第1章-张量分析初步

合集下载

张量分析——初学者必看精选全文

张量分析——初学者必看精选全文

§ A-1 指标符号 三、Kronecker-符号和置换符号(Ricci符号)
Ricci符号定义
偶次置换
1 若i, j, k 1,2,3, 2,3,1, 3,1,2 eijk 1 若i, j, k 3,2,1, 2,1,3, 1,3,2
0 若有两个或三个指标相等
e123 e231 e312 1 e213 e132 e321 1 e111 e112 e113 0
§A-4 张量的代数运算 三、矢量与张量的叉积
A 张量分析
右叉乘
T a (Tijeie j ) (akek ) Tij akeie jkrer e T jkr ij akeier B
§A-4 张量的代数运算
A 张量分析
四、两个张量的点积
两个张量点积的结果仍为张量。新张量的阶数是 原两个张量的阶数之和减 2
坐标变换式 xi ii xi xi ii xi
ii cos(xi, xi ) ii cos(xi , xi )
§A-3 坐标变换与张量的定义 A 张量分析
[ii ], [ii ]
互逆、正交矩阵
ii ii
ij
1 0
0 1
基矢量变换式
ei iiei ei iiei
坐标变换系数
v 任意向量变换式 i vii i vii i
ip iq ir eijk epqr jp jq jr
kp kq kr
pk
eijk ekqr
iq jq
ir jr
iq jr ir jq
a11 a12 a13 A a21 a22 a23 a11a22a33 a12a23a31
a31 a32 a33 a13a21a32 a13a22a31 a12a21a33 a11a23a32 eijk a1ia2 j a3k eijk ai1a j2ak3

张量分析

张量分析

张量分析张量分析,又称张量微积分,是一门研究多维空间中的向量和张量的数学工具。

它在物理学、工程学、计算机科学等领域有着广泛的应用。

张量分析的核心思想是通过张量的计算和运算,来描述和解释多维空间中的现象和问题。

在数学中,张量是一种广义的向量概念。

它不仅可以表示标量和向量,还可以表示具有更高维度的物理量。

例如,二阶张量可以表示物体的形变和应力分布,三阶张量可以表示电磁场的分布,四阶张量可以表示弹性材料的性质等。

张量分析的基本概念包括张量的定义和表示、张量的变换规律以及张量的运算。

对于二阶张量,可以用一个矩阵来表示。

张量的变换规律与坐标系的选择有关,不同的坐标系下,同一个张量可以表示为不同的矩阵形式。

张量的运算包括加法、数乘、内积和外积等。

这些运算在物理和工程问题中具有重要的意义,可以帮助研究人员推导和解决实际问题。

在物理学中,张量分析被广泛应用于描述和分析物体的运动、形变、应力等问题。

例如,通过分析物体的应力张量,可以判断物体是否会发生破坏或变形。

在工程学中,张量分析可以用于解决弹性力学、流体力学、电磁学等问题。

在计算机科学中,张量分析可以用于图像处理、模式识别等领域。

张量分析的发展离不开数学家们的努力。

早在19世纪,克里斯托弗·亚当斯(Christopher Adams)就提出了张量的概念。

20世纪初,爱因斯坦在相对论的研究中也广泛应用了张量分析。

随着计算机的发展和计算能力的提高,张量分析在科学研究中的应用也越来越广泛。

虽然张量分析在各个领域中都有广泛的应用,但它的理论和方法并不容易掌握。

要学好张量分析,需要对线性代数、微积分和向量分析等数学知识有扎实的掌握。

此外,也需要具备一定的物理学和工程学的基础知识。

对于初学者来说,可以通过学习相关的教材和参考资料,同时结合实际问题进行练习和应用。

总之,张量分析是一门重要的数学工具,对于描述和解决多维空间中的问题具有重要的意义。

它在物理学、工程学、计算机科学等领域有着广泛的应用。

张量初步

张量初步

§
2.4
克罗内克(Kronecker)符号δij (替换符号)
★ 克罗内克符号δij δij = 1 δij = 0 ★ 对称性:δij = δji ★ 转置不变性:δij = δij ★ 替换性:δij vj = vi (i = j) (i = j)
§
2.4
克罗内克(Kronecker)符号δij (替换符号)
§
2.5
勒维{契维塔(levi{civita)符号εijk (排列符号)
★ 勒维{契维塔符号εijk (三阶反对称张量) εijk = +1 εijk = −1 εijk = 0 ★ 反对称性:εijk = −εjik (ijk = 123, 231, 312) (ijk = 213, 321, 132) (ijk = 112, 233, · · · )

铁 简 单
T
点 ( (
§
2.3
二阶张量
★ 二阶张量:如张力张量、电四极矩、转动惯量、介电张量等; Tij = αil αjm Tlm ★ 二阶张量可以用一个矩阵来表示; ★ 张量的含义:Tij 分量:在j方向分量作用下的i方向的反应效果; ★ 张量的自由度:任何一个张量都可以分解为三个部分: ◆ 迹(标量)Tii 自由度为1 ◆ 无迹对称张量Tij = Tji 且Tii = 0 自由度为5
★ 克罗内克符号δij δij = 1 δij = 0 ★ 对称性:δij = δji (i = j) (i = j)
§
2.4
克罗内克(Kronecker)符号δij (替换符号)
★ 克罗内克符号δij δij = 1 δij = 0 ★ 对称性:δij = δji ★ 转置不变性:δij = δij (i = j) (i = j)

