热分析PPT课件
合集下载
热分析ppt幻灯片课件
结果解析与讨论
峰归属与物质鉴定
根据峰位、峰形等信息推断物质种类及结构 。
热稳定性评价
通过比较不同物质的热分解温度、热稳定性 参数等评估其热稳定性。
反应动力学分析
研究物质在加热过程中的反应速率、活化能 等动力学参数,揭示反应机理。
结果可靠性验证
采用多种方法对数据结果进行交叉验证,确 保结果准确性和可靠性。
04
原理
在程序控制温度下,测量 物质的质量与温度的关系 。
应用
用于研究物质的热稳定性 、分解过程、挥发过程等 热性质,以及进行物质的 定性和定量分析。
优点
设备简单,操作方便,可 测量宽温度范围内的热性 质。
缺点
对样品的均匀性要求较高 ,易受气氛影响。
热机械分析法
原理
在程序控制温度下,测量物质的尺寸或形状 变化与温度的关系。
反应平衡常数测定
利用热分析数据,可以计算化学反应的平衡常数 ,进而研究反应在不同温度下的平衡状态。
3
热化学方程式推导
基于热分析实验结果,可以推导化学反应的热化 学方程式,明确反应物和生成物之间的热力学关 系。
化学反应动力学研究
01
反应速率常数测定
通过热分析技术,可以测定化学 反应的速率常数,了解反应在不 同温度下的速率变化。
优点
可直观观察物质的尺寸或形状变化,对研究 物质的热机械性能有重要意义。
应用
用于研究物质的热膨胀、收缩、相变等热性 质,以及进行物质的定性和定量分析。
缺点
设备较复杂,操作要求较高,对样品的形状 和尺寸有一定要求。
04
热分析数据处理与解 析
数据处理基本方法
数据平滑处理
消除随机误差,提高数据信噪比。
热分析法—热重分析法(TG) 差热分析法(DTA) 差示扫描量热法( DSC) ppt课件
of the first Na-containing i-QC, i-Na13Au12Ga15,
which belongs to the Bergman type but has an
extremely low valence electron-to-atom (e/a)
value of 1.75
PPT课件
800
1000
1200
140 780
180 205
1030
450
PPT课件Tຫໍສະໝຸດ ℃10差热分析法(DTA)
参比物:在测量温度范围 内不发生任何热效应的物 质,如-Al2O3、MgO等。
程序控温下, 测量物与参比 物的温差与温 度的关系 ΔT=f(T) 正峰:放热 倒峰:吸热
PPT课件
11
差示扫描量热法
PPT课件
21
亮点
金属氧化物薄层通常制备方法:原子层沉积、脉冲激 光沉积、化学气相沉积、射频溅射、喷墨印刷等方法。
本文—— “combustion” process in which the
heat required for oxide lattice formation is provided by the large internal energies of the precursors
PPT课件
22
略:XRD 、电子迁移率等测试。。。。
PPT课件
23
贰
PPT课件
24
《应用化学》(德语:Angewandte Chemie) 每周出版一期 由德国化学会出版,由约翰威立公司发行。
PPT课件
25
主要内容
we report the discovery and characterizations
热分析实验 ppt课件
DIL402C/DIL402PC 动态热机械分析法
(DMA242)
介电分析法
(DEA) DEA230 DEA231
导热系数仪 热流法:
HFM436系列
激光闪射法:
LFA427 LFA447 LFA457
测量物理与化学过 程(相转变,化学 反应等)产生的热
效应; 比热测量
测量由分解 、挥发、气 固反应等过 程造成的样 品质量随温 度/时间的
TG 方法常用于测定:
• 质量变化 • 热稳定性 • 分解温度 • 组份分析 • 脱水、脱氢 • 腐蚀 / 氧化 • 还原反应 • 反应动力学
差示扫描.
Q PR
Ref er.
DT
在程序温度过程中,当样品发生热效应时,在样品端与参比端之间产 生了温度差(热流差),通过热电偶对这一温度差(热流差)进行测 定。
基本概念dmdt质量变化分解的速率dtgtg曲线对时间坐标作一次微分计算得到的微分曲线质量变化速率最大点作为质量变化分解过程的特征温tonsettg台阶的起始点对分解过程可作为热稳定性的表征热重分析法记录的是在程序温度升降恒温下样品的质量质量变化随温度时间的函数关系tg曲线图中所示的反应单从tg曲线上看有点像一个单一步骤的过程dtg曲线但从微分dtg曲线则明显区分出分解分为两个相邻的阶段setaramtgdscdtasta449c同步测试tgdsc或tgdtapetgdta热重分析仪tg原理图furnacebalancenetzsch热重分析仪
• 根据CuSO4.5H2O的结构,试讨论其脱水 的机理。
CuSO4.5H2O的结构示意图
m icro fu rn a ce sa m p le
sa m p le ca rrie r T G ce ll
(DMA242)
介电分析法
(DEA) DEA230 DEA231
导热系数仪 热流法:
HFM436系列
激光闪射法:
LFA427 LFA447 LFA457
测量物理与化学过 程(相转变,化学 反应等)产生的热
效应; 比热测量
测量由分解 、挥发、气 固反应等过 程造成的样 品质量随温 度/时间的
TG 方法常用于测定:
• 质量变化 • 热稳定性 • 分解温度 • 组份分析 • 脱水、脱氢 • 腐蚀 / 氧化 • 还原反应 • 反应动力学
差示扫描.
