求函数最值常用的方法及经典例题讲解
有关函数最值问题的十二种解法
本稿件适合高三高考复习用有关函数最值问题 的十二种解题方法与策略贵州省龙里中学高级教师 洪其强(551200)一、消元法:在已知条件等式下,求某些二元函数(,)f x y 的最值时,可利用条件式消去一个参量,从而将二元函数(,)f x y 化为在给定区间上求一元函数的最值问题。
例1、已知x 、y R ∈且223260x y x +-=,求222x y +的值域。
解:由223260x y x +-=得222360y x x =-+≥,即02x ≤≤。
2222392262()22x y x x x +=-+=--+∴当32x =时,222xy +取得最大值92;当0x =时,222x y +取得最小值0。
即222x y +的值域为90,2⎡⎤⎢⎥⎣⎦二、判别式法:对于某些特殊形式的函数的最值问题,经过适当变形后,使函数()f x 出现在一个有实根的一元二次方程的系数中,然后利用一元二次方程有实根的充要条件0∆≥来求出()f x 的最值。
例2、求函数22()1xf x x x =++的最值。
解:由22()1xf x x x =++得 []2()()2()0f x x f x x f x +-+=,因为x R ∈,所以0∆≥,即[]22()24()0f x f x --≥,解得22()3f x -≤≤。
因此()f x 的最大值是23,最小值是-2。
三、配方法:对于涉及到二次函数的最值问题,常用配方法求解。
例3、求2()234x x f x +=-在区间[]1,0-内的最值。
解:配方得 2224()2343(2)33x x x f x +=-=--+[]1,0x ∈- ,所以 1212x ≤≤,从而当223x =即22log 3x =时,()f x 取得最大值43;当21x =即0x =时()f x 取得最小值1。
四、辅助角公式:如果函数经过适当变形化为()sin cos f x a x b x =+(a、b均为常数),则可用辅助角公式sin cos arctan )ba xb x x a+=+来求函数()f x 的最值。
求函数最值问题常用的10种方法
较大小,确定最值.
解析 因为f′(x)=3x2-3,所以令f′(x)=0,得x=
-1(舍正).又f(-3)=-17,f(-1)=3,f(0)=1,
比较得,f(x)的最大值为3,最小值为-17.故填3, -17. 点评 (1)利用导数法求函数最值的三个步骤:第一, 求函数在(a,b)内的极值;第二,求函数在端点的函 数值f(a)、f(b);第三,比较上述极值与端点函数值 的大小,即得函数的最值.(2)函数的最大值及最小 值点必在以下各点中取得:导数为零的点,导数不存 在的点及其端点.
三、换元法 换元法是指通过引入一个或几个新的变量,来替换 原来的某些变量(或代数式),以便使问题得以解决 的一种数学方法.在学习中,常常使用的换元法有 两类,即代数换元和三角换元,我们可以根据具体 问题及题目形式去灵活选择换元的方法,以便将复 杂的函数最值问题转化为简单函数的最值问题,从 而求出原函数的最值.如可用三角代换解决形如a2 +b2=1及部分根式函数形式的最值问题.
【例 4】设 x,y,z 为正实数,x-2y+3z=0,则 y 2 xz
的最小值为________. 分析 先利用条件将三元函数化为二元函数,再利用基 本不等式求得最值.
解析 因为x-2y+3z=0,
x+3z
y2 x2+9z2+6xz
所以y=
2
,所以 = xz
4xz
.
y2 6xz+6xz
又x,z为正实数,所以由基本不等式,得 ≥
∴Δ=(3y+3)2-4(y-1)(4y4)≥0,11
解得7≤y≤7(y≠1).综上得ymax=7,ymin=7.
点评 判别式法的应用,对转化的(y-1)x2+(3y+3)x +4y-4=0来说,应该满足二次项系数不为0,对二次 项系数为0时,要另行讨论,对本题若y-1=0,即 y=1,有(3+3)x+4-4=0,所以x=0.一般来说, 利用判别式法求函数的最值,即根据g(y)x2+h(y)x+
例说求函数的最大值和最小值的方法
例说求函数的最大值和最小值的方法例1.设x 是正实数,求函数xx x y 32++=的最小值。
解:先估计y 的下界。
55)1(3)1(5)21(3)12(222≥+-+-=+-+++-=xx x x x x x y 又当x =1时,y =5,所以y 的最小值为5。
说明 本题是利用“配方法”先求出y 的下界,然后再“举例”说明这个下界是可以限到的。
“举例”是必不可少的,否则就不一定对了。
例如,本题我们也可以这样估计:77)1(3)1(7)21(3)12(222-≥-++-=-++++-=xx x x x x x y 但y 是取不到-7的。
即-7不能作为y 的最小值。
例2. 求函数1223222++--=x x x x y 的最大值和最小值。
解 去分母、整理得:(2y -1)x 2+2(y +1)x +(y +3)=0. 当21≠y 时,这是一个关于x 的二次方程,因为x 、y 均为实数,所以 ∆=[2(y +1)]2-4(2y -1)(y +3)≥0, y 2+3y --4≤0,所以 -4≤y ≤1 又当31-=x 时,y =-4;x =-2时,y =1.所以y min =-4,y max =1.说明 本题求是最值的方法叫做判别式法。
例3.求函数152++-=x x y ,x ∈[0,1]的最大值 解:设]2,1[1∈=+t t x ,则x =t 2-1y = -2(t 2-1)+5t = -2t 2+5t +1原函数当t =169,45=x 即时取最大值833 例4求函数223,5212≤≤+--=x x x x y 的最小值和最大值 解:令x -1=t (121≤≤t ) 则t t t t y 4142+=+=y min =51,172max =y 例5.已知实数x ,y 满足1≤x 2+y 2≤4,求f (x )=x 2+xy +y 2的最小值和最大值 解:∵)(2122y x xy +≤ ∴6)(23),(2222≤+≤++=y x xy y x y x f 又当2==y x 时f (x ,y )=6,故f (x ,y )max =6 又因为)(2122y x xy +-≥∴21)(21),(2222≥+≥++=y x xy y x y x f 又当22,22-==y x 时f (x ,y )=21,故f (x ,y )min =21 例6.求函数2224)1(5+++=x x x y 的最大值和最小值 解:原函数即111)1(5222++-+=x x y 令112+=x t (0<t ≤1) 则y =5t 2-t +1 ∴当x =±3时,函数有最小值2019,当x =0时,函数取最大值5 例7.求函数|]211[1|)(+-=x x x f 的最大值 解:设α=+=+}211{,]211[x n x ,则 f (x )=|21|1|-=-αn x 由于 0≤α<1,故f (x )≤21,又当x =122-k (k 为整数)时f (x )= 21, 故f (x )max =21 例8.求函数113632424+-++--=x x x x x y 的最大值 解:原函数即222222)1()0()2()3()(-+---+-=x x x x x f在直角坐标系中,设点P(x ,x 2),A(3,2),B(0,1),则f (x )=|PA|-|PB|≤|AB|=10 又当6137+-=x 时,f (x )= 10 故f max (x ) =10 例9.设a 是实数,求二次函数y =x 2-4ax +5a 2-3a 的最小值m ,当0≤a 2-4a -2≤10中变动时,求m 的最大值解:y =x 2-4ax +5a 2-3a =(x -2a )2+a 2-3a由0≤a 2-4a -2≤10解得:622-≤≤-a 或62+≤a ≤6 故当a =6时,m 取最大值18例10.已知函数f (x )=log 2(x +1),并且当点(x ,y )在y =f (x )的图象上运动时,点)2,3(y x 在y =g (x )的图象上运动,求函数p (x )=g (x )-f (x )的最大值。
高中数学解题方法系列:函数求最值问题的7种方法
高中数学解题方法系列:函数求最值问题的7种方法最值问题遍及代数、三角、立体几何及解析几何各科之中,在生产实践中也有广泛的应用。
