分式的乘除(第1课时)教案

合集下载

分式的乘除(第1课时)教案分析

分式的乘除(第1课时)教案分析

分式的乘除(第1课时)教案分析今日,我说课的内容是义务教育人教版八班级数学上册第十五章第二节第1课时分式的乘除,依据新课程的理念,对于本节课,我将从说教材、说学情、说教学目标、说教法学法、说教学过程、说板书、说教学反思等七个方面呈现我的教学设计。

1.说教材教学内容有:分式的乘、除法法则和运用法则进行的化简运算。

地位和作用:本节课是在学习了分数的乘除法、分式的基本性质、分式的约分和因式分解的基础上,来学习分式的乘除法;同时,它又为学习分式的加减法和分式方程等知识奠定了基础,因此,本节课在中学数学的学习中起着承上启下的作用。

本节课在教材编排上很有特色,它以同学熟识的长方体容积问题及工程问题引入课题,意在表达分式的乘除运算是由实际需要产生的,使同学感受到数学与生活的联系,从而激发同学的求知欲。

2.在学情方面为了更好地了解同学的知识状况,课前我做了一个学情调查表,内容设置涉及最简分式、因式分解、约分等前置内容,及本节所要学习的部分知识点,通过学情调查并结合实际,发觉八班级同学新奇、简单激昂、好表现,对旧知识的积累,已具备肯定自主、互动、合作探究学习的技能和阅历,不足之处有:即兴构思技能、抽象思维技能有待提高。

3.在教学目标方面基于对八班级同学学情的分析及本节课在教材的地位和作用,特制定如下教学目标。

知识与技能目标:理解分式的乘除法法则,能进行简约的分式乘除法运算。

过程与方法目标:经受从分数的乘除法运算到分式的乘除法运算的过程,培育同学类比的探究技能,加深从非常到一般的思想认识。

情感立场与价值观目标:教学中让同学在主动探究,合作沟通中渗透,类比转化的思想;使同学在学知识的同时感受探究的乐趣和胜利的体验。

依据以上分析本节课的教学。

重点为:运用分式的乘除法则进行运算。

难点为:分子、分母为多项式的分式乘除法运算。

难点中的疑点:如何确定分子、分母的公因式。

4.说教法学法教法上我主要采纳启发式教学法、讲授法。

学法上我采纳自主探究、合作沟通探究的学习方法。

分式的乘除优质课教案

分式的乘除优质课教案
数学的意识。
重点
会用分式乘除的法则进行运算
难点
分子、分母是多项式的分式乘除法运算
教学过程
教学
环节
活动设计
设计意图




一:知识回顾
引出课题:分式的乘除
给出几个分数的乘除运算回顾分数乘除运算法则,如果把数字换成字母让同学们想一下该怎样运算。



究Hale Waihona Puke 二:探究活动;类比联想分式乘除法法则
猜一猜与同伴交流。
欢迎您的下载,
资料仅供参考!
练习题是对分式中分子和分母为单项式时的巩固,让学生自己解决问题,并总结出做这类题的一般步骤和所需要注意的问题。




例2计算
例2是例1的延续和加深当分式的分子、分母是多项式,应先把多项式分解因式再进行约分.




课堂练习
练习1计算
能力提升
化简求值 ,其中
引导学生对知识的梳理和思想方法的提炼,教会学生学习的方法。提高学生对知识运用的熟练性
本题是对法则的巩固过程,进一步熟悉并掌握法则内容




例1计算
注意:分式运算的结果通常要化成最简分式或整式
巩固练习:
1.计算
分子和分母都是单项式的分式乘除法的解题步骤是:
①把除法运算变成乘法运算;
②确定积的符号;
③求分式的乘积;
④约分
例1就是直接应用分式的乘除法法则进行运算.切实理解每一步计算,除了书中的解法鼓励学生用其他的解法去解,有利于学生的个性化学习。




通过本节课的学习你有什么收获?又应该注意什么?

人教八年级数学上册15.2.1分式的乘除(教案)