Q PR
Ref er.
DT
在程序温度过程中,当样品发生热效应时,在样品端与参比端之间产 生了温度差(热流差),通过热电偶对这一温度差(热流差)进行测 定。
基本概念dmdt质量变化分解的速率dtgtg曲线对时间坐标作一次微分计算得到的微分曲线质量变化速率最大点作为质量变化分解过程的特征温tonsettg台阶的起始点对分解过程可作为热稳定性的表征热重分析法记录的是在程序温度升降恒温下样品的质量质量变化随温度时间的函数关系tg曲线图中所示的反应单从tg曲线上看有点像一个单一步骤的过程dtg曲线但从微分dtg曲线则明显区分出分解分为两个相邻的阶段setaramtgdscdtasta449c同步测试tgdsc或tgdtapetgdta热重分析仪tg原理图furnacebalancenetzsch热重分析仪
• 根据CuSO4.5H2O的结构,试讨论其脱水 的机理。
CuSO4.5H2O的结构示意图
m icro fu rn a ce sa m p le
sa m p le ca rrie r T G ce ll
第5章 热分析ppt课件
二战以后 40年代末商业化电子管式差热分析仪问世。
1964年提出“差示扫描量热”的概念。
热分析已经形成一类拥有多种检测手段的仪器分析
方法。
精品课件
4
热分析技术的分类
差热分析 示差扫描量热分析 热重分析 逸出气体分析 热膨胀仪 热-力法 热-光法 电磁热分析 放射热分析等
精品课件
5
热分析技术分类
精品课件
反应前基线低于反应 后基线,表明反应后 试样热容减小。
反应前基线高于反应 后基线,表明反应后 试样热容增大。
精品课件
23
(2)试样的颗粒度 ——试样颗粒越大,峰形趋于扁而宽。反之,颗 粒越小,热效应温度偏低,峰形变小。 ——颗粒度要求:100目-300目(0.04-0.15mm)
精品课件
24
(3)试样的用量
第五章 热分析
精品课件
1
第一节 热分析概述
精品课件
2
一、热分析技术及分类 热分析是在程序控制温度下,测量物质的物理性
质随温度变化的一类技术。
程序控制温度:指用固定的速率加热或冷却。 物理性质:包括物质的质量、温度、热焓、尺寸、 机械、声学、电学及磁学性质等。
精品课件
3
热分析历史
1780年英国的Higgins使用天平研究石灰粘结剂 和生石灰受热重量变化。 1915年日本的本多光太郎提出“热天平” 概念。
峰:指曲线离开基线又回到
基线的部分,包括放热
峰和吸热峰。
峰宽:峰的温度间距。
峰高:表示试样与参比物之
间的最大温差,峰顶到
精品课件
基线的垂直距离。
19
差热反应起始温度的确定
外延始点温度:指峰的起始边陡峭部分的切线与外沿基 线的交点。
综合热分析PPT课件
品发生反应。此时应考虑使用“纯”惰性气氛(Ar, He) • 气氛选择的安全性问题:应考虑气氛是否会与热电偶、坩埚等发生反
应;注意防止爆炸和中毒。
a
37
五、坩埚类型的选择
常用: Al Al2O3 PtRh
a
38
1、PtRh 坩埚
优点:传热性最好,灵敏度最高,热阻小,峰分 离能力佳,温度范围宽广(对PtRh支架一般可 用到1400℃)。
• 慢速升温:有利于DTA、DSC、DTG相邻峰的分 离;TG相邻失重平台的分离;DSC 基线漂移较小, 但灵敏度下降。
对于 TG 测试,过快的升温速率有时会导致丢失某 些中间产物的信息。一般以较慢的升温速率为宜。
对于 DSC 测试,在传感器灵敏度足够的情况下,
一般也以较慢的升温速率a 为佳。
32
2、样品用量
• 对于TG测试(气固反应,或有气体产物逸出的热分解反
应),若样品量较大堆积较高,则根据实际情况适当选
择堆积紧密程度。
a
35
5、 气氛
• 根据实际需要选择动态气氛、静态气氛或真空气氛。
• 静态、动态与真空比较:静态下气体产物扩散不易,分压升高,反应 移向高温;且易污染传感器。真空下加热源(炉体)与样品之间唯有通 过辐射传热,温度差较大。一般非特殊需要,推荐使用动态吹扫气氛。
(a)快速升温 (b)慢速升温
(c)慢速升温a快记录纸速
17
(2)试验气氛
空气、O2:氧化 H2:还原 N2、He:惰性
a
18
3、影响TG曲线的试样因素
(1)试样量 一般来讲,试样用量增加会使TG曲 线向高温方向偏移。当试样用量在热天平灵敏度范 围内的话,试样用量尽量少为好。
(2)试样粒度 一般来讲,粒度小的比粒度大的热 分解温度低。
应;注意防止爆炸和中毒。
a
37
五、坩埚类型的选择
常用: Al Al2O3 PtRh
a
38
1、PtRh 坩埚
优点:传热性最好,灵敏度最高,热阻小,峰分 离能力佳,温度范围宽广(对PtRh支架一般可 用到1400℃)。
• 慢速升温:有利于DTA、DSC、DTG相邻峰的分 离;TG相邻失重平台的分离;DSC 基线漂移较小, 但灵敏度下降。
