2020年人教版高考数学知识点汇编

合集下载

2020高考数学知识点总结大全

2020高考数学知识点总结大全

2020高考数学知识点总结大全高中数学涉及的知识点很多,需要把高中三年的数学知识点总结起来,这样比较有利于复习,下面由小编为大家整理有关高考数学知识点总结的资料,希望对大家有所帮助!高考数学知识点:参数方程一、坐标系与参数方程:1、坐标系是解析几何的基础。

在坐标系中,可以用有序实数组确定点的位置,进而用方程刻画几何图形。

为便于用代数的方法刻画几何图形或描述自然现象,需要建立不同的坐标系。

极坐标系、柱坐标系、球坐标系等是与直角坐标系不同的坐标系,对于有些几何图形,选用这些坐标系可以使建立的方程更加简单。

2、参数方程是以参变量为中介来表示曲线上点的坐标的方程,是曲线在同一坐标系下的又一种表示形式。

某些曲线用参数方程表示比用普通方程表示更方便。

学习参数方程有助于学生进一步体会解决问题中数学方法的灵活多变。

二、高中数学知识点之参数方程定义一般的,在平面直角坐标系中,如果曲线上任意一点的坐标x,y 都是某个变数t的函数x=f(t)、y=g(t)并且对于t的每一个允许值,由上述方程组所确定的点M(x,y)都在这条曲线上,那么上述方程则为这条曲线的参数方程,联系x,y的变数t叫做变参数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。

(注意:参数是联系变数x,y的桥梁,可以是一个有物理意义和几何意义的变数,也可以是没有实际意义的变数。

三、高中数学知识点之参数方程圆的参数方程x=a+rcosθy=b+rsinθ(a,b)为圆心坐标r为圆半径θ为参数椭圆的参数方程x=acosθy=bsinθa为长半轴长b为短半轴长θ为参数双曲线的参数方程x=asecθ(正割)y=btanθa为实半轴长b为虚半轴长θ为参数高考数学知识点:判断函数值域的方法1、配方法:利用二次函数的配方法求值域,需注意自变量的取值范围。

2、换元法:常用代数或三角代换法,把所给函数代换成值域容易确定的另一函数,从而得到原函数值域,如y=ax+b+_√cx-d(a,b,c,d 均为常数且ac不等于0)的函数常用此法求解。

最全高考数学知识点大汇总(适用2020高考),打印复习后再去刷题

最全高考数学知识点大汇总(适用2020高考),打印复习后再去刷题

最全高考数学知识点大汇总(适用2020高考),打印复习后再去刷题
知识点汇总
1. 集合与常用逻辑用语
2. 复数
3. 平面向量
4. 算法、推理与证明
5.不等式、线性规划
6. 计数原理与二项式定理
7. 函数、基本初等函数的图像与性质
8. 函数与方程、函数模型及其应用
9.导数及其应用
10.三角函数的图形与性质
11.三角恒等变化与解三角形
12.等差数列、等比数列
13.数列求和及数列的简单应用
14.空间几何体
15.空间点、直线、平面位置关系
16.空间向量与立体几何
17.直线与圆的方程
18.圆锥曲线的定义、方程与性质
19.圆锥曲线的热点问题
20.概率
21.离散型随机变量及其分布
22.统计与统计案例
23.函数与方程思想,数学结合思想
24.分类与整合思想,化归与转化思想
25.几何证明选讲
26.坐标系与参数方程
27.不等式选讲。

2020年高考数学高考必备知识点汇

2020年高考数学高考必备知识点汇

高中数学知识点回顾 第一章 - 集合 一)、集合:集合元素的特征:确定性、互异性、无序性1、集合的性质:①任何一个集合是它本身的子集,记为A A ; ②空集是任何集合的子集,记为 A ;③空集是任何非空集合的真子集;① n 个元素的子集有2n个.n 个元素的真子集有 2n— 1个.三)简易逻辑构成复合命题的形式:p 或q(记作“ p V q ”); p 且q(记作“ p A q ”);非p(记作\ q ”) 1 、“或”、“且”、 “非”的真假判断4、四种命题的形式及相互关系:原命题:若 P 则 q ; 逆命题:若 q 则 p ; 否命题:若「P 则「q ;逆否命题:若「 q 则「p 。