最值问题长期是各类考试的热点,求函数最值常用方法有:一、配方法配方法是求二次函数最值或可转化为二次函数的函数最值的基本方法,形如])()([)(2c x bf x f a x F ++=的函数最值问题,均可使用配方法。
例1、已知]3,1[,log 2)(3∈+=x x f x,求函数)()]([22x f x f y +=最值。
解:由]3,1[,log 2)(3∈+=x x f x,得222222log2)log 2()()]([x x x f x f y +++=+=3)3(log 6log 6)(log 23323-+=++=xx x 。
又函数f(x)定义域[1,3],所以函数)()]([22x f x f y +=定义域为{31312≤≤≤≤x x ,解得31≤≤x ,所以]21,0[log 3∈x。
由二次函数单调性得,4376≤≤y ,所求函数最大值为374,最小值为6。
评注:利用二次函数的性质求最值要注意到自变量的取值范围,和对称轴与区间的相对位置关系。
二、判别式法主要适用于可化为关于x 的二次方程的函数,把函数转化成关于x 的一元二次方程,通过方程F(x,y)=0有实根,判别式0≥∆,当x 的范围是R 时,仅考虑即可,当X 的范围非R 时,还需要结合图形另解不等式。
特别的,形如22221121c x b x a c x b x a y ++++=22,(a a 不同是为0)分子、分母无公因式的函数最值常用此法。
例2、求下列函数最值(1)432+=x x y ;(2)3274222++-+=x x x x y 。
解;(1)由432+=x x y ,得0432=+-y x yx 。
当y=0时,x=0;当0≠y 时,由0≥∆得4343≤≤-y ,故原函数最小值为34-,最大值为34。
巧用数形结合思想求函数最值
巧用数形结合思想求函数最值六招破解函数最值及巧用数形结合求参数问题一、六招破解函数最值问题函数最值问题一直是高考的一个重要的热点问题,在高考中占有极其重要的地位.为了让大家能够更加系统、全面地掌握函数最值问题的解决方法,下面就其问题的常用解法,分类浅析如下:1.配方法配方法是求二次函数最值的基本方法,如函数F(x)=6z/(x)2+/7/(x)+c(qHO)的最值问题,可以考虑用配方法.[例 1]已知函数 =(eA—a)2+(e A—tz)2(tzeR, aHO),求函数 y 的最小值.2.换元法换元法是指通过引入一个或几个新的变量,来替换原来的某些变量(或代数式),以便使问题得以解决的一种数学方法.在学习中,常常使用的换元法有两类,即代数换元和-:角换元,我们可以根据具体问题及题目形式灵活选择换元的方法,以便将复杂的函数最值问题转化为简单的函数最值问题.如可用三角换元解决形如/+/=1及部分根式函数形式的最值问题.3・不等式法利用不等式法求解函数最值,主要是指运用基本不等式及其变形公式來解决函数最值问题的一-种方法.常常使用的基本不等式有以下几种:aIb#a|b。
er2ab(a, b 为实数),° ^y[ab(a0, b20), abW。
J 些艺(a, b为实数).14[例3]函数fix) =-+t^(O<x< 1)的最小值为・兀1X4.函数单调性法先确定函数在给定区间上的单调性,然后依据单调性求函数的最值.这种利用函数单调性求最值的方法就是函数单调性法.这种方法在高考屮是必考的,多在解答题中的某一问出现.[例4]已知函数»=xln x,则函数心)在也r+2](r>0)上的最小值为.5.导数法设函数兀Q在区间[a, b]上连续,在区间(a, b)内可导,则的在[a, b]上的最大值和最小值应为兀0在(d, b)内的各极值与», fib) 中的最大值和最小值.利用这种方法求函数最值的方法就是导数法.[例5]函数»=x3-3x+l在闭区间[—3,0]上的最大值,最小值分别是,•6.数形结合法数形结合法是指利用函数所表示的几何意义,借助几何方法及函数的图象求函数最值的…种常用的方法.这种方法借助儿何意义,以形助数,不仅可以简捷地解决问题,还可以避免诸多失误,是我们开阔思路、正确解题、提高能力的-种重要途径.[a,[例 6]对 a, bWR,记 max|d, b\=\i1 函数=max||x+l|, |x—2||(x£R)的最小值是.二、巧用数形结合妙解3类求参数问题通过以下三个方面体会数形结合思想的运用.1.通过基本函数模型及变式的图象求参数的取值范围或值|lg x|, OvxWlO,若a,b,c互不相等,[例1]已知函数fix)=<1—2^+6,兀>10,_!»=»=»,则abc的取值范围是(2•通过函数的零点与方程的解的相互关系求函数零点和方程的解及参数的范围[例2]已知mGR,函数/(x)=x2+2(m2+l)x+7,g(x)=-(2m2—m+2)x+m.(1)设函数p(x)=/U)+g(x)・如果p(x)=0在区间(1,5)内有解但无重根,求实数加的取值范围;d,总存在唯一非零实数b(bHa),使得/2(d)=/z(b)成立?若存在,求加的值;若不存在,请说明理由.3.通过圆或圆锥曲线的部分图形与函数图象的关系来求参数的范围[例3]如果函数y=l+p4—F(|x|W2)的图象与函数2)。
利用导数求函数的极值、最值知识点讲解+例题讲解(含解析)
利用导数求函数的极值、最值一、知识梳理1.函数的极值与导数形如山峰形如山谷2.函数的最值与导数(1)函数f(x)在[a,b]上有最值的条件如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在[a,b]上的最大(小)值的步骤①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值二、例题精讲 + 随堂练习考点一利用导数解决函数的极值问题角度1根据函数图象判断函数极值【例1-1】已知函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是()A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(-2)和极小值f(1)C.函数f (x )有极大值f (2)和极小值f (-2)D.函数f (x )有极大值f (-2)和极小值f (2)解析 由题图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值. 答案 D规律方法 由图象判断函数y =f (x )的极值,要抓住两点:(1)由y =f ′(x )的图象与x 轴的交点,可得函数y =f (x )的可能极值点;(2)由导函数y =f ′(x )的图象可以看出y =f ′(x )的值的正负,从而可得函数y =f (x )的单调性.两者结合可得极值点.角度2 已知函数求极值【例1-2】 (2019·天津和平区模拟)已知函数f (x )=ln x -ax (a ∈R ). (1)当a =12时,求f (x )的极值;(2)讨论函数f (x )在定义域内极值点的个数.解 (1)当a =12时,f (x )=ln x -12x ,函数的定义域为(0,+∞)且f ′(x )=1x -12=2-x2x , 令f ′(x )=0,得x =2,于是当x 变化时,f ′(x ),f (x )的变化情况如下表.故f (x )在定义域上的极大值为f (x )极大值=f (2)=ln 2-1,无极小值. (2)由(1)知,函数的定义域为(0,+∞), f ′(x )=1x -a =1-ax x (x >0).当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,即函数在(0,+∞)上单调递增,此时函数在定义域上无极值点; 当a >0时,当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0,当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0,故函数在x =1a 处有极大值.综上可知,当a ≤0时,函数f (x )无极值点, 当a >0时,函数y =f (x )有一个极大值点,且为x =1a .