人教八年级数学上册15.2.1分式的乘除(教案)
(2/3) * (4/5) ÷ (1/2) = (2/3) * (4/5) * (2/1) = 16/15,指导学生按照先乘后除的顺序进行计算。
c.难点应用:在实际问题中,例如计算两个长度的比例、解决涉及比例的面积或体积问题,指导学生如何提取分式乘除的信息,建立数学模型。
四、教学流程
(一)导入新课(用时5分钟)
举例:重点讲解分式乘法法则时,可以通过以下例子进行强调:
(1/2) * (3/4) = 1/2 * 3/4 = 3/8,让学生明确分子与分子相乘,分母与分母相乘的运算过程。
2.教学难点
-分式乘除法则的理解:学生需要理解分式乘除背后的数学原理,而不仅仅是机械地记忆运算规则。
-分式乘除混合运算的顺序:学生在进行混合运算时,容易混淆运算顺序,需要通过实例和练习加强指导。
3.重点难点解析:在讲授过程中,我会特别强调分式乘法法则和分式除法法则这两个重点。对于难点部分,比如分式除法的概念,我会通过实际例子的演算来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与分式乘除相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如使用纸片或模型来演示分式乘除的基本原理。
人教八年级数学上册15.2.1分式的乘除(教案)
一、教学内容
人教八年级数学上册15.2.1分式的乘除:
1.分式乘法法则:两个分式相乘,分子乘分子,分母乘分母。
2.分式除法法则:除以一个分式,等于乘以这个分式的倒数。
3.分式乘除混合运算法则:先乘除后加减,从左到右依次进行。
4.分式乘除的应用:解决实际问题时,将问题转化为分式的乘除运算。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。

分式的乘除_教案(教学设计)

分式的乘除_教案(教学设计)

分式的乘除【教学目标】1.让学生通过实践总结分式的乘除法,并能较熟练地进行式的乘除法运算。

2.使学生理解分式乘方的原理,掌握乘方的规律,并能运用乘方规律进行分式的乘方运算。

3.引导学生通过分析、归纳,培养学生用类比的方法探索新知识的能力。

【教学重难点】1.重点:分式的乘除法、乘方运算。

2.难点:分式的乘除法、混合运算,以及分式乘法,除法、乘方运算中符号的确定。

【教学过程】一、复习提问:(1)什么叫做分式的约分?约分的根据是什么?(2)下列各式是否正确?为什么?二、探索分式的乘除法的法则1.回忆: 计算:10965⨯; 4365÷。

2.例1计算:(1)x b ay by x a 2222⋅; (2)222222xb yz a z b xy a ÷。

由学生先试着做,教师巡视。

3.概括:分式的乘除法用式子表示即是:4. 例2计算:493222--⋅+-x x x x 。

分析:①本题是几个分式在进行什么运算?②每个分式的分子和分母都是什么代数式?③在分式的分子、分母中的多项式是否可以分解因式,怎样分解?④怎样应用分式乘法法则得到积的分式? 解:原式=)2)(2()3)(3(32-+-+⋅+-x x x x x x =23+-x x 。

5.练习: 计算:2()x y xy x xy --÷ 三、探索分式的乘方的法则1.思考我们都学过了有理数的乘方,那么分式的乘方该是怎样运算的呢?先做下面的乘法:(1)=∙∙=⎪⎭⎫ ⎝⎛b a b a b a b a 3=∙∙∙∙b b b a a a 33b a ; (2)=∙∙∙=⎪⎭⎫ ⎝⎛b a b a b a b a n n n b a 。

2.仔细观察这两题的结果,你能发现什么规律?与同伴交流一下,然后完成下面的填空: (mn )(k ) =___________(k 是正整数)。

3.22212(1)441x x x x x x x-+÷+⨯++-4.练习:(1)判断下列各式正确与否:(2)计算下列各题:【作业布置】1.怎样进行分式的乘除法?2.怎样进行分式的乘方?。

16.2.1分式的乘除(第1课时)

16.2.1分式的乘除(第1课时)