① 、原命题为真,它的逆命题不一定为真。

② 、原命题为真,它的否命题不一定为真。

③ 、原命题为真,它的逆否命题一定为真。

6、如果已知 p q 那么我们说, p 是 q 的充分条件, q 是 p 的必要条件。

若p q 且q p,则称p 是q 的充要条件,记为 p? q.第二章 - 函数一、函数的性质 (1 )定义域: (2)值域:(3)奇偶性: (在整个定义域内考虑)① 定义: 偶函数: f ( x) f (x) , 奇函数: f ( x) f (x) ② 判断方法步骤: a. 求出定义域; b. 判断定义域是否关于原点对称;c. 求 f( x) ;d. 比较f ( X )与f(x)或f ( x)与 f (x)的关系。

(4)函数的单调性定义:对于函数 f(x) 的定义域 I 内某个区间上的任意两个自变量的值 x 1,x 2,⑴若当X i <X 2时,都有f(x i )<f(x 2),则说f(x)在这个区间上是增函数; ⑵若当X 1<X 2时,都有f(x i )>f(x 2),则说f(x) 在这个区间上是减函数.交: A I B { X | X A,且 XB}2、集合运算:交、并、补 . 并:AUB { x | x A 或 x B} 补:C U A{ x U , 且 x A}②一个命题为真,则它的逆否命题一定为真 n 个元素的非空真子集有 n2n — 2 [注]①一个命题的否命题为真,它的逆命题一定为真 . 否命题 逆命题 . 原命题 逆否命题 .、指数函数与对数函数指数函数y a x (a 0且a 1)的图象和性质a(a r ) s a rs (ab )r a r b r⑵ y a x ( a 0, a 1)与 y log a x ( a 0, a 1)互为反函数第三章数列⑴对数、指数运算:r s r sa a alog a (M N ) log a M log a N lOg a — lOg a M lOg a NNlog M n n log M.三角函数1、角度与弧度的互换关系: 360° =2; 180 ° =irad = °~ 57.30 ° =57° 18'; 1°= ——〜0.01745 (rad )180注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零2、弧长公式:1 1 2l | | r .扇形面积公式:s 扇形 -lr 孑1 r 23、 三角函数: sin — ; cos - ; tanrr4、 三角函数在各象限的符号:(一全二正弦,三切四余弦)5、同角三角函数的基本关系式:Sintan si n 2 cos 21cos6、诱导公式:si n(2kx) sin xsin( x) sinxcos(2k x) cosx cos( x) cosxtan(2k x) tanxtan( x) tanxcot(2k x) cotxcot( x)cotxsin( x) sin x sin (2x)sin x sin( x) si nx cos( x) cosx cos(2 x) cosx cos( x) cosx tan( x) tanx tan (2 x) tanx tan( x) tanx cot( x)cotxcot(2x)cot xcot( x)cotx7、两角和与差公式sin () sin cos cos sincos( ) cos cos sin sin8、二倍角公式是:(2)数列{ an }的前n 项和S n 与通项a n 的关系:a ns 1 a 1 (n 1) S n S n i (n 2)第四章-三角函数sin2=2s in cos+ + o"x- +■o J+ -tan(tan tan 1 tan tantan(tan tan 1 tan tanyA 正弦、余割余弦、正割 yix 正切、余切2 2 2 ・ 2cos2 =cos sin =2 cos 1 = 1 2 sin tan2 =2tan2。

2020高考复习数学全册知识汇总

2020高考复习数学全册知识汇总

{|x B =)()()U U A B C A C B =)()()U U B C A C B =)U A A ={|x B ={|U x x A =能够判断真假的语句。

原命题:若p 原命题与逆命题,否命题与逆否命题互逆;原命题与否命题、逆命题与逆否命题互否;原命题与逆否命题、否命题与逆命题:若q 否命题:若⌝逆否命题:若←−−−→一一对应复平面内的点向量OZ 向量OZ 的模叫做复数的模,大多数复数问题,主要是把复数化成标准的z a bi =+dibi++,则首(分母乘以自己的共轭复数),在进行四则运算时,看作成一个独立的字母,按照实数的四则运算律直接进行运算,并随时把向量既有大小又有方向的量,表示向量的有向线段的长度叫做该向量的模。