张量分析书籍附详尽易懂

张量分析书籍附详尽易懂

n个
称为n维仿射空间。E n 中旳每一种元素称为点。
记:
o (0, ,0),
x (x1,, xn ) ,
(x1, , xn )
且分别称为放射空间旳原点、位置矢量和负矢量。
对于n维仿射空间,全部旳位置矢量构成一种集合:
V0 x (x1,, xn ) xi , xi F,1 i n
(1 t)(1,1) t(1,1) a t b
(1 2t,1 2t) a t b
当 t b 时:
(2t 1,2t 1) (1,1)
当 t a 时:
(2t 1,2t 1) (1,1)
由此可得 a 0 ,b 1 。显然 r1 等 r2 价。
r1 与 r5 : (取 s b5 b1 )
域上旳矢量空间。且仍记为V0 。
数域上旳矢量空间V0 具有如下性质:x, y, z V0 ,、 F
(1)
x yyx
(2)
(x y) z x ( y z)
(3)V0中存在称为有关加法旳单位元素o,使得:
xo x
x V0
(4)V0中每一种元素x都存在唯一旳(-x ),使得:
x (x) o
当t=b时:位置矢量标
定b点。即:
S
(4b 2,3 2b) (2,1)
由此拟定b=1 。
x2
当t=a时:位置矢量标
3
2
定a点。即:
1
(4a 2,3 2a) (1,1.5 )
由此拟定a=0.75 。
图中画出了计算成果 。
x2 3
2 u ab
1
2 (a)
u xy
x1
4
6
u xy u ab
1
2
。 Vx空间中旳矢量称为约束矢量。

第一章 张量分析基础知识

第一章 张量分析基础知识

晶体物理性能南京大学物理系由于近代科学技术的发展,单晶体人工培养技术的成熟,单晶体的各方面物理性能(如力、声、热、电、磁、光)以及它们之间相互作用的物理效应,在各尖端科学技术领域里,都得到了某些应用.特别是石英一类压电晶体作为换能器、稳定频率的晶体谐振器、晶体滤波器等在电子技术中,比较早地在工业规模上进行大批生产和广泛应用.激光问世的四十多年来,单晶体在激光的调制、调Q、锁模、倍频、参量转换等光电技术应用中,已成单晶体应用中极为活跃的领域.《晶体物理性能》是我系晶体物理专业的专业课程之一,目的就是希望对晶体特别是光电技术中使用的晶体(包括基质晶体与非线性光学晶体)的有关物理性能及其应用方面的基本知识,有一个了解.对今后从事光电晶体的生长、检测和应用的工作,在分析问题、解决问题方面有所帮助,同时要在今后工作中不断从实践和理论两个方面扩大知识领域,有一个基础.考虑到本专业属于晶体材料性质的专业特点,本课程不仅对晶体物理性能的各个方面作深入全面的介绍,也将侧重于激光晶体有关的一些性能及其应用.鉴于以上考虑,《晶体物理性能》讲义将以离子晶体为主要对象,以光电技术上应用为线索组织内容,共分为八章.着重于从宏观角度结合微观机制介绍晶体基本物理性能以及各种交互作用过程的物理效应和它们在光电技术中的某些应用,包括弹性与弹性波(第二章),晶体光学中的各向异性(第五章),压电与铁电现象(第四章),电光效应(第七章),光学参量过程(第六章),声光效应(第八章).由于晶体物理性能的各向异性的特点和晶体对称性有密切关系,通常正确、方便地描述这些物理性能必须使用张量来表示.因此,在第一章,我们介绍了关于张量分析基础知识方面的内容.由于水平有限,实践经验缺乏,时间仓促,因而内容安排不妥、取舍不当、错误之处一定很多,希望同学们提出宝贵意见,批评指正.第一章张量的基础知识§1.1标量、矢量和二阶张量…………………………………………………………………2§1.2坐标变换和变换矩阵……………………………………………………………………§1.3正交变换矩阵的性质……………………………………………………………………§1.4晶体对称操作的变换矩阵……………………………………………………………§1.5二阶张量的变换与张量的定义………………………………………………………§1.6张量的足符互换对称…………………………………………………………………§1.7张量的矩阵表示和矩阵的代数运算…………………………………………………§1.8二阶对称张量的几何表示和二阶张量的主轴………………………………………§1.9二阶对称张量主轴的确定……………………………………………………………§1.10晶体张量与晶体对称性的关系………………………………………………………第二章晶体的弹性与弹性波§2.1弹性性质与原子间力…………………………………………………………………§2.2应变……………………………………………………………………………………§2.3应力……………………………………………………………………………………§2.4推广的虎克定律、弹性系数…………………………………………………………§2.5立方晶体的弹性系数…………………………………………………………………§2.6各向同性材料的弹性系数……………………………………………………………§2.7弹性扰动的传播――弹性波…………………………………………………………§2.8简谐振动和驻波……………………………………………………………………§2.9弹性常数及振动衰减因子的测量方法……………………………………………第三章晶体的介电性质§3.1介质中的宏观电场强度与极化强度………………………………………………§3.2晶体中的有效场……………………………………………………………………§3.3高频电场的介电极化(光的色散与吸收)………………………………………§3.4介电常数的测量……………………………………………………………………§3.5离子晶体的静电击穿………………………………………………………………§3.6激光的电击穿(激光的电击穿损伤)……………………………………………第四章铁电与压电物理§4.1铁电体的一般性质…………………………………………………………………§4.2常用铁电体的实验规律……………………………………………………………§4.3铁电体的相变热力学………………………………………………………………§4.4铁电体相变的微观机制……………………………………………………………§4.5晶体的压电效应……………………………………………………………………§4.6压电方程和机电耦合系数…………………………………………………………§4.7压电晶体的应用实例――石英……………………………………………………第五章晶体光学§5.1光学各向异性晶体…………………………………………………………………§5.2各向异性介质中光的传播…………………………………………………………§5.3折射椭球与折射率曲面……………………………………………………………§5.4晶体表面上的折射…………………………………………………………………§5.5晶体偏光干涉及其应用……………………………………………………………第六章倍频与参量频率转换§6.1非线性极化…………………………………………………………………………§6.2非线性极化系数……………………………………………………………………§6.3非线性介质中电磁场耦合方程……………………………………………………§6.4光倍频………………………………………………………………………………§6.5光倍频的相匹配……………………………………………………………………§6.6第II类相匹配………………………………………………………………………§6.7角度匹配和温度匹配扫描实验曲线………………………………………………§6.8内腔倍频……………………………………………………………………………§6.9光参量放大…………………………………………………………………………§6.10参量振荡器…………………………………………………………………………§6.11参量振荡器的调谐方法……………………………………………………………§6.12参量频率上转换……………………………………………………………………§6.13非线性材料的性能要求……………………………………………………………第七章电光效应及其应用§7.1线性电光效应………………………………………………………………………§7.2两种典型材料的电光效应…………………………………………………………§7.3电光滞后……………………………………………………………………………§7.4电光调制原理………………………………………………………………………§7.5实际调制器的几个问题……………………………………………………………§7.6晶体电光开关………………………………………………………………………§7.7电光Q开关…………………………………………………………………………§7.8电光偏转……………………………………………………………………………§7.9电光材料……………………………………………………………………………§7.10晶体均匀性的实验检测……………………………………………………………§7.11晶体的激光损伤……………………………………………………………………§7.12晶体均匀性实验检测………………………………………………………………第八章声光效应及其应用§8.1弹光效应……………………………………………………………………………§8.2声光交互作用产生的衍射现象……………………………………………………§8.3声光交互作用的理论………………………………………………………………§8.4声光效应在一些物理常数测量中的应用…………………………………………§8.5声光调制器…………………………………………………………………………§8.6声光偏转器…………………………………………………………………………§8.7声光调Q……………………………………………………………………………§8.8声光材料……………………………………………………………………………附录A.32点群投影图…………………………………………………………………………B.各阶张量在不同点群中的矩阵形式……………………………………………………C.主要常数表………………………………………………………………………………D.单轴晶体中光线离散角α的推导………………………………………………………E.双轴晶体中双折射面相差Γ的推导……………………………………………………F.贝塞尔函数的基本性质…………………………………………………………………第一章 张量分析基础知识以前学的课程中,有关力学、热学、电学、光学等的性质都是以各向同性介质来表述的或以一维问题来说明问题,这对于突出某些物理现象的微观的物理原因方面是必要的,但晶体物理性能是讲晶体中的力学、电学、光学、声学、磁学、热学等物理性能,而晶体的各向异性却是一种很普遍的特性,特别是很多现象如热电、压电、电光、声光、非线性光学效应……等等物理现象则完全因为晶体具有各向异性性质才能表现出来.因此,晶体结构对称性和这些性质之间的关系成为问题的主要方面。