16.2.1分式的乘除(第1课时)【三维目标】1、知识目标:1)理解并掌握分式的乘除法法则2)运用法则进行运算,能解决一些与分式有关的实际问题。

2、能力目标:经历从分数的乘除法运算到分式的乘除法运算的过程,培养学生类比的探究能力,加深对从特殊到一般数学的思想认识。

3、情感目标:教学中让学生在自主探究,合作交流中渗透类比转化的思想,使学生感受探索的乐趣和成功的体验。

【教学重点难点】重点:运用分式的乘除法法则进行运算。

难点:分子、分母为多项式的分式乘除运算【教学课时】 2课时【教学过程】一、创设问题情境,引入新课问 题:大拖拉机m 天耕地a 公顷,小拖拉机n 天耕地b 公顷,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?答:大拖拉机的工作效率是小拖拉机的⎪⎭⎫ ⎝⎛÷n b m a 倍引 入:从上面的问题可知,解决生活中的问题有时需要进行分式的乘除运算,那么分式的乘除是怎样运算的呢?这是我们这节课要学习的内容二、类比联想,探究新知问题1:分数的乘除(1)24248353515⨯⨯==⨯ (2)2725251035373721⨯÷=⨯==⨯(3) 24248353515x y x y xy⨯⨯==⨯ (4)2725251035373721y y y x y x x x ⨯÷=⨯==⨯ 问题2:类比分数的乘除法则猜想分式的乘除法则 乘法法则 除法法则分 数 两个分数相乘,把分子相乘的积作为分子,把分母相乘的积作为分母 两个分数相除,把除式的分子分母颠倒位置后,再与被除式相乘分 式两个分式相乘,把分子相乘的积作为分子,把分母相乘的积作为分母 两个分式相除,把除式的分子分母颠倒位置后,再与被除式相乘 符号表示 a b ·c d =ac bd ; a b ÷c d =a b ·d c =ad bc三、例题分析,应用新知例1 计算(1)3234xy y x ∙ (2)mm m 7149122-÷- 解: 2333264234)1(xy x xy x y y x ==∙ m m m m m m m m m mm m +-=+---=-∙-=-÷-7)7)(7()7()7(49171491)2(2222 例2 回顾开课时的问题并解决四、随堂测试,培养能力yx y x y x y x xy xy y x a xy ab b a +-∙-+÷-÷∙)4(32)3)(3(8512)2(916431222)( 五、课堂小结,知识归纳(1)分式的乘法法则和除法法则;(2)分式或分母是多项式的分式乘除法的解题步骤: ①把各分式中分子或分母里的多项式分解因式; ②应用分式乘除法法则进行运算;(注意:结果为最简分式或整式)六、作业课后习题1、2。

新湘教版八年级上册初中数学 1.2 分式的乘法和除法 教案

新湘教版八年级上册初中数学 1.2 分式的乘法和除法 教案

1.2 分式的乘法和除法(第1课时)【教学目标】1、 理解并掌握分式的乘、除法运算法则。

2、能够灵活进行分式的乘法。

3、培养学生自主学习能力,类比学习能力,培养学生的创新意识和应用数学的意识。

【教学重点】让学生掌握分式的乘、除法运算【教学难点】分子、分母为多项式的乘法与除法运算【教学过程】一、情境引入1、计算:269⨯=.3245⨯=.42155÷=.2、分数的乘法与除法运算法则是什么?3、尝试计算:=⋅22332a b b a .=+÷+1212x x x x .4、引入:通过上面的练习,我们发现分式的乘法与除法又如何计算呢?二、自主学习1、自学教材,回答下列问题:分式的乘法法则是什么?分式的除法法则是什么?2、自主练习:计算:⑴ 336()4b a b a -⋅⑵5344(24)(36)x y x y -÷(3)24112x x x -⋅+- 3、归纳:分式的乘法与除法运算法则与分数的乘法与除法运算法则类似,其中要运用到幂的意义,因式分解等知识。

三、典例精析例1:计算:(1)22325x y y x •(2)12132-÷-x x x x例2:计算:(1);142122-⋅+x x x x (2)1212822+÷++x x x x x 。

让学生独立完成上述的计算题,然后交流,教师作个别辅导,最后总结归纳,分式的乘法与除法步骤:①分子、分母是整式,要先分解因式;②分式除以分式,按法则转换为乘法计算;③分式乘分式,分子乘分子、分母乘分母分别作为积的分子、分母,然后约去分子、分母的公式因。

特别要让学生展示自己的错误经验,比如未先因式分解的,或者结果没有化为最简分式的。

例3:先化简,再求值:2222111x x x x x x +++÷--,其中2x =。

本题可让学生先独立计算,教师作出个别辅导后,全班交流,并总结经验。

四、练习反馈⒈教材练习1,2⒉教材习题1.2 B 组5题 ⑴()1121224+÷++-x x x x ⑵()y x y xy x x y 244222++-÷- 让学生独立完成,并展示错误经验,集中点评。

分式的乘除法课时教案

分式的乘除法课时教案

§16.2.1 分式的乘除(1) 教学目标(一)知识与技能目标使学生理解并掌握分式的乘除法则,运用法则进行运算,能解决一些与分式有关的实际问题.(二)过程与方法目标经历探索分式的乘除运算法则的过程,并能结合具体情境说明其合理性(三)情感与价值目标教学过程中渗透类比转化的思想,让学生在学知识的同时学到方法,受到思维训练. 教学重点和难点重点是掌握分式的乘除运算难点是分子、分母为多项式的分式乘除法运算.教学方法 小组合作交流教学过程1、情境导入问题1 一个长方体容器的容积为V,底面的长为a 宽为b,当容器内的水占容积的 时,水高多少? 长方体容器的高为 ,水高为 .问题2 大拖拉机m 天耕地a 公顷,小拖拉机n 天耕地 b 公顷,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?大拖拉机的工作效率是 公顷/天,小拖拉机的工作效率是 公顷/天,大拖拉机的工作效率是小拖拉机的工作效率的( )倍.观察下列运算: 猜一猜??=÷=⨯cd a b c d b a 与同伴交流。