0向量0与任一非零向量共线】平行向量 方向相同或者相反的两个非零向量叫做平行向量,也叫共线向量。

向量夹角 起点放在一点的两向量所成的角,范围是[,a b 的夹角记为,a b >。

投影 ,a b θ<>=,cos b θ叫做b 在a 方向上的投影。

【注意:投影是数量】基本定理12,e e 不共线,存在唯一的实数对(,)λμ,使12a e e λμ=+。

若12,e e 为,x y 轴上的单位正交向量,(,)λμ就是向量a 的坐标。

一般表示坐标表示(向量坐标上下文理解),a b (0b ≠共线⇔存在唯一实数λ,a b λ=112212(,)(,)x y x y x y x λ=⇔=0a b a b ⊥⇔=。

11220x y x y +=。

a b +的平行四边形法则、三角形法则。

1(a b x x +=+a b b a +=+,()()a b c a b c ++=++与加法运算有同样的坐标表示。

a b -的三角形法则。

1(a b x x -=-MN ON OM =-。

(N M MN x x =-a λ⋅为向量,0λ>与a 方向相同,0λ<与a 方向相反,a a λλ=。

2020高考数学知识点大全

2020高考数学知识点大全

2020高考数学知识点大全备战2020高考,高考数学考什么?那么,下面由小编为整理有关2020高考数学知识点的资料,感兴趣的朋友们来看一下吧!2020高考数学知识点:集合与函数1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.2.在应用条件时,易A忽略是空集的情况3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?5.你知道“否命题”与“命题的否定形式”的区别.6.求解与函数有关的问题易忽略定义域优先的原则.7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称.8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.例如:.10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法11.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示.12.求函数的值域必须先求函数的定义域。

13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?14.解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。

17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。

若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?2020高考数学知识点:不等式18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.19.绝对值不等式的解法及其几何意义是什么?20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.22.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示.23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a<0.2020高考数学知识点:轨迹轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).【轨迹方程】就是与几何轨迹对应的代数描述。

【精品】2020高考数学基础知识大全

【精品】2020高考数学基础知识大全

2020高考数学基础知识大全1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。

{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示什么?2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。

∅ 注重借助于数轴和文氏图解集合问题。

空集是一切集合的子集,是一切非空集合的真子集。

{}{}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为B A a ⊂(答:,,)-⎧⎨⎩⎫⎬⎭10133. 注意下列性质:{}()集合,,……,的所有子集的个数是;1212a a a n n(3)德摩根定律:()()()()()()C C C C C C U U U U U U A B A B A B A B Y I I Y ==,4. 你会用补集思想解决问题吗?(排除法、间接法)的取值范围。

5. 可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和()()∨∧“非”().⌝若为真,当且仅当、均为真p q p q ∧若为真,当且仅当、至少有一个为真∨p q p q⌝p p若为真,当且仅当为假6. 命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。

)原命题与逆否命题同真、同假;逆命题与否命题同真同假。

7. 对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B中有元素无原象)8. 函数的三要素是什么?如何比较两个函数是否相同?(定义域、对应法则、值域)9. 求函数的定义域有哪些常见类型?10. 如何求复合函数的定义域?[]0义域是>->=+-f x a b b a F(x f x f x如:函数的定义域是,,,则函数的定())()()_。

2020年人教版高中数学知识点总结(最全)

2020年人教版高中数学知识点总结(最全)

