(线性代数)矩阵秩的8大性质、重要定理以及关系

合集下载

线性代数:矩阵秩的求法

线性代数:矩阵秩的求法
齐次线性方程组 Ax=0 总是有解的,x=0 就是一个解, 称为零解。 所以我们更关心的是它是否有非零解.
6/44
定理 Ax=0 的解的情况:
1.Ax=0 有非零解 r(A)<n 只有零解 r(A)=n
2.若A是方阵,Ax 0有非零解 A 0 只有零解 A 0
3.Ax 0,若m n,则一定有非零解。 m :方程个数 n :未知量个数
k
2
1 2
0
3 2
1
.
其中k1
,
k
为任意常数。
2
12/44
定理 3 线性方程组 Ax=b 有解 r(A)=r(Ab)
定理 4 设线性方程组 Ax=b 有解。 若A为方阵,
如果 r(A)=n,则它有唯一解; A 0,唯一解
如果
r(A)<n,则它有无穷多解。
A
0,无穷解
13/44
x1 x2 a1
a4
x5 x1 a5
RA RB
5
ai 0
i 1
15/44
5
方程组有解的充要条件是 ai 0.
i 1
x1 x2 a1
由于原方程组等价于方程组
x2 x3
x3 x4
a2 a3
例4
证明方
程组
x2 x3
x3 x4
a2 a3
x4
x5
a4
x5 x1 a5
有解的充要条件
是a1 a2 a3 a4 a5 0.在有解的情况下,
求出它的一切解.
解证 对增广矩阵B进行初等变换, 方程组的增广矩阵为
14/44
1 1 0 0 0 a1
0 1 1 0 0 a2
第十-十一次

线性代数期末知识点总结线性代数知识点总结(免费)

线性代数期末知识点总结线性代数知识点总结(免费)