对于 TG 测试,过快的升温速率有时会导致丢失某 些中间产物的信息。一般以较慢的升温速率为宜。
对于 DSC 测试,在传感器灵敏度足够的情况下,
一般也以较慢的升温速率a 为佳。
32
2、样品用量
• 对于TG测试(气固反应,或有气体产物逸出的热分解反
应),若样品量较大堆积较高,则根据实际情况适当选
择堆积紧密程度。
a
35
5、 气氛
• 根据实际需要选择动态气氛、静态气氛或真空气氛。
• 静态、动态与真空比较:静态下气体产物扩散不易,分压升高,反应 移向高温;且易污染传感器。真空下加热源(炉体)与样品之间唯有通 过辐射传热,温度差较大。一般非特殊需要,推荐使用动态吹扫气氛。
(a)快速升温 (b)慢速升温
(c)慢速升温a快记录纸速
17
(2)试验气氛
空气、O2:氧化 H2:还原 N2、He:惰性
a
18
3、影响TG曲线的试样因素
(1)试样量 一般来讲,试样用量增加会使TG曲 线向高温方向偏移。当试样用量在热天平灵敏度范 围内的话,试样用量尽量少为好。
(2)试样粒度 一般来讲,粒度小的比粒度大的热 分解温度低。
热分析技术(最新版)PPT课件
特点
设备简单、操作方便、试样用量少; 但精度较低、分辨率差。
应用
研究物质的物理变化(晶型转变、熔 融、升华和吸附等)和化学变化(脱 水、分解、氧化和还原等)。
差示扫描量热法
原理
在程序控制温度下,测量输入到 物质和参比物的功率差与温度的
关系。
应用
测定多种热力学和动力学参数, 如比热容、反应热、转变热等; 研究高分子材料的结晶、熔融和
流体中由于温度差异引起的密度变 化而产生的宏观运动,是热量传递 的一种重要方式。
热辐射
物体通过电磁波的形式发射和吸收 能量,其辐射强度与物体温度、表 面性质等因素有关。
热分析中的物理量与单位
温度
热力学系统的一个物理属性,表示物体冷 热的程度,常用单位有摄氏度、华氏度、
开尔文等。
热容
物体在温度变化时所吸收或放出的热量与 其温度变化量之比,常用单位有焦耳/摄氏
环境科学领域应用
大气污染物分析
利用热分析技术可以对大气中的 污染物进行分析和鉴定,揭示大 气污染物的来源和危害。
土壤污染物分析
通过热分析技术可以分析土壤中 的污染物,评价土壤的污染程度 和生态风险。
环境样品热性质研究
利用热分析技术可以研究环境样 品的热性质,如热稳定性、热分 解温度等,为环境科学研究和环 境保护提供技术支持。
热机械分析法
原理
01
在程序控制温度下,测量物质在非振动载荷下的形变与温度的
关系。
应用
02
研究材料的热膨胀系数、玻璃化转变温度、流动温度等;评估
材料的尺寸稳定性、内应力和热震稳定性等。
特点
03
能直接测量材料的形变,反映材料的机械性能随温度的变化;
热分析技术(最新版)PPT课件
简称 TG
EGD EGA ETA TPA
DTA DSC TD TMA DTM TS TA TP TE TM
-
9
3)在表1列出的17种方法中,热重(TG)和差热分析 (DTA)应用最广;其次是差示扫描量热(DSC),它们 构成了热分析的三大支柱。因此下面我们学习这三 种技术及它们的应用。
-
10
表2 热分析技术的应用范围
speil公式635影响dta曲线的因素及实验条件的选择根据国际热分析标准委员会的意见认为所发表数据的不一致性大部分是由于实验条件不相同引起因此在进行热分析时必须严格控制实验条件和研究实验条件对所测数据的影响并且在发表数据时应注明测定时所采用的实验条件
热分析技术
第一节 绪论 热分析技术在19世纪就开始应用,但发展缓慢;
✓ 热天平试样周围气氛受热变轻会向上升,形成向上 的热气流,作用在热天平上相当于减重,这叫对流影 响。对流影响与炉子结构关系很大。
-
22
2)坩埚的影响 ①材质的影响 热分析用的坩埚(或称试样杯、试样皿)材质,要求 对试样、中间产物、最终产物和气氛都是惰性的; 既不能有反应活性,也不能有催化活性; 例如发现碳酸钠的分解温度在石英或陶瓷坩埚中比在 白金坩埚中低,这是因为碳酸钠会与石英、陶瓷坩埚中 的SiO2在500℃左右反应生成硅酸钠的缘故。白金对许 多有机物有加氢或脱氢的活性。 ②坩埚的大小、重量和几何形状对热分析也有影响:
-
15
A
B
W
C
D
T1 T2
T (t )
3)热重法的几个常用术语 1)热天平(Thermobalance):在程序控温下, 连续称量试样的仪器。 2)试样(Sample): 实际研究的材料,即被测 定物质。
热分析PPT课件
热力学基础知识
热力学系统
研究对象,与周围环境有能量和 物质交换的体系
状态函数
描述系统状态的物理量,如温度、 压力、体积等
热力学第一定律
能量守恒定律在热力学中的应用, 表达式为ΔU=Q+W