规律方法 运用导数求可导函数y =f (x )的极值的一般步骤:(1)先求函数y =f (x )的定义域,再求其导数f ′(x );(2)求方程f ′(x )=0的根;(3)检查导数f ′(x )在方程根的左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值.特别注意:导数为零的点不一定是极值点.角度3 已知函数的极(最)值求参数的取值 【例1-3】 (2019·泰安检测)已知函数f (x )=ln x . (1)求f (x )图象的过点P (0,-1)的切线方程;(2)若函数g (x )=f (x )-mx +mx 存在两个极值点x 1,x 2,求m 的取值范围.解 (1)f (x )的定义域为(0,+∞),且f ′(x )=1x .设切点坐标为(x 0,ln x 0),则切线方程为y =1x 0x +ln x 0-1.把点P (0,-1)代入切线方程,得ln x 0=0,∴x 0=1. ∴过点P (0,-1)的切线方程为y =x -1. (2)因为g (x )=f (x )-mx +m x =ln x -mx +mx (x >0), 所以g ′(x )=1x -m -m x 2=x -mx 2-mx 2=-mx 2-x +m x 2,令h (x )=mx 2-x +m ,要使g (x )存在两个极值点x 1,x 2,则方程mx 2-x +m =0有两个不相等的正数根x 1,x 2.故只需满足⎩⎪⎨⎪⎧h (0)>0,12m >0,h ⎝ ⎛⎭⎪⎫12m <0即可,解得0<m <12.规律方法 已知函数极值,确定函数解析式中的参数时,要注意:(1)根据极值点的导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)因为导数值等于0不是此点为极值点的充要条件,所以用待定系数法求解后必须检验.【训练1】 (1)(2017·全国Ⅱ卷)若x =-2是函数f (x )=(x 2+ax -1)·e x -1的极值点,则f (x )的极小值为( ) A.-1B.-2e -3C.5e -3D.1解析 f ′(x )=[x 2+(a +2)x +a -1]·e x -1,则f ′(-2)=[4-2(a +2)+a -1]·e -3=0⇒a =-1, 则f (x )=(x 2-x -1)·e x -1,f ′(x )=(x 2+x -2)·e x -1, 令f ′(x )=0,得x =-2或x =1, 当x <-2或x >1时,f ′(x )>0, 当-2<x <1时,f ′(x )<0,所以x =1是函数f (x )的极小值点, 则f (x )极小值为f (1)=-1. 答案 A(2)(2018·北京卷)设函数f (x )=[ax 2-(4a +1)x +4a +3]e x . ①若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; ②若f (x )在x =2处取得极小值,求a 的取值范围. 解 ①因为f (x )=[ax 2-(4a +1)x +4a +3]e x , 所以f ′(x )=[ax 2-(2a +1)x +2]e x .f ′(1)=(1-a )e. 由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e ≠0. 所以a 的值为1.②f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x .若a >12,则当x ∈⎝ ⎛⎭⎪⎫1a ,2时,f ′(x )<0; 当x ∈(2,+∞)时,f ′(x )>0.所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0, 所以f ′(x )>0.所以2不是f (x )的极小值点. 综上可知,a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.考点二 利用导数求函数的最值【例2】 (2019·广东五校联考)已知函数f (x )=ax +ln x ,其中a 为常数. (1)当a =-1时,求f (x )的最大值;(2)若f (x )在区间(0,e]上的最大值为-3,求a 的值. 解 (1)易知f (x )的定义域为(0,+∞),当a =-1时,f (x )=-x +ln x ,f ′(x )=-1+1x =1-xx , 令f ′(x )=0,得x =1.当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0.∴f (x )在(0,1)上是增函数,在(1,+∞)上是减函数. ∴f (x )max =f (1)=-1.∴当a =-1时,函数f (x )在(0,+∞)上的最大值为-1. (2)f ′(x )=a +1x ,x ∈(0,e],1x ∈⎣⎢⎡⎭⎪⎫1e ,+∞.①若a ≥-1e ,则f ′(x )≥0,从而f (x )在(0,e]上是增函数, ∴f (x )max =f (e)=a e +1≥0,不合题意.②若a <-1e ,令f ′(x )>0得a +1x >0,结合x ∈(0,e],解得0<x <-1a;令f ′(x )<0得a +1x <0,结合x ∈(0,e],解得-1a <x ≤e.从而f (x )在⎝ ⎛⎭⎪⎫0,-1a 上为增函数,在⎝ ⎛⎦⎥⎤-1a ,e 上为减函数,∴f (x )max =f ⎝ ⎛⎭⎪⎫-1a =-1+ln ⎝ ⎛⎭⎪⎫-1a .令-1+ln ⎝ ⎛⎭⎪⎫-1a =-3,得ln ⎝ ⎛⎭⎪⎫-1a =-2,即a =-e 2.∵-e 2<-1e ,∴a =-e 2为所求.故实数a 的值为-e 2.规律方法 1.利用导数求函数f (x )在[a ,b ]上的最值的一般步骤:(1)求函数在(a ,b )内的极值;(2)求函数在区间端点处的函数值f (a ),f (b );(3)将函数f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.2.求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值.【训练2】 (2019·合肥质检)已知函数f (x )=e x cos x -x . (1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值.解 (1)∵f (x )=e x ·cos x -x ,∴f (0)=1, f ′(x )=e x (cos x -sin x )-1,∴f ′(0)=0,∴y =f (x )在(0,f (0))处的切线方程为y -1=0·(x -0), 即y =1.(2)f ′(x )=e x (cos x -sin x )-1,令g (x )=f ′(x ), 则g ′(x )=-2e xsin x ≤0在⎣⎢⎡⎦⎥⎤0,π2上恒成立, 且仅在x =0处等号成立, ∴g (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递减,∴g (x )≤g (0)=0,∴f ′(x )≤0且仅在x =0处等号成立, ∴f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递减, ∴f (x )max =f (0)=1,f (x )min =f ⎝ ⎛⎭⎪⎫π2=-π2.考点三 利用导数求解最优化问题【例3】 (2018·衡水中学质检)在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据以往经验,潜水员下潜的平均速度为v (米/单位时间),每单位时间的用氧量为⎝ ⎛⎭⎪⎫v 103+1(升),在水底作业10个单位时间,每单位时间用氧量为0.9(升),返回水面的平均速度为v2(米/单位时间),每单位时间用氧量为1.5(升),记该潜水员在此次考察活动中的总用氧量为y (升). (1)求y 关于v 的函数关系式;(2)若c ≤v ≤15(c >0),求当下潜速度v 取什么值时,总用氧量最少.解 (1)由题意,下潜用时60v (单位时间),用氧量为⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫v 103+1×60v =3v 250+60v (升),水底作业时的用氧量为10×0.9=9(升),返回水面用时60v 2=120v (单位时间),用氧量为120v ×1.5=180v (升),因此总用氧量y =3v 250+240v +9(v >0).