传感器与检测技术第二版知识点总结
传感器与检测技术(重点知识点总结)

传感器与检测技术知识总结1:传感器是能感受规定的被检测量并按照一定规律转换成可输出信号的器件或装置。
一、传感器的组成2:传感器一般由敏感元件,转换元件及基本转换电路三部分组成。
①敏感元件是直接感受被测物理量,并以确定关系输出另一物理量的元件(如弹性敏感元件将力,力矩转换为位移或应变输出)。
②转换元件是将敏感元件输出的非电量转换成电路参数(电阻,电感,电容)及电流或电压等电信号。
③基本转换电路是将该电信号转换成便于传输,处理的电量。
二、传感器的分类1、按被测量对象分类(1)内部信息传感器主要检测系统内部的位置,速度,力,力矩,温度以及异常变化。
(2)外部信息传感器主要检测系统的外部环境状态,它有相对应的接触式(触觉传感器、滑动觉传感器、压觉传感器)和非接触式(视觉传感器、超声测距、激光测距)。
2、传感器按工作机理(1)物性型传感器是利用某种性质随被测参数的变化而变化的原理制成的(主要有:光电式传感器、压电式传感器)。
(2)结构型传感器是利用物理学中场的定律和运动定律等构成的(主要有①电感式传感器;②电容式传感器;③光栅式传感器)。
3、按被测物理量分类如位移传感器用于测量位移,温度传感器用于测量温度。
4、按工作原理分类主要是有利于传感器的设计和应用。
5、按传感器能量源分类(1)无源型:不需外加电源。
而是将被测量的相关能量转换成电量输出(主要有:压电式、磁电感应式、热电式、光电式)又称能量转化型;(2)有原型:需要外加电源才能输出电量,又称能量控制型(主要有:电阻式、电容式、电感式、霍尔式)。
6、按输出信号的性质分类(1)开关型(二值型):是“1”和“0”或开(ON)和关(OFF);(2)模拟型:输出是与输入物理量变换相对应的连续变化的电量,其输入/输出可线性,也可非线性;(3)数字型:①计数型:又称脉冲数字型,它可以是任何一种脉冲发生器所发出的脉冲数与输入量成正比;②代码型(又称编码型):输出的信号是数字代码,各码道的状态随输入量变化。
传感器与检测技术(重点知识点总结)[整理]
![传感器与检测技术(重点知识点总结)[整理]](https://img.taocdn.com/s3/m/1245e33a524de518974b7d7d.png)
Knowledge Points知识点汇编传感器与检测技能知识总结1:传感器是能感触规则的被检丈量并依照必定规则转化成可输出信号的器材或设备。
一、传感器的组成2:传感器一般由活络元件,转化元件及根本转化电路三部分组成。
①活络元件是直接感触被测物理量,并以确认联系输出另一物理量的元件(如弹性活络元件将力,力矩转化为位移或应变输出)。
②转化元件是将活络元件输出的非电量转化成电路参数(电阻,电感,电容)及电流或电压等电信号。
③根本转化电路是将该电信号转化成便于传输,处理的电量。
二、传感器的分类1、按被丈量目标分类(1)内部信息传感器首要检测体系内部的方位,速度,力,力矩,温度以及反常改动。
(2)外部信息传感器首要检测体系的外部环境状况,它有相对应的触摸式(触觉传感器、滑动觉传感器、压觉传感器)和非触摸式(视觉传感器、超声测距、激光测距)。
2、传感器按作业机理(1)物性型传感器是运用某种性质随被测参数的改动而改动的原理制成的(首要有:光电式传感器、压电式传感器)。
(2)结构型传感器是运用物理学中场的规则和运动规则等构成的(首要有①电感式传感器;②电容式传感器;③光栅式传感器)。
3、按被测物理量分类如位移传感器用于丈量位移,温度传感器用于丈量温度。
4、按作业原理分类首要是有利于传感器的规划和运用。
5、按传感器能量源分类(1)无源型:不需外加电源。
而是将被丈量的相关能量转化成电量输出(首要有:压电式、磁电感应式、热电式、光电式)又称能量转化型;(2)有原型:需求外加电源才干输出电量,又称能量操控型(首要有:电阻式、电容式、电感式、霍尔式)。
6、按输出信号的性质分类(1)开关型(二值型):是“1”和“0”或开(ON)和关(OFF);(2)模仿型:输出是与输入物理量改换相对应的接连改动的电量,其输入/输出可线性,也可非线性;(3)数字型:①计数型:又称脉冲数字型,它可所以任何一种脉冲发生器所宣布的脉冲数与输入量成正比;②代码型(又称编码型):输出的信号是数字代码,各码道的状况随输入量改动。
传感器与检测技术第2版辐射与波式传感器知识点知识点1

250第10章 辐射与波式传感器(知识点)知识点1 红外传感器10.1.1工作原理(1)红外辐射红外辐射是一种人眼不可见的光线,俗称红外线,因为它是介于可见光中红色光和微波之间的光线。
