本小题满分12分)已知向量)(),cos ,cos ,cos m x x n x x ==- ,定义函数()12f x m n =⋅- .(1)求函数()f x 的最小正周期;(2)在ABC 中,若()0f C =,且3,AB CD =是ABC 的边AB 上的高,求CD 长度的最大值.18.(本小题满分12分)如图在四棱锥P ABCD -中,PA ⊥底面ABCD ,且底面ABCD 是平行四边形.已知2,1,PA AB AD AC E ====是PB 中点.(1)求证:平面PBC ⊥平面ACE ;(2)求平面PAD 与平面ACE 所成锐二面角的余弦值.19.(本小题满分12分).已知点()0,2A x -在抛物线2:2(0)C y px p =>上,且A 到C 的焦点F 的距离与到x 轴的距离之差为12.(1)求C 的方程;(2)当2p <时,,M N 是C 上不同于点A 的两个动点,且直线,AM AN 的斜率之积为2,,AD MN D -⊥为垂足.证明:存在定点E ,使得DE 为定值.20.(本小题满分12分)甲、乙两个代表队各有3名选手参加对抗赛.比赛规定:甲队的1,2,3号选手与乙队的1,2,3号选手按编号顺序各比赛一场,某队连赢3场,则获胜,否则由甲队的1号对乙队的2号,甲队的2号对乙队的1号加赛两场,胜场多者最后获胜(每场比赛只有胜或负两种结果).已知甲队的1号对乙队的1,2号选手的胜率分别是0.5,0.6,甲队的2号对乙队的1,2号选手的胜率都是0.5,甲队的3号对乙队的3号选手的胜率也是0.5,假设每场比赛结果相互独立.(1)求甲队仅比赛3场获胜的概率;(2)已知每场比赛胜者可获得200个积分,求甲队队员获得的积分数之和X 的分布列及期望.21.(本小题满分12分)已知函数()()()1(0),2ln 1xf x m x e mg x x x =+>=++.(1)求曲线()y g x =在点()()1,1g 处的切线方程;(2)若曲函数()y f x =的图像与()y g x =的图像最多有一个公共点,求实数m 的取值范围.(二)选考题:共10分.请考生在第、题中任选一题作答.如果多做,则按所做的第一题计分.作答时请先涂题号.22.(选修4-4坐标系与参数方程)(本小题满分10分)在直角坐标系xoy 中,曲线1C 的参数方程为2,2x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数).以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为()3R πθρ=∈.(1)求曲线1C 的普通方程和曲线2C 的直角坐标方程;(2)求曲线1C 的任意一点到曲线2C 距离的最小值.23.(选修4-5不等式选讲)(本小题满分10分)已知0a b c >>>,求证:(1)114a b b c a c+≥---;(2)222a b c b c c a a b a b c a b c +++>.2023年宝鸡市高考模拟检测(一)数学(理科)试题答案一、选择题:1-12DAACCACBDCBB二、填空题:13.1514.[0,1)15.7216.②③三、解答题:17.(1)()1 2f x m n =⋅-21cos cos 2x x x --=31cos 21sin 2sin(22226x x x π+--=-)-1()f x ∴的最小正周期为π()0,sin 216f c c π⎛⎫=∴-= ⎪⎝⎭ 0C π<<又,5 2,266662C C πππππ∴-<-<∴-=, 3C π∴=.又12ABCS = AB 1sin 602CD ab ︒⋅=,6CD ab ∴=.由余弦定理得229a b ab ab =+-≥,当且仅当3a b ==时,“=”成立,max CD ∴=332.18.():1解证明:PA ⊥ 面ABCD ,且2,1PA AC ==,PC BC ∴=,且2PA AB ==又E PB 为中点,,,PB CE PB AE CE AE E ∴⊥⊥⋂=且,PB ACE ∴⊥平面,且PB PBC ⊂平面,PBC ACE ∴⊥平面平面.()2 222BC AB AC =+, ∴AB AC ⊥,以A 为原点建系,如图则()()()()()0,0,0,0,2,0,1,2,0,0,0,2,0,1,1A B D P E -设平面PAD 的法向量(),,,n x y z =则00n AP n AD ⎧⋅=⎪⎨⋅=⎪⎩ ,得2020z x y =⎧⎨-=⎩,取()2,1,0n =,由(1)得()0,2,2PB =-是平面ACE 的法向量,且1010cos n PB ⋅=,∴平面PAD 与平面ACE 所成锐二面角的余弦值为1010.19 :解(1)依题意,2 2p p +-2=12,解之得p =1或p =4,22 2 8y x y x ∴==或.(2) 2, p <∴22y x =,A (2,2-).设MN :x my n =+,()11,M x y ,()22,N x y ,联立22,y x x my n⎧=⎨=+⎩得2220y my n --=,2480m n ∆=+>①且12122,2y y m y y n +==-,∴1222222AM AN k k y y --⋅=⋅=-∴()()12222y y --=-,即()1212260y y y y -++=,∴ 23n m +=适合①将32n =-m 代入x my n =+得()32x m y -=-∴直线MN 恒过定点Q (3,2).又 AD ∴D 点在以为AQ 直径的圆上,其方程为2251724x y ⎛⎫-+= ⎪⎝⎭,所以存在E5,0,2使得172DE =.20.解:(1)甲队1,2,3号选手与乙队1,2,3号选手比赛获胜的概率分别为0.5,0.5,0.5,,甲队比赛3场获胜的概率为P =0.50.50.50.125.⨯⨯=(2)X 所以可能取得值为0,200,400,600,800.()300.5P x ==,()13332000.50.40.50.60.5P x C ==⨯⨯=⨯,()()132********.50.60.50.40.50.50.40.5 2.10.5P x C C ==⨯+⨯+⨯⨯⨯=⨯,()()3132333 6000.50.50.60.50.50.60.50.40.5P x C C ==+⨯⨯+⨯⨯+⨯33.40.5=⨯,()23338000.50.60.50.90.5P x C ==⨯⨯=⨯.即X 0200400600800P0.1250.0750.26250.4250.1125333 00.52000.60.5400 2.10.5EX ∴=⨯+⨯⨯+⨯⨯+33600 3.40.58000.90.5⨯⨯+⨯⨯=46521.