(2)y ′=6v 50-240v 2=3(v 3-2 000)25v 2,令y ′=0得v =1032,当0<v <1032时,y ′<0,函数单调递减; 当v >1032时,y ′>0,函数单调递增.若c <1032 ,函数在(c ,1032)上单调递减,在(1032,15)上单调递增,∴当v =1032时,总用氧量最少. 若c ≥1032,则y 在[c ,15]上单调递增, ∴当v =c 时,这时总用氧量最少.规律方法 1.利用导数解决生活中优化问题的一般步骤:(1)设自变量、因变量,建立函数关系式y =f (x ),并确定其定义域; (2)求函数的导数f ′(x ),解方程f ′(x )=0;(3)比较函数在区间端点和f ′(x )=0的点的函数值的大小,最大(小)者为最大(小)值;(4)回归实际问题作答.2.如果目标函数在定义域内只有一个极值点,那么根据实际意义该极值点就是最值点.三、课后练习1.(2019·郑州质检)若函数y =f (x )存在n -1(n ∈N *)个极值点,则称y =f (x )为n 折函数,例如f (x )=x 2为2折函数.已知函数f (x )=(x +1)e x -x (x +2)2,则f (x )为( ) A.2折函数 B.3折函数 C.4折函数D.5折函数解析 f ′(x )=(x +2)e x -(x +2)(3x +2)=(x +2)(e x -3x -2),令f ′(x )=0,得x =-2或e x =3x +2. 易知x =-2是f (x )的一个极值点,又e x =3x +2,结合函数图象,y =e x 与y =3x +2有两个交点.又e -2≠3(-2)+2=-4.∴函数y =f (x )有3个极值点,则f (x )为4折函数. 答案 C2.若函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内存在最小值,则实数k 的取值范围是________.解析 因为f (x )的定义域为(0,+∞),又因为f ′(x )=4x -1x ,所以由f ′(x )=0解得x =12,由题意得⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0,解得1≤k <32.答案 ⎣⎢⎡⎭⎪⎫1,323.(2019·杭州质检)传说中孙悟空的“如意金箍棒”是由“定海神针”变形得来的.这定海神针在变形时永远保持为圆柱体,其底面半径原为12 cm 且以每秒1 cm 等速率缩短,而长度以每秒20 cm 等速率增长.已知神针的底面半径只能从12 cm 缩到4 cm ,且知在这段变形过程中,当底面半径为10 cm 时其体积最大.假设孙悟空将神针体积最小时定形成金箍棒,则此时金箍棒的底面半径为________ cm. 解析 设神针原来的长度为a cm ,t 秒时神针的体积为V (t ) cm 3, 则V (t )=π(12-t )2·(a +20t ),其中0≤t ≤8, 所以V ′(t )=[-2(12-t )(a +20t )+(12-t )2·20]π.因为当底面半径为10 cm 时其体积最大,所以10=12-t ,解得t =2,此时V ′(2)=0,解得a =60,所以V (t )=π(12-t )2·(60+20t ),其中0≤t ≤8.V ′(t )=60π(12-t )(2-t ),当t ∈(0,2)时,V ′(t )>0,当t ∈(2,8)时,V ′(t )<0,从而V (t )在(0,2)上单调递增,在(2,8)上单调递减,V (0)=8 640π,V (8)=3 520π,所以当t =8时,V (t )有最小值3 520π,此时金箍棒的底面半径为4 cm.答案 44.设f (x )=x ln x -ax 2+(2a -1)x (常数a >0). (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围. 解 (1)由f ′(x )=ln x -2ax +2a , 可得g (x )=ln x -2ax +2a ,x ∈(0,+∞). 所以g ′(x )=1x -2a =1-2ax x . 又a >0,当x ∈⎝ ⎛⎭⎪⎫0,12a 时,g ′(x )>0,函数g (x )单调递增,当x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,g ′(x )<0,函数g (x )单调递减.∴函数y =g (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,12a ,单调递减区间为⎝ ⎛⎭⎪⎫12a ,+∞.(2)由(1)知,f ′(1)=0.①当0<a <12时,12a >1,由(1)知f ′(x )在⎝ ⎛⎭⎪⎫0,12a 内单调递增,可得当x ∈(0,1)时,f ′(x )<0,当x ∈⎝ ⎛⎭⎪⎫1,12a 时,f ′(x )>0.所以f (x )在(0,1)内单调递减,在⎝ ⎛⎭⎪⎫1,12a 内单调递增. 所以f (x )在x =1处取得极小值,不合题意.②当a =12时,12a =1,f ′(x )在(0,1)内单调递增,在(1,+∞)内单调递减,所以当x ∈(0,+∞)时,f ′(x )≤0,f (x )单调递减,不合题意.③当a >12时,0<12a <1,当x ∈⎝ ⎛⎭⎪⎫12a ,1时,f ′(x )>0,f (x )单调递增,当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.所以f (x )在x =1处取极大值,符合题意. 综上可知,实数a 的取值范围为⎝ ⎛⎭⎪⎫12,+∞.。
高中数学函数最值问题的求解思路与实例分析
高中数学函数最值问题的求解思路与实例分析在高中数学中,函数最值问题是一个常见且重要的考点。
解决这类问题需要掌握一定的数学知识和解题技巧。
本文将从求解思路和实例分析两个方面,详细介绍高中数学函数最值问题的解题方法。
一、求解思路要解决函数最值问题,首先需要明确函数的定义域和值域。
在明确了函数的定义域和值域后,我们可以采取以下步骤来求解函数的最值问题。
1. 找出函数的极值点函数的极值点是函数取得最大值或最小值的点。
要找出函数的极值点,可以先求出函数的导数,然后令导数等于零,解方程得到极值点的横坐标。
再将这些横坐标代入原函数中,求出对应的纵坐标,即可得到函数的极值点。
2. 检查边界点边界点是函数定义域的端点。
在求解函数的最值问题时,需要检查边界点是否可能成为函数的最值点。
将边界点代入函数中,与已经求得的极值点进行比较,找出最大值或最小值。
3. 比较极值点和边界点的大小将已经求得的极值点和边界点进行比较,找出其中的最大值或最小值。
这个值就是函数的最大值或最小值。
二、实例分析为了更好地理解函数最值问题的解题方法,我们来看一个具体的例子。
例题:求函数f(x) = 2x^3 - 3x^2 - 12x + 1的最大值和最小值。
解题步骤:1. 求导数f'(x) = 6x^2 - 6x - 122. 求极值点的横坐标令f'(x) = 0,解方程得到x = -1和x = 3。
3. 求极值点的纵坐标将x = -1和x = 3代入原函数f(x)中,得到f(-1) = -8和f(3) = -32。
4. 检查边界点由于函数没有明确的定义域,我们需要检查函数的值域。
当x趋于正无穷大时,f(x)也趋于正无穷大;当x趋于负无穷大时,f(x)也趋于负无穷大。
因此,函数的边界点为正负无穷大。
5. 比较极值点和边界点的大小将已经求得的极值点和边界点进行比较,发现f(-1) = -8是最小值,f(3) = -32是最大值。
综上所述,函数f(x) = 2x^3 - 3x^2 - 12x + 1的最大值为-32,最小值为-8。
函数的最值典例精讲