热力学第二定律
热量不可能自发地从低温物体传 到高温物体,表达为ΔS≥0
热分析方法分类与特点
差热分析(DTA)
在程序控制温度下,测量物质与参比物之间的温度差随温 度变化的技术
06
热分析技术在材料科学中应用
材料性能表征与评估
热重分析(TGA)
通过测量材料在升温过程中的质量变化,研究其热稳定性、分解温 度、氧化稳定性等。
差热分析(DTA)
记录样品与参比物之间的温度差随温度变化的曲线,用于研究材料 的热效应、相变、反应动力学等。
差示扫描量热法(DSC)
测量样品与参比物之间的功率差随温度变化的曲线,用于研究材料 的熔点、结晶度、玻璃化转变温度等。
材料相变过程研究
01
相变温度的确定
通过热分析方法确定材料的固固相变、固-液相变、液-气相变 等相变温度。
02
相变动力学研究
03
相变机理探讨
研究材料在相变过程中的动力学 行为,如相变速率、相变活化能 等。
结合热分析数据与其他表征手段, 探讨材料相变的机理和影响因素。
材料老化、失效预测和寿命评估
热氧化稳定性评估
数据处理
将实验数据导入计算机,利用相关软件进行数据处理和 分析,如绘制热机械曲线、计算热膨胀系数等。
应用实例及优缺点分析
应用实例
研究材料的热稳定性、热膨胀性、相变等。
优点
可测量物质在宽温度范围内的热机械性能,提供丰富 的信息;实验操作简单,结果可靠。
《热分析基础》课件
数据分析与处理
热分析得到的数据需要经过严格的分析和处理,以提取有用信息。常用的数 据处理方法包括峰面积分析、峰温偏移、曲线拟合等。
热分析典型曲线解释
热分析实验中常见的曲线包括质量-温度曲线、热流-时间曲线、热膨胀-温度 曲线等。解读这些曲线可以帮助我们了解样品的性质和性能。
热分析优势与不足
热分析具有快速、灵敏、非破坏性等优势,但也存在样品制备困难、结果的解释性有限等不足之处。了解这些 优势和不足,有助于更好地应用和解读热分析结果。
《热分析基础》PPT课件
本课件将介绍热分析的基础概念、仪器分类以及各种热分析技术。通过案例 分享和实验室安全注意事项,让你更好地理解热分析的应用和原理。
热分析概述
热分析是一种重要的分析技术,通过对样品在不同温度下的物理和化学变化进行研究,提供了许多有价值的信 息。
热分析仪)、差 示扫描量热法(DSC)、差热分析(DTA)、动态机械分析(DMA)、程序升 温技术(PTA)和热膨胀法(TMA)等。
应用领域及原理
热分析广泛应用于材料科学、化学、生物学等领域。通过测量样品的质量变化、热效应、热膨胀等参数,可以 研究物质的热稳定性、相变过程、反应动力学等。
样品制备及测试条件
在进行热分析之前,需要对样品进行适当的制备,选择合适的测试条件。样品的制备和测试条件将直接影响热 分析结果的精确性和可靠性。
《热分析法》课件
检测材料相变
热分析法可以检测材料在加热或 冷却过程中的相变温度和相变热 量,有助于了解材料的热性能和 相变行为。
评估材料热导率
通过热分析法可以测量材料的热 导率,这对于材料在高温或低温 环境下的热传导性能评估具有重 要意义。
化学领域的应用
反应动力学研究
热分析法可以用于研究化学反应的动 力学过程,通过测量反应速率常数和 活化能等参数,有助于理解反应机理 和反应速率控制步骤。
加强热分析标准化和规范化的宣传与培训,提高相关人员的意识和素质,促进热分析的广泛应用和深入发展。
THANK YOU
随着科学技术的不断发展,热分析与光谱、色谱、质谱等分 析方法的联用将进一步提高热分析的准确性和可靠性。
热分析软件的开发
未来将有更多专门针对热分析的软件出现,这些软件将能够 实现数据的自动采集、处理、分析和可视化,提高热分析的 效率和精度。
交叉学科的研究与应用
热分析与材料科学的交叉
随着材料科学的快速发展,热分析将在材料性能表征、材料合成与制备等领域发 挥更加重要的作用。
03息量。ຫໍສະໝຸດ 热分析法的优势与局限性• 可用于研究物质在温度变化时的 性质变化,具有较高的灵敏度和 准确性。
热分析法的优势与局限性
01
局限性
02 对测试条件要求较高,如温度控制、气氛 控制等。
03
对于某些物质,可能存在较大的热历史效 应,影响测试结果的准确性。
04
对于某些复杂体系,可能需要结合其他分 析方法进行综合分析。
《热分析法》ppt课件
• 热分析法简介 • 热分析法的基本类型 • 热分析法的实验技术与操作 • 热分析法的应用实例 • 热分析法的未来发展与展望
01
热分析法简介
第二章热分析方法DSCppt课件
S
R
1
23
4 5
6
图3-3 热流型DSC示意图 1.鏮铜盘;2.热电偶结点;3.镍铬板; 4.镍铝丝;5.镍铬丝;6.加热块
S
iS
R。 Rb
R
iR
R
Rg
Rg
图3-4 热流型DSC等效回路示意图