(1)解:依题()2g x x'=+1,()1k g ∴='=3,()12g =则()y g x =在点()()1,1g 处的切线方程为()231y x -=-,310x y --=即.(2)令()()()()121xF x f x g x m x e lnx x =-=+---,则()()()21212(xx F x m x e x me x x =+--=+-') (0).x >由()0F x '=,得1xme x =.0001x x me x =设满足.则当0(0,x x ∈)时,()00F x '<,0(,x x ∈+∞)时,()00F x '>,所以()min F x =()0F x =()0000121xm x e lnx x +---.又001x mex =且00ln ln m x x +=-,所以()0F x =00012lnx x x --.因为()()10,0,f x g f x e ⎛⎫>< ⎪⎝⎭指数函数的增长速度更快且与()()0,0g x F x ≥都是单调递增的所以.因为12y lnx x=-+-x -单调递减,且()10F =,001,x ∴<≤又001x m x e =,且函数1xy xe =单调递减,所以m >1e.22.解:(1)由22x t t y t t ⎧=+⎪⎪⎨⎪=-⎪⎩,消去t 得221:8C x y -=又曲线2C 是经过原点且倾斜角为3π的直线其直角坐标方程为y =.(2)设2(P t t +,2)t t-,则2P C 点到直线的距离())121122d t t=+≥当且仅当)1t =±时等号成立.23.证明:(1)1111(a b b c a b b c +=+----)()()1a b b c a c ⎡⎤-+-⎣⎦-12b c a b a b b c a c --⎛⎫=++ ⎪---⎝⎭又因为a b >>c >0, 0,0,0a b b c a c ∴->->->,∴1112a b b c a c ⎛+≥+ ---⎝=4a c -.(当且仅当bc a ba b b c--=--时,“=”成立)(2)因为222222a b c a b ca b a c b c b a c a c bb c c a a b b c c a a b a b c a b c a a b b c c a b c a b c------++++++=⋅⋅=⋅⋅=()b ca ca b a b a b c c ---⎛⎫⎛⎫⋅⋅ ⎪⎪⎝⎭⎝⎭,因为a b >>0∴1ab>,0a b ->,∴(a b a b ->1同理1,b ca cb ac c --⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭>1,∴222a b c b c c a a b a b c a b c+++>1,故222a b c b c c a a b a b c a b c +++>.。
河南省焦作市高考数学一模试卷(理科)含答案解析
![河南省焦作市高考数学一模试卷(理科)含答案解析](https://img.taocdn.com/s3/m/1f54fafcf80f76c66137ee06eff9aef8941e48c1.png)
河南省焦作市高考数学一模试卷(理科)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合A={x|﹣1<x<2},B={x|2x2﹣5x﹣3>0},则A∩B=()A.{x|﹣1<x<﹣,或2<x<3}B.{x|2<x<3}C.{x|﹣<x<2}D.{x|﹣1<x<﹣}2.若复数z满足z(1+i)=|1+i|,则在复平面内z的共轭复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.设向量=(2,0),=(1,1),则下列结论中不正确的是()A.||=|2|B.•=2 C.﹣与垂直D.∥4.执行如图所示的程序框图,输出的S值为﹣4时,则输入的S0的值为()A.7 B.8 C.9 D.105.已知双曲线的一条渐近线方程是,它的一个焦点在抛物线y2=24x的准线上,则双曲线的方程为()A.B.C.D.6.若函数y=a|x|(a>0,且a≠1)的值域为{y|0<y≤1},则函数y=log a|x|的图象是()A.B.C.D.7.已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=()A.﹣2 B.0 C.1 D.88.已知函数f(x)=sinx+acosx的图象的一条对称轴为x=.则函数f(x)的单调递增区间为()A.[2kπ﹣,2kπ+](k∈Z)B.[2kπ﹣,2kπ+](k∈Z)C.[2kπ﹣,2kπ+](k∈Z)D.[2kπ﹣,2kπ+](k∈Z)9.已知数列{a n}满足a1=1,a2=2,a n+2﹣a n=3,则当n为偶数时,数列{a n}的前n项和S n=()A.﹣B. +C.D.10.某几何体的三视图如图所示,其中俯视图为扇形,则一个质点从扇形的圆心起始,绕几何体的侧面运动一周回到起点,其最短路径为()A.4+B.6C.4+D.611.已知椭圆(a>b>0),P为椭圆上与长轴端点不重合的一点,F1,F2分别为椭圆的左、右焦点,过F2作∠F1PF2外角平分线的垂线,垂足为Q,若|OQ|=2b,椭圆的离心率为e,则的最小值为()A.B. C. D.112.已知定义在[0,+∞)上的函数f(x)满足f(x)=2f(x+2),当x∈[0,2)时,f (x)=﹣2x2+4x.设f(x)在[2n﹣2,2n)上的最大值为a n(n∈N*),且{a n}的前n项和为S n,则S n=()A. B.C.D.二、填空题(本大题共4个小题,每小题5分,共20分).请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.13.直线x﹣y+2=0与圆x2+y2=4相交于A、B两点,则|AB|=.14.若实数x,y满足,则z=|x+2y﹣3|的最小值为.15.著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事休.”事实上,有很多代数问题可以转化为几何问题加以解决,如:可以转化为平面上点M (x,y)与点N(a,b)的距离.结合上述观点,可得f(x)=+的最小值为.16.在三棱锥S﹣ABC中,AB⊥BC,AB=BC=,SA=SC=2,二面角S﹣AC﹣B的余弦值是,若S、A、B、C都在同一球面上,则该球的表面积是.