2018届高三数学一轮复习 利用空间向量求空间角

合集下载

8.7.2 利用空间向量求空间角和距离

8.7.2 利用空间向量求空间角和距离

第24页
名师伴你行 ·高考一轮总复习 ·数学(理)
则各点的坐标分别为B(1,0,0),C(1,1,0),D(0,2,0),
P(0,0,2),

告 一
因为B→P=(-1,0,2),设B→Q=λB→P=(-λ,0,2λ)(0≤λ≤1), 课

又C→B=(0,-1,0),则C→Q=C→B+B→Q=(-λ,-1,2λ),
(1)证明:平面PEF⊥平面ABFD;
(2)求DP与平面ABFD所成角的正弦值.
第8章 第7节 第2课时
第33页
名师伴你行 ·高考一轮总复习 ·数学(理)
报 告
(1)[证明] 由已知可得,BF⊥PF,BF⊥EF,

又PF∩EF=F,所以BF⊥平面PEF.


又BF⊂平面ABFD,所以平面PEF⊥平面ABFD.
|AD||n|
3
2a = 32a2×1
22,
作 业

解得θ=45°,即AD与平面BCD所成的角为45°.
第8章 第7节 第2课时
第16页
名师伴你行 ·高考一轮总复习 ·数学(理)

(2)∵A→D·B→C=0,∴AD⊥BC,


∴AD与BC所成角为90°.


(3)设m=(x,y,z)是平面ABD的法向量,
作 业
报 告 二
第8章 第7节 第2课时
第3页
名师伴你行 ·高考一轮总复习 ·数学(理)



[考纲展示] 1.能用向量方法解决直线与直线、直线与平 课 时
面、平面与平面的夹角的计算问题.
作 业

2.了解向量方法在研究立体几何问题中的应用.