2、解读探究 经观察、类比不难发现,ac bd c d a b =⨯.ad bc d c a b c d a b =⨯=÷ 由学生自己归纳总结出分式乘除法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

用符号语言表达: 两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。

用符号语言表达: 例1计算注意:分式运算的结果通常要化成最简分式或整式 例2计算 小结:①分式的分子、分母都是几个因式的积的形式,所以约去分子、分母中相同因式的最低次幂,注意系数也要约分 ②当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分. 做一做:通常购买同一品种的西瓜时,西瓜的质量越大,花费的钱越多,因此人们希望西瓜瓤占整个西瓜的比例越大越好。

假如我们把西瓜都看成球形,并把西瓜瓤n m bd ac d c b a =⨯bc adc d b a d c b a =⨯=÷cd 4b 2a 25c22b 3a )2(-÷的密度看成是均匀的,西瓜的皮厚都d ,已知球的体积公式为334R v π=(其中R 为球的半径,)那么(1) 西瓜瓤与整个西瓜的体积各是多少?(2) 西瓜瓤与整个西瓜的体积的比是多少?(3) 买大西瓜合算还是买小西瓜合算?3、课堂练习4、课堂小结:通过本节课的学习,你学到了哪些知识和方法? §16.2.1 分式的乘除(2)一、教学过程(一)复习提问1.分式的乘除法法则.2.乘方的意义:(二)新课1.由整式的乘方引出分式的乘方,并由特殊到一般地引导学生进行归纳.由乘方的意义 由分式的乘法法则(2)同理:2.分式乘方法则:文字叙述:分式乘方是把分子、分母各自乘方.3.目前为止,幂的运算法则都有什么?(1)a m ·a n =a m+n ;(2) a m ÷a n =a m-n ;(3)(a m )n =a mn ;(4)(ab)n =a n b n ;4.例题与练习例1? 计算:小结:①对于乘、除和乘方的混合运算,应注意运算顺序,但在做乘方运算的同时,可将除变乘. ②做乘方运算要先确定符号.练习:教材P.25中1、2.例2? 计算:(三)小结1.分式的乘方法则.2.运算中的注意事项.二、作业三、板书设计。

《分式的乘除》教案

《分式的乘除》教案

《分式的乘除》教案分式的乘除教案一、教学目标1. 理解分式的定义和基本概念。

2. 掌握分式的乘法和除法运算规则。

3. 能够解决与分式有关的实际问题。

二、教学重点1. 分式的乘法和除法运算规则。

2. 实际问题的解决。

三、教学难点实际问题的解决。

四、教学准备1. 教师准备:课本、黑板、粉笔。

2. 学生准备:课本、笔记。

五、教学过程1. 概念解释和引入(老师在黑板上写下分式的定义)分式是由分子和分母组成的数,通常用a/b的形式表示,其中a为分子,b为分母,b不等于0。

2. 分式的乘法运算规则(老师在黑板上写下分式的乘法运算规则)分式的乘法运算规则:两个分式相乘时,分子与分子相乘,分母与分母相乘。

例如: 2/3 × 4/5 = (2 × 4)/(3 × 5)= 8/153. 分式的除法运算规则(老师在黑板上写下分式的除法运算规则)分式的除法运算规则:两个分式相除时,分子与分子相乘,分母与分母相乘,然后将被除数的倒数变为乘数。

例如: 2/3 ÷ 4/5 = (2/3)×(5/4)= (2 × 5)/(3 × 4)= 10/12 = 5/64. 例题讲解和练习(老师在黑板上列出一些练习题,学生们进行解答,并逐一讲解)例题1:计算 3/5 × 7/8解答: 3/5 × 7/8 = (3 × 7)/(5 × 8)= 21/40例题2:计算 4/9 ÷ 2/3解答: 4/9 ÷ 2/3 = (4/9)×(3/2)= (4 × 3)/(9 × 2)= 12/18 =2/3例题3:计算 5/6 × 2/5 ÷ 3/4解答: 5/6 × 2/5 ÷ 3/4 = (5/6)×(2/5)÷(3/4)= (5 × 2)/(6 ×5)÷(3/4)= 10/30 ÷(3/4)= 10/30 ×(4/3)= (10 × 4)/(30 × 3)= 40/90 = 4/95. 实际问题解决(老师给出一些与分式有关的实际问题,并帮助学生思考和解决)例题4:小明做了1/3个小时的作业,他又做了2/5个小时的作业,他总共做了多长时间的作业?解答:首先计算出1/3 + 2/5 = (1 × 5 + 2 × 3)/(3 × 5)= (5 + 6)/15 = 11/15,所以小明总共做了11/15个小时的作业。