三、解答题(本大题共5小题,满分60分)解答下列各题应在答题纸的相应编号的规定区域内写出必要的步骤.17.已知a,b,c分别为锐角△ABC三个内角A,B,C的对边,且(a+b)(sinA﹣sinB)=(c﹣b)sinC(Ⅰ)求∠A的大小;(Ⅱ)若f(x)=,求f(B)的取值范围.18.在市高三学业水平测试中,某校老师为了了解所教两个班100名学生的数学得分情况,按成绩分成六组:[80,90),[90,100),[100,110),[110,120),[120,130),[130,140)统计数据如下:分数段[80,90)[90,100)[100,110)[110,120)[120,130)[130,140)人数 2 8 30 30 20 10 (Ⅰ)请根据上表中的数据,完成频率分布直方图,并估算这100学生的数学平均成绩;(Ⅱ)该教师决定在[110,120),[120,130),[130,140)这三组中用分层抽样抽取6名学生进行调研,然后再从这6名学生中随机抽取2名学生进行谈话,记这2名学生中有ξ名学生在[120,130)内,求ξ的分布列和数学期望.19.如图所示,平面四边形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AD⊥ED,AF∥DE,AB∥CD,CD=2AB=2AD=2ED=xAF.(Ⅰ)若四点F、B、C、E共面,AB=a,求x的值;(Ⅱ)求证:平面CBE⊥平面EDB;(Ⅲ)当x=2时,求二面角F﹣EB﹣C的大小.20.已知抛物线C:y2=2px(p>0),定点M(2,0),以O为圆心,抛物线C的准线与以|OM|为半径的圆所交的弦长为2.(Ⅰ)求抛物线C的方程;(Ⅱ)若直线y=﹣x+m(m∈R)与抛物线交于不同的两点A、B,则抛物线上是否存在定点P(x0,y0),使得直线PA,PB关于x=x0对称.若存在,求出P点坐标,若不存在,请说明理由.21.已知函数f(x)=x2+ax﹣lnx.(Ⅰ)求f(x)的单调区间;(Ⅱ)设g(x)=f(x)+2lnx,F(x)=3g(x)﹣2xg′(x),若函数F(x)在定义域内有两个零点x1,x2,且x1<x2,求证:<0.请考生在22,23,24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时.用2B铅笔在答题卡上把所选题目对应的标号涂黑.[选修4-1:几何证明选讲] 22.如图所示,已知PA是⊙O相切,A为切点,PBC为割线,弦CD∥AP,AD、BC相交于E点,F为CE上一点,且DE2=EF•EC.(Ⅰ)求证:A、P、D、F四点共圆;(Ⅱ)若AE•ED=12,DE=EB=3,求PA的长.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρsin(θ+)=a,曲线C2的参数方程为,(θ为参数,0≤θ≤π).(Ⅰ)求C1的直角坐标方程;(Ⅱ)当C1与C2有两个公共点时,求实数a的取值范围.[选修4-5:不等式选讲]24.已知a>0,b>0,c>0,函数f(x)=|x+a|+|x﹣b|+c的最小值为4.(1)求a+b+c的值;(2)求a2+b2+c2的最小值.河南省焦作市高考数学一模试卷(理科)参考答案与试题解析一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合A={x|﹣1<x<2},B={x|2x2﹣5x﹣3>0},则A∩B=()A.{x|﹣1<x<﹣,或2<x<3}B.{x|2<x<3}C.{x|﹣<x<2}D.{x|﹣1<x<﹣}【考点】交集及其运算.【分析】求出B中不等式的解集确定出B,找出A与B的交集即可.【解答】解:由B中不等式变形得:(2x+1)(x﹣3)>0,解得:x<﹣或x>3,即B={x|x<﹣或x>3},∵A={x|﹣1<x<2},∴A∩B={x|﹣1<x<﹣},故选:D.2.若复数z满足z(1+i)=|1+i|,则在复平面内z的共轭复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数代数形式的乘除运算;复数的代数表示法及其几何意义.【分析】利用复数的代数形式混合运算化简求出复数,得到复数对应点的坐标,即可得到结果.【解答】解:复数z满足z(1+i)=|1+i|=2,可得z==1﹣i,复数对应点为(1,﹣1),在复平面内z的共轭复数对应的点(1,1).故选:A.3.设向量=(2,0),=(1,1),则下列结论中不正确的是()A.||=|2|B.•=2 C.﹣与垂直D.∥【考点】平面向量的坐标运算.【分析】根据平面向量的坐标表示与运算,对选项中的命题进行分析判断即可.【解答】解:∵向量=(2,0),=(1,1),∴||=2,||===2,||=||,A正确;•=2×1+0×1=2,B正确;(﹣)•=(1,﹣1)•(1,1)=1×1﹣1×1=0,∴(﹣)⊥,C正确;2×1﹣0×1≠0,∴∥不成立,D错误.故选:D.4.执行如图所示的程序框图,输出的S值为﹣4时,则输入的S0的值为()A.7 B.8 C.9 D.10【考点】程序框图.【分析】根据程序框图,知当i=4时,输出S,写出前三次循环得到输出的S,列出方程求出S0的值.【解答】解:根据程序框图,知当i=4时,输出S,∵第一次循环得到:S=S0﹣1,i=2;第二次循环得到:S=S0﹣1﹣4,i=3;第三次循环得到:S=S0﹣1﹣4﹣9,i=4;∴S0﹣1﹣4﹣9=﹣4,解得S0=10故选:D.5.已知双曲线的一条渐近线方程是,它的一个焦点在抛物线y2=24x的准线上,则双曲线的方程为()A.B.C.D.【考点】双曲线的标准方程.【分析】由抛物线标准方程易得其准线方程为x=﹣6,而通过双曲线的标准方程可见其焦点在x轴上,则双曲线的左焦点为(﹣6,0),此时由双曲线的性质a2+b2=c2可得a、b的一个方程;再根据焦点在x轴上的双曲线的渐近线方程为y=±x,可得=,则得a、b的另一个方程.那么只需解a、b的方程组,问题即可解决.【解答】解:因为抛物线y2=24x的准线方程为x=﹣6,则由题意知,点F(﹣6,0)是双曲线的左焦点,所以a2+b2=c2=36,又双曲线的一条渐近线方程是y=x,所以,解得a2=9,b2=27,所以双曲线的方程为.故选B.6.若函数y=a|x|(a>0,且a≠1)的值域为{y|0<y≤1},则函数y=log a|x|的图象是()A.B.C.D.【考点】函数的图象;指数函数的图象变换.【分析】根据指数函数的图象和性质求出0<a<1,利用对数函数的图象和性质进行判断即可.