利用空间向量求空间角考点与题型归纳

利用空间向量求空间角考点与题型归纳

利用空间向量求空间角考点与题型归纳一、基础知识1.异面直线所成角设异面直线a ,b 所成的角为θ,则cos θ=|a ·b ||a ||b |❶, 其中a ,b 分别是直线a ,b 的方向向量.2.直线与平面所成角如图所示,设l 为平面α的斜线,l ∩α=A ,a 为l 的方向向量,n 为平面α的法向量,φ为l 与α所成的角,则sin φ=|cos 〈a ,n 〉|=|a ·n ||a ||n |❷.3.二面角(1)若AB ,CD 分别是二面角α­l ­β的两个平面内与棱l 垂直的异面直线,则二面角(或其补角)的大小就是向量AB ―→与CD ―→的夹角,如图(1).(2)平面α与β相交于直线l ,平面α的法向量为n 1,平面β的法向量为n 2,〈n 1,n 2〉=θ,则二面角α ­l ­β为θ或π-θ.设二面角大小为φ,则|cos φ|=|cos θ|=|n 1·n 2||n 1||n 2|❸,如图(2)(3).两异面直线所成的角为锐角或直角,而不共线的向量的夹角为(0,π),所以公式中要加绝对值.直线与平面所成角的范围为⎣⎡⎦⎤0,π2,而向量之间的夹角的范围为[0,π],所以公式中要加绝对值.利用公式与二面角的平面角时,要注意〈n 1,n 2〉与二面角大小的关系,是相等还是互补,需要结合图形进行判断.二、常用结论解空间角最值问题时往往会用到最小角定理 cos θ=cos θ1cos θ2.如图,若OA 为平面α的一条斜线,O 为斜足,OB 为OA 在平面α内的射影,OC 为平面α内的一条直线,其中θ为OA 与OC 所成的角,θ1为OA 与OB 所成的角,即线面角,θ2为OB 与OC 所成的角,那么cos θ=cos θ1cos θ2. 考点一 异面直线所成的角[典例精析]如图,在三棱锥P ­ABC 中,P A ⊥底面ABC ,∠BAC =90°.点D ,E ,N 分别为棱P A ,PC ,BC 的中点,M 是线段AD 的中点,P A =AC =4,AB =2.(1)求证:MN ∥平面BDE ;(2)已知点H 在棱P A 上,且直线NH 与直线BE 所成角的余弦值为721,求线段AH 的长. [解] 由题意知,AB ,AC ,AP 两两垂直,故以A 为原点,分别以AB ―→,AC ―→,AP ―→方向为x 轴、y 轴、z 轴正方向建立如图所示的空间直角坐标系.依题意可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0).(1)证明:DE ―→=(0,2,0),DB ―→=(2,0,-2). 设n =(x ,y ,z )为平面BDE 的法向量, 则⎩⎪⎨⎪⎧n ·DE ―→=0,n ·DB ―→=0,即⎩⎪⎨⎪⎧2y =0,2x -2z =0.不妨取z =1,可得n =(1,0,1).又MN ―→=(1,2,-1),可得MN ―→·n =0. 因为MN ⊄平面BDE ,所以MN ∥平面BDE . (2)依题意,设AH =h (0≤h ≤4),则H (0,0,h ), 进而可得NH ―→=(-1,-2,h ), BE ―→=(-2,2,2). 由已知,得|cos 〈NH ―→,BE ―→〉|=|NH ―→·BE ―→||NH ―→||BE ―→|=|2h -2|h 2+5×23=721, 整理得10h 2-21h +8=0,解得h =85或h =12.所以线段AH 的长为85或12.[解题技法]用向量法求异面直线所成角的一般步骤(1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量; (3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦等于两向量夹角余弦值的绝对值.[提醒] 注意向量的夹角与异面直线所成的角的区别:当异面直线的方向向量的夹角为锐角或直角时,此夹角就是异面直线所成的角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线所成的角.[题组训练]1.如图所示,在三棱柱ABC ­A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E ,F 分别是棱AB ,BB 1的中点,则直线EF 和BC 1所成的角是( )A .30°B .45°C .60°D .90°解析:选C 以B 为坐标原点,以BC 为x 轴,BA 为y 轴,BB 1为z 轴,建立空间直角坐标系如图所示.设AB =BC =AA 1=2,则C 1(2,0,2),E (0,1,0),F (0,0,1),∴EF ―→=(0,-1,1),BC 1―→=(2,0,2),∴EF ―→·BC 1―→=2,∴cos 〈EF ―→,BC 1―→〉=22×22=12,则EF 和BC 1所成的角是60°,故选C.2.如图,在四棱锥P ­ABCD 中,P A ⊥平面ABCD ,底面ABCD 是菱形,AB =2,∠BAD =60°.(1)求证:BD ⊥平面P AC ;(2)若P A =AB ,求PB 与AC 所成角的余弦值. 解:(1)证明:因为四边形ABCD 是菱形, 所以AC ⊥BD .因为P A ⊥平面ABCD ,BD ⊂平面ABCD , 所以P A ⊥BD .又因为AC ∩P A =A ,所以BD ⊥平面P AC . (2)设AC ∩BD =O .因为∠BAD =60°,P A =AB =2, 所以BO =1,AO =CO = 3.如图,以O 为坐标原点,射线OB ,OC 分别为x 轴,y 轴的正半轴建立空间直角坐标系O ­xyz ,则P (0,-3,2),A (0,-3,0),B (1,0,0),C (0,3,0), 所以PB ―→=(1,3,-2),AC ―→=(0,23,0). 设PB 与AC 所成角为θ,则cos θ=|PB ―→·AC ―→||PB ―→||AC ―→|=622×23=64.即PB 与AC 所成角的余弦值为64. 考点二 直线与平面所成的角[典例精析](2019·合肥一检)如图,在多面体ABCDEF 中,四边形ABCD 是正方形,BF ⊥平面ABCD ,DE ⊥平面ABCD ,BF =DE ,M 为棱AE 的中点.(1)求证:平面BDM ∥平面EFC ;(2)若DE =2AB ,求直线AE 与平面BDM 所成角的正弦值. [解] (1)证明:连接AC 交BD 于点N ,连接MN , 则N 为AC 的中点,又M 为AE 的中点,∴MN ∥EC . ∵MN ⊄平面EFC ,EC ⊂平面EFC , ∴MN ∥平面EFC .∵BF ,DE 都与平面ABCD 垂直,∴BF ∥DE . ∵BF =DE ,∴四边形BDEF 为平行四边形,∴BD ∥EF . ∵BD ⊄平面EFC ,EF ⊂平面EFC , ∴BD ∥平面EFC .又MN ∩BD =N ,∴平面BDM ∥平面EFC . (2)∵DE ⊥平面ABCD ,四边形ABCD 是正方形,∴DA ,DC ,DE 两两垂直,如图,建立空间直角坐标系D ­xyz . 设AB =2,则DE =4,从而D (0,0,0),B (2,2,0),M (1,0,2),A (2,0,0),E (0,0,4),∴DB ―→=(2,2,0),DM ―→=(1,0,2), 设平面BDM 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·DB ―→=0,n ·DM ―→=0,得⎩⎪⎨⎪⎧2x +2y =0,x +2z =0.令x =2,则y =-2,z =-1,从而n =(2,-2,-1)为平面BDM 的一个法向量.∵AE ―→=(-2,0,4),设直线AE 与平面BDM 所成的角为θ, 则sin θ=|cosn ,AE ―→|=|n ·AE ―→||n |·|AE ―→|=4515,∴直线AE 与平面BDM 所成角的正弦值为4515.[解题技法]利用向量求线面角的2种方法(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角).(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线与平面所成的角.[题组训练]1.在长方体ABCD ­A 1B 1C 1D 1中,AB =2,BC =AA 1=1,则D 1C 1与平面A 1BC 1所成角的正弦值为________.解析:建立如图所示的空间直角坐标系D ­xyz ,由于AB =2,BC =AA 1=1,所以A 1(1,0,1),B (1,2,0),C 1(0,2,1),D 1(0,0,1),所以A 1C 1―→=(-1,2,0),BC 1―→=(-1,0,1),D 1C 1―→=(0,2,0).设平面A 1BC 1的法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧A 1C 1―→·n =0, BC 1―→·n =0,即⎩⎪⎨⎪⎧-x +2y =0,-x +z =0,令x =2,得y =1,z =2,则n =(2,1,2).设D 1C 1与平面A 1BC 1所成角为θ,则sin θ=|cos 〈D 1C 1―→,n 〉|=|D 1C 1―→·n ||D 1C 1―→||n |=22×3=13,即D 1C 1与平面A 1BC 1所成角的正弦值为13.答案:132.如图,在直三棱柱ABC ­A 1B 1C 1中,BA =BC =5,AC =8,D 为线段AC 的中点.(1)求证:BD ⊥A 1D ;(2)若直线A 1D 与平面BC 1D 所成角的正弦值为45,求AA 1的长.解:(1)证明:∵三棱柱ABC ­A 1B 1C 1是直三棱柱,∴AA 1⊥平面ABC ,又BD ⊂平面ABC ,∴BD ⊥AA 1, ∵BA =BC ,D 为AC 的中点,∴BD ⊥AC ,又AC ∩AA 1=A ,AC ⊂平面ACC 1A 1,AA 1⊂平面ACC 1A 1, ∴BD ⊥平面ACC 1A 1,又A 1D ⊂平面ACC 1A 1,∴BD ⊥A 1D . (2)由(1)知BD ⊥AC ,AA 1⊥平面ABC ,以D 为坐标原点,DB ,DC 所在直线分别为x 轴,y 轴,过点D 且平行于AA 1的直线为z 轴建立如图所示的空间直角坐标系D ­xyz .设AA 1=λ(λ>0),则A 1(0,-4,λ),B (3,0,0),C 1(0,4,λ),D (0,0,0), ∴DA 1―→=(0,-4,λ),DC 1―→=(0,4,λ),DB ―→=(3,0,0), 设平面BC 1D 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·DC 1―→=0,n ·DB ―→=0,即⎩⎪⎨⎪⎧4y +λz =0,3x =0,则x =0,令z =4,可得y =-λ,故n =(0,-λ,4)为平面BC 1D 的一个法向量. 设直线A 1D 与平面BC 1D 所成角为θ,则sin θ=|cosn ,DA 1―→|=|n ·DA 1―→||n |·|DA 1―→|=|4λ+4λ|λ2+16·λ2+16=45,解得λ=2或λ=8, 即AA 1=2或AA 1=8.考点三 二面角[典例精析]如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 位置,OD ′=10.(1)证明:D ′H ⊥平面ABCD ; (2)求二面角B ­D ′A ­C 的余弦值.[解] (1)证明:由四边形ABCD 为菱形,得AC ⊥BD . 由AE =CF =54,得AE AD =CFCD ,所以EF ∥AC .因此EF ⊥DH ,从而EF ⊥D ′H . 由AB =5,AC =6,得DO =BO =AB 2-AO 2=4.由EF ∥AC 得OH DO =AE AD =14,所以OH =1,D ′H =DH =3,则OD ′2=OH 2+D ′H 2,所以D ′H ⊥OH . 又OH ∩EF =H ,所以D ′H ⊥平面ABCD .(2)以H 为坐标原点,HB ,HF ,HD ′分别为x 轴,y 轴,z 轴建立空间直角坐标系H ­xyz ,如图所示.则B (5,0,0),C (1,3,0),D ′(0,0,3),A (1,-3,0), (由口诀“起点同”,我们先求出起点相同的3个向量.) 所以AB ―→=(4,3,0), AD ′―→=(-1,3,3),AC ―→=(0,6,0). (由口诀“棱排前”,我们用行列式求出两个平面的法向量.) 由⎩⎪⎨⎪⎧ AD ′―→=(-1,3,3), AB ―→=(4,3,0),可得平面ABD ′的法向量n 1=(-3,4,-5),由⎩⎪⎨⎪⎧AD ′―→=(-1,3,3), AC ―→=(0,6,0),可得平面AD ′C 的法向量n 2=(-3,0,-1). 于是cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=7525.所以二面角B ­D ′A ­C 的余弦值为7525.[解题技法](1)利用法向量求二面角的大小时,由于法向量的方向不同,两个法向量的夹角与二面角的大小可能相等,也可能互补.所以,两个法向量的夹角的余弦值与二面角的余弦值可能存在正负号的差异.(2)有时用观察法难以判定二面角是钝角还是锐角,为了保证解题结果准确无误,我们给出一种万无一失的方法:就是在两个半平面和二面角的棱上各取1个向量,要求这三个向量必须起点相同,在利用行列式计算法向量时,棱对应的向量必须排前面,即口诀“起点同,棱排前”,这样求出的两个法向量的夹角一定与二面角的大小相等.[题组训练]如图所示,四棱锥P ­ABCD 中,P A ⊥平面ABCD ,△DAB ≌△DCB ,E 为线段BD 上的一点,且EB =ED =EC =BC ,连接CE 并延长交AD 于F .(1)若G 为PD 的中点,求证:平面P AD ⊥平面CGF ; (2)若BC =2,P A =3,求二面角B ­CP ­D 的余弦值. 解:(1)证明:在△BCD 中,EB =ED =EC =BC , 故∠BCD =90°,∠CBE =∠BEC =60°.∵△DAB ≌△DCB ,∴∠BAD =∠BCD =90°,∠ABE =∠CBE =60°,∴∠FED =∠BEC =∠ABE =60°.∴AB ∥EF ,∴∠EFD =∠BAD =90°, ∴EF ⊥AD ,AF =FD . 又PG =GD ,∴GF ∥P A .又P A ⊥平面ABCD ,∴GF ⊥平面ABCD , ∵AD ⊂平面ABCD ,∴GF ⊥AD . 又GF ∩EF =F ,∴AD ⊥平面CGF .又AD ⊂平面P AD ,∴平面P AD ⊥平面CGF .(2)以A 为坐标原点,射线AB ,AD ,AP 分别为x 轴,y 轴,z 轴的正半轴建立如图所示的空间直角坐标系,则A (0,0,0),B (2,0,0),C (3,3,0),D (0,23,0),P (0,0,3),故CB ―→=(-1,-3,0), CP ―→=(-3,-3,3),CD ―→=(-3,3,0). 设平面BCP 的一个法向量为n 1=(1,y 1,z 1),则⎩⎪⎨⎪⎧ n 1·CB ―→=0,n 1·CP ―→=0,即⎩⎪⎨⎪⎧ -1-3y 1=0,-3-3y 1+3z 1=0,解得⎩⎨⎧y 1=-33,z 1=23,即n 1=⎝⎛⎭⎫1,-33,23. 设平面DCP 的一个法向量为n 2=(1,y 2,z 2),则⎩⎪⎨⎪⎧n 2·CD ―→=0,n 2·CP ―→=0,即⎩⎪⎨⎪⎧-3+3y 2=0,-3-3y 2+3z 2=0,解得⎩⎪⎨⎪⎧y 2=3,z 2=2,即n 2=(1,3,2). 所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=43169×8=24, 由图知二面角B ­CP ­D 为钝角, 所以二面角B ­CP ­D 的余弦值为-24. [课时跟踪检测]A 级1.如图所示,在正方体ABCD ­A 1B 1C 1D 1中,已知M ,N 分别是BD 和AD 的中点,则B 1M 与D 1N 所成角的余弦值为( )A.3030 B.3015 C.3010D.1515解析:选C 建立如图所示的空间直角坐标系.设正方体的棱长为2,则B 1(2,2,2),M (1,1,0),D 1(0,0,2),N (1,0,0),∴B 1M ―→=(-1,-1,-2), D 1N ―→=(1,0,-2),∴B 1M 与D 1N 所成角的余弦值为|B 1M ―→·D 1N ―→||B 1M ―→|·|D 1N ―→|=|-1+4|1+1+4×1+4=3010. 