2020年人教版高中数学知识点总结(最新最全)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高中数学 必修1知识点第一章 集合与函数概念 【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n-非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集名称记号意义性质示意图交集A B{|,x x A∈且}x B∈(1)A A A=(2)A∅=∅(3)A B A⊆A B B⊆BA并集A B{|,x x A∈或}x B∈(1)A A A=(2)A A∅=(3)A B A⊇A B B⊇BA补集U A{|,}x x U x A∈∉且1()UA A=∅ 2()UA A U=【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a<>{|}x a x a-<<||(0)x a a>>|x x a<-或}x a> ||,||(0)ax b c ax b c c+<+>>把ax b+看成一个整体,化成||x a<,||(0)x a a>>型不等式来求解(2)一元二次不等式的解法判别式24b ac∆=-∆>0∆=0∆<二次函数2(0)y ax bx c a=++>的图象O一元二次方程20(0)ax bx c a++=>的根21,242b b acxa-±-=(其中12)x x<122bx xa==-无实根20(0)ax bx c a++>>的解集1{|x x x<或2}x x>{|x}2bxa≠-R 20(0)ax bx c a++<>的解集12{|}x x x x<<∅∅()()()U U UA B A B=()()()U U UA B A B=〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a xb <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法o函数的 性 质定义图象 判定方法 函数的单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yx ox x 2f(x )f(x )211(1)利用定义 (2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,a -∞、,)a +∞上为增函数,分别在[,0)a 、]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法 函数的性 质定义图象 判定方法 函数的奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称) 如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =. ③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式;③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 基本初等函数(Ⅰ) 〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符号n 是偶数时,正数a 的正的n 次方根用符号示,负的n 次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:na =;当n a =;当n 为偶数时,(0)|| (0)a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈【2.1.2】指数函数及其性质(4)指数函数〖2.2〗对数函数 【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)xa x N a N a a N =⇔=>≠>. (2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a aM M N N-=③数乘:log log ()na a n M M n R =∈ ④log a Na N =⑤log log (0,)b na a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且【2.2.2】对数函数及其性质(5)对数函数设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x fy -=;③将1()x fy -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y fx -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y fx -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图y 原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). ③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当q pα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2ba-+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2ba -∞-上递增,在[,)2b a -+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=. ③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a =-=.(4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔②x 1≤x 2<k ⇔③x 1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2 ⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上)①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a=- ③若2b q a ->,则()m f q =02a ()q ()f pxxxxx x(q) 0x①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a=- ③若2b q a ->,则()M f q =①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。