【解答】解:∵|x|≥0,∴若函数y=a|x|(a>0,且a≠1)的值域为{y|0<y≤1},∴0<a<1,当x>0时,数y=log a|x|=log a x,为减函数,当x<0时,数y=log a|x|=log a(﹣x),为增函数,且函数是偶函数,关于y轴对称,故选:A7.已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=()A.﹣2 B.0 C.1 D.8【考点】利用导数研究曲线上某点切线方程.【分析】求出y=x+lnx的导数,求得切线的斜率,可得切线方程,再由于切线与曲线y=ax2+(a+2)x+1相切,有且只有一切点,进而可联立切线与曲线方程,根据△=0得到a 的值.【解答】解:y=x+lnx的导数为y′=1+,曲线y=x+lnx在x=1处的切线斜率为k=2,则曲线y=x+lnx在x=1处的切线方程为y﹣1=2x﹣2,即y=2x﹣1.由于切线与曲线y=ax2+(a+2)x+1相切,y=ax2+(a+2)x+1可联立y=2x﹣1,得ax2+ax+2=0,又a≠0,两线相切有一切点,所以有△=a2﹣8a=0,解得a=8.故选D.8.已知函数f(x)=sinx+acosx的图象的一条对称轴为x=.则函数f(x)的单调递增区间为()A.[2kπ﹣,2kπ+](k∈Z)B.[2kπ﹣,2kπ+](k∈Z)C.[2kπ﹣,2kπ+](k∈Z)D.[2kπ﹣,2kπ+](k∈Z)【考点】正弦函数的对称性;正弦函数的单调性.【分析】由题意知函数f(x)=sinx+acosx在x=处取得最值,从而可得(•+a)2=3+a2,从而解出f(x)=sinx+cosx=2sin(x+),从而确定单调增区间.【解答】解:∵函数f(x)=sinx+acosx的图象的一条对称轴为x=,∴函数f(x)=sinx+acosx在x=处取得最值;∴(•+a)2=3+a2,解得,a=1;故f(x)=sinx+cosx=2sin(x+),故2kπ﹣≤x+≤2kπ+,k∈Z,故2kπ﹣≤x≤2kπ+,k∈Z,故选:C.9.已知数列{a n}满足a1=1,a2=2,a n+2﹣a n=3,则当n为偶数时,数列{a n}的前n项和S n=()A.﹣B. +C.D.【考点】等差数列的前n项和.【分析】数列{a n}满足a1=1,a2=2,a n+2﹣a n=3,可知:此数列的奇数项与偶数项分别成等差数列,公差都为3,利用等差数列的通项公式及其前n项和公式即可得出.【解答】解:数列{a n}满足a1=1,a2=2,a n+2﹣a n=3,可知:此数列的奇数项与偶数项分别成等差数列,公差都为3,=1+3(k﹣1)=3k﹣2,a2k=2+3(k﹣1)=3k﹣1.且a2k﹣1则当n为偶数时,设2k=n,数列{a n}的前n项和S n=+=3k2=.故选:C.10.某几何体的三视图如图所示,其中俯视图为扇形,则一个质点从扇形的圆心起始,绕几何体的侧面运动一周回到起点,其最短路径为()A.4+B.6C.4+D.6【考点】由三视图求面积、体积.【分析】作出几何体侧面展开图,将问题转化为平面上的最短问题解决.【解答】解:由三视图可知几何体为圆锥的一部分,圆锥的底面半径为2,几何体底面圆心角为120°,∴几何体底面弧长为=.圆锥高为2.∴圆锥的母线长为.作出几何体的侧面展开图如图所示:其中,AB=AB′=2,AB⊥BC,AB′⊥B′D,B′D=BC=2,AC=AD=4,.∴∠BAC=∠B′AD=30°,∠CAD=.∴∠BAB′=120°.∴BB′==6.故选D.11.已知椭圆(a>b>0),P为椭圆上与长轴端点不重合的一点,F1,F2分别为椭圆的左、右焦点,过F2作∠F1PF2外角平分线的垂线,垂足为Q,若|OQ|=2b,椭圆的离心率为e,则的最小值为()A.B. C. D.1【考点】椭圆的简单性质.【分析】由题意画出图形,利用转化思想方法求得OQ=a,又OQ=2b,得a=2b,进一步得到a,e与b的关系,然后利用基本不等式求得的最小值.【解答】解:如图,由题意,P是以F1,F2为焦点的椭圆上一点,过焦点F2作∠F1PF2外角平分线的垂线,垂足为Q,延长F2Q交F1P延长线于M,得PM=PF2,由椭圆的定义知PF1+PF2=2a,故有PF1+PM=MF1=2a,连接OQ,知OQ是三角形F1F2M的中位线,∴OQ=a,又OQ=2b,∴a=2b,则a2=4b2=4(a2﹣c2),即c2=a2,∴===2b+≥2=.当且仅当2b=,即b=时,有最小值为.故选:C.12.已知定义在[0,+∞)上的函数f(x)满足f(x)=2f(x+2),当x∈[0,2)时,f (x)=﹣2x2+4x.设f(x)在[2n﹣2,2n)上的最大值为a n(n∈N*),且{a n}的前n项和为S n,则S n=()A. B.C.D.【考点】数列与函数的综合.【分析】根据定义在[0,+∞)上的函数f(x)满足f(x)=2f(x+2),可得f(x+2)=f (x),从而f(x+2n)=f(x),利用当x∈[0,2)时,f(x)=﹣2x2+4x,可求(x)在[2n﹣2,2n)上的解析式,从而可得f(x)在[2n﹣2,2n)上的最大值为a n,进而利用等比数列的求和公式,即可求得{a n}的前n项和为S n.【解答】解:∵定义在[0,+∞)上的函数f(x)满足f(x)=2f(x+2),∴f(x+2)=f(x),∴f(x+4)=f(x+2)=f(x),f(x+6)=f(x+4)=f(x),…f(x+2n)=f(x)设x∈[2n﹣2,2n),则x﹣(2n﹣2)∈[0,2)∵当x∈[0,2)时,f(x)=﹣2x2+4x.∴f[x﹣(2n﹣2)]=﹣2[(x﹣(2n﹣2)]2+4[x﹣(2n﹣2)].∴=﹣2(x﹣2n+1)2+2∴f(x)=21﹣n[﹣2(x﹣2n+1)2+2],x∈[2n﹣2,2n),∴x=2n﹣1时,f(x)的最大值为22﹣n∴a n=22﹣n∴{a n}表示以2为首项,为公比的等比数列∴{a n}的前n项和为S n==故选B.二、填空题(本大题共4个小题,每小题5分,共20分).请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.13.直线x﹣y+2=0与圆x2+y2=4相交于A、B两点,则|AB|=2.【考点】直线与圆的位置关系.【分析】利用点到直线的距离公式求出圆心(0,0)到直线x﹣y+2=0的距离d,再由弦长公式可得弦长.【解答】解:圆心(0,0)到直线x﹣y+2=0的距离d==1,半径r=2,故|AB|=2=2,故答案为:2.14.若实数x,y满足,则z=|x+2y﹣3|的最小值为1.【考点】简单线性规划.【分析】由约束条件作出可行域,令t=x+2y﹣3,化为直线方程的斜截式,利用线性规划知识求出t的范围,取绝对值得答案.