2.如图,已知长方体ABCD ­A 1B 1C 1D 1中,AD =AA 1=1,AB =3,E 为线段AB 上一点,且AE =13AB ,则DC 1与平面D 1EC 所成角的正弦值为( )A.33535B.277C.33D.24解析:选A 如图,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C 1(0,3,1),D 1(0,0,1),E (1,1,0),C (0,3,0),∴DC 1―→=(0,3,1), D 1E ―→=(1,1,-1), D 1C ―→=(0,3,-1). 设平面D 1EC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·D 1E ―→=0,n ·D 1C ―→=0,即⎩⎪⎨⎪⎧x +y -z =0,3y -z =0,取y =1,得n =(2,1,3).∴cosDC 1―→,n=DC 1―→·n |DC 1―→|·|n|=33535, ∴DC 1与平面D 1EC 所成的角的正弦值为33535.3.在直三棱柱ABC ­A 1B 1C 1中,AA 1=2,二面角B ­AA 1­C 1的大小为60°,点B 到平面ACC 1A 1的距离为3,点C 到平面ABB 1A 1的距离为23,则直线BC 1与直线AB 1所成角的正切值为( )A.7B.6C.5D .2解析:选A 由题意可知,∠BAC =60°,点B 到平面ACC 1A 1的距离为3,点C 到平面ABB 1A 1的距离为23,所以在三角形ABC 中,AB =2,AC =4,BC =23,∠ABC =90°,则AB 1―→·BC 1―→=(BB 1―→-BA ―→)·(BB 1―→+BC ―→)=4, |AB 1―→|=22,|BC 1―→|=4, cosAB 1―→,BC 1―→=AB 1―→·BC ―→|AB 1―→|·|BC ―→|=24,故tanAB 1―→,BC 1―→=7.4.如图,正三棱柱ABC ­A 1B 1C 1的所有棱长都相等,E ,F ,G 分别为AB ,AA 1,A 1C 1的中点,则B 1F 与平面GEF 所成角的正弦值为( )A.35 B.56 C.3310D.3610解析:选A 设正三棱柱的棱长为2,取AC 的中点D ,连接DG ,DB ,分别以DA ,DB ,DG 所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,则B 1()0,3,2,F (1,0,1), E ⎝⎛⎭⎫12,32,0,G (0,0,2), B 1F ―→=()1,-3,-1,EF ―→=⎝⎛⎭⎫12,-32,1, GF ―→=(1,0,-1).设平面GEF 的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧ EF ―→·n =0,GF ―→·n =0,即⎩⎪⎨⎪⎧12x -32y +z =0,x -z =0,取x =1,则z =1,y =3,故n =()1,3,1为平面GEF 的一个法向量, 所以cos 〈n ,B 1F ―→〉=1-3-15×5=-35,所以B 1F 与平面GEF 所成角的正弦值为35.5.在正方体ABCD ­A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A.12B.23C.33D.22解析:选B 以A 为坐标原点建立如图所示的空间直角坐标系A ­xyz ,设棱长为1,则A 1(0,0,1),E ⎝⎛⎭⎫1,0,12,D (0,1,0), ∴A 1D ―→=(0,1,-1), A 1E ―→=⎝⎛⎭⎫1,0,-12, 设平面A 1ED 的一个法向量为n 1=(1,y ,z ), 则⎩⎪⎨⎪⎧ n 1·A 1D ―→=0,n 1·A 1E ―→=0,即⎩⎪⎨⎪⎧y -z =0,1-12z =0,∴⎩⎪⎨⎪⎧y =2,z =2,∴n 1=(1,2,2). 又平面ABCD 的一个法向量为n 2=(0,0,1), ∴cos 〈n 1,n 2〉=23×1=23.即平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为23.6.如图,菱形ABCD 中,∠ABC =60°,AC 与BD 相交于点O ,AE ⊥平面ABCD ,CF ∥AE ,AB =2,CF =3.若直线OF 与平面BED 所成的角为45°,则AE =________.解析:如图,以O 为坐标原点,以OA ,OB 所在直线分别为x 轴,y 轴,以过点O 且平行于CF 的直线为z 轴建立空间直角坐标系.设AE =a ,则B (0,3,0),D (0,-3,0),F (-1,0,3),E (1,0,a ),∴OF ―→=(-1,0,3),DB ―→=(0,23,0), EB ―→=(-1,3,-a ).设平面BED 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DB ―→=0,n ·EB ―→=0,即⎩⎪⎨⎪⎧23y =0,-x +3y -az =0,则y =0,令z =1,得x =-a , ∴n =(-a,0,1),∴cos 〈n ,OF ―→〉=n ·OF ―→|n ||OF ―→|=a +3a 2+1×10.∵直线OF 与平面BED 所成角的大小为45°, ∴|a +3|a 2+1×10=22, 解得a =2或a =-12(舍去),∴AE =2.答案:27.如图,已知四棱锥P ­ABCD 的底面ABCD 是等腰梯形,AB ∥CD ,且AC ⊥BD ,AC 与BD 交于O ,PO ⊥底面ABCD ,PO =2,AB =22,E ,F 分别是AB ,AP 的中点,则二面角F ­OE ­A 的余弦值为________.解析:以O 为坐标原点,OB ,OC ,OP 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系O ­xyz , 由题知,OA =OB =2,则A (0,-2,0),B (2,0,0),P (0,0,2),E (1,-1,0),F (0,-1,1), OE ―→=(1,-1,0),OF ―→=(0,-1,1),设平面OEF 的法向量为m =(x ,y ,z ), 则⎩⎪⎨⎪⎧m ·OE ―→=0,m ·OF ―→=0,即⎩⎪⎨⎪⎧x -y =0-y +z =0.令x =1,可得m =(1,1,1).易知平面OAE 的一个法向量为n =(0,0,1),则cos 〈m ,n 〉=m ·n|m ||n |=33.由图知二面角F ­OE ­A 为锐角, 所以二面角F ­OE ­A 的余弦值为33. 答案:338.(2018·全国卷Ⅲ)如图,边长为2的正方形ABCD 所在的平面与半圆弧C D 所在平面垂直,M 是C D 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ­ABC 体积最大时,求平面MAB 与平面MCD 所成二面角的正弦值. 解:(1)证明:由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,又DM ⊂平面CMD ,所以BC ⊥DM .因为M 为CD 上异于C ,D 的点,且DC 为直径, 所以DM ⊥CM . 又BC ∩CM =C , 所以DM ⊥平面BMC . 因为DM ⊂平面AMD , 所以平面AMD ⊥平面BMC .(2)以D 为坐标原点, DA ―→的方向为x 轴正方向,建立如图所示的空间直角坐标系D ­xyz .当三棱锥M ­ABC 的体积最大时,M 为CD 的中点.由题设得D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,1),AM ―→=(-2,1,1),AB ―→=(0,2,0),DA ―→=(2,0,0).设n =(x ,y ,z )是平面MAB 的法向量,又DA ―→是平面MCD 的一个法向量,所以cos 〈n ,DA ―→〉=n ·DA ―→|n ||DA ―→|=55,sin 〈n ,DA ―→〉=255.所以平面MAB 与平面MCD 所成二面角的正弦值是255.9.(2018·全国卷Ⅱ)如图,在三棱锥P ­ABC 中,AB =BC =22,P A =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M ­P A ­C 为30°,求PC 与平面P AM 所成角的正弦值.解:(1)证明:因为P A =PC =AC =4,O 为AC 的中点, 所以PO ⊥AC ,且PO =2 3.连接OB ,因为AB =BC =22AC , 所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2.所以PO 2+OB 2=PB 2,所以PO ⊥OB . 又因为OB ∩AC =O , 所以PO ⊥平面ABC .(2)以O 为坐标原点,OB ―→的方向为x 轴正方向,建立如图所示的空间直角坐标系O ­xyz .由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),AP ―→=(0,2,23).取平面P AC 的一个法向量OB ―→=(2,0,0). 设M (a,2-a,0)(0<a ≤2),则AM ―→=(a,4-a,0). 设平面P AM 的法向量为n =(x ,y ,z ),令y =3a ,得z =-a ,x =3(a -4),所以平面P AM 的一个法向量为n =(3(a -4),3a ,-a ),所以cos 〈OB ―→,n 〉=23(a -4)23(a -4)2+3a 2+a 2.由已知可得|cos 〈OB ―→,n 〉|=cos 30°=32,所以23|a -4|23(a -4)2+3a 2+a 2=32, 解得a =43或a =-4(舍去).所以n =⎝⎛⎭⎫-833,433,-43.又PC ―→=(0,2,-23),所以cos 〈PC ―→,n 〉=833+8334+12·643+163+169=34.所以PC 与平面P AM 所成角的正弦值为34. B 级1.如图,四棱柱ABCD ­A 1B 1C 1D 1的底面ABCD 是菱形,AC ∩BD =O ,A 1O ⊥底面ABCD ,AB =2,AA 1=3.(1)证明:平面A 1CO ⊥平面BB 1D 1D ;(2)若∠BAD =60°,求二面角B ­OB 1­C 的余弦值. 解:(1)证明:∵A 1O ⊥平面ABCD ,BD ⊂平面ABCD , ∴A 1O ⊥BD .∵四边形ABCD 是菱形,∴CO ⊥BD . ∵A 1O ∩CO =O ,∴BD ⊥平面A 1CO . ∵BD ⊂平面BB 1D 1D ,∴平面A 1CO ⊥平面BB 1D 1D .(2)∵A 1O ⊥平面ABCD ,CO ⊥BD ,∴OB ,OC ,OA 1两两垂直,以O 为坐标原点,OB ―→,OC ―→, OA 1―→的方向分别为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系.∵AB =2,AA 1=3,∠BAD =60°, ∴OB =OD =1,OA =OC =3, OA 1=AA 21-OA 2= 6.则O (0,0,0),B (1,0,0),C (0,3,0),A (0,-3,0),A 1(0,0,6),∴OB ―→=(1,0,0),BB 1―→=AA 1―→=(0,3,6), OB 1―→=OB ―→+BB 1―→=(1,3,6). 设平面OBB 1的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧OB ―→·n =0,OB 1―→·n =0,即⎩⎪⎨⎪⎧x =0,x +3y +6z =0.令y =2,得z =-1,∴n =(0,2,-1)是平面OBB 1的一个法向量. 同理可求得平面OCB 1的一个法向量m =(6,0,-1), ∴cosn ,m=n ·m|n |·|m |=13×7=2121,由图可知二面角B ­OB 1­C 是锐二面角, ∴二面角B ­OB 1­C 的余弦值为2121. 2.如图,在四棱锥P ­ABCD 中,底面ABCD 是直角梯形,∠ADC =90°,AB ∥CD ,AB =2CD .平面P AD ⊥平面ABCD ,P A =PD ,点E 在PC 上,DE ⊥平面P AC .(1)求证:P A ⊥平面PCD ;(2)设AD =2,若平面PBC 与平面P AD 所成的二面角为45°,求DE 的长.解:(1)证明:由DE ⊥平面P AC ,得DE ⊥P A ,又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,CD ⊥AD ,所以CD ⊥平面P AD ,所以CD ⊥P A , 又CD ∩DE =D ,所以P A ⊥平面PCD . (2)取AD 的中点O ,连接PO , 因为P A =PD ,所以PO ⊥AD ,又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD , 所以PO ⊥平面ABCD ,以O 为坐标原点建立如图所示的空间直角坐标系O ­xyz ,由(1)得P A ⊥PD ,由AD =2得P A =PD =2,PO =1,设CD =a ,则P (0,0,1),D (0,1,0),C (a,1,0),B (2a ,-1,0), 则BC ―→=(-a,2,0),PC ―→=(a,1,-1). 设m =(x ,y ,z )为平面PBC 的法向量,由⎩⎪⎨⎪⎧m ·BC ―→=0,m ·PC ―→=0,得⎩⎪⎨⎪⎧-ax +2y =0,ax +y -z =0,令x =2,则y =a ,z =3a ,故m =(2,a,3a )为平面PBC 的一个法向量,由(1)知n =DC ―→=(a,0,0)为平面P AD 的一个法向量. 由|cosm ,n|=|m ·n ||m ||n |=|2a |a 10a 2+4=22,解得a =105,即CD =105,所以在Rt △PCD 中,PC =2155,由等面积法可得DE =CD ·PD PC =33.3.如图,在三棱锥P ­ABC 中,平面P AB ⊥平面ABC ,AB =6, BC =23,AC =26,D ,E 分别为线段AB ,BC 上的点,且AD =2DB ,CE =2EB ,PD ⊥AC .(1)求证:PD ⊥平面ABC ;(2)若直线P A 与平面ABC 所成的角为45°,求平面P AC 与平面PDE 所成的锐二面角大小.解:(1)证明:∵AC =26,BC =23,AB =6,∴AC 2+BC 2=AB 2,∴∠ACB =90°, ∴cos ∠ABC =236=33.又易知BD =2,∴CD 2=22+(23)2-2×2×23cos ∠ABC =8, ∴CD =22,又AD =4, ∴CD 2+AD 2=AC 2,∴CD ⊥AB .∵平面P AB ⊥平面ABC ,平面P AB ∩平面ABC =AB ,CD ⊂平面ABC , ∴CD ⊥平面P AB ,又PD ⊂平面P AB ,∴CD ⊥PD , ∵PD ⊥AC ,AC ∩CD =C , ∴PD ⊥平面ABC .(2)由(1)知PD ,CD ,AB 两两互相垂直,∴可建立如图所示的空间直角坐标系D ­xyz ,∵直线P A 与平面ABC 所成的角为45°,即∠P AD =45°,∴PD =AD =4,则A (0,-4,0),C (22,0,0),B (0,2,0),P (0,0,4),∴CB ―→=(-22,2,0),AC ―→=(22,4,0),P A ―→=(0,-4,-4). ∵AD =2DB ,CE =2EB ,∴DE ∥AC , 由(1)知AC ⊥BC ,∴DE ⊥BC ,又PD ⊥平面ABC ,BC ⊂平面ABC ,∴PD ⊥BC , ∵PD ∩DE =D ,∴CB ⊥平面PDE ,∴CB ―→=(-22,2,0)为平面PDE 的一个法向量. 设平面P AC 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AC ―→=0,n ·P A ―→=0,即⎩⎪⎨⎪⎧22x +4y =0,-4y -4z =0,令z =1,得x =2,y =-1, ∴n =(2,-1,1)为平面P AC 的一个法向量. ∴cos n ,CB ―→=-4-24×12=-32, ∴平面P AC 与平面PDE 所成的锐二面角的余弦值为32, 故平面P AC 与平面PDE 所成的锐二面角为30°.。