红外线的波长范围大致在0.76~1000μm ,对应的频率大致在1411Z 410~310H ⨯⨯之间,工程上通常把红外线所占据的波段分成近红外、中红外、远红外和极远红外四个部分。
红外辐射本质上是一种热辐射。
任何物体的温度只要高于绝对零度(-273℃),就会向外部空间以红外线的方式辐射能量。
物体的温度越高,辐射出来的红外线越多,辐射的能量就越强(辐射能正比于温度的4次方)。
另一方面,红外线被物体吸收后将转化成热能。
红外线作为电磁波的一种形式,红外辐射和所有的电磁波一样,是以波的形式在空间直线传播的,具有电磁波的一般特性,如反射、折射、散射、干涉和吸收等。
(2)红外探测器红外传感器是利用红外辐射实现相关物理量测量的一种传感器。
红外传感器的构成比较简单,它一般是由光学系统、红外探测器、信号调节电路和显示单元等几部分组成。
其中,红外探测器是红外传感器的核心器件。
红外探测器种类很多,按探测机理的不同,通常可分为两大类:热探测器和光子探测器。
1)热探测器红外线被物体吸收后将转变为热能。
热探测器正是利用了红外辐射的这一热效应。
当热探测器的敏感元件吸收红外辐射后将引起温度升高,使敏感元件的相关物理参数发生变化,通过对这些物理参数及其变化的测量就可确定探测器所吸收的红外辐射。
热探测器的主要优点:响应波段宽,响应范围为整个红外区域,室温下工作,使用方便。
热探测器主要有四种类型,它们分别是:热敏电阻型、热电阻型、高莱气动型和热释电型。
在这四种类型的探测器中,热释电探测器探测效率最高,频率响应最宽,所以这种传感器发展得比较快,应用范围也最广。
热释电红外探测器是一种检测物体辐射的红外能量的传感器,是根据热释电效应制成的。
所谓热释电效应就是由于温度的变化而产生电荷的现象。
传感器与检测技术(重点知识点总结)

传感器与检测技术知识总结1:传感器是能感受规定的被检测量并按照一定规律转换成可输出信号的器件或装置。
一、传感器的组成2:传感器一般由敏感元件,转换元件及基本转换电路三部分组成。
①敏感元件是直接感受被测物理量,并以确定关系输出另一物理量的元件(如弹性敏感元件将力,力矩转换为位移或应变输出)。
②转换元件是将敏感元件输出的非电量转换成电路参数(电阻,电感,电容)及电流或电压等电信号。
③基本转换电路是将该电信号转换成便于传输,处理的电量。
二、传感器的分类1、按被测量对象分类(1)内部信息传感器主要检测系统内部的位置,速度,力,力矩,温度以及异常变化。
(2)外部信息传感器主要检测系统的外部环境状态,它有相对应的接触式(触觉传感器、滑动觉传感器、压觉传感器)和非接触式(视觉传感器、超声测距、激光测距)。
2、传感器按工作机理(1)物性型传感器是利用某种性质随被测参数的变化而变化的原理制成的(主要有:光电式传感器、压电式传感器)。
(2)结构型传感器是利用物理学中场的定律和运动定律等构成的(主要有①电感式传感器;②电容式传感器;③光栅式传感器)。
3、按被测物理量分类如位移传感器用于测量位移,温度传感器用于测量温度。
4、按工作原理分类主要是有利于传感器的设计和应用。
5、按传感器能量源分类(1)无源型:不需外加电源。
而是将被测量的相关能量转换成电量输出(主要有:压电式、磁电感应式、热电式、光电式)又称能量转化型;(2)有原型:需要外加电源才能输出电量,又称能量控制型(主要有:电阻式、电容式、电感式、霍尔式)。
6、按输出信号的性质分类(1)开关型(二值型):是“1”和“0”或开(ON)和关(OFF);(2)模拟型:输出是与输入物理量变换相对应的连续变化的电量,其输入/输出可线性,也可非线性;(3)数字型:①计数型:又称脉冲数字型,它可以是任何一种脉冲发生器所发出的脉冲数与输入量成正比;②代码型(又称编码型):输出的信号是数字代码,各码道的状态随输入量变化。
传感器与检测技术重点知识点总结

传感器与检测技术重点知识点总结传感器是一种能够感知、收集并转换物理量或化学量等信息的装置。
它广泛应用于各个行业和领域,如工业生产、环境监测、医疗设备、汽车等。
以下是传感器与检测技术的一些重点知识点总结。
1.传感器的基本原理-传感器是通过感知或测量物理量或化学量等信息,并将其转化为可用的电信号输出。
-常见的物理量包括温度、压力、湿度、光照强度、流量等;化学量包括气体浓度、pH值等。
-传感器的工作原理包括电学、热学、光学、化学以及机械等不同的原理。
-传感器的输出信号可以是电压、电流、频率、电阻等形式。
2.传感器的分类-按照感知的物理量或化学量的不同,传感器可以分为温度传感器、压力传感器、光敏传感器、流量传感器等。
-按照测量原理的不同,传感器可以分为电阻传感器、电容传感器、电感传感器、化学传感器等。
-按照输出信号类型的不同,传感器可以分为模拟输出传感器和数字输出传感器。
