电容传感器的测量电路

合集下载

电容传感器测量电路

电容传感器测量电路
第二部分 正文
一、电容式传感器测量电路
由于体积或测量环境的制约,电容式传感器的电容量一般都较小,须借助于测量电路检出这一微小电容的增量,并将其转换成与其成正比的电压、电流或者电频率[3],[4]。电容式传感器的转换电路就是将电容式传感器看成一个电容并转换成电压或其他电量的电路。电容传感器性能很大程度上取决于其测量电路的性能。
参考文献:
[1]王化群,邵富群,王师.电容层析成像传感器的优化设计[J].仪器仪表学报,2000(14):4-7
[2]强锡富.传感器.(第3版)[M].北京:机械工业出版社,2006. 110-116
[3]谢楠,陈汉量,陈卫民.电容传感器信号调理的新方法[J].自动化仪表,2005(3):31
[4]郭振芹.非电量电测量[M].北京:计量出版社,1984. 182
3、利用闭环运算放大器的测量电路[17]
利用闭环运算放大器对微小电容测量的方法对高频信号发生器有很高的要求,而且器件的杂散电容和寄生电容也被直接放大[18]。
四、总结
目前的微小电容测量技术正处于不断的完善中,还不能满足实际应用发展的需要。从工业角度而言,一个完善的微小电容测量电路应该具备低成本、低漂移、响应速度快、抗杂散性好、高分辨率、高信噪比和适用范围广等特点[19]。
三、发展现状
1、交流锁相放大测量电路
曼彻斯特科学与技术大学(UMIST)成功研制出基于交流的电容检测电路,其特点是可抑制杂散电容、分辨率高、低漂移、高信噪比、无开关电荷注入问题[14]。但电路较复杂,成本高,频率受限[13]。
2、高压双边交流激励电容测量电路[15],[16]
美国能源部的Fasching等人将电容层析成像技术应用于流态床内部粉体动态参数的研究上时,采用了高压双边交流激励的微小电容测量电路。激励电压不但具有较高的幅值,而且频率较高。但该传感器系统还仅用于实验条件下的在线检测,使其推广到实际现场还有一定的困难。

电容式传感器PPT课件

电容式传感器PPT课件

l1
C 22 (l l1) 21l1
d
ln( D ) ln( D )
D
d
d
ε1—被测液体介电常数 ε2—空气的介电常数 D、d—两同心圆柱的直径
l—柱体的有效总长度 l1——浸入液体的实际高度
C
2
ln( D
)
(1
2
)l1
d
K C 2 (1 2 )
l1 ln( D d )
第二节 电容传感器测量电路
5、新型电容式指纹传感器
FPS110电容式指纹传感器表面集合了300×300个电容器, 其外面是绝缘表面,当用户的手指放在上面时,由皮肤来组成 电容阵列的另一面。电容器的电容值由于导体间的距离而降低, 这里指的是脊(近的)和谷(远的)相对于另一极之间的距离。 通过读取充、放电之后的电容差值,来获取指纹图像。该传感 器的生产采用标准CMOS技术,大小为15×15mm2,获取 的图像大小为300×300,分辨率为500DPI。FPS110提供有 与8位微处理器相连的接口,并且内置有8位高速A/D转换器, 可直接输出8位灰度图像。FPS110指纹传感器整个芯片的功 耗很低(<200mw),价格也比较便宜(人民币600元以 下)。下图为利用FPS110获取的指纹图象
5、新型电容式指纹传感器
电容传感器系列 创新应用
第五章小结
1、变极距型电容传感器 输出呈非线性关系,灵敏度与极距平方成反比, 适合检测微小位移。
2、变面积型电容传感器
输出与被测量呈线性关系,适合检测较大的位移。 3、变介质型电容传感器
输出与被测量呈线性关系,典型应用是检测液位。 4、检测电路
运算放大器检测电路和电桥检测电路
剂固定两个截面为T型的绝缘体,