高考数学一轮复习 用立体几何中向量方法——求空间角与距离03课件

高考数学一轮复习 用立体几何中向量方法——求空间角与距离03课件
y 轴、z 轴,建立空间直角坐标系如图. OB=OM= 3,则各点坐标分别为
C(1,0,0),M(0,0, 3), B(0,- 3,0),A(0,- 3,2 3).
设 ቤተ መጻሕፍቲ ባይዱ=(x,y,z)是平面 MBC 的法向量, → → 则BC=(1, 3,0),BM=(0, 3, 3), → → 由 n⊥BC得 x+ 3y=0;由 n⊥BM得 3y+ 3z=0.
→ → → ∴CM=(3, 3,0),MN=(-1,0, 2),MB=(-1, 3,0). 设 n=(x,y,z)为平面 CMN 的一个法向量, → CM· n=3x+ 3y=0 则 → n=-x+ 2z=0 MN· ,取 z=1,
则 x= 2,y=- 6,∴n=( 2,- 6,1).
[14 分]
答题模板
第一步:建立空间直角坐标系. 第二步:确定点的坐标. 第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角. 第六步:反思回顾.查看关键点、易错点和答题规范.
批阅笔记
(1)利用向量求角是对口升学的热点,几乎每年必考,主要是突出 向量的工具性作用. (2)本题易错点是学生在建立坐标系时不能明确指出坐标原点和 坐标轴,导致建系不规范. (3)将向量的夹角转化成空间角时, 要注意根据角的概念和图形特 征进行转化,否则易错.
(1)求异面直线 AE 与 BF 所成角的余弦值; (2)求平面 BDF 与平面 AA1B 所成二面角(锐角)的余弦值.
审题视角
(1)研究的几何体为长方体,AB=2,AA1=1. (2)所求的是异面直线所成的角和二面角. (3)可考虑用空间向量法求解.
规范解答 解 以 A 为坐标原点,以 AB、AD、AA1 所在直线分别为 x 轴, y 轴,z 轴建立空间直角坐标系(如图所示).

用空间向量法求解立体几何问题典例及解析

用空间向量法求解立体几何问题典例及解析

用空间向量法求解立体几何问题典例及解析以多面体为载体,以空间向量为工具,来论证和求解空间角、距离、线线关系以及线面关系相关问题,是近年来高考数学的重点和热点,用空间向量解立体几何问题,极大地降低了求解立几的难度,很大程度上呈现出程序化思想。

更易于学生们所接受,故而执教者应高度重视空间向量的工具性。

首先,梳理一下利用空间向量解决立体几何的知识和基本求解方法 一:利用空间向量求空间角 (1)两条异面直线所成的夹角范围:两条异面直线所成的夹角的取值范围是 。

向量求法:设直线,a b 的方向向量为a,b ,其夹角为θ,则有cos ___________.θ= (2)直线与平面所成的角定义:直线与平面所成的角是指直线与它在这个平面内的射影所成的角。

范围:直线和平面所夹角的取值范围是 。

向量求法:设直线l 的方向向量为a ,平面的法向量为n ,直线与法向量所成角的余弦值为|cos |___________.θ=直线与平面所成的角为ϕ,则有sin ___________.ϕ=或在平面内任取一个向量m ,则|cos |___________.θ=.(3)二面角二面角的取值范围是 . 二面角的向量求法:方法一:在两个半平面内任取两个与棱垂直的向量,则这两个向量所成的 即为所求的二面角的大小;方法二:设1n ,2n 分别是两个面的 ,则向量1n 与2n 的夹角(或其补角)即为所求二面角的平面角的大小。

二:利用空间向量求空间距离 (1)点面距离的向量公式平面α的法向量为n ,点P 是平面α外一点,点M 为平面α内任意一点,则点P 到平面α的距离d 就是 ,即d =||||MP ⋅n n . (2)线面、面面距离的向量公式平面α∥直线l ,平面α的法向量为n ,点M ∈α、P ∈l ,平面α与直线l 间的距离d 就是MP 在向量n 方向射影的绝对值,即d = .平面α∥β,平面α的法向量为n ,点M ∈α、P ∈β,平面α与平面β的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||MP ⋅n n . (3)异面直线的距离的向量公式设向量n 与两异面直线a 、b 都垂直,M ∈a 、P ∈b ,则两异面直线a 、b 间的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||MP ⋅n n .三:利用空间向量解证平行、垂直关系1:①所谓直线的方向向量,就是指 的向量,一条直线的方向向量有 个。

高考必考题—运用空间向量解决空间角(含解析)

高考必考题—运用空间向量解决空间角(含解析)

运用空间向量解决空间角一、题型选讲题型一 、异面直线所成的角以及研究异面直线所成的角首先要注意交的范围,然后转化为有直线的方向向量的夹角。

例1、【2018年高考江苏卷】如图,在正三棱柱ABC −A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值; (2)求直线CC 1与平面AQC 1所成角的正弦值.例2、(2019南京学情调研) 如图,在正四棱柱ABCDA 1B 1C 1D 1中,已知底面ABCD 的边长AB =3,侧棱AA 1=2,E 是棱CC 1的中点,点F 满足AF →=2FB →.(1) 求异面直线FE 和DB 1所成角的余弦值; (2) 记二面角EB 1FA 的大小为θ,求|cos θ|.题型二、直线与平面所成的角直线与平面所成的角是通过研究直线的方向向量和平面的法向量的所成的角,因此,要特别注意所求的角与已求的角之间的关系。