2020届高考数学知识点精华总结

2020届高考数学知识点精华总结

(一) 集合1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2. 集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性. 集合的性质:①任何一个集合是它本身的子集,记为A A ⊆; ②空集是任何集合的子集,记为A ⊆φ; ③空集是任何非空集合的真子集; 如果B A ⊆,同时A B ⊆,那么A = B. 如果C A C B B A ⊆⊆⊆,那么,.[注]:①Z = {整数}(√) Z ={全体整数} (×)②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×)(例:S=N ; A=+N ,则C s A= {0}) ③ 空集的补集是全集.④若集合A =集合B ,则C B A = ∅, C A B = ∅ C S (C A B )= D ( 注 :C A B = ∅). 3. ①{(x ,y )|xy =0,x ∈R ,y ∈R }坐标轴上的点集. ②{(x ,y )|xy <0,x ∈R ,y ∈R}二、四象限的点集.③{(x ,y )|xy >0,x ∈R ,y ∈R } 一、三象限的点集. [注]:①对方程组解的集合应是点集. 例: ⎩⎨⎧=-=+1323y x y x 解的集合{(2,1)}.②点集与数集的交集是φ. (例:A ={(x ,y )| y =x +1} B={y |y =x 2+1} 则A ∩B =∅) 4. ①n 个元素的子集有2n 个. ②n 个元素的真子集有2n -1个. ③n 个元素的非空真子集有2n -2个.5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题⇔逆命题. ②一个命题为真,则它的逆否命题一定为真. 原命题⇔逆否命题. 例:①若325≠≠≠+b a b a 或,则应是真命题.解:逆否:a = 2且 b = 3,则a+b = 5,成立,所以此命题为真. ②且21≠≠y x 3≠+y . 解:逆否:x + y =3x = 1或y = 2.21≠≠∴y x 且3≠+y x ,故3≠+y x 是21≠≠y x 且的既不是充分,又不是必要条件.⑵小范围推出大范围;大范围推不出小范围. 3. 例:若255 x x x 或,⇒. 4. 集合运算:交、并、补.{|,}{|}{,}A B x x A x B A B x x A x B A x U x A ⇔∈∈⇔∈∈⇔∈∉U 交:且并:或补:且C 5. 主要性质和运算律(1) 包含关系:,,,,,;,;,.U A A A A U A U A B B C A C A B A A B B A B A A B B ⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇C(2) 等价关系:U A B A B A A B B AB U ⊆⇔=⇔=⇔=C (3) 集合的运算律:交换律:.;A B B A A B B A ==结合律:)()();()(C B A C B A C B A C B A == 分配律:.)()()();()()(C A B A C B A C A B A C B A == 0-1律:,,,A A A U A A U A U Φ=ΦΦ===等幂律:.,A A A A A A ==求补律:A ∩C U A =φ A ∪C U A =U C U U =φ C U φ=U反演律:C U (A ∩B)= (C U A )∪(C U B ) C U (A ∪B)= (C U A )∩(C U B )6. 有限集的元素个数定义:有限集A 的元素的个数叫做集合A 的基数,记为card( A)规定 card(φ) =0.基本公式:(1)()()()()(2)()()()()()()()()card A B card A card B card A B card A B C card A card B card C card A B card B C card C A card A B C =+-=++---+(3) card ( U A )= card(U)- card(A)(二)含绝对值不等式、一元二次不等式的解法及延伸 1.整式不等式的解法 根轴法(零点分段法)①将不等式化为a 0(x-x 1)(x-x 2)…(x-x m )>0(<0)形式,并将各因式x 的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x 的系数化“+”后)是“>0”,则找“线”在x 轴上方的区间;若不等式是“<0”,则找“线”在x 轴下方的区间.x(自右向左正负相间)则不等式)0)(0(0022110><>++++--a a x a x a x a n n n n 的解可以根据各区间的符号确定.特例① 一元一次不等式ax>b 解的讨论;②一元二次不等式ax 2+box>0(a>0)解的讨论.0>∆0=∆0<∆二次函数c bx ax y ++=2(0>a )的图象一元二次方程()的根002>=++a c bx ax有两相异实根 )(,2121x x x x <有两相等实根abx x 221-==无实根的解集)0(02>>++a c bx ax{}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R 的解集)0(02><++a c bx ax{}21x x xx <<∅∅2.分式不等式的解法 (1)标准化:移项通分化为)()(x g x f >0(或)()(x g x f <0);)()(x g x f ≥0(或)()(x g x f ≤0)的形式, (2)转化为整式不等式(组)⎩⎨⎧≠≥⇔≥>⇔>0)(0)()(0)()(;0)()(0)()(x g x g x f x g x f x g x f x g x f3.含绝对值不等式的解法(1)公式法:c b ax <+,与)0(>>+c c b ax 型的不等式的解法. (2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题. 4.一元二次方程根的分布一元二次方程ax 2+bx+c=0(a ≠0) (1)根的“零分布”:根据判别式和韦达定理分析列式解之. (2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之.(一) 映射与函数 1. 映射与一一映射2.函数函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数. 3.反函数反函数的定义设函数))((A x x f y ∈=的值域是C ,根据这个函数中x,y 的关系,用y 把x 表示出,得到x=ϕ(y). 若对于y 在C 中的任何一个值,通过x=ϕ(y),x 在A 中都有唯一的值和它对应,那么,x=ϕ(y)就表示y 是自变量,x 是自变量y 的函数,这样的函数x=ϕ(y) (y ∈C)叫做函数))((A x x f y ∈=的反函数,记作)(1y f x -=,习惯上改写成)(1x f y -=(二)函数的性质 ⒈函数的单调性定义:对于函数f(x)的定义域I 内某个区间上的任意两个自变量的值x 1,x 2, ⑴若当x 1<x 2时,都有f(x 1)<f(x 2),则说f(x)在这个区间上是增函数; ⑵若当x 1<x 2时,都有f(x 1)>f(x 2),则说f(x) 在这个区间上是减函数.若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做函数y=f(x)的单调区间.此时也说函数是这一区间上的单调函数. 2.函数的奇偶性正确理解奇、偶函数的定义。

2020届高考数学总复习资料整理高中数学必备知识点大全

2020届高考数学总复习资料整理高中数学必备知识点大全

2020届高考数学总复习资料整理高中数学必备知识点大全三、算法、推理与证明五、函数、基本初等函数I的图像与性质指数函数2y a=01a〈〈(),-∞+∞单调递减,01,001x y x y〈〈〉〈〈时时函数图象过定点(0.1)1a〉(),-∞+∞单调递增,01,01x y x y〈〈〈〉〉时0时六、函数与方程、函数模型及其应用函数零点概念方程()0f x=的实数根。