电容式传感器的测量电路电桥电路

电容式传感器的测量电路电桥电路

2023/12/23
39
电容式接近开关
2023/12/23
40
放松一下!
2023/12/23
41
(5) 要求传感器及引线要采用屏蔽措施。目的在于 消除寄生电容的影响,提高灵敏度。
2023/12/23
23
4.4 电容式传感器的应用
电容式传感器不但应用于位移、振动、 角度、加速度及荷重等机械量的精密测 量,还广泛应用于压力、差压力、液位、 料位、湿度、成分含量等参数的测量。
2023/12/23
29
4.4.5 电容式厚度传感器
2.电容式厚度传感器
2023/12/23
30
4.4.6 电容式位移传感器
电容式位移传感器就是通过改变电容器极板间 的距离引起电容量的变化来实现测量的。通常 采用的是一种单极变极距式。
2023/12/23
31
4.5 电容栅式传感器
电容栅式传感器是在电容式传感器基础上发展 起来的一种传感器。它具有电容式传感器的优 点,当然它也有其自身的特点,如抗干扰能力 强、精度高和量程大等特点。
运算放大器的特点就是放大倍数A很大,输入阻抗也很大。理想的运算放 大器的放大倍数和输入阻抗都是无穷大。利用运算放大器的这些特点就可 作为电容式传感器的测量电路,来解决单个变极距式电容器传感器的非线 性问题。运算放大器式测量电路如图所示。图中,C为总的输入电容,Cx 是电容传感器。
2023/12/23
极时,检测板与大地间的电容量C非常小,它
与电感L构成高品质因数(Q)的LC振荡电路,
Q=1(ωCR)。当被检测物体为地电位的导
电体(如与大地有很大分布电容的人体、液体
等)时,检测极板对地电容C增大,LC振荡电 路的Q值将下降,导致振荡器停振。

电容传感器测量位移电路仿真设计及原理

电容传感器测量位移电路仿真设计及原理

摘要传感器是能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。

电容式传感器就是把被测的机械量,如位移、压力等转换为电容量变化的传感器。

它的敏感部分就是具有可变参数的电容器。

其最常用的形式是由两个平行电极组成、极间以空气为介质的电容器。

本文设计介绍了一种电容式传感器测量位移的设计结构及其工作原理。

关键字:电容式传感器,平行电极,位移目录摘要。

1 引言。

3 传感器转换电路仿真调试及原理分析。

3 1.同相比例放大电路2.二阶低通滤波器电路电容式传感器测量电路设计及分析。

5 误差分析。

8 学习心得。

8参考文献资料。

9引言传感器是科学仪器、自动控制系统中信息获取的首要环节和关键技术,是先进国家优先发展的重要基础性技术。

传感器与通信技术和计算机技术构成了信息技术的三大支柱。

传感器是能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。

随着现代科学技术的迅猛发展,非电物理量的测量与控制技术已越来越广泛地应用于航天、交通运输、机械制造、自动检测与计量等技术领域,而且也正在逐步引入人们的日常生活中。

70年代末以来,随着集成电路技术的发展,出现了与微型测量仪表封装在一起的电容式传感器。

这种新型的传感器能使分布电容的影响大为减小,使其固有的缺点得到克服。

电容式传感器是一种用途极广,很有发展潜力的传感器。

典型的电容式传感器由上下电极、绝缘体和衬底构成。

当薄膜受压力作用时,薄膜会发生一定的变形,因此,上下电极之间的距离发生一定的变化,从而使电容发生变化。

但电容式压力传感器的电容与上下电极之间的距离的关系是非线性关系,因此,要用具有补偿功能的测量电路对输出电容进行非线性补偿。

传感器转换电路仿真调试及原理分析1.同相比例放大电路同相输入放大电路如图1所示,信号电压通过电阻RS加到运放的同相输入端,输出电压vo通过电阻R1和Rf反馈到运放的反相输入端,构成电压串联负反馈放大电路。

