高三数学复数的概念与运算复习PPT优秀课件

合集下载

复数的课件ppt

复数的课件ppt
详细描述
为它们可能包含实部和虚部。利用复数,可以更方便地 表示相位和阻抗,从而简化计算过程。
信号处理中的复数表示
总结词
在信号处理中,复数表示可以方便地 描述信号的频率和振幅信息。
详细描述
在信号处理中,复数是一种常用的数 学工具,用于描述信号的频率和振幅 信息。通过将信号表示为复数形式, 可以方便地进行信号的频谱分析和滤 波等操作。
复数的几何表示
总结词
复数可以通过平面坐标系中的点或向量来表示,其实部为x轴上的坐标,虚部为y轴上的坐标。
详细描述
复数可以通过几何图形来表示,其实部和虚部分别对应平面坐标系中的x轴和y轴上的坐标。在坐标系中,每一个 复数都可以表示为一个点或一个向量,其横坐标为实部,纵坐标为虚部。这种表示方法有助于直观理解复数的意 义和性质。
02
复数的三角形式
复数的三角形式表示
实部和虚部
复数可以表示为实部和虚部的和 ,即$z = a + bi$,其中$a$是实 部,$b$是虚部。
三角形式
复数还可以表示为模和辐角的形 式,即$z = r(costheta + isintheta)$,其中$r$是模, $theta$是辐角。
复数的模和辐角
除法运算
两个复数相除时,可以用乘以共轭复 数的方法化简,即$frac{a+bi}{c+di} = frac{(a+bi)(c-di)}{(c+di)(c-di)} = frac{ac+bd+(bc-ad)i}{c^2+d^2}$ 。
03
复数的应用
电路中的复数表示
总结词
利用复数表示电路中的电压和电流,可以简化计算,方便分 析。

2025届高中数学一轮复习课件:第六章 第4讲复数(共67张ppt)

2025届高中数学一轮复习课件:第六章 第4讲复数(共67张ppt)

第17页
高考一轮总复习•数学
解:(1)当 z 为实数时,则有 m2+2m-3=0 且 m-1≠0, 只强调虚部为零,显然也有陷阱!
解得 m=-3,故当 m=-3 时,z∈R. (2)当 z 为纯虚数时,则有mmm--12=0,
m2+2m-3≠0, 严格概念,写出条件方程. 解得 m=0 或 m=2.
解得ab==2±,2.
z 当 z=2+2i 时, z =-
i;当
z=2-2i
时,
z z
=i.
(2)依题意知,zz13 zz24=z1z4-z2z3,因为 z3= z 2,且 z2=12-+ii=2+i21+i=1+2 3i,所以
z2z3=|z2|2=52,因此有(1+i)z4-52=12-i,即(1+i)z4=3-i,故 z4=13+-ii=3-i21-i=1-2i.

(3)乘法:z1·z2=(a+bi)·(c+di)= (ac-bd)+(ad+bc)i

(4)除法:zz12=ac++dbii=ac++dbiicc--ddii=acc2++bdd2 +bcc2-+add2 i(c+di≠0).
高考一轮总复习•数学
第9页
常/用/结/论 1.(1±i)2=±2i,11+-ii=i,11-+ii=-i.若 ω=-12+ 23i,则有 ω3=1,1+ω+ω2=0,1+ ω + ω=0, ωn 也有周期性. ω3k=1,ω3k+1=ω,ω3k+2= ω .(k∈N) ω2= ω . 2.i4n=1,i4n+1=i,i4n+2=-1,i4n+3=-i(n∈N),i4n+
B.-i
C.±1
D.±i
(2)在数学中,记表达式 ad-bc 为由ac db所确定的二阶行列式.若在复数域内,z1=