张量分析提纲及部分习题答案

张量分析提纲及部分习题答案

y
对静止的连续介质,有
ζ n fd 0 , ζd fd 0 ,
A
ζ f 0。
(21) 证明应力是一个张量; 记 ij :表示在给定基 g i 下,在面 g j 上,单位面积受力 F j 在 g i 方向上的分量为
对斜圆锥面上任一点 (图中黑点处) , 不难由相似三角形得到,
z z R cos C i R sin j zk ,进而可得, H H r Rz sin zR cos r R cos C R g i j, gz i sin j k , H H z H H r
dx g dx I g dx II 1 4 x I 2 dx I 6 x I x II 2 dx II Pdx I Q dx II 11 12 1 1 I 。 2 4 dxII g 21dx I g 22 dx II 6 x I x II dx I 9 x II dx II P2 dx I Q2 dx II
Pi Qi 时,坐标 xI , xII 才可能存在。即向量场 P, Q 无旋时,其在两点间 x II x I Pi Qi 的路径积分与路径无关,积出的值就是坐标。本例中, II I ,故相应的“协 x x
当 变坐标”不存在。 (正因为如此,坐标也没有逆变、协变之说。 ) (9) 有点类似曲面第一基本型(1.3.12) 。 (10) Lame 常数定义(1.3.13)在非正交系中也成立,但此时(1.3.12a)不成立。
1.9-1.13:略; 1.14: 注意,所谓斜圆锥是指, O 点沿 z 方向在大圆平面上的投影 M 在大圆的直径上。

第一章 张量初步

第一章    张量初步
g c( g2 g3 )
1
上式两端同时点乘g1得到
所以 同理
g
2
1 g 1 g c g 1 ( g 2 g 3 ) c[ g 1
1
g2
g3 ] c
g
g
1
1 g
( g2 g3 )
1 g
( g 3 g1 ) ( g1 g 2 )
13
g
3
1 g
ppt/102
x
1
e 1
x
2
e 2
x
3
e 3
x
k
ek
16
空间点的局部基矢量
下面证明:空间一点的局部逆变基矢量可表示为坐标面的
ppt/102
梯度,即
g x
i i
x x
i k
ek,
i , k 1, 2 , 3 x x
i k
i i ik ik
det( j ) det( g g kj ) 1
i ik
这再次证明(gij)与 (gij)互为逆矩阵。
12
ppt/102
g g j j,
i i
i , j 1, 2 , 3
由上式可知,逆变基矢量g1与协变基矢量g2 、 g3垂直, 可以用协变基矢量g2 、 g3的叉积表示逆变基g1:
dr
g ij g
i
dx g idx
gi g j ,
i , j 1, 2 , 3
称为度量张量G=(gij)的分量。
9
ppt/102
g ij g i g j ,
i , j 1, 2 , 3