【解答】解:由约束条件作出可行域如图,令t=x+2y﹣3,则,由图可知,当直线过O时,直线在y轴上的截距最小,t有最小值为﹣3;直线过A时,直线在y轴上的截距最大,t有最大值为﹣1.∴z=|x+2y﹣3|的最小值为1.故答案为:1.15.著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事休.”事实上,有很多代数问题可以转化为几何问题加以解决,如:可以转化为平面上点M(x,y)与点N(a,b)的距离.结合上述观点,可得f(x)=+的最小值为5.【考点】类比推理.【分析】f(x)=+=,表示平面上点M(x,0)与点N(﹣2,4),O(﹣1,﹣3)的距离和,利用两点间的距离公式,即可得出结论.【解答】解:f(x)=+=,表示平面上点M(x,0)与点N(﹣2,4),O(﹣1,﹣3)的距离和,∴f(x)=+的最小值为=5.故答案为:5.16.在三棱锥S﹣ABC中,AB⊥BC,AB=BC=,SA=SC=2,二面角S﹣AC﹣B的余弦值是,若S、A、B、C都在同一球面上,则该球的表面积是6π.【考点】与二面角有关的立体几何综合题;球的体积和表面积;球内接多面体.【分析】审题后,二面角S﹣AC﹣B的余弦值是是重要条件,根据定义,先作出它的平面角,如图所示.进一步分析此三棱锥的结构特征,找出其外接球半径的几何或数量表示,再进行计算.【解答】解:如图所示:取AC中点D,连接SD,BD,则由AB=BC,SA=SC得出SD⊥AC,BD⊥AC,∴∠SDB为S﹣AC﹣B的平面角,且AC⊥面SBD.由题意:AB⊥BC,AB=BC=,易得:△ABC为等腰直角三角形,且AC=2,又∵BD⊥AC,故BD=AD=AC,在△SBD中,BD===1,在△SAC中,SD2=SA2﹣AD2=22﹣12=3,在△SBD中,由余弦定理得SB2=SD2+BD2﹣2SD•BDcos∠SDB=3+1﹣2×=2,满足SB2=SD2﹣BD2,∴∠SBD=90°,SB⊥BD,又SB⊥AC,BD∩AC=D,∴SB⊥面ABC.以SB,BA,BC为顶点可以补成一个棱长为的正方体,S、A、B、C都在正方体的外接球上,正方体的对角线为球的一条直径,所以2R=,R=,球的表面积S=4=6π.故答案为:6π.三、解答题(本大题共5小题,满分60分)解答下列各题应在答题纸的相应编号的规定区域内写出必要的步骤.17.已知a,b,c分别为锐角△ABC三个内角A,B,C的对边,且(a+b)(sinA﹣sinB)=(c﹣b)sinC(Ⅰ)求∠A的大小;(Ⅱ)若f(x)=,求f(B)的取值范围.【考点】余弦定理;正弦定理.【分析】(I)由(a+b)(sinA﹣sinB)=(c﹣b)sinC,由正弦定理可得:(a+b)(a﹣b)=(c﹣b)c,化为b2+c2﹣a2=bc.再利用余弦定理可得:cosA.(II)f(x)=sinx+=+,在锐角△ABC中,<B,可得<B+<,即可得出.【解答】解:(I)∵(a+b)(sinA﹣sinB)=(c﹣b)sinC,由正弦定理可得:(a+b)(a﹣b)=(c﹣b)c,化为b2+c2﹣a2=bc.由余弦定理可得:cosA===,∵A∈(0,π),∴A=.(II)f(x)==sinx+=+,在锐角△ABC中,<B,∴<B+<,∴∈,∴f(B)的取值范围是.18.在市高三学业水平测试中,某校老师为了了解所教两个班100名学生的数学得分情况,按成绩分成六组:[80,90),[90,100),[100,110),[110,120),[120,130),[130,140)统计数据如下:分数段[80,90)[90,100)[100,110)[110,120)[120,130)[130,140)人数 2 8 30 30 20 10 (Ⅰ)请根据上表中的数据,完成频率分布直方图,并估算这100学生的数学平均成绩;(Ⅱ)该教师决定在[110,120),[120,130),[130,140)这三组中用分层抽样抽取6名学生进行调研,然后再从这6名学生中随机抽取2名学生进行谈话,记这2名学生中有ξ名学生在[120,130)内,求ξ的分布列和数学期望.【考点】离散型随机变量的期望与方差;列举法计算基本事件数及事件发生的概率;离散型随机变量及其分布列.【分析】(Ⅰ)由统计数据能作出频率分布直方图,利用频率分布直方图能估算这100学生的数学平均成绩.(Ⅱ)由题意,在[110,120),[120,130),[130,140)三组中,利用分层抽样抽取的学生数分别为3,2,1,ξ的可能取值为0,1,2,分别求出相应的概率,由此能求出ξ的分布列和Eξ.【解答】解:(Ⅰ)由统计数据作出频率分布直方图如下:∴估算这100学生的数学平均成绩:=10(85×0.002+95×0.008+105×0.03+115×0.03125×0.02+135×0.01)=113.8.(Ⅱ)由题意,在[110,120),[120,130),[130,140)三组中,利用分层抽样抽取的学生数分别为3,2,1,∴ξ的可能取值为0,1,2,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,∴ξ的分布列为:ξ 0 1 2PEξ==.19.如图所示,平面四边形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AD⊥ED,AF∥DE,AB∥CD,CD=2AB=2AD=2ED=xAF.(Ⅰ)若四点F、B、C、E共面,AB=a,求x的值;(Ⅱ)求证:平面CBE⊥平面EDB;(Ⅲ)当x=2时,求二面角F﹣EB﹣C的大小.【考点】二面角的平面角及求法;直线与平面垂直的判定.【分析】(Ⅰ)根据四点F、B、C、E共面,以及三角形相似建立方程关系进行求解;(Ⅱ)根据面面垂直的判定定理即可证明平面BDE⊥平面BEC;(Ⅲ)建立空间坐标系,求出平面的法向量,利用向量法即可.【解答】证明:(Ⅰ)∵AF∥DE,AB∥CD,AF∩AB=A,DE∩DC=D,∴平面ABF∥平面DCE,∵平面ADEF⊥平面ABCD,∴FB∥CE,∴△ABF~△DCE,∵AB=a,∴ED=a,CD=2a,AF=,由相似比得,即,得x=4(Ⅱ)连接BD,设AB=1,则AB=AD=1,CD=2,可得BD=,取CD的中点M,则MD与AB平行且相等,则△BMD为等腰直角三角形,则BC=BD=,∵BD2+BC2=CD2,∴BC⊥BD.∵平面四边形ADEF与梯形ABCD所在的平面互相垂直,平面ADEF∩平面ABCD=AD,ED⊥AD,∴ED⊥平面ABCD,BC⊥DE,又∵ED∩BD=D,∴BC⊥平面BDE.又∵BC⊂平面BCE,∴平面BDE⊥平面BEC.