方程()0f x=的实数根⇔函数()0y x=的图象与x轴有交点⇔函数()y f x=有零点。

存在定理对于在区间[],a b上连续不断,若()()0f a f b〈,则()y f x=在(),a b内存在零点。

二分法方法对于在区间[],a b上连续不断且()()0f a f b〈的函数()y f x=。

通过不断把函数()f x的零点所在的区间一分为二,使区间两个端点逐步逼近零点。

进而得到零点近似值的方法叫做二分法。

步骤第一步确定区间[],a b,验证()()0f a f b〈g,确定精确度∈。

221cos 2sin 21cos 2cos 2aa aa -=+=注:表中,n k均为正整数。

十三、空间几何体(其中为半径、为高、为母线等)S h十四、空间点、直线平面位置关系(大写字母表点、小写字母表直线、希腊字母表平面):【注:标准d根据上下文理解为圆心到直线的距离与两圆的圆心距】十八、圆锥曲线的定义、方程与性质注:1.表中两种形式的双曲线方程对应的渐进线方程分别为x a y ±=,x by ±=2.表中四种形式的抛物线方程对应的准线方程分别是2,2,2,2p y p y p x p x =-==-=。

十九、圆锥曲线的热点问题二十一、离散型随机变量及其分布(理科)二十二、统计与统计案例二十三、函数与方程思想,数学结合思想二十四、分类与整合思想,化归与转化思想二十五、几何证明选讲二十六、坐标系与参数方程。

2023年高考数学必修三知识点总结人教版高考数学必修三考点汇总

2023年高考数学必修三知识点总结人教版高考数学必修三考点汇总

高考数学必修三知识点总结人教版高考数学必修三考点篇一自变量某和因变量y有如下关系:y=k某+b则此时称y是某的一次函数。

特别地,当b=0时,y是某的正比例函数。

即:y=k某(k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的某的变化值成正比例,比值为k即:y=k某+b(k为任意不为零的实数b取任何实数)2.当某=0时,b为函数在y轴上的截距。

三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像,一条直线。

因此,作一次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与某轴和y轴的交点)2.性质:(1)在一次函数上的任意一点p(某,y),都满足等式:y=k某+b。

(2)一次函数与y轴交点的坐标总是(0,b),与某轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随某的增大而增大;当k当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。

特别地,当b=o时,直线通过原点o(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

四、确定一次函数的表达式:已知点a(某1,y1);b(某2,y2),请确定过点a、b的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=k某+b。

(2)因为在一次函数上的任意一点p(某,y),都满足等式y=k某+b。

所以可以列出2个方程:y1=k某1+b……①和y2=k某2+b……②(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。

高中数学必修3知识点总结篇二高中数学(文)包含5本必修、2本选修,(理)包含5本必修、3本选修,每学期学某某两本书。

必修一:1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。

人教版高中数学知识点汇总(全册版)-高中数学知识点总结精华版

人教版高中数学知识点汇总(全册版)-高中数学知识点总结精华版

的最大值,记作 fmax (x) M . ②一般地,设函数 y f (x) 的定义域为 I ,如果存在实数 m 满足:(1)对于任意的 x I ,都有
f (x) m ;(2)存在 x0 I ,使得 f (x0 ) m .那么,我们称 m 是函数 f (x) 的最小值,记作
fmax (x) m .
④不等式法:利用基本不等式确定函数的值域或最值. ⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为
三角函数的最值问题. ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.
x1
x2
b 2a
{x | x b } 2a
无实根
R
人教版高中数学知识点汇总(全册版)-高中数学知识点总结精华版
ax2 bx c 0(a 0)
的解集
{x | x1 x x2}
〖1.2〗函数及其表示 【1.2.1】函数的概念
(1)函数的概念
①设 A 、 B 是两个非空的数集,如果按照某种对应法则 f ,对于集合 A 中任何一个数 x ,在集合 B 中都有唯一确定的数 f (x) 和它对应,那么这样的对应(包括集合 A , B 以及 A 到 B 的对应法 则 f )叫做集合 A 到 B 的一个函数,记作 f : A B .
人教版高中数学知识点汇总(全册版)-高中数学知识点总结精华版
人教版高中数学知识点(必修+选修)
高中数学 必修 1 知识点
第一章 集合与函数概念 【1.1.1】集合的含义与表示
(1)集合的概念 集合中的元素具有确定性、互异性和无序性.
(2)常用数集及其记法

2020高考数学全套知识点

2020高考数学全套知识点

2020高考数学全套知识点1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。

{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示什么?2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。

∅ 注重借助于数轴和文氏图解集合问题。

空集是一切集合的子集,是一切非空集合的真子集。

{}{}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为B A a ⊂(答:,,)-⎧⎨⎩⎫⎬⎭10133. 注意下列性质:{}()集合,,……,的所有子集的个数是;1212a a a n n(3)德摩根定律:()()()()()()C C C C C C U U U U U U A B A B A B A B Y I I Y ==,4. 你会用补集思想解决问题吗?(排除法、间接法)的取值范围。