[工学]第一章 张量分析初步

[工学]第一章 张量分析初步

2 x j
(

xi
)
两个特殊符号

两个特殊符号
为书写的方便,可以使用kronecker符号和排列符号简化书 写。

kronecker符号

定义
1 i j ij 0 i j
11 22 33 1 12 21 13 31 23 32 0
例题
Qii, S展开? 步骤:分析i,指标类型?字母类型?再展开 2. 写出a=Aijbicj的展开式。
1. 3. 4.
5.
写出 ti ji n j 的展开式。 写出 bik b jk ij 的展开式。 u j 的展开式。 ?写出 1 ui
eij
6.
1 ?写出 w 2 ij eij 的展开式。
第一章 张量分析初步
第一章 张量分析初步


本章学习目的 引入最基本的张量概念,为今后学习应变张量、 应力张量、广义虎克定律和弹性波方程等专业概 念及运算做准备。是本门课的数学基础。 ? 1 已学习过的物理量

标量? 向量?
a11 x1 a12 x2 a13 x3 b1 a 21 x1 a 22 x2 a23 x3 b2 a31 x1 a32 x2 a33 x3 b3
2

有了标量和向量是否足够描述自然现象?
如何用一个最简单 的式子来表示?

用矩阵? 还有更简单的表示方法吗? aij x j bi 可总结为: aij, xj, bi是些什么量?
§1.1 指标记号及两个特殊符号

指标记号


空间有个坐标系OXYZ,P (x, y, z)是其中的一点,坐 z 标为:x, y ,z P(x, y, z) 直角坐标系中的基向量:

张量分析第一章 习题答案

张量分析第一章 习题答案
j
一阶张量 一阶张量 根据张量识别定理: δ ij 是1+1阶即二阶张量. (2) 对于任意二阶张量 b jk 缩并:
∑ε
j ,k
ijk
b jk
一阶张量
∑ε
j ,k
1 jk b jk = b23 − b32
∑ε
j ,k
2 jk
b jk = b31 − b13
∑ε
j ,k
3 jk
b jk = b12 − b21

i1i2 ⋅⋅⋅iµ j1 j2 ⋅⋅⋅ jµ
得 Ai1′i 1 Ai2′i2 ⋅⋅⋅ Aiµ′iµ Aj1′ j1 Aj2′ j2 ⋅⋅⋅ Ajν ′ jν ai1i2 ⋅⋅⋅iµ j1 j2 ⋅⋅⋅ jν 命题得证! 命题得证!
ci1′i2′ ⋅⋅⋅iµ′ =
∑ ∑
i1i2 ⋅⋅⋅iν j1 j2 ⋅⋅⋅ jν

i1i2 ⋅⋅⋅iµ j1′ j2′ ⋅⋅⋅ jν ′ j1 j2 ⋅⋅⋅ jν
在新坐标系中: ci1′i2′ ⋅⋅⋅iµ′ = ∑ ai1′i2′ ⋅⋅⋅iµ′ j1′ j2′ ⋅⋅⋅ jν ′ b j1′ j2′ ⋅⋅⋅ jν ′
j1′ j2′ ⋅⋅⋅ jν ′
比较
ai1′i2′ ⋅⋅⋅iµ′ j1′ j2′ ⋅⋅⋅ jν ′ =
ai1′i2′ ⋅⋅⋅iµ′ =

i1i2 ⋅⋅⋅iµ
得 Ai1′i 1 Ai2′i2 ⋅⋅⋅ Aiµ′iµ ai1i2 ⋅⋅⋅iµ
命题得证! 命题得证!
6. 根据张量识别定理证明:δ ij是二阶张量, ε ijk 为三阶张量. 证: (1) 对于任意一阶张量 对于任意 阶张量 a j ∑ δij a j = ai

流体力学-第一讲 场论与张量分析初步

流体力学-第一讲 场论与张量分析初步

ax ay az
10.01.2021
18
所以有: (向量线方程)
dx dy dz
ax ay az
向量管:在场内取任一非向量的封闭曲线C,通过C上每一点 作矢(向)量线,则这些矢量曲线的区域为向量管。
流线方程 迹线方程
dx dy dz ux uy uz dx dy dz dt ux uy uz
迹线的描述 是从欧拉法
15
二、场的几何表示
变化快
变化慢
1、scalar field:
(1)用等值线(面)表示
令:
t0 f(r,t0)f0
t1 f(r,t1 )f1
等值线(等位面)图
(2)它的疏密反映了标量函数的变化情况
10.01.2021
16
二、场的几何表示
2、 vector field: 大小:标量. 可以用上述等位线(等位面)的概念来几何表示。
10.01.2021
12
数量三重积: c ab
ax ay az
a bc abc abc bx by bz
cx cy cz
a b c c a b b c a
abcacb
循环置换向量次序, 结果不变.
改变循环向量次序, 符号改变.
10.01.2021
③在任一方向的变形等于该方向的方向导数。
④梯度的方向是标量变化最快的方向。
10.01.2021
25
梯度的基本运算法则有:
C C
C( 为 常 数 )
1 2 1 2
1 2 1 2 2 1
f f
10.01.2021
26
四、向量的散度(divergence)
a ba xi a yj a zkb xi b yj b zk

张量分析1

张量分析1

第一章 张量的概念§ 1.1 引言什么是张量?这是读者在开始学习本课程时会提出的问题,现从读者已有的力学知识出发,举例对这个问题作一些初步的阐述,使读者对张量这个新的概念,有个初步的理解。

有三维空间,一个矢量(例如力矢量、速度矢量等)在某些参考坐标系中,有三个分量,这三个分量的集合,规定了这个矢量。

当坐标变化换时 ,这些分量按一定的变换法则变换。

在力学中还有一些更复杂的量。

例如受力物体内一点的应力状态,有9个应力分量,如以直角坐标表示,用矩阵形式列出,则有()⎪⎪⎪⎭⎫⎝⎛σσσσσσσσσ=σzz zyzxyz yy yxxz xy xx ij 这9个分量的集合,规定了一点的应力状态,称为应力张量。