15.2.1《分式的乘除1》教案-河南省漯河市舞阳县人教版八年级数学上册

15.2.1《分式的乘除1》教案-河南省漯河市舞阳县人教版八年级数学上册

15.2.1《分式的乘除1》【课标内容】能进行简单的分式乘除运算。

【教材分析】本节是第十五章第二节第一课时的内容,是初中数学的重要内容之一。

这是在学习了分式的基本性质、分式的约分和因式分解的基础上,进一步学习分式的乘除法;另一方面,又为学习分式加减法和分式方程等知识奠定了基础。

因此,我认为,本节课起着承前启后的作用。

【学情分析】针对我班学生,大部分基础相对较差,学习起来困难比较大,所以,课堂内容的设置相对小一些,由最简单的题目,一点点的上梯度,注重基础知识的讲解和练习,以照顾到所有的学生。

【教学目标】1.理解分式乘除法的法则.2.会进行分式乘除运算.【教学重点】会用分式乘除的法则进行运算。

【教学难点】分子、分母是多项式的乘除法运算【教学方法】五步教学法、复习引入法【教具准备】【课时安排】1课时【教学过程】一、复习旧知 预习新学阅读教材P 135~137,完成预习内容.1.问题1和问题2中的v ab ·m n ,a m ÷b n怎么计算? 2.复习回顾:(1)23×45=2×43×5=815. (2)57×29=5×27×9=1063. (3)23÷45=23×54=2×53×4=1012=56. (4)57÷29=57×92=5×97×2=4514. 【设计意图】 给出几个分数的乘除运算回顾分数乘除运算法则,如果把数字换成字母让同学们想一下该怎样运算。

分数的乘除运算法则:1.两个分数相乘,把________相乘的________作为________,把________相乘的积作为________;2.两个分数相除,把除数的分子、分母________后,再与被除数________.3.类比分数的乘除运算法则,总结出分式的乘除运算法则:(1)乘法法则:分式乘分式,用分子的积作为积的________,分母的积作为积的________;(2)除法法则:分式除以分式,把除式的分子、分母________后,与被除式相乘.用式子表达:a b ·c d =a·c b·da b ÷c d =a b ·d c =a·d b·c【设计意图】 从学生已有的数学经验出发,建立新旧知识之间的联系,类比分数的乘除法法则,可以很容易的总结出分式的乘除法法则。

人教版八年级数学上册15.2.1《分式的乘除》第1课时教案

人教版八年级数学上册15.2.1《分式的乘除》第1课时教案

第十五章分式15.2分式的计算15.2.1分式的乘除第1课时一、教学目标1.理解并掌握分式乘除法的法则,会进行分式乘除运算.让学生在主动探究合作交流中渗透类比转化的思想,使学生在学知识的同时感受探索的乐趣和成功的体验.2.能解决一些与分式乘除法有关的实际问题.二、教学重点及难点重点:运用分式的乘除法法则熟练地进行运算。