三.影响因素[2,3]
差示扫描量热法的影响因素与差热分析基本上相类 似,由于它用于定量测定,因此实验因素的影响显 得更为重要,其主要的影响因素大致有下列几方面: 实验条件 程序升温速率和所通气体的性质。气体 性质涉及气体的氧化还原性、惰性、热导性和气体 处于静态还是动态。 试样特性 试样用量、粒度、装填情况、试样的稀 释和试样的热历史条件等。 参比物特性 参比物用量、参比物的热历史条件。 为了从DSC曲线获得正确而可靠的定量数据,掌握 和了解这些影响因素是十分必要的。
161.33
372.68
2.试样特性的影响 (1)试样用量 试样用量是一个不可忽视的因素。通常用量不宜 过多,因为过多会使试样内部传热慢、温度递度 大,导致峰形扩大和分辨力下降。 例如试样用量对NH4NO3的相变温度和相变热焓 的影响。研究表明,随着试样用量的增大, NH4NO3的相变峰温和相变热焓稍有升高,见表 3-6。
表3-6 试样用量对NH4NO3相变温度和热焓的影响
试样用量 相变 mg
峰温 Tm( K)
标准 偏差
2
328.517 0.2166
5
Ⅳ-Ⅲ 328.946 0.3736
8
329.069 0.5040
2
40-Ⅰ 405.092 0.6532
8
405.028 0.5765
相变热焓 kJ/mol
《热分析技术》课件
热重-差示扫描量热联用技术
热重-差示扫描量热联用技术结合了热重分析技术和差示扫描量热技术,可以同时测量样品的质量变 化和热量变化。
1
热重分析
测量样品的质量变化。
2
差示扫描量热
பைடு நூலகம்
测量样品和参比样品在相同条件下的热量差。
3
联用分析
通过分析质量变化和热量变化,研究样品的物化性质和反应动力学。
热分析技术的应用
通过测量样品的热导率来研究 其热传导性能。
热容测定
通过测量样品的热容来研究其 储热特性。
热稳定性测定
通过测量样品在高温条件下的 热分解和氧化特性来评估其热 稳定性。
热膨胀技术
热膨胀技术是一种通过测量材料在不同温度下的尺寸变化来研究材料的热膨 胀性质的方法。
• 线膨胀系数测定:测量材料在不同温度下的长度变化。 • 体膨胀系数测定:测量材料在不同温度下的体积变化。 • 表面膨胀系数测定:测量材料在不同温度下的表面面积变化。
《热分析技术》PPT课件
欢迎来到《热分析技术》的PPT课件,本课件将介绍热分析技术的概述和其在 各个领域中的应用,让您深入了解这一领域的知识。
热分析技术的概述
热分析技术是一种通过对样品施加热量并测量样品的物理和化学性质的变化来研究材料性质的方法。
热重分析技术
通过测量物质的质量变化 来研究热分解、燃烧等过 程。
热分析技术在各个领域中都有重要的应用,以下是一些示例应用领域。
无机化学研究
研究无机材料的热稳定性、热分解特性等。
有机化学研究
研究有机化合物的燃烧性质、热解特性等。
材料科学研究
研究材料的热膨胀性质、热传导性能等。
环境科学研究
研究环境样品的热稳定性、热解过程等。
热分析法PPT课件
将实验数据、分析结果和 讨论整理成完整的报告, 以供后续研究或应用参考 。
04
热分析法在材料科学中的应用
材料热稳定性的研究
热重分析(TGA)
通过测量材料在升温过程中的质 量变化,研究其热分解、氧化等 反应,评估材料的热稳定性。
差热分析(DTA)
记录材料在升温或降温过程中的 热量变化,分析材料的热效应, 判断其热稳定性。
要点二
原理
物质在加热过程中会伴随质量的变化 ,这种变化是由于物质的分解、挥发 、升华等物理或化学过程引起的。通 过测量物质质量随温度的变化,可以 得到物质的热稳定性、热分解温度、 热分解过程等信息。
要点三
应用
热重分析广泛应用于无机物、有机物 及聚合物的热分解研究,以及固体物 质的成分分析等领域。
差热分析
热机械分析(
TMA)
测量材料在温度变化过程中的形 变和应力,研究材料的热膨胀、 收缩等性能,评估其热稳定性。
材料相变过程的探究
差示扫描量热法(DSC)
测量材料在升温或降温过程中的热量变化,研究材料的熔融、结 晶、固化等相变过程。
热光分析
通过观察材料在加热过程中的光学性质变化,研究材料的相变过程 和机理。
生物医学
用于研究生物组织的热性质、生物大分子的 热稳定性以及药物的热分析。
环境科学
用于研究环境污染物的热性质、热分解以及 环境样品的热分析。
热分析法的发展历程
早期阶段
热分析法的起源可以追溯到18世纪,当时人们开始使用天平测量物质在加热过程中的质 量变化。
发展阶段
19世纪末至20世纪初,随着热力学和物理化学的发展,热分析法逐渐成为一种重要的分 析方法,出现了多种热分析方法,如差热分析(DTA)、热重分析(TGA)等。
04
热分析法在材料科学中的应用
材料热稳定性的研究
热重分析(TGA)