函数的最值典例精讲例1:求函数()xf x xe-=的最值思路:首先判定定义域为R ,对函数进行求导,根据单调区间求出函数的最值解:()()'1x fx x e -=-,令()'0f x >,解得:1x <()f x ∴的单调区间为:x (),1-∞()1,+∞'()f x +-()f x 增减()()max 11f x f e∴==,无最小值例2:已知函数()322f x x ax =++,2x =是()f x 的一个极值点,求:(1)实数a 的值(2)判断()f x 在区间(]1,4-上是否存在最大值和最小值解:(1)()'232fx x ax=+2x = 是()f x 的一个极值点()'21240f a ∴=+=3a ∴=-(2)思路,由第(1)问可得()3232f x x x =-+,进而求出单调区间得到最值()()'23632f x x x x x =-=-,令()'0f x >,解得:10x -<<或24x <<()f x ∴的单调区间为:x ()1,0-()0,2()2,4'()f x +-+()f x 计算()()()()12,02,22,418f f f f -=-==-=()()max 418f x f ∴==()()min 22f x f ==例3:已知函数()326f x ax ax b =-+,是否存在实数,a b ,使得()f x 在[]1,2上取得最大值4,最小值29?-若存在,求出,a b 的值,若不存在,请说明理由思路:利用()'fx 求出函数的单调区间,在根据单调区间判断最大最小值点的可能位置,进而根据最大最小值解出,a b 解:()()'231234fx ax ax ax x =-=-,(1)当0a >时,[]1,2x ∈ 40,0x x ∴-<>()'f x ∴<()f x 在[]1,2单调递减()()()()max min 15431931629f x f b a a b f x f b a ==-=⎧=⎧⎪∴⇒⎨⎨===-=-⎩⎪⎩(2)当0a <时,[]1,2x ∈ 40,0x x ∴-<>()'fx ∴>()f x 在[]1,2单调递增()()()()max min 31643441529f x f b a a b f x f b a ==-=⎧=-⎧⎪∴⇒⎨⎨=-==-=-⎩⎪⎩319a b =⎧∴⎨=⎩或344a b =-⎧⎨=-⎩例4:求函数()322912f x x x x =-+([]1,3x ∈-)的最值解:思路一:考虑去掉绝对值得到一个分段函数,在利用导数求出每段的最值,再进行比较()()22912f x x x x =-+229120x x -+> 恒成立()()[]()[)222912,0,32912,1,0x x x x f x x x x x ⎧-+∈⎪∴=⎨--+∈-⎪⎩当[]0,3x ∈时,()()()'22291249612fx x x x x x x =-++-=--可得:()f x 在()()0,1,2,3单调递增,在()1,2单调递减()()()()00,15,39,24f f f f ∴====∴[]0,3x ∈时,()()min max 0,9f x f x ==当[)1,0x ∈-时,()()()()'22291249612fx x x x x x x =--++-=---()f x ∴在[)1,0-单调递减,()()max 123f x f ∴=-=-当0x →时,()0f x →∴可得函数()f x 的最值为()()max 123f x f =-=-,()()min 00f x f ==思路二:考虑先求出绝对值里表达式的值域,然后在加上绝对值求出最值。
求函数最值常用的方法及经典例题讲解
求函数最值常用的方法及经典例题讲解知识点:一、函数最大(小)值定义最大值:一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,称M 是函数()y f x =的最大值.思考:依照函数最大值的定义,结出函数()y f x =的最小值的定义.注意:①函数最大(小)首先应该是某一个函数值,即存在0x I ∈,使得0()f x M =;②函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x I ∈,都有()(())f x M f x m ≤≥.二、求函数最大(小)值常用的方法.案例分析:例1、画出下列函数的图象,指出图象的最高点或最低点,并说明它能体现函数的什么特征?①()3f x x =-+ ②()3[1,2]f x x x =-+∈-③2()21f x x x =++ ④2()21[2,2]f x x x x =++∈-类型一、直接观察法对于一些比较简单的函数,如正比例,反比例,一次函数,指数函数,对数函数,等等, 其值域可通过观察直接得到。
例 1、求函数1,[1,2]y xx=∈的值域A、单调递减,无最小值B、单调递减,有最小值B、单调递增,无最大值 D、单调递增,有最大值小试牛刀:1、求函数21yx=-在区间[2,6] 上的最大值和最小值.2()5522++=x x x f类型二、反函数法(原函数的值域是它的反函数的定义域)例: 求函数3456x y x +=+值域。
实战训练场:1) 求函数213-+=x x y 的值域;2) 函数.11的值域是x x y +-=类型三、倒数法有时,直接看不出函数的值域时,把它倒过来之后,你会发现另一番境况例1、求函数y =的值域。
例2、求函数的值域。
类型四、配方法配方法是求二次函数值域最基本的方法之一(二次函数)(02≠++=a c bx ax y ]44(0);44[022a b ac ,,a ,a b ac ,a --∞<∞+->值域是时值域是时)。
高中函数求值域的九种方法和例题讲解
一.观察法通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
例1求函数y=3+√(2-3x)的值域。
点拨:根据算术平方根的性质,先求出√(2-3x)的值域。
解:由算术平方根的性质,知√(2-3x)≥0,故3+√(2-3x)≥3。
∴函数的知域为.点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。
本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。
练习:求函数y=[x](0≤x≤5)的值域。
(答案:值域为:{0,1,2,3,4,5})二.反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域。
例2求函数y=(x+1)/(x+2)的值域。
点拨:先求出原函数的反函数,再求出其定义域。
解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。
点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。
这种方法体现逆向思维的思想,是数学解题的重要方法之一。
练习:求函数y=(10x+10-x)/(10x-10-x)的值域。
(答案:函数的值域为{y∣y<-1或y>1})三.配方法当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域例3:求函数y=√(-x2+x+2)的值域。
点拨:将被开方数配方成完全平方数,利用二次函数的最值求。
解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。
此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。
配方法是数学的一种重要的思想方法。
练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3})四.判别式法若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。
3.求函数最值问题常用的10种方法
【例 1】设函数 f(x)的定义域为 R,有下列三个命 题: ① 若存在常数 M ,使得对任意 x∈R,有 f(x)≤M ,
则 M 是函数 f(x)的最大值;
② 若存在 x0∈R,使得对任意 x∈R,且 x≠x0,有 f(x)<f(x0),则 f(x0)是函数 f(x)的最大值;
③ 若存在 x0∈R,使得对任意 x∈R,有 f(x)≤f(x0),
φ(y)=0(g(y)≠0)的判别式Δ≥0去求解,要注意验
证g(y)=0时y的值对应的x的值是否是函数定义域内 的值,若是,则使g(y)=0的y的值在函数的值域内,否 则相反.