复数的基本概念及运算ppt课件

复数的基本概念及运算ppt课件

8.点M是△ABC所在平面内的一点,且满足 AM =
3 4
AB +
1 4
AC
,
则△ABM与△ABC的面积之比为_____.
类似题:《作业手册》P251 选做2
(10分)已知△ABC中, AB = a , AC = b ,对于平面ABC上 任意一点O,动点P满足 OP = OA +λa +λ b ,则动点P的轨. 迹是什么?其轨迹是否过定点,并说明理由.
(1)i4n=1; i4n+1=i; i4n+2=-1 i4n+3=-i
(2)in+in+1+in+2+in+3=0;
(3) (1±i)2=±2i ;
(4) 1 i i, 1 i i; 1i 1 i
(5) 设 ω - 1 3 i 则 22
ω3 1,ω2 ω,ω2 ω 1 0.
EX1:《创新》P213 例3
今晚自修①《作业手册》P315
4. 复数 z = a+bi 的模、共轭复数的概念:
| z | a2 b2
z a bi
5. 复数相等:
a=c
a+bi=c+di (a,b,c,d∈R)
b=d
注意 : 两个虚数不能比较大小!
二、复数的代数形式及运算法则
设 z1 a bi, z2 c di (a,b,c,d R) 加减法:(a bi) (c di) (a c) (b d)i
(2)(3 4i) (1 2i) 2 2i (3)a = 0是复数z = a + bi为纯虚数的必要不充分条件 (4)z = z是复数z R的充要条件 (5)若z z 0,则复数z为纯虚数 (6)任意两个复数不能比较大小 以上说法正确的有 __________

高中数学复数课件

高中数学复数课件

2. 减法:z1 - z2 = (a1 - a2) + (b1 b2)i
3. 乘法:z1 * z2 = (a1 * a2 - b1 * b2) + (a1 * b2 + a2 * b1)i
4. 除法:z1 / z2 = (a1 * a2 + b1 * b2) / (a2^2 + b2^2) + (b1 * a2 a1 * b2) / (a2^2 + b2^2)i
控制系统中的传递函数和稳定 性分析也涉及到复数,是工程 和科学领域的重要数学工具。
04
复数的历史和发展
复数的发展历程
01
02
03
复数概念的产生
起源于16世纪,数学家试 图解决方程的根的问题, 发现了虚数单位i。
复数的早期应用
在电气工程、流体力学等 领域开始使用复数。
复数的普及
19世纪,数学家开始广泛 地研究复数及其性质,并 应用于数学、物理和工程 等领域。
复数的共轭和模长
01
定义
复数的共轭定义为若z=a+bi,则其共轭为z*=a-bi。复数的模长定义为
|z|=sqrt(a^2+b^2)。
02
性质
复数的共轭具有共轭的共轭等于自身、共轭的加法运算等于减法运算等
性质;复数的模长具有模长的平方等于实部和虚部的平方和等性质。
03
计算方法
计算复数的共轭和模长时,可以利用共轭和模长的性质进行计算。
高中数学复数课件
contents
目录
• 复数的基本概念 • 复数的三角形式 • 复数的应用 • 复数的历史和发展 • 复数的扩展知识
01
复数的基本概念
复数的定义

高中数学一轮复习《复数》课件ppt(29张PPT)

高中数学一轮复习《复数》课件ppt(29张PPT)

解析 1-1 i=1+2 i=12+12i,其共轭复数为12-12i,
∴复数1-1 i的共轭复数对应的点的坐标为12,-12,位于第四象限,故选 D.
答案 D
5.(2019·全国Ⅲ卷)若z(1+i)=2i,则z=( )
A.-1-i
B.-1+i
C.1-i
D.1+i
解析 由 z(1+i)=2i,得 z=12+i i=(21i+(i1)- (1-i)i)=2i(12-i)=i(1-i)=1+i.
D.-
3 2i
解析 (1)∵z=(m2+m-6)+(m-2)i为纯虚数,
∴mm2-+2m≠-0,6=0,解得 m=-3,故选 D.
(2)∵z=1-
3i,∴-zz=z·-z-z2
=(1+|z|23i)2=1+2 43i-3=-12+