线性代数期末知识点总结线性代数知识点总结(免费)1、行列式1.行列式共有个元素,展开后有项,可分解为行列式;2.代数余子式的性质:①、和的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;③、某行(列)的元素乘以该行(列)元素的代数余子式为;3.代数余子式和余子式的关系:4.设行列式:将上、下翻转或左右翻转,所得行列式为,则;将顺时针或逆时针旋转,所得行列式为,则;将主对角线翻转后(转置),所得行列式为,则;将主副角线翻转后,所得行列式为,则;5.行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积;③、上、下三角行列式():主对角元素的乘积;④、和:副对角元素的乘积;⑤、拉普拉斯展开式:、⑥、范德蒙行列式:大指标减小指标的连乘积;⑦、特征值;6.对于阶行列式,恒有:,其中为阶主子式;7.证明的方法:①、;②、反证法;③、构造齐次方程组,证明其有非零解;④、利用秩,证明;⑤、证明0是其特征值;2、矩阵1.是阶可逆矩阵:(是非奇异矩阵);(是满秩矩阵)的行(列)向量组线性无关;齐次方程组有非零解;,总有唯一解;与等价;可表示成若干个初等矩阵的乘积;的特征值全不为0;是正定矩阵;的行(列)向量组是的一组基;是中某两组基的过渡矩阵;2.对于阶矩阵:无条恒成立;3.4.矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5.关于分块矩阵的重要结论,其中均、可逆:若,则:Ⅰ、;Ⅱ、;②、;(主对角分块)③、;(副对角分块)④、;(拉普拉斯)⑤、;(拉普拉斯)3、矩阵的初等变换与线性方程组1.一个矩阵,总可经过初等变换化为标准形,其标准形是唯一确定的:;等价类:所有与等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵、,若;2.行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3.初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若,则可逆,且;②、对矩阵做初等行变化,当变为时,就变成,即:;③、求解线形方程组:对于个未知数个方程,如果,则可逆,且;4.初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、,左乘矩阵,乘的各行元素;右乘,乘的各列元素;③、对调两行或两列,符号,且,例如:;④、倍乘某行或某列,符号,且,例如:;⑤、倍加某行或某列,符号,且,如:;5.矩阵秩的基本性质:①、;②、;③、若,则;④、若、可逆,则;(可逆矩阵不影响矩阵的秩)⑤、;(※)⑥、;(※)⑦、;(※)⑧、如果是矩阵,是矩阵,且,则:(※)Ⅰ、的列向量全部是齐次方程组解(转置运算后的结论);Ⅱ、⑨、若、均为阶方阵,则;6.三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)行矩阵(向量)的形式,再采用结合律;②、型如的矩阵:利用二项展开式;二项展开式:;注:Ⅰ、展开后有项;Ⅱ、Ⅲ、组合的性质:;③、利用特征值和相似对角化:7.伴随矩阵:①、伴随矩阵的秩:;②、伴随矩阵的特征值:;③、、 8.关于矩阵秩的描述:①、,中有阶子式不为0,阶子式全部为0;(两句话)②、,中有阶子式全部为0;③、,中有阶子式不为0;9.线性方程组:,其中为矩阵,则:①、与方程的个数相同,即方程组有个方程;②、与方程组得未知数个数相同,方程组为元方程;10.线性方程组的求解:①、对增广矩阵进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解;③、特解:自由变量赋初值后求得;11.由个未知数个方程的方程组构成元线性方程:①、;②、(向量方程,为矩阵,个方程,个未知数)③、(全部按列分块,其中);④、(线性表出)⑤、有解的充要条:(为未知数的个数或维数)4、向量组的线性相关性1.个维列向量所组成的向量组:构成矩阵;个维行向量所组成的向量组:构成矩阵;含有有限个向量的有序向量组与矩阵一一对应;2.①、向量组的线性相关、无关有、无非零解;(齐次线性方程组)②、向量的线性表出是否有解;(线性方程组)③、向量组的相互线性表示是否有解;(矩阵方程)3.矩阵与行向量组等价的充分必要条是:齐次方程组和同解;(例14)4.;(例15)5.维向量线性相关的几何意义:①、线性相关;②、线性相关坐标成比例或共线(平行);③、线性相关共面;6.线性相关与无关的两套定理:若线性相关,则必线性相关;若线性无关,则必线性无关;(向量的个数加加减减,二者为对偶)若维向量组的每个向量上添上个分量,构成维向量组:若线性无关,则也线性无关;反之若线性相关,则也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;7.向量组(个数为)能由向量组(个数为)线性表示,且线性无关,则(二版定理7);向量组能由向量组线性表示,则;(定理3)向量组能由向量组线性表示有解;(定理2)向量组能由向量组等价(定理2推论)8.方阵可逆存在有限个初等矩阵,使;①、矩阵行等价:(左乘,可逆)与同解②、矩阵列等价:(右乘,可逆);③、矩阵等价:(、可逆);9.对于矩阵与:①、若与行等价,则与的行秩相等;②、若与行等价,则与同解,且与的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩;④、矩阵的行秩等于列秩;10.若,则:①、的列向量组能由的列向量组线性表示,为系数矩阵;②、的行向量组能由的行向量组线性表示,为系数矩阵;(转置)11.齐次方程组的解一定是的解,考试中可以直接作为定理使用,而无需证明;①、只有零解只有零解;②、有非零解一定存在非零解;12.设向量组可由向量组线性表示为:(题19结论)()其中为,且线性无关,则组线性无关;(与的列向量组具有相同线性相关性)(必要性:;充分性:反证法)注:当时,为方阵,可当作定理使用;13.①、对矩阵,存在,、的列向量线性无关;()②、对矩阵,存在,、的行向量线性无关;14.线性相关存在一组不全为0的数,使得成立;(定义)有非零解,即有非零解;,系数矩阵的秩小于未知数的个数;15.设的矩阵的秩为,则元齐次线性方程组的解集的秩为:;16.若为的一个解,为的一个基础解系,则线性无关;(题33结论)5、相似矩阵和二次型1.正交矩阵或(定义),性质:①、的列向量都是单位向量,且两两正交,即;②、若为正交矩阵,则也为正交阵,且;③、若、正交阵,则也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化;2.施密特正交化:;; 3.对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4.①、与等价经过初等变换得到;,、可逆;,、同型;②、与合同,其中可逆;与有相同的正、负惯性指数;③、与相似;5.相似一定合同、合同未必相似;若为正交矩阵,则,(合同、相似的约束条不同,相似的更严格);6.为对称阵,则为二次型矩阵;7.元二次型为正定:的正惯性指数为;与合同,即存在可逆矩阵,使;的所有特征值均为正数;的各阶顺序主子式均大于0;;(必要条)。

《线性代数》知识点-归纳整理

《线性代数》知识点-归纳整理

《线性代数》知识点归纳整理诚毅学生编01、余子式与代数余子式 .................................................................. 2-02、主对角线............................................................................ 2-03、转置行列式.......................................................................... 2-04、行列式的性质........................................................................ 3-05、计算行列式.......................................................................... 3-06、矩阵中未写出的元素 .................................................................. 4-07、几类特殊的方阵...................................................................... 4-08、矩阵的运算规则...................................................................... 4-09、矩阵多项式.......................................................................... 6-10、对称矩阵............................................................................ 6-11、矩阵的分块.......................................................................... 6-12、矩阵的初等变换...................................................................... 6-13、矩阵等价............................................................................ 6-14、初等矩阵............................................................................ 7-15、行阶梯形矩阵与行最简形矩阵......................................................... 7-16、逆矩阵 ............................................................................. 7-17、充分性与必要性的证明题 .............................................................. 8-18、伴随矩阵............................................................................ 8-19、矩阵的标准形:........................................................................ 9-20、矩阵的秩:........................................................................... 9-21、矩阵的秩的一些定理、推论............................................................. 9-22、线性方程组概念..................................................................... 10-23、齐次线性方程组与非齐次线性方程组(不含向量) .......................................... 10-24、行向量、列向量、零向量、负向量的概念................................................ 11-25、线性方程组的向量形式 ............................................................... 11-26、线性相关与线性无关的概念......................................................... 12-27、向量个数大于向量维数的向量组必然线性相关 ........................................... 12-28、线性相关、线性无关;齐次线性方程组的解;矩阵的秩这三者的关系及其例题................. 12-29、线性表示与线性组合的概念......................................................... 12-30、线性表示;非齐次线性方程组的解;矩阵的秩这三者的关系其例题........................... 12-31、线性相关(无关)与线性表示的3个定理................................................ 12-32、最大线性无关组与向量组的秩.......................................................... 12-33、线性方程组解的结构…………………………………………………………………………………………12-01、余子式与代数余子式(1)设三阶行列式, 则①元素an,ai,au的余子式分别为:对Mi的解释:划掉第1行、第1列,剩下的就是一个二阶行列式,这个行列式即元素au的余子式Mi。