八、平方法 对含根式的函数或含绝对值的函数,有时利用平方 法,可以巧妙地将函数最值问题转化为我们熟知 的、易于解决的函数最值问题.
一、定义法 函数最值的定义:一般地,设函数y=f(x)的定义 域为I,如果存在实数M ,满足:①对任意x∈I,都 有f(x)≤M ,②存在x0∈I,使得f(x0)=M ,则称M 为
函数y=f(x)的最大值;如果存在实数N ,满足:
① 对任意x∈I,都有f(x)≥N ,②存在x0∈I,使得 f(x0)=N ,则称N 为函数y=f(x)的最小值. 我们直接利用函数最值的定义,可以判断函数最值 的相关问题.
【例8】 已知函数y= 1-x+ x+3的最大值为
m
M ,最小值为m ,则 的值为
M
A.14
B.12
C.
2 2
()
D.
3 2
分析 本题是无理函数的最值问题,可以先确定定义
域,再两边平方,即可化为二次函数的最值问题,进
而可以利用二次函数的最值解决.
1-x≥0, 解析 由题意,得
x+3≥0,
函数最值的求解方法及应用
函数最值的求解方法及应用最值问题(Maximum and Minimum Problems)是一类数学问题,一般指某个函数在给定的某个“区域”上取得最大值或最小值的问题。
求解最值问题有下述常见的几种方法。
一、极大值与极小值中值定理对于定义在完整的区域上的连续函数,其最大值或最小值必然发生在函数的极大值点或极小值点。
所以相应的问题解就在函数的极大值解或极小值点上取到,即让函数的一阶导数等于零并解出其中的变量值即可求出极大值点或极小值点,从而求出最值。
二、链式求导法就是对函数求几次导数,首先判断其一阶导数的正负性,当正则,则求此时的函数最小值,当其一阶偏导数为负,则说明此时函数达到极大值,通过几次导数的求取来判断以及进行求解。
三、凸性理论凸性理论又称凸函数理论,是数学分析的一个方面,要求最值问题的解决必须符合凸性的条件,只要满足凸性的条件,就能获得最值问题的求解结果。
并且使用凸性理论可以得到准确精确的结果。
四、算法及数值解法首先给出一些值时,大量的计算过程可以有效地进行最值求解,可以运用搜索穷举法,直接计算一组变量,以实现最值问题的求解。
此外还可以运用精确计算技术,用一定的方法计算某一点,每次只移动一小步来求出最值问题的解决方案。
最值问题在许多领域的应用都非常广泛,比如#########:1. 决策模型:很多决策问题可以使用最值理论来分析和研究,比如投资决策、定价问题、途径选择等。
2. 能源优化:随着能源、资源逐渐枯竭,优化资源利用,就需要最值问题的解决,以便在有限的资源状况下取得最优的能源分配方法。
3. 形式化学习:形式化学习是一个研究智能体如何学习的方法,最值问题可以求出在不同学习情境下的学习的最优模型。
4. 优化算法:很多优化算法都需要充分利用最值问题的求解方法,特别是采用机器学习算法的多重优化中,最值理论是一个重要组成部分。
5. 风险管理:通过最值问题可以有效地理清投资组合中所面临的风险,从而分析这样的投资组合是否利可观;或者是否需要进行风险抵御等措施。
求函数最值常用的方法及典范例题讲解
的最值
-3-
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
求函数最值问题常用的10种方法
证g(y)=0时y的值对应的x的值是否是函数定义域内 的值,若是,则使g(y)=0的y的值在函数的值域内,否 则相反.
八、平方法 对含根式的函数或含绝对值的函数,有时利用平方 法,可以巧妙地将函数最值问题转化为我们熟知 的、易于解决的函数最值问题.
【例5】 设a>1,函数f(x)=logax在区间[a,2a]上的
最大值与最小值之差为12,则a=________.
分析 先判断函数在指定区间上的单调性,再求出函 数的最值,然后利用条件求得参数a的值.
解析 ∵a>1,∴函数f(x)=logax在区间[a,2a]上是增 函数,∴函数在区间[a,2a]上的最大值与最小值分别为
三、换元法 换元法是指通过引入一个或几个新的变量,来替换 原来的某些变量(或代数式),以便使问题得以解决 的一种数学方法.在学习中,常常使用的换元法有 两类,即代数换元和三角换元,我们可以根据具体 问题及题目形式去灵活选择换元的方法,以便将复 杂的函数最值问题转化为简单函数的最值问题,从 而求出原函数的最值.如可用三角代换解决形如a2 +b2=1及部分根式函数形式的最值问题.
一、定义法 函数最值的定义:一般地,设函数y=f(x)的定义 域为I,如果存在实数M ,满足:①对任意x∈I,都 有f(x)≤M ,②存在x0∈I,使得f(x0)=M ,则称M 为
函数y=f(x)的最大值;如果存在实数N ,满足:
① 对任意x∈I,都有f(x)≥N ,②存在x0∈I,使得 f(x0)=N ,则称N 为函数y=f(x)的最小值. 我们直接利用函数最值的定义,可以判断函数最值 的相关问题.
解析 y=(ex-a)2+(e-x-a)2 =(ex+e-x)2-2a(ex+e-x)+2a2-2. 令t=ex+e-x,f(t)=t2-2at+2a2-2. ∵t≥2,∴f(t)=t2-2at+2a2-2=(t-a)2+a2-2的定 义域为[2,+∞). ∵抛物线y=f(t)的对称轴为t=a, ∴当a≤2且a≠0时,ymin=f(2)=2(a-1)2; 当a>2时,ymin=f(a)=a2-2. 点评 利用二次函数的性质求最值,要特别注意自变量 的取值范围,同时还要注意对称轴与区间的相对位置 关系.如本题化为含参数的二次函数后,求解最值时 要细心区分:对称轴与区间的位置关系,然后再根据 不同情况分类解决.