例3、【2020年高考浙江】如图,在三棱台ABC—DEF中,平面ACFD⊥平面ABC,∠ACB=∠ACD=45°,DC =2BC.(Ⅰ)证明:EF⊥DB;(Ⅱ)求直线DF与平面DBC所成角的正弦值.例4、【2020年高考全国Ⅱ卷理数】如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN,且平面A1AMN⊥平面EB1C1F;(2)设O为△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.题型三、平面与平面所成的角利用平面的法向量求二面角的大小时,当求出两半平面α,β的法向量n1,n2时,要根据观察判断向量在图形中的方向,从而确定二面角与向量n1,n2的夹角是相等还是互补,这是利用向量求二面角的难点、易错点例5、【2019年高考全国Ⅱ卷理数】如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,求二面角B–EC–C1的正弦值.例6、【2019年高考全国Ⅲ卷理数】图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的二面角B−CG−A的大小.例7、(2020届山东省潍坊市高三上期中)如图,在棱长均为2的三棱柱111ABC A B C -中,平面1ACB ⊥平面11A ABB ,11AB A B =,O 为1AB 与1A B 的交点.(1)求证:1AB CO ⊥;(2)求平面11ACC A 与平面ABC 所成锐二面角的余弦值.二、达标训练1、【2019年高考天津卷理数】如图,AE ⊥平面ABCD ,,CF AE AD BC ∥∥,,AD AB ⊥1,2AB AD AE BC ====.(1)求证:BF ∥平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值; (3)若二面角E BD F --的余弦值为13,求线段CF 的长.2、【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.3、【2018年高考全国Ⅰ卷理数】如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥. (1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.4、(2020届山东省九校高三上学期联考)已知四棱柱1111ABCD A B C D -的底面为菱形,12AB AA ==,3BAD π∠=,ACBD O =,AO ⊥平面1A BD ,11A B A D =.(1)证明:1//B C 平面1A BD ; (2)求钝二面角1B AA D --的余弦值.5、(2020届山东省潍坊市高三上期末)在底面为正方形的四棱锥P ABCD -中,平面PAD ⊥平面,,,ABCD PA PD E F =分别为棱PC 和AB 的中点.(1)求证://EF 平面PAD ;(2)若直线PC 与AB ,求平面PAD 与平面PBC 所成锐二面角的大小.6、(2019南京、盐城一模)如图,四棱锥PABCD中,底面ABCD是矩形,PA⊥平面ABCD,AD=1,PA =AB=2,点E是棱PB的中点.(1) 求异面直线EC与PD所成角的余弦值;(2) 求二面角BECD的余弦值.一、题型选讲题型一 、异面直线所成的角以及研究异面直线所成的角首先要注意交的范围,然后转化为有直线的方向向量的夹角。

高考数学一轮复习向量法求空间角

高考数学一轮复习向量法求空间角
∵PB⊥平面 ABC,以 B 为坐标原点,―B→A ,―B→C , ―B→P 为 x,y,z 轴正方向建立空间直角坐标系.
可知 B(0,0,0),C(0,2,0),M(1,1,0).因为 BM= 2, MN= 6,
所以 BN= MN2-BM2= 6-2=2, 所以 PB=4,则 P(0,0,4).
设||― ―BB→ →QA ||=λ,且 0<λ<1,则 Q(2λ,0,0), 可知―PM→=(1,1,-4),―C→Q =(2λ,-2,0), 所以―PM→·―C→Q =1×2λ+1×(-2)+(-4)×0=2λ-2, |―PM→|= 12+12+-42=3 2,|―C→Q |= 2λ2+-22= 4λ2+4 因为异面直线 PM 与 CQ 所成的角的余弦值为 3344,
n 1·n 2
|n 1·n 2|
则 cos θ=|cos〈n 1,n 2〉|=___|n_1_||_n_2_|__=_教材经典小题的回顾拓展
1.(人教 B 版选择性必修①P36·T3 改编)已知直线 l1 的方向向量 s1=
(1,0,1)与直线 l2 的方向向量 s2=(-1,2,-2),则 l1 和 l2 夹角的余
在 Rt△BED 中,当 EF 的长度最小时,EF⊥BD,EF=DEB·DBE= 23. 又 DE⊥AC,BE⊥AC,所以 EA,EB,ED 两两垂直,以 E 为坐标 原点,EA,EB,ED 所在的直线分别为 x,y, z 轴建立如图所示空间直角坐标系 E-xyz,则 A(1,0,0),B(0, 3,0),D(0,0,1),C(-1,0,0), ―A→B =(-1, 3,0), ―D→B =(0, 3,-1).
()
A.41或 4
1 B.2
C.31
D.14

一课一研利用空间向量求空间角定稿

一课一研利用空间向量求空间角定稿
限时训练2
知识点3:二面角
例3如图, 是一直角梯形, , 面 , , ,求面 与面 所成二面角的余弦值.
限时训练3
限时训研讨
练习1:在Rt△AOB中,∠AOB=90°,现将△AOB沿着平面AOB的法向量方向平移到△A1O1B1的位置,已知OA=OB=Oo1,取A1B1、A1O1的中点D1、F1,求异面直线BD1与AF1所成的角的余弦值。
备课组“一课一研”教研活动记录表
备课组
活动时间
主持人
课题
空间向量与空间角
主备人
参加人员
记录人
活动过程
研讨内容
主备人
备课组补充意见
学习目标
研讨
1.使学生学会求异面直线所成的角、直线与平面所成的角、二面角的向量方法;(重点)
2.使学生能够应用向量方法解决简单的立体几何问题.(难点)
教法研讨
本节课利用多媒体辅助教学,采用启发式讲解,引导学生自主探究、归纳总结,通过师生不断地设疑、探究,揭示思维过程。
重难点
研讨
(一)复习引入
1、用空间向量解决立体几何问题的“三步曲”;
2、向量的有关知识:两向量数量积的定义、两向量夹角公式、平面的法向量。
(二)典例讲练
知识点1:异面直线所成的角
例1如图,正三棱柱 的底面边长为 ,侧棱长为 ,求 和 所成的角.
限时训练1
知识点2:直线与平面所成的角
例2如图,正三棱柱 的底面边长为 ,侧棱长为 ,求 和 所成角的正弦值.
练习2:正方体 的棱长为1,点 、 分别为 、 的中点.求直线 与平面 所成的角的正弦值.
练习3:正方体 的棱长为1,点 、 分别为 、 的中点.求二面角 的余弦值。
其他
学科备课组长签字:

利用空间向量研究角度问题-高考数学复习课件

利用空间向量研究角度问题-高考数学复习课件
∵ OB ⊂平面 ABCD ,∴ OP ⊥ OB ,∴ PB =
在△ C 1 BP 中, cos
2 +
2 +12 −12
3
∠ C 1 BP =
= ,
2·1
2
π
π
∴∠ PBC 1= ,即直线 PB 与 AD 1所成的角为 .
6
6
2

2
2

6
a.
2
法二:以 D 为原点, DA , DC , DD 1所在直线分别为 x 轴, y 轴, z 轴
2
A. 30°
由于 cos<
B. 60°
C. 120°
A )
D. 150°
1
m , n >=- ,所以< m , n >=120°,所以直线 l 与平面α
2
所成的角为30°.
3. 平面α的一个法向量为 m =(1,2,-2),平面β的一个法向量为 n =
(2,2,1),则平 C 为原点, CA , CB 所在直线分别为 x , y 轴,建立如图所示的空间
3
π
,∴直线 PB 与 AD 1所成的角为 .
2
6
方法总结
向量法求异面直线所成角的两种方法及一个注意点
1. 两种方法:
(1)基向量法:利用线性运算;
(2)坐标法:利用坐标运算.
2. 一个注意点:
注意向量法求异面直线所成角与向量夹角的区别,尤其是取值范围.
跟踪训练
1. 在直三棱柱 ABC - A 1 B 1 C 1中,∠ BCA =90°, M , N 分别是 A 1 B 1,
.
6
方法总结
利用平面的法向量求线面角的两个注意点

高考数学大一轮复习 第二节 第一课时 空间角的求法课件 理 苏教版

高考数学大一轮复习 第二节 第一课时 空间角的求法课件 理 苏教版
解析:如图所示,以点A为坐标原点,建 立空间直角坐标系A-xyz,则A(0,0,0), P(0,0,2),B(1,0,0),C(1,2,0),D(0,2,0).∵ AM⊥PD,PA=AD,
第十页,共40页。
∴M为PD的中点,∴M的坐标为(0,1,1).
∴ AC =(1,2,0), AM =(0,1,1),CD=(-1,0,0). 设平面ACM的一个法向量为n=(x,y,z),
第二十一页,共40页。
(2)由(1)知, AD1 =(0,3,3), AC =( 3,1,0), B1C1 =(0,1,0). 设 n=(x,y,z)是平面 ACD1 的一个法向量,则
n·AC =0,
n·AD1 =0,
即 3y3+x+3zy==00. ,
令 x=1,则 n=(1,- 3, 3).
设直线 B1C1 与平面 ACD1 所成角为 θ,则
连结 AB1,易知△AB1D 是直角三角形,且 B1D2=BB12+ BD2=BB21+AB2+AD2=21,即 B1D= 21.
在 Rt△AB1D 中,cos∠ADB1=BA1DD=
3= 21
721,即 cos(90°
-θ)=
721.从而 sin θ=
21 7.
即直线 B1C1 与平面 ACD1 所成角的正弦值为
第三页,共40页。
1.求异面直线所成角时,易求出余弦值为负值而盲目得出答案而
忽视了夹角为0,π2. 2.求直线与平面所成角时,注意求出夹角的余弦值的绝对值应为
线面角的正弦值. 3.利用平面的法向量求二面角的大小时,二面角是锐角或钝角由
图形决定.由图形知二面角是锐角时cos
θ=
|n1·n2| |n1||n2|
∴cos〈

向量法求空间角(高三一轮复习)

向量法求空间角(高三一轮复习)

A→1B·A→E=(A→B-A→A1)·(A→C+λA→A1)=-16λ.
所以cos〈A→1B,A→E〉=
→→ A1B·AE →→

|A1B||AE|
2-+λ2λ2,
因为异面直线A1B与AE所成角的余弦值为3102,所以 2+λ 2λ2=3102,解得λ=34,
所以C1E=1.
数学 N 必备知识 自主学习 关键能力 互动探究
因为AA1⊥平面ABC,故以点O为坐标原点,O→B
,O→C

→ AA1
的方向分别为x,y,
z轴的正方向,建立如图所示的空间直角坐标系,
数学 N 必备知识 自主学习 关键能力 互动探究
则A(0,-2,0),B(2 3,0,0),M(0,0,4),N( 3,-1,4),
则A→M=(0,2,4),B→N=(- 3,-1,4),
— 30 —
则nn··AA→→DB==--xx++z=3y0=,0, 取y= 3,
则n=(3, 3,3),
又因为C(-1,0,0),F0, 43,34,
所以C→F=1, 43,34,所以cos〈n,C→F〉=|nn|·|CC→→FF|=
6 21×
7=4 7 3, 4
数学 N 必备知识 自主学习 关键能力 互动探究
(1)证明:平面BED⊥平面ACD; (2)设AB=BD=2,∠ACB=60°,点F在BD 上,当△AFC的面积最小时,求CF与平面ABD 所成的角的正弦值.
数学 N 必备知识 自主学习 关键能力 互动探究
— 27 —
解 (1)证明:因为AD=CD,E为AC的中点,所以AC⊥DE,在△ABD和△CBD 中,因为AD=CD,∠ADB=∠CDB,DB=DB,所以△ABD≌△CBD,所以AB= CB,又因为E为AC的中点,所以AC⊥BE,又因为DE,BE⊂平面BED,DE∩BE= E,所以AC⊥平面BED,因为AC⊂平面ACD,所以平面BED⊥平面ACD.