根据虚短、虚断的概念有vN=vP=vS,i1=if于是求得所以该电路实现同相比例运算。

传感器技术 电容式、测量电路

传感器技术   电容式、测量电路
☎ 寄生电容与传感器电容并联,严重影响传感器的输出特 性。消除寄生电容的影响,是电容式传感器实用的关键。 下面介绍几种消除电缆寄生电容影响的方法:
① 驱动电缆法
☻ 原理:驱动电缆法是一种等电位屏蔽法。使用电缆屏蔽 层电位跟踪与电缆相连的传感器电容极板电位,使两电 位的幅值和相位均相同,从而消除电缆分布电容的影响。
11
介质变化型电容传感器
☻ 原理:利用极板间介质的介电常数变化将被测量转换成电
容变化的传感器称为介质变化型电容传感器。 以电介质插
入式为例, C C1 C2
0a
[ r1(
L
x
)
r2x
]
x
L

S dC
应用特性: dx
0a
(
r2
r1
)
① 变介质型电容传感器可用来测量电介质的液位或某些材 料的温度、湿度和厚度等。
② 介质变化型电容传感器常用于非导电液体液位的测量, 其灵敏度与介电常数的差值(ε2-ε1)的值成正比,(ε2-ε1)值 越大灵敏度越高。
2020/6/30
12
应用中存在的问题和改进措施
(1) 等效电路(Equivalent circuit)
☎ 考虑电容传感器在高温、高
湿及高频激励的条件下工作,
而不可忽视其附加损耗和电 效应影响时,其等效电路如
C—传感器电容;RP—低频损耗并联电 阻; RS—串联损耗电阻;L—电容器及
图。
引线电感;CP—寄生电容
☎ 在实际应用中高频激励时,每当改变激励频率或者更换 传输线缆时,会使传感器有效电阻和有效灵敏度都发生 变化,因此必须对测量系统重新进行标定。
2020/6/30
13
应用中存在的问题和改进措施

第3章 电容式传感器

第3章 电容式传感器

ε r1 ( L0 − L) + ε r 2 L
d0
当L=0时,传感器的初始电容
C0 =
ε 0 ε r1 L0 b0
d0
=
ε 0 L0 b0
d0
当被测电介质进入极板间L深度后,引起电容相对变化量为
∆C C − C 0 (ε r 2 − 1) L 电容变化量与电介质移动量L呈线性关系 = = C0 C0 L0
∆d 3 相对非线性误差为: = ( δ ) d0
∆d 2 ∆d ( ) = ( ) × 100% d0 d0
结论:差动式电容传感器,不仅使灵敏度提高一倍, 结论 而且非线性误差可以减小一个数量级。
3.2 电容式传感器的测量电路
一、等效电路 如图,C为传感器电容,RP 为并联电阻,它包括电极间 直流电阻和气隙中介质损耗 的等效电阻。串联电感L表 示传感器各连线端间的总电 感。串联电阻RS表示引线电 阻、金属接线柱电阻及电容 极板电阻之和。
C max − C min 87.07 pF − 41.46 pF = = 0.19 pF / L K= V 235.6 L
三、变极板间距(d)型
图中极板1固定不动,极板2为可动电极(动片),当动片随被测量 变化而移动时,使两极板间距变化,从而使电容量产生变化 。 设动片2未动时极板间距为d0,板间 介质为空气,初始电容为C0,则
d0 d1 ε0 ε1
变ε的电容传感器 ε
ε 0S ε 1S ⋅ 3 . 6π d 0 3 . 6π d 1 C 0 C1 S = C= = ε 0S d1 d 0 ε 1S C 0 + C1 3 . 6π ( + ) + 3 . 6π d 0 3 .6π d 1 ε1 ε 0