( III)建立空间坐标系如图:设AB=1,∵x=2,∴CD=2,则F(1,0,1),B(1,1,0),E(0,0,1),C(0,2,0),=(1,0,0),=(1,1,﹣1),=(0,2,﹣1),设平面EF的一个法向量为=(x,y,z),则由得,则取=(0,1,1),设平面EBC的法向量为=(x,y,z),则,得,令y=1,则z=2,x=1,即=(1,1,2),则cos<,>===,则<,>=30°,∵二面角F﹣EB﹣C是钝二面角,∴二面角F﹣EB﹣C的大小为150°.20.已知抛物线C:y2=2px(p>0),定点M(2,0),以O为圆心,抛物线C的准线与以|OM|为半径的圆所交的弦长为2.(Ⅰ)求抛物线C的方程;(Ⅱ)若直线y=﹣x+m(m∈R)与抛物线交于不同的两点A、B,则抛物线上是否存在定点P(x0,y0),使得直线PA,PB关于x=x0对称.若存在,求出P点坐标,若不存在,请说明理由.【考点】抛物线的简单性质.【分析】(I)利用垂径定理和勾股定理列方程解出p即可得出抛物线方程;(II)联立方程组,由根与系数的关系得出A,B纵坐标的关系,假设存在符合条件的P 点,则k PA+k PB=0,代入斜率公式化简即可求出x0,y0.【解答】解:(I)设抛物线的准线方程为x=﹣.圆O的半径r=2,由垂径定理得=4,解得p=2.∴抛物线方程为y2=4x.(II)联立方程组得y2+4y﹣4m=0,∴△=16+16m>0,解得m>﹣1.设A(x1,y1),B(x2,y2),则y1+y2=﹣4,y1y2=﹣4m.若抛物线上存在定点P(x0,y0),使得直线PA,PB关于x=x0对称,则k PA+k PB=0,∴+=+==0,∴y0=﹣=2,x0==1.∴存在点P(1,2),只要m>﹣1,直线PA,PB关于直线x=1对称.21.已知函数f(x)=x2+ax﹣lnx.(Ⅰ)求f(x)的单调区间;(Ⅱ)设g(x)=f(x)+2lnx,F(x)=3g(x)﹣2xg′(x),若函数F(x)在定义域内有两个零点x1,x2,且x1<x2,求证:<0.【考点】利用导数研究函数的单调性.【分析】(Ⅰ)求导根据导数和函数的单调性的关系即可求出,(Ⅱ)求导,根据中点坐标公式得到=﹣(x1+x2)+a+,①,分别把两个零点x1,x2,代入到F(x)中,转化,分离参数得到a﹣(x1+x2)=,再代入得到= [ln+],换元,构造函数得到h(t)=lnt+,根据导数求出h(t)的最大值,即可证明.【解答】解:(Ⅰ)函数的定义域为(0,+∞),∴f′(x)=2x+a﹣=,令f′(x)>0,得x>,f′(x)<0,得0<x<,∴函数f(x)在(,+∞)为增函数,在(0,)为减函数,(Ⅱ)由已知g(x)=f(x)+2lnx,∴F(x)=3g(x)﹣2xg′(x)=﹣x2+ax+3lnx﹣2,∴F′(x)=﹣2x+a+,即: =﹣(x1+x2)+a+,①∵函数F(x)在定义域内有两个零点x1,x2,∴﹣x12+ax1+3lnx1﹣2=0,②﹣x22+ax2+3lnx2﹣2=0,③②﹣③得﹣(x12﹣x22)+a(x1﹣x2)+3(lnx1﹣lnx2)=0可得(x1﹣x2)[a﹣(x1+x2)]+3ln=0,∴a﹣(x1+x2)=,代入①得: =+=[ln+]= [ln+],令=t,则0<t<1,∴h(t)=lnt+,∴h′(t)=+=﹣=≥0∴h(t)在(0,1)上为增函数,∴h(t)<h(1)=0,∵x1<x2,∴<0.请考生在22,23,24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时.用2B铅笔在答题卡上把所选题目对应的标号涂黑.[选修4-1:几何证明选讲] 22.如图所示,已知PA是⊙O相切,A为切点,PBC为割线,弦CD∥AP,AD、BC相交于E点,F为CE上一点,且DE2=EF•EC.(Ⅰ)求证:A、P、D、F四点共圆;(Ⅱ)若AE•ED=12,DE=EB=3,求PA的长.【考点】与圆有关的比例线段.【分析】(Ⅰ)由已知中DE2=EF•EC,我们易证明,△DEF~△CED,进而结合CD∥AP,结合相似三角形性质,得到∠P=∠EDF,由圆内接四边形判定定理得到A、P、D、F 四点共圆;(Ⅱ)由(Ⅰ)中的结论,结合相交弦定理得PE•EF=AE•ED=12,结合已知条件,可求出PB,PC的长,代入切割线定理,即可求出PA的长.【解答】解:(Ⅰ)证明:∵DE2=EF•EC,∴=,又∠DEF=∠CED,∴△DEF~△CED,∠EDF=∠ECD,又∵CD∥PA,∴∠ECD=∠P故∠P=∠EDF,所以A,P,D,F四点共圆;…5分(Ⅱ)由(Ⅰ)及相交弦定理得:PE•EF=AE•ED=12,又BE•EC=AE•ED=12,∴EC=4,EF==,PE=,PB=,PC=PB+BE+EC=,由切割线定理得PA2=PB•PC=×=,所以PA=为所求…10分[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρsin(θ+)=a,曲线C2的参数方程为,(θ为参数,0≤θ≤π).(Ⅰ)求C1的直角坐标方程;(Ⅱ)当C1与C2有两个公共点时,求实数a的取值范围.【考点】参数方程化成普通方程;直线与圆的位置关系.【分析】(Ⅰ)利用极坐标方程的定义即可求得;(Ⅱ)数形结合:作出图象,根据图象即可求出有两交点时a的范围.【解答】解:(Ⅰ)曲线C1的极坐标方程为ρ(sinθ+cosθ)=a,∴曲线C1的直角坐标方程为x+y﹣a=0.(Ⅱ)曲线C2的直角坐标方程为(x+1)2+(y+1)2=1(﹣1≤y≤0),为半圆弧,如图所示,曲线C1为一族平行于直线x+y=0的直线,当直线C1过点P时,利用得a=﹣2±,舍去a=﹣2﹣,则a=﹣2+,当直线C1过点A、B两点时,a=﹣1,∴由图可知,当﹣1≤a<﹣2+时,曲线C1与曲线C2有两个公共点.[选修4-5:不等式选讲]24.已知a>0,b>0,c>0,函数f(x)=|x+a|+|x﹣b|+c的最小值为4.(1)求a+b+c的值;(2)求a2+b2+c2的最小值.【考点】一般形式的柯西不等式.【分析】(1)运用绝对值不等式的性质,注意等号成立的条件,即可求得最小值;(2)运用柯西不等式,注意等号成立的条件,即可得到最小值.【解答】解:(1)因为f(x)=|x+a|+|x﹣b|+c≥|(x+a)﹣(x﹣b)|+c=|a+b|+c,当且仅当﹣a≤x≤b时,等号成立,又a>0,b>0,所以|a+b|=a+b,所以f(x)的最小值为a+b+c,所以a+b+c=4;(2)由(1)知a+b+c=4,由柯西不等式得,(a2+b2+c2)(4+9+1)≥(•2+•3+c•1)2=(a+b+c)2=16,即a2+b2+c2≥当且仅当==,即a=,b=,c=时,等号成立.所以a2+b2+c2的最小值为.8月1日。