高中数学利用空间向量求空间角

高中数学利用空间向量求空间角

答案:13
突破点一
突破点二
课时达标检测
利用空间向量求空间角 结 束
3.[考点三]在正方体ABCD-A1B1C1D1中,点E为BB1的中点,则平 面A1ED与平面ABCD所成的锐二面角的余弦值为________. 解析:以A为原点建立如图所示的空间直角
坐标系,设棱长为1,
则A1(0,0,1),E 1,0,12 ,D(0,1,0),所以
OD,OB1,OC 所在直线为 x 轴,y 轴,z 轴, 建立如图所示的空间直角坐标系 O-xyz,

A0


2
3
3

0

B

2 3
6

0,0

C
0,0,2
3
3
,D
36,0,0 ,
AB =-236,233,0,
AC

0,233,233,CD= 36,0,-233,
设平面 ABC 的法向量为 n=(x,y,z),
课时达标检测
利用空间向量求空间角 结 束
3.求二面角的大小 (1)如图①,AB,CD是二面角α -l-β的两个面内与棱l垂直的直 线,则二面角的大小θ=〈__A_B_,__C__D_〉_.
(2)如图②和图③,n1,n2分别是二面角α-l-β的两个半平面α, β的法向量,则二面角的大小θ=〈__n_1_,__n_2〉__或__π_-__〈__n__1,__n_2_〉_.
突破点一
突破点二
课时达标检测
利用空间向量求空间角 结 束
A1C1 ·n=0, BC1 ·n=0,

-x+2y=0, -x+z=0,
令x=2,则y=1,z

高考数学一轮复习第八章立体几何第六节利用空间向量求空间角课件理

高考数学一轮复习第八章立体几何第六节利用空间向量求空间角课件理

(2)建系的基本思想是寻找其中的线线垂直关系,在没有现成 的垂直关系时要通过其他已知条件得到垂直关系,在此基础上选 择一个合理的位置建立空间直角坐标系.
[易错防范] 1.利用向量求角,一定要注意将向量夹角转化为各空间 角.因为向量夹角与各空间角的定义、范围不同. 2.求二面角要根据图形确定所求角是锐角还是钝角.
答案:13
4.在正方体 ABCD-A1B1C1D1 中,点 E 为 BB1 的中点,则平 面 A1ED 与平面 ABCD 所成的锐二面角的余弦值为________.
解析:以 A 为原点建立如图所示的空间直角坐标系,设棱长 为 1,
则 A1(0,0,1),E1,0,12,D(0,1,0),
以 B 为原点,分别以
的方向为 x 轴、y 轴、z 轴的
正方向建立空间直角坐标系,则 A(0,0,2),B(0,0,0),E(2,0,0),
F(2,2,1).
因为 AB⊥平面 BEC,所以 =(0,0,2)为平面 BEC 的法向量. 设 n=(x,y,z)为平面 AEF 的法向量.
所以平面 AEF 与平面 BEC 所成锐二面角的余弦值为23.
A(0,- 3,0),E(1,0, 2),F-1,0, 22,C(0, 3,0),
所以直线
AE
与直线
CF
所成角的余弦值为
3 3.
[解题模板] 利用向量法求异面直线所成角的步骤
直三棱柱 ABC-A1B1C1 中,∠BCA=90°,M,N 分别是 A1B1,
A1C1 的中点,BC=CA=CC1,则 BM 与 AN 所成角的余弦值为( )
接 EG,FG,EF.在菱形 ABCD 中,不妨设 GB=1.
由∠ABC=120°,可得 AG=GC= 3.

利用向量法求空间角

利用向量法求空间角
2 2 2 x12 y12 z12 x2 y2 z2
0, 直线与平面所成的角 (范围: 2

n O
A n
A
2B Nhomakorabea
O

问题2
B

问题1 的余角与< AB , n > 的关系? 相等
cos( ) = cos
的余角与< AB , n >
例1:在Rt△AOB中,∠AOB=90°,现将△AOB沿着平面AOB 的法向量方向平移到△A1O1B1的位置,已知OA=OB=Oo1,取A1B1 、 A1O1的中点D1 、F1,求异面直线BD1与AF1所成的角的余弦值。
O1 B1 D1
F1
A1 O
B
A
例1:在Rt△AOB中,∠AOB=90°,现将△AOB沿着平面AOB 的法向量方向平移到△A1O1B1的位置,已知OA=OB=Oo1,取A1B1 、 A1O1的中点D1 、F1,求异面直线BD1与AF1所成的角的余弦值。 z 解:以点O为坐标原点建立空间直角坐 O B 标系,如图所示,并设OA=1,则:

C D B
化为向量问题 根据向量的加法法则
2 2
2
AB AC CD DB

2 2
进行向量运算 d AB ( AC CD DB ) 2
A
AC CD BD 2( AC CD AC DB CD DB )
a 2 c 2 b2 2 AC DB a 2 c 2 b2 2CA DB
§3.2.3立体几何中的 向量方法
一、复习引入
用空间向量解决立体几何问题的“三步曲” (1)建立立体图形与空间向量的联系,用空间向 量表示问题中涉及的点、直线、平面,把立体几何 问题转化为向量问题; (化为向量问题) (2)通过向量运算,研究点、直线、平面之间的 位置关系以及它们之间距离和夹角等问题; (进行向量运算) (3)把向量的运算结果“翻译”成相应的几何意义。 (回到图形)

7.6.1向量法求空间角课件高三数学一轮复习

7.6.1向量法求空间角课件高三数学一轮复习

考点二 直线与平面所成的角 【例 2】 如图,在四棱锥 P-ABCD 中,底面 ABCD 是平行四边形,∠ABC=120°, AB=1,BC=4,PA= 15,M,N 分别为 BC,PC 的中点,PD⊥DC,PM⊥MD.
(1)证明:AB⊥PM; (2)求直线 AN 与平面 PDM 所成角的正弦值.
【解】 (1)证明:因为 AB=AD,O 为 BD 的中点,所以 OA⊥BD. 因为平面 ABD⊥平面 BCD,平面 ABD∩平面 BCD=BD,OA⊂平面 ABD,所以 OA ⊥平面 BCD. 因为 CD⊂平面 BCD,所以 OA⊥CD. (2)以 O 为坐标原点,OD,OA 所在的直线分别为 y 轴,z 轴,过点 O 且垂直于 BD 的 直线为 x 轴,建立如图所示空间直角坐标系.
(2)由(1)知,A( 2,0,0),B( 2,1,0),C(0,1,0),P(0,0,1),M 22,1,0, 则A→M=- 22,1,0,P→M= 22,1,-1, B→C=(- 2,0,0),P→B=( 2,1,-1). 设 n1=(x1,y1,z1)为平面 PAM 的法向量,
则nn11··PA→ →MM= =00, ,
以 D 为坐标原点,DA,DC,DP 所在直线分别为 x 轴、y 轴、z 轴建立空间直角坐标 系.
设 BC=2x,则 D(0,0,0),A(2x,0,0),P(0,0,1),B(2x,1,0),M(x,1,0).所以A→M=(-x,1,0), P→B=(2x,1,-1),
所以(-x,1,0)·(2x,1,-1)=0,解得 x= 22(负值舍去).所以 BC= 2.
(2)以 A 为原点,AD 所在直线为 x 轴,AB 所在直线为 y 轴,AA1 所在直线为 z 轴建立 空间直角坐标系.设正方体 ABCD-A1B1C1D1 的棱长为 2,则 A(0,0,0),A1(0,0,2),D1(2,0,2), E(0,2,1),∴A→A1=(0,0,2),A→D1=(2,0,2),A→E=(0,2,1).

高考数学一轮复习第八章立体几何利用空间向量求空间角与距离课件

高考数学一轮复习第八章立体几何利用空间向量求空间角与距离课件

7 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
1.思维辨析 (1)两直线的方向向量所成的角就是两条直线所成的角.( × ) (2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.( × ) (3)两个平面的法向量所成的角是这两个平面所成的角.( × ) (4)两异面直线夹角的范围是0,π2,直线与平面所成角的范围是0,π2,二面角的范围是[0,π].( √ )
5 .
14 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
(2)由(1)可得 E(0,2,1),易知平面 ADE 的一个法向量为 n1=(1,0,0).
设平面 ACE 的一个法向量为 n2=(x′,y′,1),又A→E=(0,2,1),A→C=(2,4,0),则nn22··AA→→EC==00,,
=||aa|·|nn||.
5 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
3 二面角的平面角的求法 设 n1,n2 分别是二面角 α-l-β 的两个面 α,β 的法向量,则向量 n1 与 n2 的夹角(或其补角)的大小就 是二面角的平面角的大小(如图①②).
6 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
4 点到平面的距离的向量求法 →
如图,设 AB 为平面 α 的一条斜线段,n 为平面 α 的法向量,则点 B 到平面 α 的距离 d=|A|Bn·|n|.
注意点 二面角的大小与两法向量夹角的关系 求出两平面法向量的夹角后,一定要根据图形来判断二面角的大小与两法向量夹角的关系是相等还是 互补.