5-2电容式传感器的测量电路 传感器课件

5-2电容式传感器的测量电路 传感器课件
止,电容C1被以极短的时间充电至UE ,电容C2的电压 初始值为 UE ,电源经R1以i1向RL供电,而电容C2经R2 、RL放电,流过RL 的放电电流为i2,流过RL 的总电流iL 为i1 和i2的代数和。
±UE
D2
D1
iC1 +
C1
R2 R1
iC2
+
+C2 RL U- 0
R1
+ i1 C1
R2
5、调频电路
振荡回路固有电容
f 1
2 LC
引线分布电容
CC1C0Cc
f0
1
2 (
1
( 5 3 2 )
C 1 C 0 C c C L
Cx L
Δu 振荡器
Δf
限幅 Δf 放大器
鉴频器 Δu
图5-18 调频式测量电路原理框图
Q
5.3 电容式传感器的特点及设计 与应用中存在的问题
5.3.1 电容传感器的特点
1.电容式传感器的优点 (1)温度稳定性好
传感器的电容值一般与电极材料无关,仅取 决于电极的几何尺寸,且空气等介质损耗很小, 只要从强度、温度系数等机械特性考虑,合理 选择材料和几何尺寸其他因素(因本身发热极小) 影响甚微。
(2)结构简单,适应性强 电容式传感器结构简单,易于制造。能在高
与T形网络中的电容C1和C2的差值有关。当电源电 压确定后,输出电压只是电容C1和C2 的函数。
4、差动脉宽调制电路
利用对传感器电容的充放电使电路输出脉冲 的宽度随传感器电容量变化而变化。通过低通滤 波器得到对应被测量变化的直流信号。
C1、C2为差动式传感器的
D1
两个电容,若用单组式, 则其中一个为固定电容, 其电容值与传感器电容初 Ur

电容型传感器与测量电路

电容型传感器与测量电路

4.2.2 电桥电路 电容式传感器常连接成差动结构,接人交流电桥的两个相
邻桥臂,另外两个桥臂可以是固定电阻、电容或电感,也可以 是变压器的两个次级线圈,如图4-9所示。
图4-9 电桥电路
从电桥灵敏度考虑,图4-9(a)~(c)形式的灵敏度高,图 4-9(d)~(f)形式的灵敏度相对较低。在设计和选择电桥形式 时,除了考虑电桥灵敏度外,还应考虑电桥输出电压是否 稳定(即受外界干扰影响大小),输出电压与电源电压之间的 相移大小,电源与元件所允许的功率以及结构上是否容易
4.2.3 调频电路 调频电路是将电容传感器与电容、电感元件构成振荡器的
变面积式电容传感器的灵敏度S均为常数,即输出与输 入为线性关系。但与变极距式相比,灵敏度较低,广泛用 于较大的直线位移和角位移的测量。
4.1.5 变介电常数式
变介电常数式电容传感器常用来测量介质的厚度、位置
和液位等,如图4-7所示。图4-7(a)是用来测量纸张、绝缘薄
膜等厚度的电容式传感器原理图,两平行极板固定不动,当
图4-3为这种传感器的原理图。当传感器的εr和A为常数, 初始极距为δ0,由式(4-2)可知其初始电容量C0为
C0
0 r A 0
当动极板因被测量变化而向上移动使δ0减小Δδ时,电
容量增大ΔC,则有
1
C0
C
0 r A 0
C0
1
(
0
)2
0
当Δδ<<δ0时, 1 ( )2 ,1 则
0Байду номын сангаас
C
容式传感器比较理想的信号调理电路,如图4-8所示。图中 Cx是变极距式电容传感器,C是固定电容,u是交流电源电压, uo是输出信号电压。由运算放大器的理想条件“虚短”和 “虚断”可得

电容式传感器的测量转换电路

电容式传感器的测量转换电路

当被测信号不为零时,ΔC≠0,调频振荡器的频率
f0
Δf

1
L(C0 ΔC C1 Cc )
调频振荡器输出的高频电压将是一个受被测信号调制的调制波。
2021年3月14日星期日
用调频系统作为电容式传感器的测量转换电路主要有以下特点:
(1)抗外来干扰能力强。 (2)特性稳定。 (3)能取得高电平的直流信号(伏特数量级)。 (4)因为是频率输出,所以易用于数字仪器和
2021年3月14日星期日