2.5 矩阵的秩及其求法

2.5 矩阵的秩及其求法

求 R( A).
1 0 2 −4 1 0 2 −4 −4 → 0 1 −1 2 r 2r , 解 A 2 − 0 1 −1 2 r1 → r3 + 1 0 −1 1 − 2 0 0 0 0
R(A) = 2
13
1 −1 1 2 例5 设A = 3 λ −1 2, 且R(A) 2 = ,求λ, µ 5 3 µ 6
∴ R( A) = 3
A为满秩方阵。
19
若求A 若求 的标准型矩阵
1 − 2 1 − 4 0 −1 −1 3 → 0 0 1 9 0 0 0 0
2 1 1 0 →0 2 0 0
0 −1 2 1 0 0
4 0 12 3 1 9 2 0 0 0
矩阵A 的第一、三行,第二、四列相交处的元素 所构成的二阶子式为
2 −1 D2 = 0 −1
3 5 为 A 的一个三阶子式。

1 2 D3 = 4 6
1 0 −1
k k m× n 矩阵 A 共有 cmcn 个 k 阶子式。 显然,
4

A = (aij )m×n 当 A=0 时,它的任何子式都为零。
⑤ R(AB)≤ min{R(A),R(B)} ⑥ 若 Am×nBn×s=0,则 R(A)+R(B)≤n
24
例8
设A为n阶矩阵,证明R(A+E)+R(A-E)≥n 证: ∴ 而 ∴ ∵ (A+E)+(E-A)=2E r(A+E)+ r( E-A )≥ r(2E)=n r( E-A )= r( A-E ) r(A+E)+r(A-E)≥n
7
矩阵秩的求法 二、矩阵秩的求法 1、子式判别法 定义 。 、子式判别法(定义 定义)。

线性代数 矩阵的秩与逆矩阵

线性代数 矩阵的秩与逆矩阵

BP1 P2
Ps = X
AP1 P2
Ps = E
3. AXC = B, A, C可逆。 解法I : X = A BC
解法II : AX = BC
−1
−1
−1
−1
XC = A B
求解矩阵方程时,一定要记住:先化简,再求解。
1 .已知 A, 且 AB = A − B , 求 B .
−1 ⇒ B = ( A + E ) A ⇒ AB + B = A ⇒ ( A + E ) B = A
⎛1 − 1 − 1 ⎜ → ⎜0 −1 − 2 ⎜0 0 −1 ⎝
⎛1 0 0 ⎜ → ⎜0 1 0 ⎜0 0 1 ⎝ 2
1 0 0⎞ ⎟ 3 1 0⎟ 4 2 1⎟ ⎠
1 ⎞ ⎟ 5 3 2⎟ − 4 − 2 − 1⎟ ⎠ 1
∴A
−1
=
1 1 ⎞ ⎛ 2 ⎜ ⎟ 3 2⎟ ⎜ 5 ⎜ − 4 − 2 − 1⎟ ⎝ ⎠
⎛2 ⎛1 − 1 ⎞ 3 . C = ⎜ 2.B = ⎜ ⎟ ⎜0 ⎜1 − 2 ⎟ ⎝ ⎝ ⎠
− 2⎞ ⎟ ⎟ 1 ⎠
⎛2 1 ⎛ 1 1⎞ −1 2. B = ⎜ = ⎜ ⎟ ⎜ ⎟ ⎜1 3 ⎝ − 2 1⎠ ⎝
− 1⎞ −1 1 ⎛ 1 2 ⎞ ⎜ ⎟ = C 3 . ⎟ ⎜ ⎟ ⎟ 0 2 2 − 1⎠ ⎝ ⎠
?? ⎛ 1 − 1 − 1⎞ ⎜ ⎟ 的逆怎样求? ? A = ⎜− 3 2 1 ⎟
⎜ 2 ⎝ 0 1 ⎟ ⎠
逆阵的性质
1 (i ) A可逆 ⇒ A = ; A (ii ) A可逆 ⇒ A−1可逆, ( A−1 ) −1 = A;
−1
(iii ) AB = E (or BA = E ) ⇒ B = A ;

线性代数 矩阵的秩

线性代数 矩阵的秩

小结. 求m × n 矩阵A 的秩r(A), 可用以下方法: 1. 对于比较简单的矩阵, 直接用秩的定义 直接用秩的定义. .