23i,∴zz的虚部
为 23.故选 C.
答案 (1)D (2)C
规律方法 1.复数的分类及对应点的位置都可以转化为复数的实部与虚部应该 满足的条件,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式) 组即可. 2.解题时一定要先看复数是否为a+bi(a,b∈R)的形式,以确定实部和虚部.
建立平面直角坐标系来表示复数的 数;除了原点外,虚轴
复平面 平面叫做复平面,__x_轴___叫实轴,y 上的点都表示纯虚数,
轴叫虚轴
各象限内的点都表示
虚数
复数的 设O→Z对应的复数为 z=a+bi,则向量 模 O→Z的长度叫做复数 z=a+bi 的模
|z|=|a+bi|=__a_2_+__b_2
2.复数的几何意义
2.(新教材必修第二册 P69 例 1 改编)若复数 z=11++aii为纯虚数,则实数 a 的值为

复数课件ppt免费

复数课件ppt免费

02
复数的应用
Chapter
电路分析中的应用
电路分析中,复数是一种常用的数学工具,用于描述交 流电路中的电压、电流和阻抗等参数。
通过使用复数表示,可以简化计算过程,方便分析和设 计电路。
复数在交流电路分析中的应用包括计算交流阻抗、交流 功率和交流电流等。
信号处理中的应用
在信号处理中,复数常用于表示和处 理信号,如频谱分析和滤波器设计等 。
复数在信号处理中的应用还包括数字 滤波器设计和数字信号处理算法的实 现等。
通过将信号表示为复数形式,可以方 便地进行信号的频域分析和处理,如 傅里叶变换和离散余弦变换等。
控制系统中的应用
在控制系统中,复数常用于描 述系统的传递函数和稳定性等 特性。
通过使用复数表示,可以方便 地分析系统的频率响应和稳定 性,以及设计控制系统的参数 。
实例
$2(cos frac{pi}{3} + i sin frac{pi}{3}) + 1(cos frac{pi}{4} + i sin frac{pi}{4}) = sqrt{3}(cos frac{7pi}{12} + i sin frac{7pi}{12})$。
指数形式的计算
定义
复数指数形式是 $re^{itheta}$,其中 $r$ 是模长,$theta$ 是辐角 。
复数课件ppt免费
目录
• 复数的基本概念 • 复数的应用 • 复数的计算方法 • 复数的历史发展 • 复数的扩展知识
01
复数的基本概念
Chapter
复数的定义
总结词
复数是由实部和虚部构成的数,通常表示为a+bi,其中a是实部,b是虚部,i 是虚数单位。

《复数的概念》课件

《复数的概念》课件
《复数的概念》PPT课件
复数是一个数学概念,用来表示实数和虚数的集合。
什么是复数
实数与虚数
复数由实部和虚部组成,形如a+bi。
虚数单位
虚数单位 i 是一个特殊的数,满足 i² = -1。
复数的表示方法
直角坐标形式
用复平面中的点表示复数,实部表示 x 坐标,虚部 表示 y 坐标。
极坐标形式
用模和幅角表示复数,模表示向原点距离,幅角表 示与正实轴的夹角。
分形图形
复数可以表示分形图形如Mandelbrot集合。
旋转变换
复数可以通过乘法实现二维旋转变换。
常见的复数方程
1 一次方程
形如a+bi=c,求出复数的解。
2 二次方程
形如a+bi=0,利用求根公式计算解。
结论和要点
复数的基本概念
复数由实部和虚部组成,可以用不同的表示方法。
复数的运算规则
加减乘除应用相应规则来计算。
复数的四则运算
1
加法和减法
复数的实部和虚部分别相加或相减。
乘法
2
将复数按照分配律相乘,并应用 i² = -1
进行合并。
3
行 简化。
共轭复数和复数模
共轭复数
共轭复数将虚部的符号取反,实部保持不变。
复数模
复数的模是复平面中与原点的距离,可用勾股 定理求得。
复数在几何中的应用