难点:分子、分母为多项式的分式乘除法运算以及如何解决一些与分式乘除法有关的实际问题.三、教学用具电脑、多媒体、课件四、相关资源图片五、教学过程(一)情景导入问题1:一个水平放置的长方体容器,其容积为V,底面的长为a,宽为b,当容器内的水占容积的mn时,水面的高度为多少?(1)这个长方体容器的高怎么表示?V ab()(2)容器内水面的高与容器内的水所占容积间有何关系?容器内水面的高与容器高的比和容器内的水所占容积的比相等.所以水面的高度为V m ab n.问题2:大拖拉机m天耕地a2hm,小拖拉机n天耕地b2hm,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?大拖拉机的工作效率为a m ,小拖拉机的工作效率为b n . 大拖拉机的工作效率是小拖拉机的工作效率的a b m n÷倍. 观察上述两个问题中所列出的式子V m ab n ⋅和a b m n÷,涉及到分式的哪些运算?你能用学过的运算法则求出结果吗? 设计意图:通过具体问题引出分式的乘除法的实际存在意义,为接下来探究分式的乘除法法则做铺垫.(二)探究新知1.计算:(1)2335⨯;(2)5279÷. 解:(1)2323235355⨯⨯==⨯; (2)525945797214÷=⨯=. 2.在计算的过程中,你运用了分数的什么法则?你能叙述这个法则吗?分数的乘法法则:分数乘分数,用分子的积作为积的分子,分母的积作为积的分母. 分数的除法法则:除以一个数(不为零)等于乘以这个数的倒数.3.如果将分数换成分式,那么你能类比分数的乘除法法则,说出分式的乘除法法则吗? 分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.4.怎样用字母来表示分式的乘除法法则呢?a c a cb d b d ⋅⋅=⋅,ac ad a d b d b c b c⋅÷=⋅=⋅. 5.求出问题1和问题2的计算结果.问题1:V m ab n ⋅V m Vm ab n abn ⋅==⋅; 问题2:a b m n ÷a n an m b mb =⋅=.设计意图:借助学生对于分数的乘除法的已有认识,学习分式的乘除法是十分自然的知识扩充,按照由特殊到一般、从具体到抽象的认识过程,让学生类比发现、总结结论,实现学生主动参与,探究新知的目的.(三)例题解析【例1】计算:(1)3432x y y x ⋅;(2)3222542ab a b cd c-÷. 解:(1)3324423263x y xy y x x y x ⋅==; (2)32233222222254424522510ab a b ab cd ab cd bd cd ac c c a b a b c-÷=⋅=-=--. 【例2】计算:(1)222441214a a a a a a -+-⋅-+-;(2)2211497m m m÷--. 解:(1)222441214a a a a a a -+-⋅-+- 2221221a a a a a ()()()()--=⋅-+- 2221122a a a a a ()()()()()--=--+ 212a a a ()()-=-+; (2)2211497m m m÷-- 221749m m m ()=-⋅-- 777m m m m ()()()-=-+- 7m m =-+. 总结归纳:对于分子与分母都是单项式的两个分式乘除,可直接利用分式的乘除法法则,再根据分式的基本性质进行约分,将最后的结果化成最简分式;而对于分子或分母中含有多项式的两个分式相乘,为了使算式简洁,也便于找出分子与分母中的公因式,需要先将多项式因式分解,把多项式化成整式的积的形式,然后利用分式的乘除法法则进行运算,利用分式的基本性质进行约分,并把最后的结果化成最简分式.设计意图:通过例题的讲解,让学生进一步掌握运用分式的乘除法法则进行分式的运算,并总结归纳出进行分式乘除法计算的具体步骤.(四)再探新知【例3】“丰收1号”小麦的试验田是边长为a m (a >1)的正方形去掉一个边长为1 m 的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(a -1) m 的正方形,两块试验田的小麦都收获了500 kg .(1)哪种小麦的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?解:(1)“丰收1号”小麦的试验田面积是21a ()- 2m ,单位面积产量是25001a - kg/2m ; “丰收2号”小麦的试验田面积是21a ()- 2m ,单位面积产量是25001a ()- kg/2m . ∵1a >,∴210a ()->,210a ->.由上图可知2211a a ()-<-, ∴2250050011a a ()<--. 即“丰收2号”小麦的单位面积产量高.(2)2250050011a a ()÷--2250015001a a ()=-⋅-2111a a a ()()()=+--11a a =+-. 所以,“丰收2号”小麦的单位面积产量是“丰收1号”小麦的单位面积产量的11a a +-倍. 归纳解题步骤:(1)先根据题意分别列出表示两个量的代数式;(2)再根据题意列出相应的算式;(3)最后通过计算解决问题.设计意图:通过具体问题的实际问题,让学生自主探究,并进行充分讨论,最后统一认识,得出解决实际问题的步骤.【例4】计算:2235353259x x x x x ÷⋅-+-. 分析:此例题是分式乘除法的混合运算.分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的. 解:2235353259x x x x x ÷⋅-+- 2225953353x x x x x -=⋅⋅-+(先把除法统一成为乘法运算) 2535353353x x x x x x ()()+-=⋅⋅-+(分子、分母中是多项式的分解因式) 223x =.(约分到最简分式) 设计意图:在学生掌握了分式的乘法、除法运算的基础上让学生学会进行分式乘除法的混合运算.六、课堂小结1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.3.用字母表示分式的乘除法法则:a c a cb d b d ⋅⋅=⋅,ac ad a d b d b c b c⋅÷=⋅=⋅. 4.分式乘除法的混合运算:分式乘除法的混合运算统一为分式乘法运算.5.解决与分式乘除法有关的实际问题的步骤:先弄清题意;再根据题意列出相应的算式;最后通过计算解决问题.设计意图:通过小结,使学生梳理本节所学内容,理解并掌握分式乘除法的法则,会进行分式乘除运算,能解决一些与分式乘除法有关的实际问题.七、板书设计15.2 分式的运算15.2.1 分式的乘除(1)分式的乘除用字母表示分式的乘除法法则:a c a cb d b d ⋅⋅=⋅,ac ad a d b d b c b c⋅÷=⋅=⋅. 分式的乘法法则: 分式乘分式,用分子的积作为积的分子,分母的积作为积的分母. 分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘. 分式乘除法的混合运算:分式乘除法的混合运算统一为分式乘法运算.。