1 0 0 0
0 1 0 4
0 1 0 −1 0 0 5 0
2. 用有限次初等变换, 用有限次初等变换, 将矩阵A变为它的等价 标准形 , 则 r = r( A ) . O O 3. 用有限次行初等变换, 用有限次行初等变换,将矩阵A变为梯矩阵, 则 r(A)等于该梯矩阵的非零行的行数 等于该梯矩阵的非零行的行数. (方法2 与方法3 相比, 方法3 较为简单.)
例1 求下列矩阵的秩: 求下列矩阵的秩:
(1) A = 2 2
1 1
2 4 8 (2) B = 1 2 1
(3) C = 2
1 2 4 1 4 8 2 3 6 2 0
.
解 (1)因为
1 1 a = 1 ≠ 0 而 det A = 1 1 = 0 A= 11 , 2 2 2 2 故 r ( A) = 1
又B 并无3阶子式, 阶子式,故 r (B) =2.
8 2 2 0
故, 矩阵C 的秩不小于2.
= −3 ≠ 0
另外, 因为矩阵 C 不存在高于3阶的子式, 可知r (C) ≤ 3. 又因矩阵C 的第1, 2行元是对应成比例的, 行元是对应成比例的, 故C 的任一 3阶 子式皆等于零. 子式皆等于零.因此
0 0 1 0
4 3 −3 4
1 0 B= 0 0
0 1 0 0
−1 −1 2 0
0 0 1 0
4 3 −3 4
1 0 (2) 每个台阶只有一行, 每个台阶只有一行,台阶 A = 0 数即是非零行的行数, ,阶梯 数即是非零行的行数 0 线的竖线后面的第一个元素

线性代数§3.3矩阵的秩

线性代数§3.3矩阵的秩

设A为n阶可逆方阵. 因为| A | 0, 所以, A的最高阶非零子式为| A |, 则R(A)=n.
故, 可逆方阵A的标准形为单位阵E, 即A E. 即可逆矩阵的秩等于阶数. 故又称可逆(非奇异)矩 阵为满秩矩阵, 奇异矩阵又称为降秩矩阵. 1 2 2 1 1 2 4 8 0 2 , b , 例5:设 A 2 4 2 3 3 3 6 0 6 4 求矩阵A和矩阵B=(A | b)的秩. 分析: 设矩阵B的行阶梯形矩阵为B=(A| b), 则A就是A的行阶梯形矩阵. 因此可以从B=(A| b)中同时考察出R(A)及R(B).
性质6: R(A + B) R(A) + R(B). 证明: 设A, B为mn矩阵, 对矩阵(A+B ¦ B)作列变 换: ci – cn+i (i =1,2, · · · , n)得, (A+B ¦ B) (A+O ¦ B) B) R(A) + R(B). 于是, R(A+B) R(A+B ¦ B) =R(A+O ¦ 性质7: R(AB) min{R(A), R(B)}. 性质8: 若AmnBnl =O, 则R(A)+R(B) n . 这两条性质将在后面给出证明. 例7: 设A为n阶方阵, 证明R(A+E)+R(A–E) n . 证明: 因为(A+E)+(E–A)=2E, 由性质6知, R(A+E)+R(E–A)R(2E)=n, 而R(E–A)=R(A–E), 所以 R(A+E)+R(A–E) n .
§3.3 矩阵的秩
一、矩阵秩的概念
由上节讨论知: 任何矩阵Amn, 总可以经过有限次 初等行变换把它们变为行阶梯形矩阵和标准形矩阵. 行阶梯形矩阵中非零行的行数, 也就是标准形矩阵中 的数字r 是唯一确定的. 它是矩阵理论中非常重要的数 量关系之一——矩阵的秩. 定义: 在mn矩阵A中任取 k 行 k 列( km, kn ), 位于这 k 行 k 列交叉处的 k2个元素, 不改变它们在A 中所处的位置次序而得到的 k 阶行列式, 被称为矩阵A 的k阶子式. k C k 个. mn矩阵A的k阶子式共有 C m n

第一章 第五讲 矩阵的秩

第一章 第五讲  矩阵的秩

第五讲 矩阵的秩矩阵的秩是线性代数中又一重要概念,它描述了矩阵的一个重要的数值特征:在判定线性方程组是否有解,向量组的线性相关性,求矩阵的特征向量以及在多项式、空间几何等多个方面都有广泛的应用。