3.传感器的特性与参数-灵敏度:传感器响应物理量变化的能力,它决定了传感器的测量范围和分辨率。
-精度:传感器测量值与真实值之间的偏差,包括系统误差、随机误差等。
-响应时间:传感器从感知到输出响应所需的时间。
-可靠性:传感器在一定环境条件下长时间稳定工作的能力。
-线性度:传感器输出信号与输入物理量之间的线性关系。
-温度影响:传感器在不同温度下性能的稳定性。
-零点漂移:在长时间使用过程中,传感器输出信号发生的零点偏移。
-跨度漂移:在长时间使用过程中,传感器输出信号的量程偏移。
-电磁兼容性:传感器在干扰条件下的工作能力。
4.传感器的应用领域-工业生产:用于监测和控制工艺过程中的温度、压力、流量等参数,提高生产效率和质量。
-环境监测:用于监测大气污染、水质污染、噪声等环境参数,保护生态平衡和人类健康。
-汽车行业:用于汽车发动机的温度、压力、氧气浓度等参数的监测和控制,提高汽车性能和安全性。
-医疗设备:用于监测病人的体温、心率、血压等生理参数,辅助医疗诊断和治疗。
传感器与检测技术(重点知识点总结)

传感器与检测技术知识总结1:传感器是能感受规定的被检测量并按照一定规律转换成可输出信号的器件或装置。
一、传感器的组成2:传感器一般由敏感元件,转换元件及基本转换电路三部分组成。
①敏感元件是直接感受被测物理量,并以确定关系输出另一物理量的元件(如弹性敏感元件将力,力矩转换为位移或应变输出)。
②转换元件是将敏感元件输出的非电量转换成电路参数(电阻,电感,电容)及电流或电压等电信号。
③基本转换电路是将该电信号转换成便于传输,处理的电量。
二、传感器的分类1、按被测量对象分类(1)内部信息传感器主要检测系统内部的位置,速度,力,力矩,温度以及异常变化。
(2)外部信息传感器主要检测系统的外部环境状态,它有相对应的接触式(触觉传感器、滑动觉传感器、压觉传感器)和非接触式(视觉传感器、超声测距、激光测距)。
2、传感器按工作机理(1)物性型传感器是利用某种性质随被测参数的变化而变化的原理制成的(主要有:光电式传感器、压电式传感器)。
(2)结构型传感器是利用物理学中场的定律和运动定律等构成的(主要有①电感式传感器;②电容式传感器;③光栅式传感器)。
3、按被测物理量分类如位移传感器用于测量位移,温度传感器用于测量温度。
4、按工作原理分类主要是有利于传感器的设计和应用。
5、按传感器能量源分类(1)无源型:不需外加电源。
而是将被测量的相关能量转换成电量输出(主要有:压电式、磁电感应式、热电式、光电式)又称能量转化型;(2)有原型:需要外加电源才能输出电量,又称能量控制型(主要有:电阻式、电容式、电感式、霍尔式)。
6、按输出信号的性质分类(1)开关型(二值型):是“1”和“0”或开(ON)和关(OFF);(2)模拟型:输出是与输入物理量变换相对应的连续变化的电量,其输入/输出可线性,也可非线性;(3)数字型:①计数型:又称脉冲数字型,它可以是任何一种脉冲发生器所发出的脉冲数与输入量成正比;②代码型(又称编码型):输出的信号是数字代码,各码道的状态随输入量变化。
传感器与检测技术第2版胡向东

信号输入 (AC)
信号通道
前置 放大器
有源 滤波
器
AC 放大器
相关器
乘法 器
积分器 (含DC放
大)
输出 (DC)
参考输入 (AC)
参考通道
触发 电路
倍频 电路
相移 电路
方波 驱动
15.3.2 同步积累法
同步积累法是基于信号的稳定性和噪声的随机 性,当信号多次重复时,由于信号周期性的重 复,噪声却不具有这个特性,这样,每个周期 的信号受到的干扰不同,在接收端就会收到不 同畸变的信号,对畸变信号进行多次对照就可 识别出信号的原形。
Vi t Vs t Vs sinwt s Vr t Vr sinwt r
Vo
t
KV T
T
0 Vs
t Vr
t dt
KV 2
VsVr
cos s
r
②输入只有噪声、没有信号时
Vi t Vn t tsinwt n tVotKFra bibliotek TT 0
Vn
t
Vr
t
dt
KVVr 2T
T
0
t
cos n t r cos 2t n t r
噪声是一种连续型随机变量,在不同时 刻可能出现不同的噪声值
噪声的概率分布
Pn1 n n2
n2 p n dn
n1
E
n
np
n
dn
Dn
n
E n2
p
n dn
E
n2
E2
n
E n n lim 1 T nt dt T 2T T
E
n2
n2
lim
T
1 2T
《传感器与检测技术》知识点总结

《传感器与检测技术》(传感器部分)知识点总结第一章 概述1.传感器的定义与组成(1)定义:能感受被测量并按照一定规律转换成可用输出信号的器件或装置。