求函数最值问题常用的10种方法
1 最大值与最小值之差为2,则 a=________.
分析 先判断函数在指定区间上的单调性,再求出函 数的最值,然后利用条件求得参数a的值.
解析 ∵a>1,∴函数f(x)=logax在区间[a,2a]上是增 函数,∴函数在区间[a,2a]上的最大值与最小值分别为
又两边平方,得y2=4+2 1-x· x+3
=4+2 (1-x)(x+3).
所以当x=-1时,y取得最大值M =2 2;当x=-3或
1时,y取得最小值m
m =2,∴
M
=
22.故选C.
分析 对于形如y= a-cx+ cx+b的无理函数的最 值问题,可以利用平方法将问题化为函数y2=(a+b) +2 (a-cx)(cx+b)的最值问题,这只需利用二次函 数的最值即可求得.
七、判别式法
把函数转化为 x 的二次方程 F (x,y)=0,通过方程
有实根,判别式 Δ≥0,从而求得函数的最值.判
ax2+bx+c
别式法多用于求形如 y=
(a,d 不同时为 0)
dx2+ex+f
的分式函数的最值.
x2-3x+4
【例 7】求函数 y=
的最大值和最小值.
x2+3x+4
分析 本题是分式函数的最值问题,因为分式函数的分
解析 y=(ex-a)2+(e-x-a)2 =(ex+e-x)2-2a(ex+e-x)+2a2-2. 令t=ex+e-x,f(t)=t2-2at+2a2-2. ∵t≥2,∴f(t)=t2-2at+2a2-2=(t-a)2+a2-2的定 义域为[2,+∞). ∵抛物线y=f(t)的对称轴为t=a, ∴当a≤2且a≠0时,ymin=f(2)=2(a-1)2; 当a>2时,ymin=f(a)=a2-2. 点评 利用二次函数的性质求最值,要特别注意自变量 的取值范围,同时还要注意对称轴与区间的相对位置 关系.如本题化为含参数的二次函数后,求解最值时 要细心区分:对称轴与区间的位置关系,然后再根据 不同情况分类解决.
求函数最值的十种方法
x - 1 ∀ 0, 或 x - 1 # 0, x - 3 # 0; x - 3 ∀ 0.
解得 1 ∀ x ∀ 3;
( 2) 类似可求:
若 - x2 + 4x - 3 < 0, 则 x > 3.
于是, 当 1 ∀ x ∀ 3时, y = | - x2 + 4x - 3 |
= - x2 + 4x - 3
由已知得: y2 = x -
1 4
x
2,
! z = x2 - y2 = x2 - x - 1 x2 4
=
5 4
(x
-
2 5
)
2
-
1 5
.
y2 # 0, ! x -
1 4
x
2
#
0,
! x (x - 4) ∀ 0, ! 0 ∀ x ∀ 4.
∃ 11∃
初中数学教与学
2007 年
利用数形结合法可求得:
当x=
.
三、分类讨论法
例 3 求函数 y = |- x2 + 4x - 3 | ( 1 ∀ x
∀ 4) 的最值.
分析和解 如 果没有 绝对值符 号, 那么
本题与例 2一样, 因此, 我们 设法去 掉绝 对值
符号, 利用分类讨论法.
( 1) 若 - x2 + 4x - 3 # 0,
即 ( x - 1 ) (x - 3) ∀ 0, 则有
受命题者的青睐.
下面举例说明求最值的十种方法. 一、配方法
例 1 求函数 y = - 4x2 + 8x - 3的最 大 值.
分析和解 本题可直接将二次函数配成
完全平方形式, 得知其在顶点处取得最值. y = - 4x2 + 8x - 3 = - 4 (x2 - 2x + 1 - 1 ) - 3
函数最值的求解方法及应用
函数最值的求解方法及应用函数最值问题是数学中常见且重要的问题。
函数的最值包括最大值和最小值,通常涉及函数的图像及其性质。
本文将介绍几种常见的函数最值的求解方法,并通过实例说明其应用。
一、函数最值的求解方法1.导数法导数法是求函数最值的常用方法。
对于定义在闭区间[a,b]上的函数f(x),其最值一定发生在函数的驻点或者区间的端点处。
-首先,求出f(x)的导数f'(x)。
-然后,求出f'(x)=0的解,即找到函数的驻点。
-最后,比较函数在驻点及端点处的取值,找到最大值和最小值。
2.二次函数的最值对于二次函数f(x)=ax^2+bx+c(a≠0),可以通过求导数的方法得到它的最值。
- 首先,求出f'(x)=2ax+b=0的解,即找到函数的驻点。
-如果a>0,则驻点为极小值点,此时f(x)的最小值为f(驻点)。
-如果a<0,则驻点为极大值点,此时f(x)的最大值为f(驻点)。
3.梯度下降法梯度下降法是一种可用于求解无约束最优化问题的迭代算法。
它的基本思想是通过迭代的方式逐步接近函数的最值。
-首先,选择任意一个起始点x_0。
-然后,根据函数的梯度(即导数的向量),沿着梯度的反方向更新参数x。
-重复上述步骤,直到满足停止条件为止。
二、函数最值的应用1.经济学中的应用函数最值在经济学中有重要的应用。
例如,生产函数描述了产出与生产要素之间的关系,通过求函数最值可以确定生产要素的最佳配置方案,实现最大化的产出。
供求函数描述了市场上商品的供给和需求关系,通过求函数最值可以确定市场的平衡价格和数量。
2.优化问题的求解优化问题是数学中的一个重要分支,涉及到在一定约束条件下求解一些目标函数的最值。
例如,在资源有限的情况下,如何合理分配资源以最大化利润或最小化成本是一个常见的优化问题。
3.最大似然估计最大似然估计是概率统计中的一种参数估计方法,通过求解似然函数的最值来选择模型的参数。
似然函数描述了给定参数下观测数据出现的可能性,通过求似然函数的最大值可以得到最优的参数估计值。
函数最值问题常用的10种方法
求最值的方法总结归纳一、定义法一般地,设函数y=f(x)的定义域为I ,如果存在实数M ,满足:①“对定义域内任意x ,都有f(x)≦M ,②定义域内存在x 0,使得f (x0)=M,则称M 为函数y=f(x)的最大值;如果存在实数N ,满足:①对定义域内任意x,都有f(x)≥0,,在定义域内存在x 0,使得f(x0)=N,则称N 为函数y=f(x)的最小值 例题1、设函数f(x)的定义域为R ,有下列三个命题:(1)若存在常数M ,使得定义域内任意x ,有f(x)≦M,则称M 是函数f(x)的最大值;(2)若定义域内存在x 0,使得对定义域内任意x ,且x ≠x 0,有f(x)<f(x 0),则f(x 0)是函数f(x)的最大值;(3)若定义域内存在x 0,使得对定义域内任意x ,且x ≤x 0,有f(x)≤f(x 0),则f(x 0)是函数f(x)的最大值; 这些命题中,真命题的个数是 ( C )A:0 B :1 C :2 D :3二、配方法配方法是求二次函数最值得基本方法,如函数F(x)=af(x)2+bf(x)+c 的最值问题,例题2:已知函数y=(ex-a)2+(e-x-a)2(a 是实数,且a ≠0), 求函数y 的最小值。
解析:22)(2)()()(2222-++-+=-+-=---a e e a e e a e a e y x x x x x x 令x x e e t -+=,则222)(22-+-=a at t t f , 因为t ≥2,所以2)(222)(2222-+-=-+-=a a t a at t t f 的定义域为[2,+∞) 因为抛物线y=f(t)的对称,轴为t=a ,所以当a ≤2且a ≠0时,y min =f(2)=2(a-1)2,当a>2时,y min =f(a)=a 2-2三、换元法换元法是指通过引入一个或几个新的变量,来替代原来的某些变量,以便使问题得以解决的一种数学方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求函数最值常用的方法及经典例题讲解
知识点:
一、函数最大(小)值定义
最大值:一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:
(1)对于任意的x I ∈,都有()f x M ≤;
(2)存在0x I ∈,使得0()f x M =.