高考数学一轮复习---利用空间向量求空间角

高考数学一轮复习---利用空间向量求空间角

利用空间向量求空间角一、基础知识1.异面直线所成角设异面直线a ,b 所成的角为θ,则cos θ=|a ·b ||a ||b |❶, 其中a ,b 分别是直线a ,b 的方向向量. 2.直线与平面所成角如图所示,设l 为平面α的斜线,l ∩α=A ,a 为l 的方向向量,n 为平面α的法向量,φ为l 与α所成的角,则sin φ=|cos 〈a ,n 〉|=|a ·n ||a ||n |❷.3.二面角(1)若AB ,CD 分别是二面角α­l ­β的两个平面内与棱l 垂直的异面直线,则二面角(或其补角)的大小就是向量AB ―→与CD ―→的夹角,如图(1).(2)平面α与β相交于直线l ,平面α的法向量为n 1,平面β的法向量为n 2,〈n 1,n 2〉=θ,则二面角α ­l ­β为θ或π-θ.设二面角大小为φ,则|cos φ|=|cos θ|=|n 1·n 2||n 1||n 2|❸,如图(2)(3).二、常用结论解空间角最值问题时往往会用到最小角定理cos θ=cos θ1cos θ2.如图,若OA 为平面α的一条斜线,O 为斜足,OB 为OA 在平面α内的射影,OC 为平面α内的一条直线,其中θ为OA 与OC 所成的角,θ1为OA 与OB 所成的角,即线面角,θ2为OB 与OC 所成的角,那么cos θ=cos θ1cos θ2.三、考点解析考点一异面直线所成的角例、如图,在三棱锥P­ABC中,P A⊥底面ABC,∠BAC=90°.点D,E,N分别为棱P A,PC,BC的中点,M是线段AD的中点,P A=AC=4,AB=2.(1)求证:MN∥平面BDE;(2)已知点H在棱P A上,且直线NH与直线BE所成角的余弦值为721,求线段AH的长.[解题技法]用向量法求异面直线所成角的一般步骤(1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦等于两向量夹角余弦值的绝对值.[跟踪训练1.如图所示,在三棱柱ABC­A1B1C1中,AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,点E,F分别是棱AB,BB1的中点,则直线EF和BC1所成的角是()A.30°B.45°C.60°D.90°2.如图,在四棱锥P­ABCD中,P A⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(1)求证:BD⊥平面P AC;(2)若P A=AB,求PB与AC所成角的余弦值.考点二 直线与平面所成的角例、如图,在多面体ABCDEF 中,四边形ABCD 是正方形,BF ⊥平面ABCD ,DE ⊥平面ABCD ,BF =DE ,M 为棱AE 的中点.(1)求证:平面BDM ∥平面EFC ;(2)若DE =2AB ,求直线AE 与平面BDM 所成角的正弦值.[解题技法]利用向量求线面角的2种方法(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角).(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线与平面所成的角.跟踪训练1.在长方体ABCD ­A 1B 1C 1D 1中,AB =2,BC =AA 1=1,则D 1C 1与平面A 1BC 1所成角的正弦值为________.2.如图,在直三棱柱ABC ­A 1B 1C 1中,BA =BC =5,AC =8,D 为线段AC 的中点.(1)求证:BD ⊥A 1D ;(2)若直线A 1D 与平面BC 1D 所成角的正弦值为45,求AA 1的长.考点三 二面角例、如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE=CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 位置,OD ′=10. (1)证明:D ′H ⊥平面ABCD ;(2)求二面角B ­D ′A ­C 的余弦值.[解题技法](1)利用法向量求二面角的大小时,由于法向量的方向不同,两个法向量的夹角与二面角的大小可能相等,也可能互补.所以,两个法向量的夹角的余弦值与二面角的余弦值可能存在正负号的差异.(2)有时用观察法难以判定二面角是钝角还是锐角,为了保证解题结果准确无误,我们给出一种万无一失的方法:就是在两个半平面和二面角的棱上各取1个向量,要求这三个向量必须起点相同,在利用行列式计算法向量时,棱对应的向量必须排前面,即口诀“起点同,棱排前”,这样求出的两个法向量的夹角一定与二面角的大小相等.跟踪训练如图所示,四棱锥P ­ABCD 中,P A ⊥平面ABCD ,△DAB ≌△DCB ,E 为线段BD 上的一点,且EB =ED =EC =BC ,连接CE 并延长交AD 于F .(1)若G 为PD 的中点,求证:平面P AD ⊥平面CGF ;(2)若BC =2,P A =3,求二面角B ­CP ­D 的余弦值.课后作业1.如图所示,在正方体ABCD ­A 1B 1C 1D 1中,已知M ,N 分别是BD 和AD 的中点,则B 1M 与D 1N 所成角的余弦值为( ) A.3030 B.3015 C.3010 D.15152、已知长方体ABCD ­A 1B 1C 1D 1中,AD =AA 1=1,AB =3,E 为线段AB 上一点,且AE =13AB ,则DC 1与平面D 1EC 所成角的正弦值为( )A.33535B.277C.33D.243.在直三棱柱ABC ­A 1B 1C 1中,AA 1=2,二面角B ­AA 1­C 1的大小为60°,点B 到平面ACC 1A 1的距离为3,点C 到平面ABB 1A 1的距离为23,则直线BC 1与直线AB 1所成角的正切值为( )A.7B.6C.5 D .2 4.如图,正三棱柱ABC ­A 1B 1C 1的所有棱长都相等,E ,F ,G 分别为AB ,AA 1,A 1C 1的中点,则B 1F 与平面GEF 所成角的正弦值为( )A.35B.56C.3310D.36105.在正方体ABCD ­A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A.12B.23C.33D.226.如图,菱形ABCD 中,∠ABC =60°,AC 与BD 相交于点O ,AE ⊥平面ABCD ,CF ∥AE ,AB =2,CF =3.若直线OF 与平面BED 所成的角为45°,则AE =________.7.如图,已知四棱锥P ­ABCD 的底面ABCD 是等腰梯形,AB ∥CD ,且AC ⊥BD ,AC 与BD 交于O ,PO ⊥底面ABCD ,PO =2,AB =22,E ,F 分别是AB ,AP 的中点,则二面角F ­OE ­A 的余弦值为________.8.如图,边长为2的正方形ABCD 所在的平面与半圆弧C D 所在平面垂直,M 是C D 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ­ABC 体积最大时,求平面MAB 与平面MCD 所成二面角的正弦值.9.如图,在三棱锥P ­ABC 中,AB =BC =22,P A =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M ­P A ­C 为30°,求PC 与平面P AM 所成角的正弦值提高练习1.如图,四棱柱ABCD­A1B1C1D1的底面ABCD是菱形,AC∩BD=O,A1O⊥底面ABCD,AB=2,AA1=3.(1)证明:平面A1CO⊥平面BB1D1D;(2)若∠BAD=60°,求二面角B­OB1­C的余弦值.2.如图,在四棱锥P­ABCD中,底面ABCD是直角梯形,∠ADC=90°,AB∥CD,AB=2CD.平面P AD⊥平面ABCD,P A=PD,点E在PC上,DE⊥平面P AC.(1)求证:P A⊥平面PCD;(2)设AD=2,若平面PBC与平面P AD所成的二面角为45°,求DE的长.3.如图,在三棱锥P­ABC中,平面P AB⊥平面ABC,AB=6,BC=23,AC=26,D,E分别为线段AB,BC上的点,且AD=2DB,CE=2EB,PD⊥AC.(1)求证:PD⊥平面ABC;(2)若直线P A与平面ABC所成的角为45°,求平面P AC与平面PDE所成的锐二面角大小.。

高三数学高考第一轮复习向量复习教案用向量法求空间夹角

高三数学高考第一轮复习向量复习教案用向量法求空间夹角

第二课时 用向量法求空间夹角——热点考点题型探析一、复习目标:1.能借助空间几何体内的位置关系求空间的夹角;2.能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。

3、探究题型,掌握解法。

二、重难点:向量法在立体几何中求空间的夹角应用。

探究题型,掌握解法。

三、教学方法:讲练结合,探析归纳 四、教学过程(一)热点考点题型探析 题型1:异面直线所成的角例1、已知正方体ABCD -A 1B 1C 1D 1的棱长为2,点E 为棱AB 的中点。

求:D 1E 与平面BC 1D 所成角的大小(用余弦值表示)解析:建立坐标系如图,则()2,0,0A 、()2,2,0B ,()0,2,0C ,()12,0,2A ,()12,2,2B ,()10,0,2D ,()2,1,0E ,()12,2,2AC =--, ()12,1,2D E =- ,()0,2,0AB = ,()10,0,2BB =。

不难证明1AC为平面BC 1D 的法向量,∵111111cos ,A C D E A C D E A C D E==。

∴ D 1E 与平面BC 1D 所成的角的余弦值为93。

反思归纳:将异面直线间的夹角转化为空间向量的夹角。

题型2:直线与平面所成的角 例2、(09年高考试题)如图,直三棱柱ABC —A 1B 1C 1中,底面是等腰直角三角形,∠ACB =90︒,侧棱AA 1=2,D 、E 分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G 。