本讲我们主要了解矩阵秩的概念及其与方程组各类型解的关系。

5.1.1 矩阵秩的定义在第二讲中,我们通过矩阵的初等行(列)变换定义了矩阵的行(列)阶梯形、矩阵的行(列)最简形以及矩阵的标准形。

其中矩阵行(列)阶梯形与矩阵行(列)最简形可以不唯一,但矩阵的标准形唯一。

因此,下面就利用矩阵标准形的唯一性来给出矩阵秩的概念。

定义5.1 对于给定的m n ⨯矩阵A ,它的标准形(-)(-)(-)(-)rr n r m r r m r n r m nE OF O O ⨯⨯⨯⨯⎛⎫=⎪⎝⎭由数r 完全确定,我们称数r 为矩阵m n A ⨯的秩(rank ),记作()R A 。

其中, r E 是r 阶单位矩阵;其余都是零矩阵。

注:(1) 零矩阵的秩为零:()0R O =;(2) 矩阵的秩就是矩阵标准形中左上角单位矩阵的阶数。

(3)对于n 阶方阵A ,当()R A n =时,称A 为满秩矩阵。

当()R A n <时,称A 为降秩矩阵.例5.1 求矩阵111610121210A ⎛⎫⎪=-- ⎪ ⎪-⎝⎭的秩。

解 先将A 通过初等变换化为标准形111610121210A ⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭2131111601280306r r r r --⎛⎫⎪−−−→ ⎪ ⎪⎝⎭323111601280026r r -⎛⎫ ⎪−−−→ ⎪ ⎪⎝⎭111601280013⎛⎫ ⎪→ ⎪ ⎪⎝⎭12312101201280013r r r ---⎛⎫ ⎪−−−→ ⎪ ⎪⎝⎭13232100101020013r r r r +-⎛⎫⎪−−−→ ⎪ ⎪⎝⎭()4142433312,3100001000010c c c c c c E O -⨯--⎛⎫ ⎪−−−−−→= ⎪ ⎪⎝⎭可看出,矩阵A 的标准形中左上角是3阶单位矩阵,所以()3R A =. 矩阵秩有如下性质 性质5.1 ()()TR A R A =; 性质5.2 }{0()min ,R A m n ≤≤;性质5.3 如果n 阶方阵A 可逆,则()R A n =;(可逆矩阵也称为满秩矩阵)性质5.4 {}()min (),()R PA R P R A ≤; 当P 可逆时,()()R PA R A =;若 P Q 、都可逆,且有PAQ B =,则()()R A R B =.性质5.5 max {}(),()(|)()+()R A R B R A B R A R B ≤≤;特别地,当B 为列矩阵时,有max {}(),()(|)()+1R A R B R A B R A ≤≤;性质5.6 ()()();()()().r A B r A r B r A B r A r B +≤+-≥-性质5.7 设A 为m n ⨯矩阵且()R A r =,则A 的任意S 行组成的矩阵B ,有().r B r s n ≥+-下面只证明性质5.3和性质5.4,其余的性质请学生自证。

线性代数知识点总结

线性代数知识点总结

线性代数知识点总结线性代数知识点总结篇1第一章行列式知识点1:行列式、逆序数知识点2:余子式、代数余子式知识点3:行列式的性质知识点4:行列式按一行(列)展开公式知识点5:计算行列式的方法知识点6:克拉默法则第二章矩阵知识点7:矩阵的概念、线性运算及运算律知识点8:矩阵的乘法运算及运算律知识点9:计算方阵的幂知识点10:转置矩阵及运算律知识点11:伴随矩阵及其性质知识点12:逆矩阵及运算律知识点13:矩阵可逆的判断知识点14:方阵的行列式运算及特殊类型的矩阵的运算知识点15:矩阵方程的求解知识点16:初等变换的概念及其应用知识点17:初等方阵的概念知识点18:初等变换与初等方阵的关系知识点19:等价矩阵的概念与判断知识点20:矩阵的子式与最高阶非零子式知识点21:矩阵的秩的概念与判断知识点22:矩阵的秩的性质与定理知识点23:分块矩阵的概念与运算、特殊分块阵的运算知识点24:矩阵分块在解题中的技巧举例第三章向量知识点25:向量的概念及运算知识点26:向量的线性组合与线性表示知识点27:向量组之间的线性表示及等价知识点28:向量组线性相关与线性无关的概念知识点29:线性表示与线性相关性的关系知识点30:线性相关性的判别法知识点31:向量组的最大线性无关组和向量组的秩的概念知识点32:矩阵的秩与向量组的秩的关系知识点33:求向量组的最大无关组知识点34:有关向量组的定理的综合运用知识点35:内积的概念及性质知识点36:正交向量组、正交阵及其性质知识点37:向量组的正交规范化、施密特正交化方法知识点38:向量空间(数一)知识点39:基变换与过渡矩阵(数一)知识点40:基变换下的坐标变换(数一)第四章线性方程组知识点41:齐次线性方程组解的性质与结构知识点42:非齐次方程组解的性质及结构知识点43:非齐次线性线性方程组解的各种情形知识点44:用初等行变换求解线性方程组知识点45:线性方程组的公共解、同解知识点46:方程组、矩阵方程与矩阵的乘法运算的关系知识点47:方程组、矩阵与向量之间的联系及其解题技巧举例第五章矩阵的特征值与特征向量知识点48:特征值与特征向量的概念与性质知识点49:特征值和特征向量的求解知识点50:相似矩阵的概念及性质知识点51:矩阵的相似对角化知识点52:实对称矩阵的相似对角化.知识点53:利用相似对角化求矩阵和矩阵的幂第六章二次型知识点54:二次型及其矩阵表示知识点55:矩阵的合同知识点56 : 矩阵的等价、相似与合同的关系知识点57:二次型的标准形知识点58:用正交变换化二次型为标准形知识点59:用配方法化二次型为标准形知识点60:正定二次型的概念及判断线性代数知识点总结篇2行列式一、行列式概念和性质1、逆序数:所有的逆序的总数2、行列式定义:不同行不同列元素乘积代数和3、行列式性质:(用于化简行列式)(1)行列互换(转置),行列式的值不变(2)两行(列)互换,行列式变号(3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k乘此行列式(4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。