那么,称M 是函数()y f x =的最大值.
思考:依照函数最大值的定义,结出函数()y f x =的最小值的定义.
注意:
①函数最大(小)首先应该是某一个函数值,即存在0x I ∈,使得0()f x M =;
②函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x I ∈,都有()(())f x M f x m ≤≥.
二、求函数最大(小)值常用的方法.
案例分析:
例1、画出下列函数的图象,指出图象的最高点或最低点,并说明它能体现函数的什么特征?
①()3f x x =-+ ②()3
[1,2]f x x x =-+∈-
③2()21f x x x =++ ④2
()21[2,2]f x x x x =++∈-
类型一、直接观察法
对于一些比较简单的函数,如正比例,反比例,一次函数,指数函数,对数函数,等等, 其值域可通过观察直接得到。
例 1、求函数
1
,[1,2]
y x
x
=∈
的值域
A、单调递减,无最小值
B、单调递减,有最小值
B、单调递增,无最大值 D、单调递增,有最大值小试牛刀:
1、求函数
2
1
y
x
=
-
在区间[2,6] 上的最大值和最小值.
2
()5522++=x x x f
类型二、反函数法(原函数的值域是它的反函数的定义域)
例: 求函数3456x y x +=+值域。
实战训练场:
1) 求函数2
13-+=
x x y 的值域;
2) 函数.11的值域是x x y +-=
类型三、倒数法
有时,直接看不出函数的值域时,把它倒过来之后,你会发现另一番境况
例1
、求函数
y =
的值域。
例2、求函数
的值域。
类型四、配方法
配方法是求二次函数值域最基本的方法之一
(二次函数)(02
≠++=a c bx ax y ]44(0);44[022a b ac ,,a ,a b ac ,a --∞<∞+->值域是时值域是时)。
例、求函数
225,y x x x R =-+∈的值域。
实战训练场:
1、]53(2
32,求函数-∈+-=x x x y 的值域;
2、求562---=x x y
函数 的值域;
类型五、根判别式法
对二次函数或者分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其他方法进行化简 例1、求222231
x x y x x -+=-+的最值
例2、求函数x
x y 1+
=的值域;
例3、已知函数)(1
2R x x b ax y ∈++=的值域为[],4,1-求常数b a ,
实战训练场:
(1)求函数1
22+--=x x x x y 的值域
(2) 求函数3
274222++-+=x x x x y 的值域
二、[]),(2f e x n
mx c bx ax y ∈+++=类型 解法:用代定系数法将它化为2()()()p mx n q mx n k k y p mx n q mx n mx n
++++==+++++ (),k b pt q t mx n y ax t x
=++=+=+再利用函数的图象和单调性来解。
例1、求2335(2)22
x x y x x -+=<≤-的最小值
三、2([,])mx n y x e f ax bx c
+=∈++类型 解法:用代定系数法将它化为:
211(),()()()mx n y t mx n k k p mx n q mx n k p mx n q pt q mx n t +====+++++++
++++ 再利用函数b y ax x =+
的图象和单调性来解。
例1、求22(56)36
x y x x x -=
≤≤-+的最值
变式训练: 1、求函数. )2
5(42542的值域≥-+-=x x x x y
2、函数4522++=
x x y 的最小值?
类型六、换元法:“;)0(d cx t ac d cx b ax y +=
≠+±+=的函数,可令形如
例1、求函数x x y -+=142的值域
例2、求函数y x =
练习:
(1) 求函数. 12的值域x x y --=
类型七、函数有界性法
直接求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的值域。
我们所说的单调性,最常用的就是三角函数的单调性。
例1:求函数1
1+-=x x e e y 的值域。
例2、求出下列函数的值域:
1、y=
x
sin 11+ 2、 y=x cos 2-
例 3、求函数x
x y cos 2sin 2--=的最大值和最小值
例4、求函数θ
θθθcos 11sin 2,sin 11sin 2+-=+-=y y 的值域。
类型八、 函数单调性法
例1. 求函数
)10x 2(1x log 2y 35x ≤≤-+=-的值域。
类型九、一一映射法
原理:因为
)0c (d cx b ax y ≠++=在定义域上x 与y 是一一对应的。
故两个变量中,若知道一个变量范围,就可以求
另一个变量范围。
例1、求函数
1x 2x 31y +-=的值域。
例2、设函数y=|x 2-x|+|x+1|,求-2≤x≤2时,y 的最大值和最小值.
例3、已知函数,2
1log 321-
≤≤-x 求函数4log 2log 22x x y ∙=的最大值和最小值。
例3、已知,1log 12
1≤≤-x 求函数2214411+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-x
x y 的最大值和最小值。
1、求函数|3||1|y x x =--+的最大值和最小值.
2、求函数的值域|4||1|++-=x x y
3.已知直线012:=+-y x l 和点A (-1,2)、B (0,3),试在l 上找一点P ,使得PB PA +的值最小,
并求出这个最小值。
4. 已知点(1,1)A ,(2,2)B ,点P 在直线x y 21=上,求22PB PA +取得最小值时P 点的坐标。
5. 求函数()f x =
6、求函数22)8x ()2x (y ++-=的值域。
8、求函数
5x 4x 13x 6x y 22++++-=的值域。
9、 求函数
5x 4x 13x 6x y 22++-+-=的值域。
10、求函数()481482
2----=x x x x x f 的最小值和最大值。
11、若R y x ∈,且满足:,022
2=-+++y x xy y x 则=max x =min y 。
12、若.41,,22≤+≤∈y x R y x 求22y xy x u ++=的最值。
13、设,且2120,0=+y x y x 求当y x ,为何值,)148(log 23
1++=y xy u 取得最大值和最小值,并求出最大值和最小值。
14、已知,0623,22=-+∈x y x R y x 且求2
22y x +的值域。