求A 1B 与平面ABD 所成角的大小(结果用余弦值表示);解析:如图所示,建立坐标系,坐标原点为C ,设CA =2a ,则A (2a ,0,0),B (0,2a ,0),D (0,0,1),A 1(2a ,EFO0,2),E (a ,a ,1), G (221,,333a a ) , ∵ ()2,,333a a GE =---,()0,2,1BD a =-,222033GE BD a =-= ,∴ a =1,()112,,333GE =---,()12,2,2A B =--∵ GE 为平面ABD的法向量,且111cos ,A B GE A B GE A B GE==∴ A 1B 与平面ABD 所成角的余弦值是32。

高考数学一轮复习利用空间向量求空间角与距离

高考数学一轮复习利用空间向量求空间角与距离
3
1 + 1
2
3 31 +
· = 0,
则൝
即ቐ
· = 0,
4 31 = 0,
= 0,
令z1=2,则m=(0,-3,2).
目录
所以|cos<n,m>|=
·
||·||
4 3
= .
13
设二面角C-AE-B的大小为θ,则sin θ= 1−
11
即二面角C-AE-B的正弦值为 .
13
因为AP=PB,所以PD⊥AB.
因为PO为三棱锥P-ABC的高,所以PO⊥平面ABC,
因为AB⊂平面ABC,所以PO⊥AB.
又PO,PD⊂平面POD,且PO∩PD=P,所以AB⊥平面POD.
因为OD⊂平面POD,所以AB⊥OD,
又AB⊥AC,所以OD∥AC,因为OD⊄平面PAC,AC⊂平面APC,所以OD∥
||
|AP·|
| |


(3)两异面直线间的距离:即两条异面直线公垂线段的长度.
目录


1.判断正误.(正确的画“√”,错误的画“×”)
(1)两直线的方向向量所成的角就是两条直线所成的角.


答案:(1)×
(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.


答案:(2)×
目录
弦值.
解 (2)连接OA,因为PO⊥平面ABC,OA,OB⊂平面ABC,所以
PO⊥OA,PO⊥OB,
所以OA=OB= 2 −2 = 52 −32 =4.
1
易得在△AOB中,∠OAB=∠ABO=30°,所以OD=OAsin 30°=4× =2,
3
2

高考数学复习:利用向量求空间角和距离

高考数学复习:利用向量求空间角和距离

(2)方法一:不存在,证明如下:当面B′OA⊥面AOC时,三
棱锥B′ -AOC的体积最大,因为面B′OA∩面AOC=AO,
B′O⊥AO,所以B′O⊥面AOC,所以OC⊥OB′,又因为
OC⊥OA,所以OC⊥平面AOB′,在直角三角形CPO中,
CO=1,COP ,sinCPO 所以6 POCC=, ,所以 6
令x1=1,得n1=(1,-1,0).
设平面PBC的一个法向量为n2=(x2,y2,z2),
由n2·PC=0,n2· B=C 0得
y2x2
z2 0,
0,?
令y2=1得n2=(0,1,1), 设二面角C -PB -D的大小为θ,则cos θ= 所以θ=60°.
| n1 n2 | 1 , | n1 || n2 | 2
D. 4 15
【解析】选A.以D为原点,DA为x轴,DC为y轴,DD1为z 轴,建立空间直角坐标系,
设正方体ABCD-A1B1C1D1的棱长为2,则N(1,2,2), D(0,0,0),C(0,2,0),M(2,2,1),则 C=M(2,0,1), DN=(1,2,2),设异面直线所成角为θ, 则cos θ= | CM DN | 4所以 4异5面,直线CM与
( 2,0,0) ( 2,0, 2),
所以
cos〈A1F,D1E〉
|
A1F A1F |
D1E | D1E
|
2
2 2 1
解得 1 ( 1 舍去).
3
3
答案: 1
3
3 2, 5 10
【规律方法】利用向量求线线角的解题策略 (1)向量法求异面直线所成的角的方法有两种 ①基向量法:利用线性运算; ②坐标法:利用坐标运算.
D. 10 10
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.求二面角的大小 (1)如图①,AB,CD是二面角α lβ的两个面内与棱l垂直的直 〈 AB , CD 〉 线,则二面角的大小θ= __________ .
(2)如图②和图③,n1,n2分别是二面角αlβ的两个半平面α,
〈 n1,n2〉或π-〈n1,n2〉 β的法向量,则二面角的大小θ= _______________________.
6 2 6 2 3 , AB = - , AC = 3 ,0,0 3 , 3 ,0
6 2 3 , , 0 ,- 3 3
2 3 2 3 , = CD 0 , , 3 3
所以 AC⊥BD. 又因为 PA⊥平面 ABCD,BD⊂平面 ABCD. 所以 PA⊥BD. 因为 PA∩AC=A, 所以 BD⊥平面 PAC.
(2)若 PA=AB,求 PB 与 AC 所成角的余弦值.
[解] 设 AC∩BD=O. 因为∠BAD=60°,PA=AB=2, 所以 BO=1,AO=CO= 3. 如图, 以 O 为坐标原点, 建立空间直角坐标系, 则 P(0, - 3,2),A(0,- 3,0),B(1,0,0),C(0, 3,0). 所以 PB =(1, 3,-2), AC =(0,2 3,0), PB · AC 设 PB 与 AC 所成角为 θ,则 cos θ= = | AC | | PB |· 6 6 = . 2 2× 2 3 4
[解]
AD 2 (1)证明: 由题意知 tan∠ABD=AB= 2 , tan∠AB1B
AB 2 =BB = 2 , 1 又∠ABD,∠AB1B 为三角形的内角, 故∠ABD=∠AB1B, π 则∠AB1B+∠BAB1=∠ABD+∠BAB1=2, π 所以∠AOB=2, 即 AB1⊥BD.
又CO⊥平面ABB1A1,AB1⊂平面ABB1A1, 所以AB1⊥CO, 因为BD∩CO=O, 所以AB1⊥平面CBD, 又BC⊂平面CBD, 所以AB1⊥BC.
第六节 利用空间向量求空间角
本节主要包括2个知识点: 1.利用空间向量求空间角; 2.与空间角有关的综合问题.
突破点(一)
基础联通
利用空间向量求空间角
抓主干知识的“源”与“流”
1.两条异面直线所成角的求法 设两条异面直线a,b的方向向量为a,b,其夹角为θ,则 |a· b| |a||b| (其中φ为异面直线a,b所成的角). cos φ=|cos θ|=______ 2.直线和平面所成角的求法 如图所示,设直线l的方向向量为e,平面α的法向量为n, 直线l与平面α所成的角为φ,向量e与n |n· e| |n||e| 的夹角为θ,则有sin φ=|cos θ|=____.
几 何 体 中 , 四 边 形 ABCD 和 四 边 形 BCEF 是 全 等 的 等 腰 梯 形 , 且 平 面 BCEF⊥平面 ABCD,AB∥DC,CE∥ BF,AB=2CD,∠ABC=60°,G 为线 段 AB 的中点. (1)求证:AC⊥BF; (2)求二面角 DFGB(钝角)的余弦值.
[易错提醒]
(1)求出直线的方向向量与平面的法向量所夹的锐角 后(求出是钝角时取其补角),取其余角即为直线与平面 所成的角. (2)若求线面角的余弦值,要注意利用平方关系sin2θ +cos2θ=1求出其值.不要误认为直线的方向向量与平 面的法向量所成夹角的余弦值即为所求.
求二面角
[ 例 3] (2017· 沈阳模拟 ) 如图所示
(2)若 OC=OA,求直线 CD 与平面 ABC 所成角的正弦值.
[解] 如图,以 O 为坐标原点,分别以 OD,OB1,OC 所在直线为 x 轴,y 轴,z 轴, 建立如图所示的空间直角坐标系 Oxyz, 2 3 2 6 则 A0 , - 3 , 0 , B - 3 , 0,0 ,
2 3 C 0,0, , D 3
[方法技巧] 向量法求两异面直线所成角的步骤
(1)选好基底或建立空间直角坐标系; (2)求出两直线的方向向量 v1,v2; |v1· v2| (3)代入公式|cos〈v1,v2〉|= 求解. |v1||v2| [提醒] 两异面直线所成角 θ
π 的范围是0,2,两向量
的夹角 α 的范围是[0,π],当两异面直线的方向向量的夹角 为锐角或直角时,就是这两条异面直线所成的角;当两异 面直线的方向向量的夹角为钝角时,其补角才是两异面直 线所成的角.
求直线与平面所成的角
棱柱
ABCA1B1C1 中,侧面 ABB1A1 为矩形, AB=2,AA1=2 2,D 是 AA1 的中点, BD 与 AB1 交于点 O ,且 CO ⊥平面 ABB1A1. (1)证明:BC⊥AB1; (2)若 OC=OA,求直线 CD 与平面 ABC 所成角的正弦值.
考点贯通
抓高考命题的“形”与“神”
求两异面直线所成的角
[例 1]
如图,在四棱锥 PABCD 中,
PA⊥平面 ABCD,底面 ABCD 是菱形,AB =2,∠BAD=60°. (1)求证:BD⊥平面 PAC; (2)若 PA=AB,求 PB 与 AC 所成角的余弦值.
[解]
(1)证明:因为四边形 ABCD 是菱形,
设平面 ABC 的法向量为 n=(x,y,z),
2 3 2 6 - 3 x+ 3 y=0, AB =0, n· 则 即 AC =0, n· 2 3y+2 3z=0, 3 3 2 令y=1,则z=-1,x= 2 ,
∴平面ABC的一个法向量n= 2 . , 1 ,- 1 2 设直线CD与平面ABC所成角为α, | · n| CD 则sin α=|cos〈 CD ,n〉|= | CD |· |n| 6 2 3 2 × + 0 × 1 + × - 1 - 3 2 3 15 = = 5 . 5
相关文档
最新文档