(2)共性:利用物理定律或物质的物理、化学、生物等特性,将非电量转换成电量。
(3)功能:检测和转换。
(4)组成:5.开展基础理论研究寻找新原理6.传感器的集成化第二章 传感器的基本特性1.线性度(传感器的静态特性之一)(1)定义:传感器的输入、输出间成线性关系的程度。
(2)非线性特性的线性化处理:Y FSy Y FSy Y FSyo(a )切线或割线X mxo(b )过零旋转X mxo(c )端点平移X mx(3)非线性误差:γL = ± Δ L ma xY FS式中,γL ——非线性误差(线性度);ΔL m a x ——输出平均值与拟合直线间的最大偏差绝对 值;Y F S ——满量程输出。
2.灵敏度(传感器的静态特性之二)传感器在稳态信号作用下输出量变化对输入量变化的比值。
0 S n = y x xS n = dy dx (a) 线性测量系统(b) 非线性测量系统 0S n y = f x ) dy dx = C x 0 S n y = f ( )dy x 0 S n y = f (x ) dy dx(c) 灵敏度为常数(d) 灵敏度随输入增加而增加 (e) 灵敏度随输入增加而减小3.分辨率/分辨力(传感器的静态特性之三)分辨率是指传感器能够感知或检测到的最小输入信号增量。
分辨率可以用增量的绝对值 或增量与满量程的百分比来表示。
4.迟滞/回程误差(传感器的静态特性之四)(1)定义:在相同测量条件下,对应于同一大小的输入信号,传感器正、反行程的输出信 号大小不相等的现象。
开发新材料 采用新工艺 探索新功能具有同样功能的传感器集成化,即将同一类型的单个传感元件用集成工艺在同一平面上 排列起来,形成一维的线性传感器,从而使一个点的测量变成对一个面和空间的测量。
(完整版)传感器与检测技术第二版知识点总结

传感器知识点一、电阻式传感器1) 电阻式传感器的原理:将被测量转化为传感器电阻值的变化,并加上测量电路。
2) 主要的种类:电位器式、应变式、热电阻、热敏电阻 ● 应变电阻式传感器1) 应变:在外部作用力下发生形变的现象。
2) 应变电阻式传感器:利用电阻应变片将应变转化为电阻值的变化a. 组成:弹性元件+电阻应变片b. 主要测量对象:力、力矩、压力、加速度、重量。
c. 原理:作用力使弹性元件形变发生应变或位移应变敏感元件电阻值变化通过测量电路变成电压等点的输出。
3) 电阻值:ALR ρ=(电阻率、长度、截面积)。
4) 应力与应变的关系:εσE =(被测试件的应力=被测试件的材料弹性模量*轴向应变)5) 应力与力和受力面积的关系:(面积)(力)(应力)A F =σ应注意的问题:a. R3=R4;b. R1与R2应有相同的温度系数、线膨胀系数、应变灵敏度、初值;c. 补偿片的材料一样,个参数相同;d. 工作环境一样;二、电感式传感器1) 电感式传感器的原理:将输入物理量的变化转化为线圈自感系数L 或互感系数M的变化。
2) 种类:变磁阻式、变压器式、电涡流式。
3) 主要测量物理量:位移、振动、压力、流量、比重。
● 变磁阻电感式传感器1) 原理:衔铁移动导致气隙变化导致电感量变化,从而得知位移量的大小方向。
2) 自感系数公式:)(2002气隙厚度(截面积)(磁导率)δμA L N=。
3) 种类:变气隙厚度、变气隙面积4) 变磁阻电感式传感器的灵敏度取决于工作使得当前厚度。
5) 测量电路:交流电桥、变压器式交变电桥、谐振式测量电桥。
P56 6)应用:变气隙厚度电感式压力传感器(位移导致气隙变化导致自感系数变化导致电流变化)● 差动变压器电感式传感器1) 原理:把非电量的变化转化为互感量的变化。
2) 种类:变隙式、变面积式、螺线管式。
3) 测量电路:差动整流电路、相敏捡波电路。
● 电涡流电感式传感器1) 电涡流效应:块状金属导体置于变化的磁场中或在磁场中做切割磁感线的运动,磁通变化,产生电动势,电动势将在导体表面形成闭合的电流回路。
传感器与检测技术知识点概括

1、传感器是能感受被测量并按照一定规律转换成可用输出信号的器件或装置。
2、传感器通常由直接响应于被测量的敏感元件、产生可用信号输出的转换元件、以及相应的信号调节转换电路组成。
3、要实现不失真测量,检测系统的幅频特性应为常数4、传感器静态特性是指传感器在被测量的各个值处于稳定状态时,输出量和输入量之间的关系称为传感器的静态特性。
5,测量系统的静态特性指标主要有线性度、迟滞、重复性、分辨率、灵敏度、漂移、稳定性、温度稳定性、各种抗干扰稳定性等。
(请写出反映传感器的五种性能指标,及写出三种解释传感器指标?精度、分辨率、灵敏度、线性度、迟滞。
反映传感器准确度的指标是精度,反映传感器灵敏度的指标是灵敏度,反映传感器稳定性的指标是迟滞)6,传感器对随时间变化的输入量的响应特性叫传感器动态性。