高考数学理科模拟试题(附答案)
![高考数学理科模拟试题(附答案)](https://img.taocdn.com/s3/m/bb99ba5976eeaeaad1f330eb.png)
高三年级第一次模拟考试数 学 试 题(理)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分,考试时间120分钟。
第Ⅰ卷(选择题,共40分)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,将答案涂在答题卡上.........。
1.复数23()1i i +-= ( )A .-3-4iB .-3+4iC .3-4iD .3+4i2.已知条件:|1|2,:,p x q x a +>>⌝⌝条件且p 是q 的充分不必要条件,则实数a 的取值范围是( ) A .1a ≥ B .1a ≤ C .1a ≥- D .3a ≤-3.函数()|2|ln f x x x =--在定义域内零点可能落在下列哪个区间内( )A .(0,1)B .(2,3)C .(3,4)D .(4,5) 4.如右图,是一程序框图,则输出结果为( )A .49B .511 C .712 D .613 5.已知n S 为等差数列{}n a 的前n 项和,若641241,4,S S S S S ==则 的值为( )A .94B .32C .54D .46.要得到函数()sin(2)3f x x π=+的导函数'()f x 的图象,只需将()f x 的图象( )A .向左平移2π个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变)B .向左平移2π个单位,再把各点的纵坐标缩短到原来的12倍(横坐标不变)C .向右平移4π个单位,再把各点的纵坐标伸长到原来的12倍(横坐标不变)D .向右平移4π个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变) 7.过双曲线22221(0,0)x y a b a b-=>>的一个焦点F 引它的渐近线的垂线,垂足为M ,延长FM 交y 轴于E ,若|FM|=2|ME|,则该双曲线的离心率为( )A .3B .2C .3D .28.如图所示的每个开关都有闭合与不闭合两种可能,因此5个开关共有25种可能,在这25种可能中电路从P 到Q 接通的情况有( )A .30种B .10种C .24种D .16种第Ⅱ卷(非选择题,共110分)二、填空题:本大题共6小题,每小题5分,共30分,将答案填写在答题纸上。
高三一诊数学(理)试题及答案
![高三一诊数学(理)试题及答案](https://img.taocdn.com/s3/m/9d223943326c1eb91a37f111f18583d049640f02.png)
第一次诊断性考试数 学(理工类)注意事项:1. 答卷前;考生务必得将自己的姓名;座位号和准考证号填写在答题卡上。
2. 回答选择题时;每小题选出答案后;用2B 铅笔把答题卷上对应题目的答案标号涂黑;如需改动; 用橡皮擦干净后;再选涂其他答案标号;在试题卷上作答无效。
3. 回答主观题时;将答案写在答题卡上对应位置;写在本试卷上无效。
4. 考试结束后;将答题卡交回。
第Ⅰ卷一、选择题:本大题共12小题;每小题5分;共60分。
在每小题给出的四个选项中;只有一项是符合题 目要求的。
1. 已知全集},,9|{*N x x x U ∈≤=集合},6,5,4,3{},3,2,1{==B A 则=)(B A CA.{3}B.{7;8}C.{7;8;9}D.{1;2;3;4;5;6}2. 已知i 是虚数单位;若i i z 31)1(+=+;则=zA. 2+iB. 2-iC. -1+iD. -1-i3. 若)<<20(53sin παα=;则sin =+)6(πα A. 10433- B. 10433+ C.10343- D.10343+ 4. 已知命题q p ,是简单命题;则“q p ∨是真命题”是“p ⌝是假命题”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件5. 如图;四边形ABCD 是正方形;延长CD 至E ;使得CD DE =;若点P 为CD 的中点; 且AE AB AP μλ+=;则=+μλA. 3B. 25 C. 2 D. 16. 如图;是某算法的程序框图;当输出29>T 时;正整数n 的最小值是A. 2B. 3C. 47. 从1;3;5;7;9中任取3个数字;从2;4;6;8中任取2个数字;组成没有重复数字的五位数;则组成的五位数是偶数的概率是A. 32B. 53C. 21D. 52 8. 已知数列}{n a 满足⎪⎩⎪⎨⎧≥+-=-)6(6(1)21(5n a n n a a n n )<若对于任意的*N n ∈都有1+n n a a >;则实数a 的取值范围是A. (0;21)B. (127,21) C. (1,21) D. (1,127) 9.已知不等式0264cos 64cos 4sin 22≥--+m x x x 对于]3,3[ππ-∈x 恒成立;则实数m 的取值范围是 A. ]2,(--∞ B. ]22,(-∞ C. 2,22[ D. ),2[+∞ 10. 如图;在三棱锥BCD A -中;已知三角形ABC 和三角形DBC 所在平面互相垂直;32,π=∠=∠=CBD CBA BD AB ;则直线AD 与平面BCD 所成角的大小是 A. 6π B. 4πC. 3πD. 2π 11. 椭圆)>>05(12222a by a x =+的一个焦点为F ;该椭圆上有一点A ;满足△OAF 是等边三角形(O 为坐 标原点);则椭圆的离心率是A. 13-B. 32-C. 12-D. 22-12. 已知函数)(x f y =与)(x F y =的图象关于y 轴对称;当函数)(x f y =和)(x F y =在区间],[b a 同时递增或同时递减时;把区间],[b a 叫做函数)(x f y =的“不动区间”;若区间1;2]为函数|2|t y x-=的“不动区间”;则实数t 的取值范围是 A. (0;2] B. ),21[+∞C. ]2,21[D. ),4[]2,21[+∞第Ⅱ卷二、填空题:本大题共4小题;每小题5分;共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019届高三数学一模理科试题(附答案)2019届高三数学一模理科试题(附答案)