(线性代数)矩阵秩的8大性质、重要定理以及关系

(线性代数)矩阵秩的8大性质、重要定理以及关系

矩阵秩的8大性质:①A,宀)冬mini加小I ;③若A〜叭则R(A) = K(B)j④若可逆•则R(PAQ) = R(A),下面再介绍几个常用的矩阵秩的性质:⑤maxi R( A )>R(B)|^J R(A t B)^J R(A) + P (B), 特别地,当B = b为非零列向量时,有R(A)MR(A』)MR(A)+ 1.⑦R(AB)^min{K(A)t K(B)|,(见下节定理7)⑧若A…B“二0,则R(A) + R(B)Mm(见下章例13)设AB= O■若A为列满秩矩阵,则B-0.线性方程组的解:定理3 H元线性方程组A x=&(i)无解的充分必要条件是K(A)CR(A』);(ii)有惟一解的充分必要条件是R(A) = R(A,b)=n;(iii)有无限多解的充分必要条件是R(A) = R(A』)Cr?・定理4 n元齐次线性方程组Ax=OW零解的充分必要条件是R(A)Cm £35翹方聽AE鬧械酬髓件默⑷=R(A"定理6解方gAX=£有解的充分必要条件是R(A) = R(A,B).定理7 «AB = C,则R(C)Wmin|R(A),R(B)h向量组的线性相关性:定鰹1向跖能由向量组严心线憐示的充分必要桑件是j£^A=(a H fl J1»<t a w )的秩等于矩阵B =(爲卫?广』册』)的税.定理2向虽组B4訥严上能由向蚩组A0 叫…心 线性表示的 充分必要条件是矩阵A = («i 严心)的秩等于矩阵(A,B)=(釦严心, 27啲秩,即 R(A} = R(A,B)・推论向輦组宀%与向HfflB :*1(h lt -s6,等价的充分必要 条件是J?(A) = R(B)-J?(A,B)t其中A 和月是向僮组A 和B 所构成的矩阵”定理3设向員组Bl 】』?「讪能由向證组A a 厲厂心线性表示. 则R(h 』W 血KR 仏曲宀仇)・阵A = g 曲严松)的秩小于向懂个数奶向咼组线性无关曲充分必要条件 是R ⑷二皿血“也线性相关成盲之,若向储组B 线性无关侧向A 也线性无关.(2) 7«个"维向虽组成的向量组,当维数«小于向虽个数加时一定钱牲相 关•特别地,n + ltwt 向量一定线性相关,(3) 设向量组人:叭』2,线性无关,而向量组线性 相关侧向虽b 必能由向鈕组A 钱性表示,且表示式是惟一的.定理4,%线性相关的充分必要条件是它所构成的矩 定理5 (1)若向员组A0严心线性相关』IJ 向量組SW *对比:矩阵A =(叭』加小,%)的秧等于矩阵B = 的税,定理5线性方程组曲M 有解的充分必要憑件是R ⑷= R(A ;b)?l定理2向虽组时血严血能由向量组A :釘』线性表示的 充分必要条件是矩阵4二(尙,伽「・,心)的秩等于矩阵= 儿7)的秩,即R(A) = R(A 』}.条件是定理1 JSA 仙疋“5—线性表示的充分必要条件是 推论 向量组A :%与向 组…出等价的充分必要曬b 能由向 R(A) = R(B) = R(A t B),其中A 和B 是向世组A 和B 所构成的矩阵・定理6矩阵方程AX=B 有解的充分必要条件是R(A) = R(A t B).则RO】』?严,h)WR(a*2严叫)・n定理4向燧组小勺严心黠相关的充分必要条件是它所构成的矩阵亦⑴曲「心)的秩小于向齢数用洞鞠黠无关的充分必縣件是R(A)n||能4 "元制:黠方翻X0有鶴繃充分必要条瞬丽石~|觀5如騎次難方翻(13)的系協行臟D判屈粽黠方翱(13)蹣粹館定理5’如果撅黠方翩(13)辭輔』陀的系舫脱必腮.。