通过测量材料在升温过程中的质 量变化,研究其热分解、氧化等 反应,评估材料的热稳定性。
差热分析(DTA)
记录材料在升温或降温过程中的 热量变化,分析材料的热效应, 判断其热稳定性。
要点二
原理
物质在加热过程中会伴随质量的变化 ,这种变化是由于物质的分解、挥发 、升华等物理或化学过程引起的。通 过测量物质质量随温度的变化,可以 得到物质的热稳定性、热分解温度、 热分解过程等信息。
要点三
应用
热重分析广泛应用于无机物、有机物 及聚合物的热分解研究,以及固体物 质的成分分析等领域。
差热分析
热机械分析(
TMA)
测量材料在温度变化过程中的形 变和应力,研究材料的热膨胀、 收缩等性能,评估其热稳定性。
材料相变过程的探究
差示扫描量热法(DSC)
测量材料在升温或降温过程中的热量变化,研究材料的熔融、结 晶、固化等相变过程。
热光分析
通过观察材料在加热过程中的光学性质变化,研究材料的相变过程 和机理。
生物医学
用于研究生物组织的热性质、生物大分子的 热稳定性以及药物的热分析。
环境科学
用于研究环境污染物的热性质、热分解以及 环境样品的热分析。
热分析法的发展历程
早期阶段
热分析法的起源可以追溯到18世纪,当时人们开始使用天平测量物质在加热过程中的质 量变化。
发展阶段
19世纪末至20世纪初,随着热力学和物理化学的发展,热分析法逐渐成为一种重要的分 析方法,出现了多种热分析方法,如差热分析(DTA)、热重分析(TGA)等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7
热分析组织:
国际热分析协会(International Confederation for Thermal Analysis)ICTA
热分析发行的刊物:
热分析文摘(Thermal Analysis Abstract)TAA,双月刊,1972 热分析杂志(Journal of thermal Analysis,双月刊,1969 热化学学报(thermachemical Acta),每年四卷,1974 量热学与热分析杂志(Calorimetry and Thermal Analysis)日文,季刊,1974
DSC
TG
DTA
TMA
复合分析
10 印刷
加热 物质 冷却
热分析
热量变化 重量变化 长度变化 粘弹性变化 气体发生 热传导
其他
DTA DSC TG DTG
(微分热重分析)
TMA (热机械分析) DMA (动态机械分析) EGA (逸出气分析)
11
仪器的基本构造
•
支持器 — 盛放样品
•
加热炉 — 加热样品
在目前热分析可以达到的温度范围内,从-150℃到1500℃ (或2400℃ ),任何两种物质的所有物理、化学性质是不会完 全相同的。因此,热分析的各种曲线具有物质“指纹图”的性质。
通俗来说,热分析是通过测定物质加热或冷却过程中物理性质 (目前主要是重量和能量)的变化来研究物质性质及其变化,或 者对物质进行分析鉴别的一种技术。
·····
·热分析 ·
thermal analysis
13
国产ZRY-1型综合热分析仪
程序控温系统
记录仪
14
TGA7热重仪
• DSC7差示扫描仪
15
原理
仪器
应用
热重法TG
thermogravimetry
16
热重法(TG)是在温度程序控制下,测量物质质量与温度之 间的关系的技术。这里值得一提的是,定义为质量的变化而不 是重量变化是基于在磁场作用下,强磁性材料当达到居里点时, 虽然无质量变化,却有表观失重。而热重法则指观测试样在受 热过程中实质上的质量变化。
热分析法的核心就是研究物质在受热或冷却时产生的物理和 化学的变迁速率和温度以及所涉及的能量和质量变化。
3
概况
国际热分析协会:1977年在日本京都召开的国际热分析协会 (ICTA)第七次会议上,给热分析下了如下定义:即热分析 是在程序控制温度下,测量物质的物理性质与温度的关系的一 类技术。
2005版中国药典:热分析法是指在程序控制温度下,精确记录 待测物质理化性质与温度的关系,研究其在受热过程中所发生 的晶型转化、熔融、蒸发、脱水等物理变化或热分解、氧化等 化学以及伴随发生的温度、能量或重量改变的方法。
其数学表达式为: ΔW=f(T)或(τ) ΔW为重量变化,T是绝对温度,τ是时间。 热重法试验得到的曲线称为热重曲线(即TG)。 TG曲线以质量(或百分率%)为纵坐标,从上 到下表示减少,以温度或时间作横坐标,从左自 右增加,试验所得的TG曲线,对温度或时间的 微分可得到一阶微商曲线DTG和二阶微商曲线 DDTG
9
热分析装置的利用领域
•食品 •生物体・液晶 •油脂・肥皂 •洗涤剂
•医药品
熱分析の木 •香料・化妆品 •有机、无机药品 •触媒 •火药