7,动态特性中对一阶传感器主要技术指标有时间常数。
动态特性中对二阶传感器主要技术指标有固有频率、阻尼比。
8,从时域(延迟时间,上升时间,响应时间,超调量)和频域(幅频特性,相频特性)两个方面分别采用瞬态响应法和频率响应法来分析动态特性。
9,幅频特性是指传递函数的幅值随被测频率的变化规律,相频特性是指传递函数的相角随被测频率的变化规律。
传感器中超调量是指超过稳态值的最大值□A (过冲)与稳态值之比的百分数。
电阻式传感器10,金属材料的应变效应是指金属材料在受到外力作用时,产生机械变形,导致其阻值发生变化的现象叫金属材料的应变效应。
11,半导体材料的压阻效应是半导体材料在受到应力作用后,其电阻率发生明显变化,这种现象称为压阻效应。
12,金属丝应变片和半导体应变片比较其相同点是它们都是在外界力作用下产生机械变形,从而导致材料的电阻发生变化。
13,金属丝应变片和半导体应变片比较其不同点是金属材料的应变效应以机械形变为主,材料的电阻率相对变化为辅;而半导体材料则正好相反,其应变效应以机械形变导致的电阻率的相对变化为主,而机械形变为辅。
传感器与检测技术(知识点总结)

传感器与检测技术知识总结第一章概述1:传感器是能感受规定的被检测量并按照一定规律转换成可输出信号的器件或装置.一、传感器的组成2:传感器一般由敏感元件,转换元件及基本转换电路三部分组成。
①敏感元件是直接感受被测物理量,并以确定关系输出另一物理量的元件(如弹性敏感元件将力,力矩转换为位移或应变输出)。
②转换元件是将敏感元件输出的非电量转换成电路参数(电阻,电感,电容)及电流或电压等电信号。
③基本转换电路是将该电信号转换成便于传输,处理的电量.二、传感器的分类1、按被测量对象分类(1)内部信息传感器主要检测系统内部的位置,速度,力,力矩,温度以及异常变化.(2)外部信息传感器主要检测系统的外部环境状态,它有相对应的接触式(触觉传感器、滑动觉传感器、压觉传感器)和非接触式(视觉传感器、超声测距、激光测距)。
2、传感器按工作机理(1)物性型传感器是利用某种性质随被测参数的变化而变化的原理制成的(主要有:光电式传感器、压电式传感器).(2)结构型传感器是利用物理学中场的定律和运动定律等构成的(主要有①电感式传感器;②电容式传感器;③光栅式传感器)。
3、按被测物理量分类如位移传感器用于测量位移,温度传感器用于测量温度.4、按工作原理分类主要是有利于传感器的设计和应用。
5、按传感器能量源分类(1)无源型:不需外加电源.而是将被测量的相关能量转换成电量输出(主要有:压电式、磁电感应式、热电式、光电式)又称能量转化型;(2)有原型:需要外加电源才能输出电量,又称能量控制型(主要有:电阻式、电容式、电感式、霍尔式).6、按输出信号的性质分类(1)开关型(二值型):是“1”和“0”或开(ON)和关(OFF);(2)模拟型:输出是与输入物理量变换相对应的连续变化的电量,其输入/输出可线性,也可非线性;(3)数字型:①计数型:又称脉冲数字型,它可以是任何一种脉冲发生器所发出的脉冲数与输入量成正比;②代码型(又称编码型):输出的信号是数字代码,各码道的状态随输入量变化。
传感器与检测技术(重点知识点总结)

传感器与检测技术知识总结1:传感器是能感受规定的被检测量并按照一定规律转换成可输出信号的器件或装置。
一、传感器的组成2:传感器一般由敏感元件,转换元件及基本转换电路三部分组成。
①敏感元件是直接感受被测物理量,并以确定关系输出另一物理量的元件(如弹性敏感元件将力,力矩转换为位移或应变输出)。
②转换元件是将敏感元件输出的非电量转换成电路参数(电阻,电感,电容)及电流或电压等电信号。
③基本转换电路是将该电信号转换成便于传输,处理的电量。
二、传感器的分类1、按被测量对象分类(1)内部信息传感器主要检测系统内部的位置,速度,力,力矩,温度以及异常变化。
(2)外部信息传感器主要检测系统的外部环境状态,它有相对应的接触式(触觉传感器、滑动觉传感器、压觉传感器)和非接触式(视觉传感器、超声测距、激光测距)。
2、传感器按工作机理(1)物性型传感器是利用某种性质随被测参数的变化而变化的原理制成的(主要有:光电式传感器、压电式传感器)。
(2)结构型传感器是利用物理学中场的定律和运动定律等构成的(主要有①电感式传感器;②电容式传感器;③光栅式传感器)。
3、按被测物理量分类如位移传感器用于测量位移,温度传感器用于测量温度。
4、按工作原理分类主要是有利于传感器的设计和应用。
5、按传感器能量源分类(1)无源型:不需外加电源。
而是将被测量的相关能量转换成电量输出(主要有:压电式、磁电感应式、热电式、光电式)又称能量转化型;(2)有原型:需要外加电源才能输出电量,又称能量控制型(主要有:电阻式、电容式、电感式、霍尔式)。