C•
Uo
A
d Ui
1.4 二极管双T形电桥电路
2021年3月14日星期日
图4-11 二极管双T形电桥电路的原理图
若C1或C2变化,则在一周期内流过RL的平均电流不为零,因此,有电压 信号输出,输出电压在一个周期内的平均值为
当 RL为已知时,则 R((RRR2LR为)L2 )一RL常 数K ,故上式又可写成
Uo KUf (C1 C2 )
2021年3月14日星期日
谢谢观看!
计算机接口。
2021年3月14日星期日
1.3 运算放大器电路
由于运算放大器电路的放大倍数很大,输入阻抗很高,输出电阻小,因 而采用运算放大器电路作为电容式传感器的测量转换电路是比较理想的。来自2021年3月14日星期日
图4-10 运算放大器电路的原理图
由运算放大器电路的工作原理可得

C•
U o Cx Ui
电容式传感器的调频电路与电涡流传感器有何区别?式中哪些量是变 量?
2021年3月14日星期日
2021年3月14日星期日
图4-9 调频电路的原理图
5
当被测信号为零时,调频振荡器的固有频率(一般应选在1 MHz以下)为

力、压力传感器 电容式传感器 电容式传感器的测量电路

力、压力传感器 电容式传感器 电容式传感器的测量电路

根据电桥的输出特点,当电桥的 四个桥臂阻抗相等时,电桥输出灵 敏度最大。
U0
Z1Z3 (Z1 Z2
)(
Z2 Z3
Z4 Z
4
)
U
i
1. 桥式测量电路
对于图所示的单臂电桥,设初始状态下
Z1 Z2 Z3 Z4 Z0
U0 0
当检测电容Cx发生变化时,电桥失去平衡 Z1 Z0 Z
Z0
1 jC0
3.3.2 电容式传感器的测量电路
电容式传感器把被测物理量转换为电容变化后,还要经测量转换电路 将电容量转换成电压或电流信号,以便记录、传输、显示、控制等。
常见的电容式传感器测量转换电路有桥式电路、调频电路、运算放 大器电路等。
1. 桥式测量电路
将电容传感器接在电桥的一个桥 臂或两个桥臂,其他桥臂可以是电 阻、电容或电感,就可以构成单臂 电桥或双臂电桥,如图所示。
Z1
1 j(C0 C)
根据
U0
(
Z1Z3 Z1 Z2
Z2 )(Z3
Z4 Z
4
)
Ui
电桥输出为
U0
1 4
C C0
Ui
双臂电桥
当桥臂电容 Cx1 、Cx2 发生变化时,Cx1 Cx2 C
1 Z1 j(C0 C)
1 Z2 j(C 2
C C0
U
i
电桥的输出与电容的相对 变化量成正比,且双臂电桥 输出是单臂电桥的两倍
是固定电容,Cx 是传感器电容,由运算放大
器的工作原理可得:
U0
Zx Z0
U
i=
C0 Cx
U
i
对于平板式电容器来说
Cx
A
dx
UO

电容传感器的测量电路

电容传感器的测量电路
2
R1
R2

C1 + i’ C1
RL
i’C2
C2 +
UE
Uo -
(b)
如果二极管具有相同的特性,且令C1=C2, R1=R2=R,则正半周和负半周流过负载的电流 大小相等,方向相反,即一个周期内流过负 载的平均电流为零。如果C1≠C2, 输出电压的 平均值为
RRL R 2 RL U0 U i f C1 C2 2 ( R RL )
f0 一 般 应 选 在 此 MHz 以 上 。 当 传 感 工 作 时 , △ d≠0,则△ C≠0,振荡频率也相应改变△ f ,
则有
1 f 0 f 2 L(C1 C0 C2 C)
二、运算放大器式测量电路
电容式传感器跨接在 高增益运算放大器的输入 端与输出端之间。运算放 大器的输入阻抗很高,因 此可认为它是一个理想运 算放大器,其输出电压为 Ci +
f 1 2 LC
式中,L为振荡回路电感;C为振荡回路总电容。
振荡回路的总电容一般包括传感器 C0±△C, 谐振回路中的固定电容 C1 和传感器电缆分布电 容 C2 。以变间隙式电容器为例,如果没有被测 信号,则△d≠0,则△C≠0,这时C=C1+C0+C2, 所以振荡器的频率为 1 f0 2 L(C1 C0 C2 )
四、差动脉冲调宽电路
又称脉冲宽度调制电路,利用对传感器电容 的充放电使电路输出脉冲的宽度随传感器电容量 变化而变化。通过低通滤波器得到对应被测量变 化的直流信号。 D1 图中C1、C2为差动式 A1 传感器的两个电容, F Q A R1 双稳 C1 若用单组式,则其中 uAB 态触 Ur 一个为固定电容,其 发器 Q B R2 C2 G 电容值与传感器电容 A2 初始值相等;A1、A2 D2 是两个比较器,Ur为其 差动脉冲调宽电路 参考电压。