矩阵的秩的等式及不等式的证明

矩阵的秩的等式及不等式的证明

《矩阵的秩的等式及不等式的证明》(总27页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--摘要矩阵的秩是矩阵的一个重要特征,它具有许多的重要性质.本文总结归纳出了有关矩阵的秩的等式和不等式命题,以及证明这些命题常用的证明方法,即从向量组、线性方程组、线性空间同构、矩阵分块、矩阵初等变换等角度给出多种证明方法.本文主要解决以下几个问题:用矩阵已知的秩的理论证明矩阵秩的等式和不等式问题;用线性空间的方法证明矩阵秩的等式和不等式问题;用向量组秩的理论证明矩阵秩的等式和不等式问题;用矩阵分块法证明秩的等式和不等式问题.目录第一章绪论 ·······························································错误!未定义书签。

第二章预备知识························································错误!未定义书签。

线性代数 矩阵的秩

线性代数 矩阵的秩
~ ~ ~ 解 分析: B 的行阶梯形矩阵为 B ( A, b ), 设 ~ 则 A 就是 A 的行阶梯形矩阵, ~ ~ ~ 故从 B ( A, b ) 中可同时看出 R( A) 及 R( B ).
1 2 2 1 0 2 4 8 B 2 4 2 3 3 6 0 6 1 2 0 0 0 0 0 0
求矩阵 A的列向量组的一个最大 无关组。
解 对A施行初等行变换变为 行阶梯形矩阵
1 0 0 0 1 2 1 4 1 1 1 0 , 0 0 1 3 0 0 0 0
A
初等行变换
知R( A) 3,
故列向量组的最大无关 组含3个向量.
而三个非零行的非零首元在1、、三列, 24 故 a1 , a2 , a4 , 为列向量组的一个最大无关组.
1 2 3 4
初等行变换
2 1 1 2 1 0 0 0 1 0 0 0
R( A) 2, R( B ) 3.
例5 已知两个2×4矩阵
2 0 1 3 1 A T 3 2 1 1 2
由阶梯形矩阵有三个非零行可知 R( A) 3.
1 2 2 1 1 0 2 4 8 2 例4 设A 2 4 2 3 , b 3 3 6 0 6 4
求矩阵A及矩阵B ( A b )的秩.
说明
(1)ቤተ መጻሕፍቲ ባይዱ等变换不改变矩阵的秩
(2)用初等行(列)变换把矩阵化成行(列) 阶梯时,非零行(列)的个数就是矩阵的秩 (3)把矩阵A化成行(列)阶梯矩阵B,则B的 列(行)向量组中任意最大无关组所对应的A的 列(行)向量组构成A的一个最大无关组。

线性代数重要知识点总结

线性代数重要知识点总结

线性代数N阶行列式定理1:任意一个排列经过对换后,其奇偶性改变。

推论:奇排列变成自然数顺序排列的对换次数为奇数,偶排列变成自然数顺序排列的对换次数为偶数。

定理2:n个自然数(n-1)共有n!个n级排列,其中奇偶排列各占一半。

行列式的性质性质1:行列式与它的转置行列式相等。

性质2:交换行列式的两行(列),行列式变号。

*注2:交换i,j两列,记为ri↔ri(ci↔cj)。

推论1:如果行列式中有两行(列)的对应元素相同,那么该行列式必为零。

性质3:用数k乘行列式的某一行(列),等于用k乘此行列式。

注3:第i行(列)乘以k,记为ri×k(ci×k)。

推论2:行列式的某一行(列)中所有元素的公因子可以提到行列式符号的外面。

推论3:在一个行列式中,如果有两行(列)元素成比例,则这个行列式必等于零。

性质4:如果将行列式的某一行(列)的每个元素都改写成两个数的和,则此行列式可写为两个行列式的和,且这两个行列式分别为所在行(列)对应位置的元素,其它元素不变。

#注4:上述结果可推广到有限个数和的情形。

性质5:将行列式的某一行(列)的所有元素都乘以数k后加到另一个行(列)对应位置的元素上,行列式的值不变。

注5:以数k乘第j行加到第i行上,记作ri+krj;以数k乘第j列加到第i列上,记作ci+kcj。

行列式按行(列)展开余子式:Mij 代数余子式:Aij=(-1)i+j Mij引理:一个n阶行列式D,若其中第i行所有元素除aij外都为0,则该行列式等于aij 与它代数余子式的乘积,即D=aijAij[定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和。

推论:行列式某一行(列)的每元素与另一行(列)对应元素的代数余子式乘积之和等于零。

k阶行列式:在n阶行列式D中,任意选定k行k列,位于这些行和列交叉处的k²个元素,按原来顺序构成一个k阶行列式M,称为D的一个k阶子式,划去这k行k列,余下的元素按原来的顺序构成一个n-k阶行列式,在其前面冠以符号(-1)的(i1+i2+…+i k+j1+j2+…+j k)次方,称为M的代数余子式,其中i1,i2,…,i k为k阶子式M在D中的各行标,j1,j2,…,j k为M在D 中的各列标。