分式的乘除法教案

分式的乘除法教案

分式的乘除法教案
教学目的
(一)教学知识点
1.分式乘除法的运算法那么,
2.会停止分式的乘除法的运算.
(二)才干训练要求
1.类比分数乘除法的运算法那么.探求分式乘除法的运算法那么.
2.在分式乘除法运算进程中,体会因式分解在分式乘除法中的作用,开展有条理的思索和言语表达才干.
3.用分式的乘除法处置生活中的实践效果,提高用数学的看法.
(三)情感与价值观要求
1.经过师生共同交流、讨论,使先生在掌握知识的基础上,看法事物之间的内在联络,取得成就感.
2.培育先生的创新看法和运用数学的看法.
教学重点
让先生掌握分式乘除法的法那么及其运用.
教学难点
分子、分母是多项式的分式的乘除法的运算.
教学方法
引导、启示、探求
教具预备
投影片四张
第一张:探求、交流,(记作3.2 A);
第二张:例1,(记作3.2 B);
第三张:例2,(记作3.2 C);
第四张:做一做,(记作3.2 D).
教学进程
Ⅰ.创设情境,引入新课
[师]上节课,我们学习了分式的基本性质,我们可以发现它与分数的基本性质相似,那么分式的运算能否也和分数的运算相似呢?下面我们看投影片(3.2 A)。

人教版八年级上册数学教案15.2 分式的运算(5课时)

人教版八年级上册数学教案15.2 分式的运算(5课时)