一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设全集,集合,则
A. B. C. D.
2.已知是虚数单位,则在复平面中复数对应的点在
A.第一象限
B.第二象限
C.第三象限
D.第四象限
3.设随机变量服从正态分布,若,则
A. B. C. D.
4.设,则是的
A.充分不必要条件
B. 必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
5.已知两个不同的平面和两个不重合的直线m、n,有下列四个命题:
①若;②若;
③若;④若.
其中正确命题的个数是
A.0B.1C.2D.3
6.要得到函数的图象,只需将函数的图象
A.向左平移个单位长度
B.向右平移个单位长度
C.向左平移个单位长度
D.向右平移个单位长度
7. 已知双曲线的右焦点为F,若过点F的直线与双曲线的右支有且只有一个交点,则此直线的斜率的取值范围是
A. B. C. D.
8.某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两人至少有一人参加,当甲乙同时参加时,他们两人的发言不能相邻,那么不同的发言顺序的种数为
A.360
B.520
C.600
D.720
9.设函数若,则关于的方程的解的个数为
A.4
B.3
C.2
D.1
10.已知向量的夹角为时取得最小值,当时,夹角的取值范围为
A. B. C. D.
第II卷(非选择题共100分)
二、填空题:本大题共5个小题,每小题5分,共25分..
11.若对任意的恒成立,则实数k的取值范围为_________.
12.如图给出的是计算的值的程序框图,其中判断框内应填入的是_______.
13.已知圆C过点,且圆心在轴的负半轴上,直线被该圆所截得的弦长为,则圆C的标准方程为________________.]
14.定义:,在区域内任取一点的概率为__________.
15.已知恒成立,则实数m的取值范围是_______.
三、解答题:本大题共6个小题,共75分.解答应写出文字
说明,证明过程或演算步骤.
16.(本小题满分12分)
在△ABC中,角A,B,C所对的边分别为,且..
(I)求的值;
(II)若面积的最大值.
17.(本小题满分12分)
如图,在七面体ABCDMN中,四边形ABCD是边长为2的正方形,平面ABCD,平面ABCD,且
(I)在棱AB上找一点Q,使QP//平面AMD,并给出证明;(II)求平面BNC与平面MNC所成锐二面角的余弦值
18.(本小题满分12分)
某高校自主招生选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某同学能正确回答第一、二、三轮的问题的概率分别为,且各轮问题能否正确回答互不影响。
(I)求该同学被淘汰的概率;
(II)该同学在选拔中回答问题的个数记为,求随机变量的分布列与数学期望.
1 9.(本小题满分12分)
设数列的各项都是正数,且对任意,都有,其中为数列. 的前n项和.
(I)求数列的通项公式;
(II)设( 为非零整数,),试确定的值,使得对任意;都有成立.
20.(本小题满分13分)
已知椭圆过点,且长轴长等于4.
(I)求椭圆C的方程;
(II) 是椭圆C的两个焦点,O是以为直径的圆,直线O 相切,并与椭圆C交于不同的两点A,B,若,求k的值.
21.(本小题满分14分)
已知函数的切线方程为.
(I)求函数的解析式;
(II)设,求证:上恒成立;
(III)已知.
2019级高三一模数学(理)参考答案及评分标准
(Ⅱ)∵b=2 ,由可知,,
即,,8分
∵,10分
△ ABC面积的最大值为.12分
17、(Ⅰ)当时,有//平面AMD.
证明:∵MD 平面ABCD,NB 平面ABCD,MD//NB,2分
,又,,4分
在中,OP//AM,
又面AMD,AM 面AMD,// 面AMD.6分
(Ⅱ)解:以DA、DC、DM所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,则D(0,0,0),B(2,2,0),C(0,2,0),M(0,0,2)N(2,2,1),=(0,-2,2),=(2,0,1),=(0,2,0),7分
设平面CMN的法向量为=( x,y,z)则,,
=(1,-2,-2).9分
又NB 平面ABCD,NB DC,BC DC,DC 平面BNC,平面BNC的法向量为= =(0,2,0),11分
设所求锐二面角为,则.12分
12分
19、解:(Ⅰ)∵时,,①
当时,,②2分
由①-②得,
即,∵,4分
由已知得,当时,,.5分
故数列是首项为1,公差为1的等差数列. . 6分
(Ⅱ)∵,,7分
要使得恒成立,只须. 8分
(1)当为奇数时,即恒成立.又的最小值为,. 9分
(2)当为偶数时,即恒成立.又的最大值为,10分
由(1),(2)得,又且为整数,11分
对所有的,都有成立. 12分
10分
11分
∵,.12分
∵,,,得k的值为.13分
20、解:(Ⅰ)将代入切线方程得,,2分
化简得. ,4分,
解得:. . 6分
(Ⅱ)由已知得在上恒成立,
化简,即在上恒成立.7分
设,,8分
∵,即,9分
在上单调递增,,在上恒成立.10分
家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。
我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。
我和家长共同配合,一道训练,幼儿的阅读能力提高很快。
(Ⅲ)∵,,由(Ⅱ)知有,12分
死记硬背是一种传统的教学方式,在我国有悠久的历史。
但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,
老师们又为提高学生的语文素养煞费苦心。
其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。
相反,它恰是提高学生语文水平的重要前提和基础。
整理得,当时,. 14分
死记硬背是一种传统的教学方式,在我国有悠久的历史。
但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。
其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。
相反,它恰是提高学生语文水平的重要前提和基础。
2019届高三数学一模理科试题就分享到这里了,更多相关信息请继续关注高考数学试题栏目!。