規格
•电子材料 •木材・纸 •建材 •公害 •工业废弃物
•橡胶 •高分子・塑料 •纤维 •油墨・顔料・染料・塗料 •粘着剂
热分析的历史
•玻璃 •金属 •陶瓷・粘土・矿物 •水泥
6
热分析的起源及发展
1899年英国罗伯特-奥斯汀(Roberts-Austen)第一次使用了差示热电 偶和参比物,大大提高了测定的灵敏度。正式发明了差热分析(DTA)技术。 1915年日本东北大学本多光太郎,在分析天平的基础上研制了“热天平” 即热重法(TG),后来法国人也研制了热天平技术。 1964年美国瓦特逊(Watson)和奥尼尔(O’Neill)在DTA技术的基础上 发明了差示扫描量热法(DSC),美国P-E公司最先生产了差示扫描量热 仪,为热分析热量的定量作出了贡献。 1965年英国麦肯才(Mackinzie)和瑞德弗(Redfern)等人发起,在苏格 兰亚伯丁召开了第一次国际热分析大会,并成立了国际热分析协会。
热分析技术、X-射线衍射技术、近红外技术
在药物制剂中的应用
2011年12月13日1ຫໍສະໝຸດ 第一部分 热分析技术2
概况
热分析(thermal analysis),顾名思义,可以解释为以热 进行分析的一种方法。
在热分析法中,物质在一定温度范围内发生变化,包括与周 围环境作用而经历的物理变化和化学变化,诸如释放出结晶 水和挥发性物质的碎片,热量的吸收或释放,某些变化还涉 及到物质的增重或失重,发生热力学变化和热物理性质和电 学性质变化等。
4
概况
其数学表达式为: P=f(T)
其中,P是物质的一种物理量;T是物质的温度。 所谓程序控制温度一般是指线性升温或线性降温,当然也包 括恒温、循环或非线性升温、降温。也就是把温度看作是时间 的函数:
T=φ(t) 其中t是时间。 因此其数学表达式可转变为:P=f(T或t)
5
热分析存在的客观物质基础
• 热分析仪
程序控温系统
•
检测器 — 检测信号
•
记录仪 — 记录信号
12
[ 热重法 ] 01 thermogravimetry, TG [ 差热分析 ] 02 differential thermal analysis, DTA [ 差示扫描热量法 ] 03 differential scanning calorimetry, DSC
8
热分析特点:
一、方法和技术的多样性 应用最广泛的方法是热重(TG)和差热分析 (DTA),其次是差示扫描量热法(DSC),这三者构成了热分析的三大支 柱,占到热分析总应用的75%以上。
二、与其它技术的联用性 热分析只能给出试样的重量变化及吸热或放热情 况,解释曲线常常是困难的,特别是对多组分试样作的热分析曲线尤其困难。 目前,解释曲线最现实的办法就是把热分析与其它仪器串接或间歇联用,常 用气相色谱仪、质谱仪、红外光谱仪、X光衍射仪等对逸出气体和固体残留 物进行连续的或间断的,在线的或离线的分析,从而推断出反应机理。 三、应用的广泛性 从热分析文摘(TAA)近年的索引可以看出,热分析广 泛应用于无机,有机,高分子化合物,冶金与地质,电器及电子用品,生物 及医学,石油化工,轻工等领域。当然这与应用化学,材料科学,生物及医 学的迅速发展有密切的关系。
热分析组织:
国际热分析协会(International Confederation for Thermal Analysis)ICTA
热分析发行的刊物:
热分析文摘(Thermal Analysis Abstract)TAA,双月刊,1972 热分析杂志(Journal of thermal Analysis,双月刊,1969 热化学学报(thermachemical Acta),每年四卷,1974 量热学与热分析杂志(Calorimetry and Thermal Analysis)日文,季刊,1974
DSC
TG
DTA
TMA
复合分析
10 印刷
加热 物质 冷却
热分析
热量变化 重量变化 长度变化 粘弹性变化 气体发生 热传导
其他
DTA DSC TG DTG
(微分热重分析)
TMA (热机械分析) DMA (动态机械分析) EGA (逸出气分析)
11
仪器的基本构造
•
支持器 — 盛放样品
•
加热炉 — 加热样品
在目前热分析可以达到的温度范围内,从-150℃到1500℃ (或2400℃ ),任何两种物质的所有物理、化学性质是不会完 全相同的。因此,热分析的各种曲线具有物质“指纹图”的性质。
通俗来说,热分析是通过测定物质加热或冷却过程中物理性质 (目前主要是重量和能量)的变化来研究物质性质及其变化,或 者对物质进行分析鉴别的一种技术。
·····
·热分析 ·
thermal analysis
13
国产ZRY-1型综合热分析仪
程序控温系统
记录仪
14
TGA7热重仪