Ch3-2线性代数矩阵的秩

Ch3-2线性代数矩阵的秩



rt,
故有
R ( A, B) R ( A) R ( B).
6 0 R( A+B ) R( A) +R( B) . c i c n i ( , ) 证 ( A B , B) A B , , n i 1, R ( A B ) R ( A B , B ) R ( A, B) R ( A) R (B) .
0 3 2 4 A 0 3 1 1 6 2
1 2 1 3
3 1 4 2
1 3 1 4
2 0 2 1
2 0 1 3 4 3 1 2 4
2 1 3 4
一般地: m×n 矩阵A 的 k
2 阶子式 3 阶子式 k C k 个. 阶子式共有 Cm n
k 阶子式、矩阵的子块、余子式、代数余子式的区别!
定义3(P66) 设 A 为 n 阶方阵,若 R(A)= n, 则称 A 为 满秩矩阵;若 R(A)< n,则称 A 为降秩矩阵.
单位阵 E 是满秩矩阵, 1 2 2
A 0 3 1 是降秩矩阵. 0 0 0
① n 阶满秩阵化为行阶梯形时有多少非零行? — n 行. ② 满秩阵的行列式 ≠ 0
左乘列满秩阵秩不变 Bnl , 证明: 若 A mn, 且 R ( A) n , R ( AB ) R ( B ) . A的秩等于其列数 A列满秩
,
行满秩阵——矩阵的秩等于其行数. 上面的结论可以相应地推广到右乘行满秩阵. 请自证. 满秩矩阵——方阵,且既列满秩又行满秩. AB = O时,本题结论为:设 AB = O,若 A为列满秩矩阵,则B = O. 原本仅对可逆阵成立的零因子性质,可以推广到列(行)满秩矩阵. 由此可以体会到列(行)满秩矩阵概念的重要性.

线性代数矩阵的秩

线性代数矩阵的秩
一、基本概念 1、 k 阶子式 定义 在 m n 矩阵 A中, 任取 k 行 k 列, 位于这些 行与列交叉处的元素, 保持原来的位置不变而构成的 k 阶行列式,称为 A 的一个 k 阶子式.
a11 a12 a21 a22 ai 1 ai 2 a m 1 am 2

把矩阵 A 用初等行变换变成为阶梯形矩阵:
(-1)[1]+[2] [1,4] (-2)[1]+[3] (-3)[1]+[4] (-3)[2]+[3] (-4)[2]+[4] (-1)[3]+[4]
A
1 6 4 1 4 1 1 0 4 3 0 0 0 4 8 0 0 0 0 0
1 A 0 2 2 1 4 3 2 6 0 1 0
1 2 3 6
1 3 2 6 0 1 0 0
பைடு நூலகம்3 阶子式: 0
2
2 阶子式:
0
1 0
0 1
1
模式二 一、基本概念 1、 k 阶子式 定义 在 m n 矩阵 A中, 任取 k 行 k 列, 位于这些 行与列交叉处的元素, 保持原来的位置不变而构成的 k 阶行列式,称为 A 的一个 k 阶子式.
1 a 1
1 1 a
1 1 1 1 a 1
求 r( A)
解: A

a 1 1
1 a 1
[( n 1) a ]
1 1 a
[( n 1) a ]
1 a 1 0
1 0 a 1
[(n 1) a](a 1)n1
A [(n 1) a](a 1)n1

A O r1 r2 O B

线性代数(同济六版)知识点总结

线性代数(同济六版)知识点总结

0 a11a22...ann
副三角跟副对角相识
an1 an2 ... ann
对角行列式:
副对角行列式:
λ1 λ2
λ 1λ 2...λn
λn
6. 行列式的性质:
λ2
λ1
n ( n1 )
(1) 2 λ 1λ 2 λ n
λn
①行列式与它的转置行列式相等. (转置:行变列,列变行)。D =
②互换行列式的两行(列),行列式变号。
余子式:在 n 阶行列式中,把元素 aij 所在的第 i 行和第 j 列划去, 剩下的( n −1 )2 个元素按原来的排法构 成的 n − 1 阶行列式 叫做 aij 的余子式,记为 Mij
代数余子式:记 Aij = ( −1 ) i+j Mij 为元素 aij 的代数余子式 。 ②重要性质,定理
a11 a12 (b1 j c1 j ) a1n
a21 a22 (b2 j c2 j ) a2n
an1 an2 (bnj cnj ) ann
a11 a12 b1 j a1n a11 a12 c1 j a1n
a21
a22
b2 j
a2n
a21
a22
c2 j
a2n
(3) ( A)T AT ; (4) ( AB)T BT AT .
设 A 为 n 阶方阵,如果满足
,即
,则 A 为对称阵
如果满足
,即
,则 A 为反对称阵
4. 方阵的行列式:由 n 阶方阵的元素所构成的行列式,叫做方阵 A 的行列式,记作|A|或 det A.
性质:①| AT || A | ,②| A | n | A | ,③| AB || A || B | 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档