当坐标变换时,应力张量的分量按一定的变换法则变换,再如,一点的应力状态,具有和应力张量相似的性质,称为应变张量。

把上述的力矢量、速度矢量、应力张量、应变张量等量的性质抽象化,撇开它们所表示的量的物理性质,抽出其数学上的共性,便得出抽象的张量概念。

所谓张量是一个物理量或几何量,它由在某参考坐标系中一定数目的分量的集合所规定,当坐标变换时,这些分量按一定的变换法则变换。

张量有不同的“阶”和“结构”,这由它们所遵循的不同的变换法则来区分。

矢量是一阶张量;应力张量、应变张量是二阶张量;还有三阶、四阶、......等高阶张量。

可以看出,张量是矢量概念的推广。

关于张量的严密的解析定义,将在 § 1.8中讨论。

由张量的特性可以看出,它是一种不依赖于特定坐标系的表达物理定律的方式。

采用张量记法表示的方程,在某一坐标系中成立,则在容许变换的其它坐标系中也成立,即张量方程具有不变性。

这使它特别适合于表达物理定律,因为物理定律与人们为了描述它所采用的坐标系无关。

因此,张量分析为人们提供了推导基本方程的有力工具。

此外,张量记法简洁,是一种非常精炼的数学语言。

张量这个名词是沃伊特(V oigt )首先提出的,用来表示晶体的应力(张力)状态,可见张量分析与弹性力学关系的密切。

张量分析01

张量分析01

附录I 张量分析近代力学在电子计算机的辅助下冲破了数学求解上的重重困难,取得了突飞猛进的发展,力求对复杂的物理现象和工程问题做出更为系统和真实的描述和研究。

张量分析能以简洁的表达形式和清晰的推导过程来有效地描述复杂问题的本质,已被近代力学文献和教科书普遍采用。

作为入门,此处着重介绍笛卡儿坐标系和正交曲线坐标系中的张量。

I.1 矢量和张量的记法,求和约定力学中常用的量可以分成三类:只有大小没有方向性的物理量称为标量。

例如温度T 、密度ρ、时间t 等。

既有大小又有方向性的物理量称为矢量,常用黑体(或加箭头)表示,为与课堂讲述一致,此处选择用上加箭头表示矢量。

例如矢径r 、位移u 、速度v 、力f 等。

具有多重方向性的更为复杂的物理量称为张量,常用黑体(或加下横)表示,为与课堂讲述一致,此处选择用下加横线表示矢量。

例如一点的应力状态要用应力张量来表示,它是具有二重方向性的二阶张量,记为σ。

矢量可以在参考坐标系中分解。

例如图1 中P 点的位移u 在笛卡儿坐标系()321,,x x x 中分解为∑==++=31332211i i i e u e u e u e u u (I.1)其中1u 、2u 、3u 是位移的三个分量,1e 、2e 、3e是沿坐标轴的三个单位基矢量。

由此引出矢量(可推广至张量)的三种记法: ( l )实体记法:把矢量或张量的整个物理实体用一个黑体字母或上加箭头来表示。

例如把位移记为u 。

( 2 )分解式记法:同时写出矢量或张量的分量和相应分解方向的基矢量。

例如用式(I.1)表示位移u 。

( 3 )分量记法:把矢量或张量用其全部分量的集合来表示,省略相应的基矢量。

例如用三个位移分量()3,2,1=i u i 的集合表示位移u 。

下面详细讨论后两种记法中广泛采用的指标符号。

对于一组性质相关的n 个量可以采用指标符号来表示。

例如,n 维空间中矢量a 的n 个分量1a ,2a ,…,n a 可缩写成()n i a i ,,2,1 =。

张量分析各章要点

张量分析各章要点

各章要点第一章:矢量和张量指标记法:哑指标求和约定 :同一项中出现一对相同的协、逆变指标则对该指标求和 自由指标规则:同一项中只能出现一次,不同项中保持在同一水平线上 协变基底和逆变基底:ki k i i x ∂∂==∂ξ∂ξr g e j j i i ⋅=δg giik k x∂ξ=∂g e123 ===g g g 张量概念i i'i'i =βg g i'i'ii =βg g i k i k j j''''ββ=δ i'i'i i v v =β ii 'i 'iv v =β i 'j'i 'j'k l ij ..k 'l'i j k 'l'..kl T T =ββββ i i i i v v ==v g g ..kl ij ijk l T =⊗⊗⊗T g g g g 度量张量ij i i i j i i g =⊗=⊗=⊗G g g g g g g⋅=⋅=⋅=⋅=v G G v v T G G T T.j kj i ik T T g =张量的商法则lm ijk T(i,j,k,l,m)S U = ijk...lmT(i,j,k,l,m)T = 置换符号312n 1n123n i i i i i 123n 1n i i i ...i A a a a ......a a e -- i j k Lmnijk .L.m .n a a a e e A = i j k .L .m .n ijk Lmn a a a e e A =置换张量i j k ijk ijk i j k =ε⊗⊗=ε⊗⊗εg g g g g gijk i j k ()e ε=⋅⨯=g g gijk ijk i j k ()ε=⋅⨯=g g gi j k ijk ijk i j k a b a b ()::()⨯=ε=ε=⊗=⊗a b g g a b εεa b广义δ符号i ii r s tj j j ijk ijk ijk r s t rst rst rst k k k r s te e δδδδδδ==εε=δδδδijk j k j k jk ist s t t s st δ=δδ-δδδijk k ijt t 2δ=δijk ijk 6δ=性质:是张量重要矢量等式:()()()⨯⨯=⋅-⋅a b c a c b a b c第二章: 二阶张量重要性质:T =T.u u.T 主不变量i 1.i Tr()T ζ==T i j l m2l m .i .j 1T T 2ζ=δ 3det()ζ=T1()()(())(())()⋅⋅⨯⋅⋅⨯⋅⨯⋅=ζ⋅⨯T u v w +u T v w +u v T w u v w2)[)][()(]()[()]()⋅⋅⋅⨯⋅⋅⨯⋅⋅⋅⨯⋅=ξ⋅⨯T u (T v w +u T v T w)+T u (v T w u v w ( ()[()()]det()()⋅⋅⋅⨯⋅=⋅⨯T u T v T w T u v w 标准形1. 特征值、特征向量⋅=λT v v ()-λ⋅=T G v 0 321230λ-ζλ+ζλ-ζ= 2. 实对称二阶张量标准形i 123i 112233=⋅⊗=λ⊗+λ⊗+λ⊗N N g g g g g gg g 3. 正交张量(了解方法)12112233(cos()sin())(sin()cos())=ϕ+ϕ⊗+-ϕ+ϕ⊗+⊗R e e e e e e e e4. 反对称二阶张量的标准形21123=μ⊗-μ⊗=μ⨯Ωe e e e e G⋅=⨯Ωu ωu31:2=-=μ⨯ωεΩe u=-⋅Ωεω5. 正则张量极分解=⋅=⋅T R U V R第三章 张量函数概念:各项同性张量函数、解析函数 计算 e T , sin()T 重要定理:1. Hamilton-Cayley 定理:32321231230λ-ζλ+ζλ-ζ=⇒-ζ+ζ-ζ=T T T G 0 2.对称各向同性张量函数表示定理:2012f ()k k k ==++H N G N N ;其中T T ;==H H N N ;而系数i k 是N 的主不变量的函数。