• DSC7差示扫描仪
15
原理
仪器
应用
热重法TG
thermogravimetry
16
热重法(TG)是在温度程序控制下,测量物质质量与温度之 间的关系的技术。这里值得一提的是,定义为质量的变化而不 是重量变化是基于在磁场作用下,强磁性材料当达到居里点时, 虽然无质量变化,却有表观失重。而热重法则指观测试样在受 热过程中实质上的质量变化。
热分析法的核心就是研究物质在受热或冷却时产生的物理和 化学的变迁速率和温度以及所涉及的能量和质量变化。
3
概况
国际热分析协会:1977年在日本京都召开的国际热分析协会 (ICTA)第七次会议上,给热分析下了如下定义:即热分析 是在程序控制温度下,测量物质的物理性质与温度的关系的一 类技术。
2005版中国药典:热分析法是指在程序控制温度下,精确记录 待测物质理化性质与温度的关系,研究其在受热过程中所发生 的晶型转化、熔融、蒸发、脱水等物理变化或热分解、氧化等 化学以及伴随发生的温度、能量或重量改变的方法。
其数学表达式为: ΔW=f(T)或(τ) ΔW为重量变化,T是绝对温度,τ是时间。 热重法试验得到的曲线称为热重曲线(即TG)。 TG曲线以质量(或百分率%)为纵坐标,从上 到下表示减少,以温度或时间作横坐标,从左自 右增加,试验所得的TG曲线,对温度或时间的 微分可得到一阶微商曲线DTG和二阶微商曲线 DDTG
9
热分析装置的利用领域
•食品 •生物体・液晶 •油脂・肥皂 •洗涤剂
•医药品
熱分析の木 •香料・化妆品 •有机、无机药品 •触媒 •火药
規格
•电子材料 •木材・纸 •建材 •公害 •工业废弃物
•橡胶 •高分子・塑料 •纤维 •油墨・顔料・染料・塗料 •粘着剂
热分析的历史
•玻璃 •金属 •陶瓷・粘土・矿物 •水泥
6
热分析的起源及发展
1899年英国罗伯特-奥斯汀(Roberts-Austen)第一次使用了差示热电 偶和参比物,大大提高了测定的灵敏度。正式发明了差热分析(DTA)技术。 1915年日本东北大学本多光太郎,在分析天平的基础上研制了“热天平” 即热重法(TG),后来法国人也研制了热天平技术。 1964年美国瓦特逊(Watson)和奥尼尔(O’Neill)在DTA技术的基础上 发明了差示扫描量热法(DSC),美国P-E公司最先生产了差示扫描量热 仪,为热分析热量的定量作出了贡献。 1965年英国麦肯才(Mackinzie)和瑞德弗(Redfern)等人发起,在苏格 兰亚伯丁召开了第一次国际热分析大会,并成立了国际热分析协会。
热分析技术、X-射线衍射技术、近红外技术
在药物制剂中的应用
2011年12月13日1ຫໍສະໝຸດ 第一部分 热分析技术2
概况
热分析(thermal analysis),顾名思义,可以解释为以热 进行分析的一种方法。
在热分析法中,物质在一定温度范围内发生变化,包括与周 围环境作用而经历的物理变化和化学变化,诸如释放出结晶 水和挥发性物质的碎片,热量的吸收或释放,某些变化还涉 及到物质的增重或失重,发生热力学变化和热物理性质和电 学性质变化等。
4
概况
其数学表达式为: P=f(T)
其中,P是物质的一种物理量;T是物质的温度。 所谓程序控制温度一般是指线性升温或线性降温,当然也包 括恒温、循环或非线性升温、降温。也就是把温度看作是时间 的函数:
T=φ(t) 其中t是时间。 因此其数学表达式可转变为:P=f(T或t)
5
热分析存在的客观物质基础
• 热分析仪
程序控温系统
•
检测器 — 检测信号
•
记录仪 — 记录信号
12
[ 热重法 ] 01 thermogravimetry, TG [ 差热分析 ] 02 differential thermal analysis, DTA [ 差示扫描热量法 ] 03 differential scanning calorimetry, DSC
8
热分析特点:
一、方法和技术的多样性 应用最广泛的方法是热重(TG)和差热分析 (DTA),其次是差示扫描量热法(DSC),这三者构成了热分析的三大支 柱,占到热分析总应用的75%以上。
二、与其它技术的联用性 热分析只能给出试样的重量变化及吸热或放热情 况,解释曲线常常是困难的,特别是对多组分试样作的热分析曲线尤其困难。 目前,解释曲线最现实的办法就是把热分析与其它仪器串接或间歇联用,常 用气相色谱仪、质谱仪、红外光谱仪、X光衍射仪等对逸出气体和固体残留 物进行连续的或间断的,在线的或离线的分析,从而推断出反应机理。 三、应用的广泛性 从热分析文摘(TAA)近年的索引可以看出,热分析广 泛应用于无机,有机,高分子化合物,冶金与地质,电器及电子用品,生物 及医学,石油化工,轻工等领域。当然这与应用化学,材料科学,生物及医 学的迅速发展有密切的关系。