电容传感器及测量电路

电容传感器及测量电路

h1
A Bh1
(4 8)
我们需要检测的是h1
14
2. 电容测厚
待测电介质厚度为d0,平板电容传感器两极板间距d
待测电介质厚度为d1,平板电容传感器两极板间距d
基本间的空气介质厚度 d0=d-d1
C2
2h2 2
ln(R / r)
(4 7)
15
对于该结构,可以认为是由空气介质、电介质构成的两个电容
11
二、 变介质介电常数(ε)型
不同的电介质——具有不同的 介电常数ε 变介质——常用于 测液体容量(例如飞机油箱 的油量) 液位高低 也可用于检测片状(薄膜) 电介质的厚度
12
1. 电容测液位
对于该图所示电容液位计
高度为h1的一部分
C2
C1
2h11
ln(R / r)
(4 6)
高度为h2的一部分
9
在初始位置,动片与定片无相对位移,有效面积
S ab
动片移动x,有效面积
SX b(a x)
电容量变为
CX
SX
d
b(a x)
d
(F)
(4 4)
电容量CX与位移量x——线性比例, x增大,电容量CX变小
10
灵敏度
Kx
dCx dx
b
d
(4 5)
灵敏度与位移x无关——对于某个具体的变角位移电容传感器, b、d、ε是常数——灵敏度是常数。
20
单电容传感器的特点
优点:结构简单 缺点:线性度低、灵敏度低
21
四、差动电容传感器
单电容传感器:具有结构简单的优点 缺点: 线性度低、灵敏度低
差动电容传感器可以提高线性度和灵敏度。 差动电容传感器有两种结构 变间距d 变面积S

电容传感器及测量电路课件

电容传感器及测量电路课件
电容传感器及测量电路课件
目录
• 电容传感器概述 • 电容传感器的测量电路 • 电容传感器的性能参数 • 电容传感器的实际应用案例 • 电容传感器的发展趋势与展望
01
电容传感器概述
电容传感器的定义与工作原理
总结词
电容传感器的定义与工作原理
详细描述
电容传感器是一种利用电容原理来检测物理量变化的传感器。它通常由两个平行电极和它们之间的绝缘材料组成 ,形成一个电容器。当被测物理量发生变化时,会引起电极间距离或电介质的变化,从而改变电容量。通过测量 电容量的变化,可以获得被测物理量的信息。
温度对电容传感器的性能有很大影响,良好的温度特性意味着传感器在不同温 度下的性能稳定。
稳定性
稳定性是指传感器在长时间使用或多次使用后,其性能参数保持不变的能力。 稳定性好的传感器使用寿命更长,性能更可靠。
04
电容传感器的实际应用案例
电容传感器在压力测量中的应用
压力测量中的电容传感器
电容传感器在压力测量中具有高灵敏度、低成本和易于集成的优点。它们通常用 于测量气体、液体和固体的压力,如气瓶压力、液压系统压力等。电容传感器的 电容值会随着压力的变化而变化,通过测量这种变化可以获得压力值。
VS
制造工艺改进
探索新的制造工艺,如3D打印、微纳加 工等,以降低生产成本、缩短研发周期和 提高生产效率。
拓展电容传感器的应用领域与市场
多元化应用
开发适用于不同领域的电容传感器,如医疗 、环保、农业等,以满足市场需求。
市场规模扩大
通过技术创新和市场推广,不断拓展电容传 感器的应用领域和市场规模,提高传感器产 品的市场占有率。
02
电容传感器的测量电路
电容传感器的等效电路