【张量分析ppt课件】张量分析课件第一章 线性空间-50页精选文档

【张量分析ppt课件】张量分析课件第一章 线性空间-50页精选文档

(2)∵ x y z ( x 1 y 1 ) z 1 , , ( x n y n ) z n
( x 1 y 1 z 1 , ,x n y n z n )
x ( y z ) ( x 1 ( y 1 z 1 ) , , ( x n ( y n z n ))
( x 1 y 1 z 1 , ,x n y n z n )
∴ x + (y + z )= ( x + y )+ z = x + y + z (4)∵ o(0, ,0)V0 x o (x 1 0 , x n 0 )(x1, ,xn)
∴ xox
(5)∵ ()x ()(x 1 , ,xn) (()x 1 , ,()xn)

(x 1 , ,xn) (x 1 ), ,)xn)
第一章 线性空间
若记实数集合为F,F中的元素记为a、b、c、…。
则加法法则将F中的任意两个元素 a, bF ; c F
+ (a, b)c
abc
乘法法则将F中的任意两个元素 a, bF ; c F
× (a, b)c
abc
显然具有加法法则和乘法则所确定的实数集中元
素间确定关系使得实数集构成一个空间。并记为:
所有以x点为起点的矢量按:
u x yu x z(y 1 x 1 , ,y n x n ) (z 1 x 1 , ,z n x n )
(y 1 ( x 1 ) (z 1 x 1 ) ,,(y n x n ) (z n x n ))
u xy (y1x1, ,ynxn) ((y1x1) ,,(ynxn)) F
a, b,xF
(6) (a b ) x a x b x
a, b,xF

张量分析答案完整版

张量分析答案完整版

= T J• T ii • 2
=
tr(T
•T
)
=T
•T
•G

T T = •m •a am
• •
JT 3
=T •T •T •G •
=T T T •m •p •a a mp
对于 S :
得证。
JT 1
=T jj
J• T
•2
= tr(T T
•TT) = TT
TT

•G

= T T J m •a • T •a m • 3

i j
[u
v
w
]
+

i j
[u
v
w]
[ = T⋅ii δ
i j
u
v
w ]=T⋅ii [u
v
w ]= φ1T [u
v
w ],命题得证。
(2)式左边
[ ] [ ] [ ] = T⋅ija jgi
T
a ⋅b
b
b
g
a
c cgc
+ adgd
T ⋅ijb jgi
T⋅ab cb g a + T⋅ija jgi
∂v m
'
∂x n '

∂vn' ∂x m'
∂xm = ∂xm'
∂x n ∂xn '
(
∂vm ∂xn

∂vn ∂x m
)
即T(m' .n' )
=
β m' m'
β n' n'
(
∂vm ∂xn

∂vn ∂x m

1第一章 笛卡尔张量

1第一章 笛卡尔张量

序言张量分析对于现在的力学专业学生以及力学相关问题的解决,是应该掌握的重要数学工具。

事实上,如果没有张量的知识,就无法学习连续介质力学基本理论和阅读相关专业的文献资料。

无庸讳言,张量概念非常抽象,相对来说比较难于学习和把握。

但是,只要克服张量学习过程中的畏难情绪,抓住张量概念的关键点,梳理张量分析的基本数学规则,结合一定的力学实例的张量描述,从而建立张量分析的概念和基本分析方法,就能够为运用张量分析解决实际问题奠定坚实基础。

张量概念最早是由高斯(Gauss)、黎曼(Riemann)、克里斯托夫(Christoffel)等人在十九世纪发展微分几何过程中引入的,是从线性空间推广到非线性空间的纯粹数学的演绎,由于自然科学发展水平的限制,这种具有根本性变革的数学工具长期被自然科学领域所忽略。

直到1915年,爱因斯坦获得格罗斯曼的协助,借助张量分析这一数学工具创立了伟大的广义相对论,才凸显了张量分析在描述具有协变性质物理规律的关键作用。

这个事实再次有力地向我们传达了数学和自然科学之间彼此的依存关系,即数学的规则被赋予了自然规律的意义后才成为有生命力的学问,而借助数学工具建立起的自然规律才能呈现自然科学的奥秘。