《复数基础知识》课件

《复数基础知识》课件

02
计算方法:利用三角函数的加Байду номын сангаас公式 和减法公式可以计算出复数的乘积和 商。
03
应用:复数的乘除运算是复数运算的 基本法则之一,它们在解决实际问题 中具有广泛的应用。
03
复数的应用
在电路分析中的应用
总结词
利用复数表示交流电的各种参数,如电压、电流、阻抗等,简化计算过程。
详细描述
在电路分析中,许多参数如电压、电流、阻抗等都是时间的函数,具有频率和相 位。利用复数表示这些参数,可以将实数和虚数部分合并,方便进行计算和比较 。通过复数运算,可以快速得到电路的响应,简化计算过程。
在信号处理中的应用
总结词
利用复数进行信号的频谱分析和滤波器设计。
详细描述
在信号处理中,频谱分析和滤波器设计是常见的任务。复数可以用于表示信号的频谱,使得频谱分析变得简单直 观。同时,利用复数进行滤波器设计,可以方便地实现低通、高通、带通等不同类型的滤波器。通过复数运算, 可以快速得到滤波器的响应,提高信号处理的效率。
利用复数的模和辐角,可以将任意复 数转换为三角形式。
复数的模与辐角
定义
复数的模定义为 $sqrt{a^2 + b^2}$, 辐角定义为 $arctan(frac{b}{a})$, 当$a > 0$时,辐角在 第一象限;当$a < 0$ 时,辐角在第三象限。
计算方法
利用勾股定理和反正切 函数可以计算出任意复 数的模和辐角。
控制工程
在控制工程中,系统的传递函数和 稳定性分析通常需要用到复数,以 描述系统的动态特性。
05
复数与实数的关系
复数与实数的转化关系
实数轴上每一个点都 可以对应一个复数, 反之亦然。

第十章 复数的概念及运算-2021届高三数学一轮高考总复习课件(共33张PPT)

第十章 复数的概念及运算-2021届高三数学一轮高考总复习课件(共33张PPT)
④zz12=ac+bdc2++db2c-adi(c2+d2≠0). 3.常用结论 ①(1±i)2=±2i;②11+ -ii=i;③in+in+1+in+2+in+3=0(n∈Z).
1.(2019 年新课标Ⅰ)设 z=13+-2ii,则|z|=( C )
A.2
B. 3
C. 2
D.1
解析:方法一,z=13+-2ii=13+-2ii11--22ii=1-5 7i,则|z|=
1.故选 A.
考点 1 复数的概念
例 1:(1)(2019 年新课标Ⅱ)设 z=i(2+i),则-z =( )
A.1+2i
B.-1+2i
C.1-2i
D.-1-2i
解析:z=i(2+i)=-D
(2)设 i 是虚数单位,复数 z=12++aii为纯虚数,则实数 a= ________.
答案:D
【规律方法】(1)复数与其共轭复数的模相等,即|z|=| z |= a2+b2.
(2)共轭与模是复数的重要性质,注意运算性质有: ① z1±z2 = z1 ±z2 ; ② z1·z2 = z1 ·z2 ; ③z·-z =|z|2=|-z |2; ④||z1|-|z2||≤|z1±z2|≤|z1|+|z2|; ⑤|z1z2|=|z1|·|z2|; ⑥zz12=||zz12||.
答案:B
(5)(2019 年江苏)已知复数(a+2i)(1+i)的实部为 0,其中 i 为虚数单位,则实数 a 的值是________.
解析:∵(a+2i)(1+i)=a+ai+2i+2i2=a-2+(a+2)i, 令 a-2=0 得 a=2. 答案:2 【规律方法】(1)复数 a+bi(a,b∈R)的虚部是 b 而不是 bi; (2)复数 z=a+bi(a,b∈R),当 b≠0 时,z 为虚数;当 b= 0 时,z 为实数;当 a=0,b≠0 时,z 为纯虚数.