5.2 电容式传感器的测量电路和典型应用

5.2 电容式传感器的测量电路和典型应用

U0=
Z2Ui Z1+Z2
-Ui 2

Z2-Z1 Z1+Z2
Ui 2
U0=
C1-C2 C1+C2
Ui 2
对于变极距型电容式传感器:
C1=
d
A 0 -d
C2=
d0
A d
U

0
d d0
Ui 2
5.2.4 二极管双T型交流电桥
D2
B
R2
e
D1
A
R1
E
o
t1
t2
t
e
RL
C1
C2
E
T
(a)
(b)
R1
R2
f0 2
1 L(C1 C2 C0 )
f0 2
L(C1
1 C2
C0
C)
f0
f
5.2.2 运算放大器
I x Cx
I 0 C0
Ii
U i
O -K
U o
阅读并分析:P93
(1)式子5-57如何推出? (2)式子5-59如何推出?
1
1
Ui
ZC0 I0
jwC0 I0
j wC0
I0
1
1
U0
广泛用于压力、位移、加速度、厚度、振动、液位等测量中 在消费电子产品领域如多点触摸屏、触摸板、滑动条、智能手机、平板电
脑和游戏机等更多地采用了电容式触摸传感器
阅读并分析:P98
电容式传感器的使用注意事项?
5.3.1 电容式压力传感器
阅读并分析:P99
(1)差动电容式压力传感器 的工作过程? (2)式子5-82如何推出?
R1
R2
E
C1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电容式传感器的测量电路
一、 调频电路
这种测量电路是把电容式传感器与一个电感元 件配合成一个振荡器谐振电路。当电容传感器工作 时,电容量发生变化,导致振荡频率产生相应的变 化。再通过监频电路将频率的变化转换为振幅的变 化,经放大器放大后即可显示,这种方法称为调频 法。图3.10就是调频-鉴频电路原理图。 调频振荡器的振荡频率由下式决定
U1 T2 R2C2 ln U1 U r
C1 C2 U0 U1 C1 C2
设R1=R2=R,则
因此,输出的直流电压与传感器两电容差值成正比。
设电容C1和C2的极间距离和面积分别为d1、d2 和A1、A2,将平行板电容公式代入上式,对差动 式变极距型和变面积型电容式传感器可得
d 2 d1 A1 A2 U0 U1;U 0 U1 d1 d 2 A2 A1
Cx
ui
u0
U Ci U0 i Cx
以 Cx
运算放大器式测量电路
0A
d
代入上式,则有
U Ci d U0 i 0A
可以看出,输出电压与动极片机械位移d成线性关系。
三、二极管双T形电路
供电电压是幅值为±Ui、周期为T、占空比为 50%的方波。若将二极管理想化,则当电源为正 半周时,电路等效为典型的一阶电路,如图(b)。 其中二极管D1导通、D2截止,电容C1被以极其短 的时间充电,电容C2通过R2、RL放电。
D2 D1 ±Ui
R2Байду номын сангаас
R1
R1 +
R2
C2
iC1 + C1
iC2 +C (a) RL
2
UE +C1 iC1 RL
Uo -
(b)
iC2 +
当电源为负半周时,其中二极管D2导通、 D1 截止,电容C2 被以极其短的时间充电, 电容C1 通过R1、RL放电。电路等效为图(b)。
D2 D1 ±Ui iC1 + C1 R2 R1 iC2 +C (a) RL
四、差动脉冲调宽电路
又称脉冲宽度调制电路,利用对传感器电容 的充放电使电路输出脉冲的宽度随传感器电容量 变化而变化。通过低通滤波器得到对应被测量变 化的直流信号。 D1 图中C1、C2为差动式 A1 传感器的两个电容, F Q A R1 双稳 C1 若用单组式,则其中 uAB 态触 Ur 一个为固定电容,其 发器 Q B R2 C2 G 电容值与传感器电容 A2 初始值相等;A1、A2 D2 是两个比较器,Ur为其 差动脉冲调宽电路 参考电压。
f0 一 般 应 选 在 此 MHz 以 上 。 当 传 感 工 作 时 , △ d≠0,则△ C≠0,振荡频率也相应改变△ f ,
则有
1 f 0 f 2 L(C1 C0 C2 C)
二、运算放大器式测量电路
电容式传感器跨接在 高增益运算放大器的输入 端与输出端之间。运算放 大器的输入阻抗很高,因 此可认为它是一个理想运 算放大器,其输出电压为 Ci +
特点:①高频交流正弦波供电; ②电桥输出调幅波,要求其电源电压波 动极小,需采用稳幅、稳频等措施; ③通常处于不平衡工作状态,所以传感 器必须工作在平衡位置附近,否则电桥非线性 增大,且在要求精度高的场合应采用自动平衡 电桥; ④输出阻抗很高(几MΩ 至几十MΩ ),输 出电压低,必须后接高输入阻抗、高放大倍数 的处理电路。
可见差动脉冲调宽电路能适用于任何差动式电容 式传感器,并具有理论上的线性特性。这是十分 可贵的性质。在此指出:具有这个特性的电容测 量电路还有差动变压器式电容电桥和由二极管T 形电路经改进得到的二极管环形检波电路等。
另外,差动脉冲调宽电路采用直流电源,其 电压稳定度高,不存在稳频、波形纯度的要 求,也不需要相敏检波与解调等;对元件无 线性要求;经低通滤波器可输出较大的直流 电压,对输出矩形波的纯度要求也不高。
f 1 2 LC
式中,L为振荡回路电感;C为振荡回路总电容。
振荡回路的总电容一般包括传感器 C0±△C, 谐振回路中的固定电容 C1 和传感器电缆分布电 容 C2 。以变间隙式电容器为例,如果没有被测 信号,则△d≠0,则△C≠0,这时C=C1+C0+C2, 所以振荡器的频率为 1 f0 2 L(C1 C0 C2 )
T1 T2 T1 T2 U0 U A U B U1 U1 U1 T1 T2 T1 T2 T1 T2
UA、UB—A点和B点的矩形脉冲的直流分量; T1、T2 —分别为C1和C2的充电时间; U1—触发器输出的高电位。 Ur—触发器的参考电压。
U1 T1 R1C1 ln U1 U r
2
R1
R2