此后,张量分析迅速渗透到理论物理、现代微分几何、连续介质力学等学科领域中。

就力学专业的学生而言,学习和掌握张量分析,可以更加深刻地领会连续介质力学的概念和一般力学规律,充分锻炼我们的理性思维能力,提高分析问题和解决问题的能力和水平。

用代数方法和解析方法描述空间问题时,必须引进坐标系或建立坐标基矢量。

坐标系的引入为建立各种物理或几何规律带来了可能和极大的方便,同时也往往使问题复杂化。

可以设想,客观规律应该独立于坐标系,但客观规律的表达形式却严重依赖于所用的具体坐标系,使得客观规律本身的内在性质与建立在坐标系上的数学表达形式完全融为一体。

这样,一方面可能会因其数学的形式外壳而不易揭示问题的内在本质,另一方面,甚至对很多客观规律根本无法进行数学表述。

弹塑性力学课件

弹塑性力学课件

任晓丹
第二讲:张量分析基础
张量概述 张量的运算和性质 张量分析初步
I admire the elegance of your method of computation; it must be nice to ride through these fields upon the horse of true mathematics while the like of us have to make our way laboriously on foot. Albert Einstein
可以证明坐标转换矩阵具有正交性:βik βjk = βki βkj = δij 。
任晓丹 第二讲:张量分析基础
张量概述 张量的运算和性质 张量分析初步
坐标变换
将向量看作 1 阶张量
u∗ j = ui βij
2 阶张量 T 的坐标分量满足 T∗ ij = βik βjl Tkl n 阶张量 R 满足下述坐标转换方程 R∗ i1 ······in = βi1 j1 · · · · · · βin jn Rj1 ······jn 而上述方程,在很多教科书中当作 n 阶张量的定义。
张量概述 张量的运算和性质 张量分析初步
Why?
弹塑性力学的三要素:非线性、多维、基础。 张量是适用于多维函数、方程以及微分系统 等的表示工具。 张量的本质是(多维、一般)线性变换。
任晓丹
第二讲:张量分析基础
张量概述 张量的运算和性质 张量分析初步
What?
任晓丹
第二讲:张量分析基础
张量概述 张量的运算和性质 张量分析初步
任晓丹 第二讲:张量分析基础
张量概述 张量的运算和性质 张量分析初步
张量的并乘(张量积)

张量分析

张量分析

第一篇 张量分析第一章 矢 量 §1—1 矢量表示法物理中的位移、速度、力都是矢量。

利用三维空间中的有向线段ν表示矢量是最直观的表示法,如图1-1所示。

有向线段的长度v 代表矢量的大小。

这种方法不依赖于坐标系的选择。

矢量的分量表示法是另一种表示方法,选定一个坐标系。

比如通常的正交直线坐标系,即卡氏坐标系,然后确定矢量对于该坐标系的分量(,,)x y z v v v ν(1-1a)这一有序数也可视作一个单行矩阵。

矢量也可以用基矢与其对应分量写成x y z iv jv kv ν=++ (1-1b)其中,,x y z iv jv kv 称为分矢量。

而i(1,0,0),j(0,1,0),k(0,0,1) (1-1c)是单位矢量,它们组成卡氏系中的一组基矢(称为标架)。

§1-2指标符号上面所述用分量(,,)x y z v v v 或用基矢量i,j,k 来表示矢量的方法,在推广到比三维更高的空间时就有困难了。

因此,发展了另一种记法。

把x 、y 、z 分别记为111,,x y z 这样,一个n 维空间的矢量(无法用直观图表示)用分量表示时为123(,,,...,)n v v v v ν= (1-2a)它可视为一个M 维的单行矩阵,且可写为{}i v ν= (1,2,3,...,)i n =同理,基矢i,j,k 可分别写为123,,e e e ,n 维空间的基矢i e (1,2,3,...,)i n =。

而与式(1-1b)对应的写法为112233n n e v e v e v e v ν=++++ (1-2b)相应的分矢量为11,,,i i e v e v ,其中1e =(0,…,0,1,0,…,0) (1-2c)↑ 顺序第i 个这里i 叫做v 的下标,也有记作jv (如本书第三章以后章节所出现)的,这时j 称为上标。

有些量比矢量更复杂,只用一个下(或上)指标还不够,还要采用更多的指标,比如,,,ij ij ijk A B C ,等等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、矢量的基本运算
在三维空间中, 任意矢 量都可以表示为三个基 矢量的线性组合
e1 , e2 , e3
a a1e1 a2e2 a3e3 ai ei
ai为矢量a在基矢量ei下的分解系数, 也称矢量的分量
x3
P
e3
r
e2 x2
o
x1 e1
二、矢量的基本运算
1、矢量点积
ei e j ij
张量分析
一、指标符号 二、矢量的基本运算 三、坐标变换与张量的定义 四、张量的代数运算 五、二阶张量(仿射量) 六、张量分析
一、指标符号
1、指标符号 例如 , 三维空间任意一点 P 在笛卡儿坐 x 标系
3
P
e3
r
e2 x2
x1 , x2 , x3 xi , i 1,2,3
o
x1 e1
用指标符 号表示为
三、坐标变换与张量的定义
旧坐标系: O x1 x2 x3 单位基矢量: (e1 , e2 , e3 ) 新坐标系: O x1 x2 x3 单位基矢量: (e1 , e2 , e3 ) 新旧基矢量夹角的方向余弦:
ei e j | ei || e j | cos(ei , e j ) cos(ei , e j ) ij
4、Kronecker-符号和置换符号(Ricci符号)
Kronecker-符号定义
1 ji ij 0
当i j 当i j
当i, j 1,2,3时,有 11 22 33 1
12 21 23 32 31 13 0
4、Kronecker-符号和置换符号(Ricci符号)
Ricci符号定义
eijk
偶次置换
1 若i, j , k 1,2,3, 2,3,1, 3,1,2 1 若i, j , k 3,2,1, 2,1,3, 1,3,2 0 若有两个或三个指标相 等
e321
31 32 33 0 0 1 21 22 23 0 1 0 1 11 12 13 1 0 0
eijk e jik eikj ekji eijk e jki ekij
Kronecker delta符号与置换符号的关系