《复数的概念》ppt课件

《复数的概念》ppt课件

当 bቤተ መጻሕፍቲ ባይዱ时,z 是实数a.
复数
当 b0时,z 叫做虚数.
当a 0 且 b0时,z bi 叫做纯虚数.
复数集C
虚数集I



R
新授课
例1:实数m取什么值时,复数 z m 1 (m 1 )i

(1)实数?
(2)虚数?
(3)
纯虚数?
解:(1)当 m 10 ,即 m 1时,复数z是实数.
(2)当 m 10 ,即 m1时,复数z是虚数.
如图,点Z的横坐标是a, y 纵坐标是b,复数 z=a+bi可用Z〔a,b〕 表示。
Z(a,b)
这个建立了直角坐标
系来表示复数的平面
叫做复平面
O
x
新授课
x轴叫实轴,y轴叫做虚轴,实轴上的点都表示实数; 除了原点y,虚轴上的点都表示纯虚数。象限中的 点都表示非纯虚数。
按照这种表示方法,
y
每一个复数,有复平 面内唯一确定的点和
求 x与y.
解:更具复数相等的定义,得方程组
2x 1 y 1 (3 y)
所以 x 5, y 4
2
新授课
从复数相等的定义,我们知道,任何一个复数 zabi
,都可以由一个有序的实数对 ( a , b ) 唯一确定,;我
们还知道,有序的实数对 ( a , b ) 与平面直角坐标系中 的点是一一对应的。因此我们可以建立复数集与平面 直角坐标系中的点集之间的一一对应
i4 n 1 ,i4 n 1 i,i4 n 2 1 ,i4 n 3 i
新授课
形如 ab(a i,b R )的数,叫做复数.
全体复数所形成的集合叫做复数集,一般用字母C 表示 .

复数的有关概念PPT优秀课件

复数的有关概念PPT优秀课件

91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。――[兰斯顿·休斯] 92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。――[玛科斯·奥雷利阿斯] 93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。[约翰·纳森·爱德瓦兹]
……
复数的有关概念
问题一 问题二 问题三 问题四 课堂小结
问题一:
对于复数a+bi和c+di(a,b,c,d ∈ R), 你认为满足什么条件时,可以说这两个 复数相等?
a=c,并且b=d,即实部与虚部分别 相等时,叫这两个复数相等。
记作a+bi=c+di。 复数相等的内涵:
复数a+bi可用有序实数对(a,b)表示。
(简Байду номын сангаас复平面)
a
ox
x轴------实轴
y轴------虚轴
概念辨析
例题
实数绝对值的几何意义: 复数的绝对值
实数a在数轴上所 对应的点A到原点O 的距离。
a
(复数的模) 的几何意义:
复数 z=a+bi在复 平面上对应的点Z(a,b) 到原点的距离。
y
O
A
X
z=a+bi
a (a 0)
|
a
|
=
|
OA
87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯·瑞斯] 88.每个意念都是一场祈祷。――[詹姆士·雷德非]
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

素材1
计算: (1)12-+23i45; (2)-1+2 23+3ii+(1-2i)2012.
二 复数相等及应用
【例 2】已知关于 x 的方程 x2+(k+2i)x+2+ki=0 有实根,求实数 k 的值.
素材2
已知集合 M={1,m,3+(m2-5m-6)i},N={-1,3},若 M∩N={3},求实数 m 的值.
PPT文档·教学课件
第28讲 复数的概念与运算
1.理解复数的有关概念,以及复数相等的充要 条件. 2.会进行复数的代数形式的四则运算. 3.了解复数代数形式的几何意义及复数的加、 减法的几何意义.
一 复数的念及运算
【例 1】设 m∈R,z1=mm2++2m+(m-15)i,z2=-2+m(m -3)i,若 z1+z2 为虚数,求 m 的取值范围.
三 复数加法运算的几何意义及应用
【例 3】设复数 z 满足|z+4i|+|z-4i|=6 2,求|z+ 2| 的最大值.
素材3
若复数 z 满足|z+2-2i|=1,求|z-2-2i|的最小值.
备选例题
在复数集 C 内解一元二次方程 x2-4x+5=0.
THANKS
FOR WATCHING
演讲人: XXX
相关文档
最新文档