C1 + i’ C1
RL
i’C2
C2 +
UE
Uo -
(b)
如果二极管具有相同的特性,且令C1=C2, R1=R2=R,则正半周和负半周流过负载的电流 大小相等,方向相反,即一个周期内流过负 载的平均电流为零。如果C1≠C2, 输出电压的 平均值为
RRL R 2 RL U0 U i f C1 C2 2 ( R RL )
uA U1 0
uA U1 0 t t
uB U1
0 uAB U1 0 -U1 U F T1 Ur 0 UG Ur 0 (a)
uB U1
0 uAB U1 0 -U1 UF Ur 0 UG Ur 0 (b) T1
t
t U0 t
t
t
T2 t
T2
t
t
差动脉冲调宽电路各点电压波形图
UAB经低通滤波后,得到直流电压U0为
其f中为电源频率。输出电压不仅与电源的频 率和幅值有关,而且与电容的差值有关。
电路特点: ①线路简单,可全部放在探头内,大大缩短了 电容引线、减小了分布电容的影响; ②电源周期、幅值直接影响灵敏度,要求它们 高度稳定; ③输出阻抗为R,而与电容无关,克服了电容 式传感器高内阻的缺点;
④适用于具有线性特性的单组式和差动式电容 式传感器。
五、电桥电路
将电容式传感器接入交流电桥的一个臂(另 一个臂为固定电容)或两个相邻臂,另外桥臂可 以是电阻或电容或电感,也可是变压器的两个 二次线圈。其中另两个臂是紧耦合电感臂的电桥 具有较高的灵敏度和稳定性,且寄生电容影响极 小、大大简化了电桥的屏蔽和接地,适合于高频 电源下工作。而变压器式电桥使用元件最少,桥 路内阻最小,因此目前较多采用。
相关文档
最新文档