e1 , e2 , e3
是相互垂直的单位矢量,则
ei e j i j ,但 ei ei e1 e1 e2 e2 e3 e3 3 而 i i 11 22 33 3 ,故 ei ei i i
i i 是一个数值,即 注意:
奇次置换
e123 e231 e312 1 e213 e132 e321 1 e111 e112 e113 0
ei jk 也称为三维空间
的排列符号。
4、Kronecker-符号和置换符号(Ricci符号) Ricci符号定义
i1 i 2 i 3 i1 j1 k1 eijk j1 j 2 j 3 i 2 j 2 k 2 k1 k 2 k 3 i 3 j 3 k 3
例 特别地,
Tk j Ti j
i kTk j i iTij Tij
i k k j ij

, i k k j jm i m
个数,
Ami Bn j , 34 81

mn
项的和。
nm Ami Bn j An i Bn j Ami Bm j
Kronecker-和Ricci符号的关系
ekijekst is jt js it
ekijekst is jt js it
eijkerjk ir jj ij jr 3ir ir 2ir eijkeijk 2 ii 6
ii 3
ei e j i j
ei ei i i
4 、 Kronecker- 符 号 和 置 换 符 号 (Ricci符号)
i j
的作用:1)换指标;2)选择求和。
ij a j i1a1 i 2 a2 i 3a3 ai im Amj Aij
图2.1

a1 , a2 , a3 , , an x1 , x2 , x3 , , xn
变量
ai , i 1,2, , n xi , i 1,2, , n
指标符号
i—指标——取值范围为小于或等于n的所有正整数
n—维数
2、求和约定和哑指标
S a1 x1 a2 x2 an xn
二、矢量的基本运算
3、矢量的混合积
a b c eijk ai b j ek cr er eijk ai b j cr kr eijk ai b j ck
ei e j ek eijrer ek eijr rk eijk
Ricci符号
ei jk ei jlel ek (ei e j ) ek (ek ei ) e j (e j ek ) ei
新 旧
e1
e 2
e3
e1
11
21
1 2
13
e2
2 2
3 2
23
ei ei e j e j ije j ei ei e j e j ije j ij 变换系数 ij ji ij ei e j ik ek jt et ik jt kt ik jk ij ei e j ikek jtet ik jt kt ik jk
u j jiui
u j ij ui
矢量u本身与坐标无关,矢量的分量ui随坐标系而变
三、坐标变换与张量的定义
推广矢量的概念
ui iiui
张量的定义
Ti1 i1i1Ti1
Ti1i2 i1 i1 i2 i2 Ti1i2
若在空间任一组基 e i 下,有用n个指标编号的 3n个数 Ti1i2in 当基矢量按 ei iiei 变换成 ei 时, 3n 个数 Ti1i2in 如下规律变换 按
张量的阶——自由指标的数目
i i i i
' '
不变性记法
ijkl ei e j ek el
三、坐标变换与张量的定义
标量
矢量
零阶张量,不随坐标变换而变的不变量
一阶张量,一个矢量的某一分量不是标量,它
随坐标系的变化而变化 在一个坐标系中,某一张量的所有分量为零,按定义, 则在其它坐标系中的所有分量也为零,这个张量为零 张量,O
eijk e pqr
i1 i 2 i 3 p1 q1 r1 j1 j 2 j 3 p 2 q 2 r 2 k1 k 2 k 3 p 3 q 3 r 3
i1 p1 i 2 p 2 i3 p3 i1 p1 ip
eijke pqr
ip iq ir jp jq jr kp kq kr
eijke pqr
ip iq ir jp jq jr kp kq kr
pk eijk ekqr
iq ir iq jr ir jq jq jr
例:证明 eijk 是一个三阶张量(置换张量)
三、坐标变换与张量的定义
eijk ei (e j e k ) ii ei ( j j e j k k e k ) ii jj k k ei (e j e k ) ii jj k k eijk
Ti1i2 in i1 i1 i2 i2 in in Ti1i2 in
3 个数 Ti1i2in 的有序集合为一个n阶张量.称Ti1i2in
n
三、坐标变换与张量的定义
张量的定义——在坐标系变换时,满足如下变
换关系的量称为张量
ijkl ii jjkk llijkl
S ai xi a j x j
i 1 j 1 n n
求和指标 与所用的 字母无关 指标重复 只能一次 指标范围
用拉丁字母表示3维,希腊字母表2维
约定
S ai xi a j x j
2、求和约定和哑指标
Aij xi y j
i 1 j 1
3
3
双重求和
Aij xi y j A11 x1 y1 A12 x1 y2 A13 x1 y3 A21 x2 y1 A22 x2 y2 A23 x2 y3 A31 x3 y1 A32 x3 y2 A33 x3 y3
Aijk xi y j zk
代表27项 的和式
3、自由指标
A11 x1 A12 x2 A13 x3 b1 A21 x1 A22 x2 A23 x3 b2 A31 x1 A32 x2 A33 x3 b3
筒写为
Aij x j bi
j ——哑指标 i——自由指标,在每一项中只出现一次,一个公式 中必须相同e1 e2 e3 Nhomakorabea证明
ei ik ek e j jk ek
a×b b a
erst ir jset eijtet eijk ek
二、矢量的基本运算
2、矢量叉积
a b ai ei b j e j ai b j ei e j ai b j eijk ek eijk ai b j ek c ck eijk ai b j
4 、 Kronecker- 符 号 和 置 换 符 号 (Ricci符号)
Kronecker-符号定义
相关文档
最新文档