6、按输出信号的性质分类(1)开关型(二值型):是“1”和“0”或开(ON)和关(OFF);(2)模拟型:输出是与输入物理量变换相对应的连续变化的电量,其输入/输出可线性,也可非线性;(3)数字型:①计数型:又称脉冲数字型,它可以是任何一种脉冲发生器所发出的脉冲数与输入量成正比;②代码型(又称编码型):输出的信号是数字代码,各码道的状态随输入量变化。
《传感器与检测技术》(第二版)第二章

1.应变(ε) 在材料力学中,=l/l 称为电阻丝的轴向 应变,也称纵向应变,是量纲为1的数。 通 常 很 小 , 常 用 10-6 表 示 之 。 例 如 , 当 为 0.000001 时 , 在 工 程 中 常 表 示 为 110-6 或 m/m。在应变测量中,也常将之称为微应变 ( )。 对金属材料而言,当它受力之后所产生 的轴向应变最好不要大于110-3,即 1000m/m,否则有可能超过材料的极限强度 而导致断裂。
精或丙酮的纱布片或脱脂 棉球擦洗。
2013年7月21日
衢州学院
传感器与检测技术(第二版)
湖州职业技术学院机电分院
2.贴片:在应 变片的表面和处理 过的粘贴表面上, 各涂一层均匀的粘 贴胶 ,用镊子将应 变片放上去,并调 好位置,然后盖上 塑料薄膜,用手指 揉和滚压,排出下 面的气泡 。
2013年7月21日
何将R /R转换为输出电压Uo的。
2013年7月21日
衢州学院
传感器与检测技术(第二版)
湖州职业技术学院机电分院
2013年7月21日
衢州学院
传感器与检测技术(第二版)
电桥平衡的条件 :R1/R2=R4/R3
调节RP,最终可以 使R1/R2=R4/R3( R1、
湖州职业技术学院机电分院
R2是R1、R2并联RP后的
双臂电桥
R1、 R2为应变 片, R3、R4为固定电 阻 。应变片R1 、R2 感 受到的应变1~2以及 产生的电阻增量正负 号相间,可以使输出 电压Uo成倍地增大。
湖州职业技术学院机电分院
2013年7月21日
衢州学院
传感器与检测技术(第二版)
四臂全桥
全桥的四个桥臂都为应变片, 如果设法使试件受力后,应变
传感器及检测技术(重点知识点总结)

传感器与检测技术知识总结1:传感器是能感受规定的被检测量并按照一定规律转换成可输出信号的器件或装置。
一、传感器的组成2:传感器一般由敏感元件,转换元件及基本转换电路三部分组成。
①敏感元件是直接感受被测物理量,并以确定关系输出另一物理量的元件(如弹性敏感元件将力,力矩转换为位移或应变输出)。
②转换元件是将敏感元件输出的非电量转换成电路参数(电阻,电感,电容)及电流或电压等电信号。
③基本转换电路是将该电信号转换成便于传输,处理的电量。
二、传感器的分类1、按被测量对象分类(1)内部信息传感器主要检测系统内部的位置,速度,力,力矩,温度以及异常变化。
(2)外部信息传感器主要检测系统的外部环境状态,它有相对应的接触式(触觉传感器、滑动觉传感器、压觉传感器)和非接触式(视觉传感器、超声测距、激光测距)。
2、传感器按工作机理(1)物性型传感器是利用某种性质随被测参数的变化而变化的原理制成的(主要有:光电式传感器、压电式传感器)。
(2)结构型传感器是利用物理学中场的定律和运动定律等构成的(主要有①电感式传感器;②电容式传感器;③光栅式传感器)。
3、按被测物理量分类如位移传感器用于测量位移,温度传感器用于测量温度。
4、按工作原理分类主要是有利于传感器的设计和应用。
5、按传感器能量源分类(1)无源型:不需外加电源。
而是将被测量的相关能量转换成电量输出(主要有:压电式、磁电感应式、热电式、光电式)又称能量转化型;(2)有原型:需要外加电源才能输出电量,又称能量控制型(主要有:电阻式、电容式、电感式、霍尔式)。
6、按输出信号的性质分类(1)开关型(二值型):是“1”和“0”或开(ON)和关(OFF);(2)模拟型:输出是与输入物理量变换相对应的连续变化的电量,其输入/输出可线性,也可非线性;(3)数字型:①计数型:又称脉冲数字型,它可以是任何一种脉冲发生器所发出的脉冲数与输入量成正比;②代码型(又称编码型):输出的信号是数字代码,各码道的状态随输入量变化。
传感器与检测技术笔记

传感器与检测技术2202第一章:概述传感器的定义:传感器是能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。