5. 可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和()()∨∧“非”().⌝若为真,当且仅当、均为真∧p q p q∨若为真,当且仅当、至少有一个为真p q p q⌝p p若为真,当且仅当为假6. 命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。

)原命题与逆否命题同真、同假;逆命题与否命题同真同假。

7. 对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B中有元素无原象)8. 函数的三要素是什么?如何比较两个函数是否相同?(定义域、对应法则、值域)9. 求函数的定义域有哪些常见类型?10. 如何求复合函数的定义域?[]>->=+-())()()0义域是如:函数的定义域是,,,则函数的定f x a b b a F(x f x f x_。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020人教版数学高考知识点集合手册必修一第一章集合与函数概念〖1.1〗集合(1)集合的概念集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法N表示自然数集,N*或N+表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集.(3)集合与元素间的关系对象a与集合M的关系是a M∉,两者必居其一.∈,或者a M(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{x|x具有的性质},其中x为集合的代表元素.④图示法:用数轴或韦恩图来表示集合.(5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n-个非空子集,它有22n-非空真子集.(8)交集、并集、补集并集A B U{|,x x A ∈或}x B ∈(1)A A A =U(2)A A ∅=U(3)A B A ⊇U A B B ⊇UBA补集 U A ð {|,}x x U x A ∈∉且 1()U A A =∅Ið2()U A A U =U ð【补充知识】含绝对值的不等式与一元二次不等式的解法 (1)含绝对值的不等式的解法不等式解集||(0)x a a <> {|}x a x a -<< ||(0)x a a >>|x x a <-或}x a >||,||(0)ax b c ax b c c +<+>>把ax b +看成一个整体,化成||x a <,||(0)x a a >>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2(0)y ax bx c a =++>的图象O一元二次方程20(0)ax bx c a ++=>的根21,242b b ac x a-±-=(其中12)x x <122b x x a ==-无实根()()()U U U A B A B =I U 痧?()()()U U U A B A B =U I 痧?〖1.2〗函数及其表示 (1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值. ②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法. (5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质 (1)函数的单调性 ①定义及判定方法②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.yxo③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为[()]y f g x =减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则为减.(2)打“√”函数()(0)af x x a x =+>的图象与性质()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、(0,]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =. (4)函数的奇偶性 ①定义及判定方法函数的 性 质定义图象判定方法函数的奇偶性 如果对于函数f(x)定义域内任意一个x ,都有f(-x)=-f(x),那么函数f(x)叫做奇函数.(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称) 如果对于函数f(x)定义域内任意一个x ,都有f(-x)=f(x),那么函数f(x)叫做偶函数.(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数. 函数周期性和对称性一.定义:若T 为非零常数,对于定义域内的任一x ,使)()(x f T x f =+恒成立 则f(x)叫做周期函数,T 叫做这个函数的一个周期。

二.重要结论1、()()f x f x a =+,则()y f x =是以T a =为周期的周期函数;若函数y=f(x)满足f(x+a)=-f(x)(a>0),则f(x)为周期函数且2a 是它的一个周期。

若函数()()f x a f x a +=-,则()x f 是以2T a =为周期的周期函数 y=f(x)满足f(x+a)=()x f 1(a>0),则f(x)为周期函数且2a 是它的一个周期。

5、若函数y=f(x)满足f(x+a)= ()x f 1-(a>0),则f(x)为周期函数且2a 是它的一个周期。

6、1()()1()f x f x a f x -+=+,则()x f 是以2T a =为周期的周期函数.7、1()()1()f x f x a f x ++=--,则()x f 是以4T a =为周期的周期函数.若函数y=f(x)的图像关于直线x=a,x=b(b>a)都对称,则f(x)为周期函数且2(b-a )是它的一个周期。

9、函数()y f x =()x R ∈的图象关于两点()0,A a y 、()0,B b y ()a b <都对称,则函数()f x 是以()2b a -为周期的周期函数;10、函数()y f x =()x R ∈的图象关于()0,A a y 和直线x b =()a b <都对称,则函数()f x 是以()4b a -为周期的周期函数;11、若偶函数y=f(x)的图像关于直线x=a 对称,则f(x)为周期函数且2a 是它的一个周期。

相关文档
最新文档