第一节:机电一体化常用传感器一传感器的组成1敏感元件:一直感受被测物力量并以确定关系输出另一物理量元件2转换元件:将敏感元件输出的非电量转换成电路参数3基本转换电路:将电信号转换成便于输出,处理的电量传感器的组成原理:被测量------敏感元件---转换元件---基本转换电路----电量二传感器的分类1按被测量对象分类①内部信息传感器:主要检测系统内部的位置,速度,力,力矩,温度以及异常变化②外部信息传感器:主要检测系统外部环境,它与人体五种器官相对应的接触式和非接触式2按工作机理分类①物性型传感器:利用某种物质的某种性质随被测参数的变换而变化的激励制成的如光电式传感器,压电式传感器等②结构型传感器:利用物理学中厂的定律和运动定律等构成的,其被测参数变化引起传感器的结构变换,从而使输出电量变化,电感式传感器,电容式传感器,关山是传感器都是这种类型。
3按照被测物理量分类表明了传感器的用途,便于使用者选择。
4 按照工作机理5按照传感器能量源分类①无源型(能量转换型):不需要外加电源,而是将被测相关两转换成电量输出如压电式磁电感应式,电热式,光电式等传感器②有源型(能量控制型):需要外加电源这类传感器有电阻式,电容式,电感式,霍尔式等,电阻式有光敏电阻,热敏电阻,湿敏电阻等形式6 按照输出信号的性质分类①开关型(二值型):接触型(微动开关,行程开关,接触开关)非接触型(光电开关,接触开关)模拟型:电阻型(电位器,电阻应变片)电压电流型(热电偶,光电电池)传感器电感,电容型(电感,电容式位置传感器)数字型:计数型代码型三传感器的特性及主要性能指标传感器的特性主要是指输出与输入之间的关系,有静态特性和动态特性1.静态特性:当传感器的输入量为常数或随时间作缓慢变化时,传感器的输出与输入之间的关系2.动态特性:传感器的输出量对于随时间变化的输入量的响应特性3.传感器的性能指标(P5牢记)传感器的性能要求①高精度,低成本②高灵敏度③工作可靠④稳定性好⑤抗干扰能力强⑥动态特性好⑦结构简单,小巧第二节传感检测技术的地位和作用第三节重点:传感器及检测系统基本特性的评价值白哦与选择则原则一、测量范围及量程①测量范围:传感器在允许误差限内,其被测量值的范围②量程:传感器在测量范围内的最高值与最低值之差③过载能力:在不导致引起传感器规定性能直白哦永久改变的条件下传感器允许超过其测量范围的能力④过载能力通常用超值除以量程二灵敏度①灵敏度:传感器的输出量的变化量与引起变化的输入量的变化量之比②总灵敏度:k=k1*k2.....kn③灵敏度误差:rs= k0/k0④灵敏度表示传感器或者传感器检测系统对被测物理量变化的反应能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
、电阻式传感器
1) 电阻式传感器的 原理:将被测量转化为传感器
电阻值的变化,并加上测量电路。
2) 主要的种类:电位器式、 应变式、热电阻、热敏电阻 应变电阻式传感器
1) 应变:在外部作用力下发生形变的现象。
2) 应变电阻式传感器:利用电阻应变片将应变转化为电阻值的变化
a. 组成:弹性元件+电阻应变片
b. 主要测量对象:力、力矩、压力、加速度、重量。
c.
原理:作用力使弹性元件形变发生应变或位移应变敏感元件电阻值变化通过测量电路变成 电压等点的输岀。
3) 电阻值:R * (电阻率、长度、截面积 )。
4) 应力与应变的关系:
E (被测试件的应力=被测试件的材料弹性模量 *轴向应变)
应注意的问题:
a. R3=R4;
b. R1与R2
应有相同的温度系数、线膨胀系数、应变灵敏度、初值; c. 补偿片的材料一样,个参数相同; d.
工作环境一样;
、电感式传感器
1) 电感式传感器的 原理:将输入物理量的变化转化为线圈 自感系数L 或互感系数 M 的变化 2) 种类:变磁阻式、变压器式、电涡流式。
器
知 识
占 八、、
5) 应力与力和受力面积的关系:
(应力)
F (力) A (面
3) 主要测量物理量:位移、振动、压力、流量、比重 变磁阻电感式传感器 原理:衔铁移动导致气隙变化导致 电感量变化,从而得知位移量的大小方向。
2 0(磁导率)
A o (截面积) 自感系数公式:L N 2 (气隙厚度)
3) 种类:变气隙厚度、变气隙面积
4) 变磁阻电感式传感器的灵敏度取决于工作使得
当前厚度。
5) 测量电路:交流电桥、变压器式交变电桥、谐振式测量电桥。
P56
6)
应用:变气隙厚度电感式压力传感器(位移导致气隙变化导致自感系数变化导致电流变化) 差动变压器电感
式传感器 1) 原理:把非电量的变化转化为互感量的变化。
2) 种类:变隙式、变面积式、螺线管式。
3)
测量电路:差动整流电路、相敏捡波电路。
电涡流电感式传感器 1)
电涡流效应:块状金属导体置于变化的磁场中或在磁场中做切割磁感线的运动,磁通变化,产
生电动势,电动势将在导体表面形成闭合的电流回路。
Z F (
,,r ,f ,X)
等效阻抗
(电阻率、磁导率、尺寸 、励磁电流的频率、距 离)
2) 趋肤效应:电涡流只集中在导体表面的现象。
3) 原理:产生的感应电流产生新的交变磁场来反抗原磁场,式传感器的等效阻抗变化 4) 测量电路:调频式测量电路、调幅式测量电路。
5) 测量对象:位移、厚度、表面温度、速度、应力、材料损伤、振幅、转速。
6)
应
用:
1) 原理:将非电量的变化转化为电容量的变化。
2) 特点:结构简单、体积小、分辨率高、动态响应好、温度稳定性好、电容量小、负载能力差、 易受外界环境的影响。
3)
测量对象:位移、振动、角度、加速度、压力,差压,液面、成分含量。
结构分类:平板和圆筒电容式传感器
3) 测量电路:调频电路、运算放大器、变压器是交流电桥、二极管双 T 型交流电路、脉冲宽度调
制电路。
1)
2) 1) 公式:C
0 r
A
d
2)
平板式电容器可分为三类:变极板覆盖面积的
间距离的变极距型。
变面积型,变介质介电常数的 变介质型、变极板
四、压电式传感器(有源)
1) 正压电效应:对某些电介质沿一定方向加外力使之形变,其内部产生极化而在表面产生电荷聚
集的现象。
机械能转化为电能
2) 逆压电效应:在片状压电材料的两段加交电,压电片发生机械振动。
说明压电效应可逆。
3) 特点:结构简单、体积小、重量轻、工作频带宽、灵敏度高、信噪比高、工作可靠、测量范围广。
4) 测量物理量:加速度、位移、压力、温度。
5) 压电材料:石英晶体、压电陶瓷、压电高分子材料。
6) 压电陶瓷具有压电效应,需要有外界电场和压力的共同作用。
7) 压电高分子材料属于有机分子半结晶和结晶聚合物。
8) 压电式传感器可以输岀电压信号和电荷信号,因此前置放大器有两种:电荷/电压放大器。
9) 压电参数:压电系数,弹性系数,介电系数,机电耦合系数,电阻,居里点
10) 压电元件的连接
11) 应用:压电式加速度传感器,压电式交通检测。
五、磁敏式传感器
1) 原理:对磁场参数(磁感应强度B磁通巾)敏感、通过磁电作用将非电量转化为电信号。
2) 磁通作用分类:电磁感应、霍尔效应
3) 磁敏式传感器分类:电感应式传感器、霍尔式传感器。
电感应式传感器(有源)
1) 原理:利用导体和磁场发生相对运动而在导体两端输岀感应电动势。
2) 特点:电路简单、性能稳定、输岀阻抗小、具有一定的响应频率( 10〜1k)
3) 测量物理量:转速、振动、位移、扭矩
4) 公式:E NBLv 和E NBS
5) 式中B、L、S N为确定量。
6) 电感应式传感器种类:恒磁通式「动圈式、变磁通式.■变磁阻式
{动铁式J变气隙式(典型应用
转速计)
测量齿轮的凸凹导致气隙大小发生变化导致磁阻的变化,每转过一个齿磁阻变化一
次,变化频率=被测转速*齿数。
(不宜测高速) 齿凸相对气隙最小,磁通最大。
5) 霍尔元件的误差:零位误差不等位电动势:加电阻(对称、不对称)
寄生直流电动势:尽量欧姆接触
温度误差
六、热电式传感器
1) 热电偶是将温度变化转化为电动势的变化;热电阻和热敏电阻是将温度的变化转化为电阻的变
化。
热电偶(有源)
1) 100〜1300摄氏度,不同导体的自由电子的扩散速度不同。
2) 热电势来源于:一、接触电动势;二、单一导体的温差电动势
3) 热电偶的基本定律:
7) 测量两点温差:应确保冷端温度相同。
E T E AB(t1,t0) E AB(t2,t0)(反极性串联)
8) 测量多点:同极性串联(一个断开就会停止)或并联(一个烧坏很难看岀,不会停止)
热电阻
1) R0 = 10 和R0 = 100 零温度下的电阻值:Pt10和Pt100
2) 热电阻的测量电路:两线制、三线制、四线制
热敏电阻
1) 利用半导体的电阻值随温度显着变化。
2) 不要使用大电流。
3) 应用:温度控制,管道流量测量。
七、光电式传感器
1) 原理:利用光电器将光电号转化为电信号。
2) 测量物理量:温度、压力、位移、速度、加速度
3) 种类:
a. 光电效应传感器
b. 光照射到物体表面上使物体发射电子或电导率发生变化或产生电动势。
c. 红外热释电探测器
d. 对光谱中长波敏感的器件
e. 固体图像传感器
4) 外光电效应:电子溢岀物体表面的现象。
5) 光电管、光电倍增管
6) 内光电效应:光电子只在物体内运动,而不溢岀的现象。
7) 基于光电伏特效应:光电池、光敏二极管、光敏晶体管
8) 基于光电导效应:光敏电阻
9) 光电耦合器:将发光元件和光敏元件合并使用。
以光为媒介。
a. 应用:电路隔离、电平转换、噪声抑制、整形滤波
b. 发光元件和光敏元件在光谱上要最佳匹配。
7) 光栅:右移,莫尔条纹上移;左移,莫尔条纹下移。
8) 计量光栅:可以用作开光量。
9) 细分原理:目的提高分辨率。