15.2 分式的运算 15.2.1 分式的乘除 第1课时 分式的乘除一、基本目标 【知识与技能】理解分式乘除法的运算法则,并能正确进行计算. 【过程与方法】经历分析、对比的过程,类比分数的乘除法法则得出分式的乘除法法则,利用分式的乘除法法则进行计算,增强对法则的理解与掌握.【情感态度与价值观】通过探索分式的乘除法法则的过程,提高对比、归纳的能力,培养从已学知识中推导新知识的习惯.二、重难点目标 【教学重点】 分式的乘除法法则. 【教学难点】运用分式的乘除法法则进行计算并解决实际问题.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P135~P137的内容,完成下面练习. 【3 min 反馈】1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用式子表示为a b ·c d =a ·c b ·d.2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子表示为a b ÷c d =a b ·d c =a ·db ·c.3.分式的乘除法运算,运算结果应化为最简分式.环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算:(1)c 2ab ·a 2b 2c ; (2)y 7x ÷⎝⎛⎭⎫-2x . 【互动探索】(引发学生思考)利用分式的乘除法法则进行计算时,需要注意什么? 【解答】(1)原式=a 2b 2c 2abc =abc .(2)原式=y 7x ·⎝⎛⎭⎫-x 2=-xy 14x =-y 14. 【互动总结】(学生总结,老师点评)利用分式乘除法法则进行计算,运算结果应化为最简分式.活动2 巩固练习(学生独学)1.计算a 2-1(a +1)2÷a -1a ,结果正确的是( D )A.12 B .a +1a +2C .a +1aD .a a +12.计算: (1)x 2y x 3·⎝⎛⎭⎫-1y ; (2)a 2-4b 23ab 2·ab a -2b ;(3)x 2-x x -1÷(4-x ); (4)42(x 2-y 2)x ·-x 235(y -x )3.解:(1)原式=-x 2y x 3y =-1x.(2)原式=(a +2b )(a -2b )3ab 2·ab a -2b =a +2b3b .(3)原式=x (x -1)x -1·14-x =x4-x.(4)原式=42(x +y )(x -y )x ·x 235(x -y )3=6x (x +y )5(x -y )2.活动3 拓展延伸(学生对学)【例2】已知(a +b -2)2+||1-a =0,求4a 2-ab 16a 2-8ab +b 2·2a的值. 【互动探索】利用已知等式求出a 、b 的值→计算分式的乘法,化简所求式子→代入a 、b 值进行计算.【解答】∵(a +b -2)2+||1-a =0,∴⎩⎪⎨⎪⎧ a +b -2=0,1-a =0.解得⎩⎪⎨⎪⎧a =1,b =1.4a 2-ab16a 2-8ab +b 2·2a =a (4a -b )(4a -b )2·2a =24a -b. 将a =1,b =1代入上式,得原式=24a -b =24-1=23.【互动总结】(学生总结,老师点评)根据非负数的性质求出a 、b 的值后,要代入化简后的式子进行计算.环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!第2课时 分式的乘方及乘除混合运算一、基本目标 【知识与技能】理解分式的乘方法则,掌握分式乘方与乘除混合运算的运算顺序. 【过程与方法】经历计算、思考、归纳的过程,归纳出分式的乘法法则,通过分式的乘除混合运算和乘方运算,加深对分式乘除法法则和乘方法则的记忆,并了解乘方与乘除法混合运算的运算顺序.【情感态度与价值观】通过归纳分式乘方法则的过程,养成归纳意识,通过运用分式的乘除法法则和乘方法则进行混合运算,提高计算能力.二、重难点目标 【教学重点】分式的乘方法则和混合运算顺序. 【教学难点】运用分式的乘除法法则和乘方法则正确计算.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P138~P139的内容,完成下面练习. 【3 min 反馈】1.教材第138页“思考”:⎝⎛⎭⎫a b 2=a 2b 2;⎝⎛⎭⎫a b 3=a 3b 3;⎝⎛⎭⎫a b 10=a10b 10.2.分式的乘方法则:分式乘方要把分子、分母分别乘方.用字母表示:⎝⎛⎭⎫a b n =a nb n . 3.分式的乘除法和乘方的混合运算,先算乘方,再算乘除法. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算:2x -64-4x +x 2÷(x +3)·(x +3)(x -2)3-x. 【互动探索】(引发学生思考)类比整式的乘除混合运算顺序进行分式混合运算. 【解答】原式=2x -64-4x +x 2·1x +3·(x +3)(x -2)3-x =2(x -3)(2-x )2·1x +3·(x +3)(x -2)3-x =2(x -3)(x -2)2·1x +3·(x +3)(x -2)-(x -3)=-2x -2【互动总结】(学生总结,老师点评)计算分式的乘除混合运算时,先统一为乘法运算,再依次进行计算.【例2】计算:(1)⎝⎛⎭⎫-2b 2a 33; (2)⎝⎛⎭⎫c 3a 2b 2÷⎝⎛⎭⎫c 4a 3b 2·⎝⎛⎭⎫c a 4. 【互动探索】(引发学生思考)利用分式的乘方法则进行计算时应该注意什么?当式子里同时有乘除法和乘方时,运算顺序是怎样的?【解答】(1)原式=(-2b 2)3(a 3)3=-8b 6a 9.(2)原式=c 6a 4b 2÷c 8a 6b 2·c 4a 4=c 6a 4b 2·a 6b 2c 8·c 4a 4 =c 2a2. 【互动总结】(学生总结,老师点评)分式乘方时,注意分子、分母分别乘方,式子中有乘除法与乘方时,先算乘方,再算乘除法.活动2 巩固练习(学生独学)1.已知⎝⎛⎭⎫x 3y 22÷⎝⎛⎭⎫-x y 32=6,则x 4y 2的值是( A ) A .6 B .36 C .12 D .32.计算:(1)3ab 22x 3y ·⎝⎛⎭⎫-8xy 9a 2b ÷3x (-4b ); (2)3(x -y )2(y -x )3·(x -y )4÷9y -x ; (3)⎝⎛⎭⎫c 3a 2b 2÷⎝⎛⎭⎫c 4a 3b 2÷⎝⎛⎭⎫a c 4; (4)⎝⎛⎭⎫a -b ab 2·⎝ ⎛⎭⎪⎫-a b -a 3·(a 2-b 2). 解:(1)16b 29ax 3.(2)(x -y )43.(3)c 2a 2. (4)a (a +b )b 2.活动3 拓展延伸(学生对学)【例3】许老师讲完了分式的乘除一节后,给同学们出了这样一道题,若x =-2018,求代数式x 2-4x 2+x +1÷x 2-2x x 3+x 2+x ·1x +2的值.小明通过计算,发现题目中的x =-2018是多余的.你认为小明的发现是否正确?【互动探索】先计算分式乘除运算的值→验证分式乘除运算的结果与x 的关系. 【解答】x 2-4x 2+x +1÷x 2-2xx 3+x 2+x ·1x +2=(x +2)(x -2)x 2+x +1·x (x 2+x +1)x (x -2)·1x +2=1.∴代数式x 2-4x 2+x +1÷x 2-2xx 3+x 2+x ·1x +2的值是一个定值,与x 的取值无关.故小明的发现是正确的.【互动总结】(学生总结,老师点评)将代数式化简后,如果结果是一个常数,那么该代数式的值与其中字母的取值无关.环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!15.2.2 分式的加减 第3课时 分式的加减一、基本目标 【知识与技能】1.理解分式的加减法法则,并能正确计算分式加减法. 2.掌握异分母分式加减法的计算步骤,并能正确计算. 【过程与方法】经历思考、类比、归纳的过程,理解分式的加减法法则,在掌握分式通分的基础上,掌握异分母分式加减法的计算方法.【情感态度与价值观】类比分数的加减法法则理解分式的加减法法则,养成类比思考的习惯,通过运用分式的加减法法则进行加减法运算,提高运算能力.二、重难点目标 【教学重点】 分式的加减法法则. 【教学难点】异分母分式的加减法的计算步骤.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P139~P140的内容,完成下面练习. 【3 min 反馈】 1.观察填空: (1)15+25=35; (2)15-25=-15; (3)12+13=36+26=56; (4)12-13=36-26=16. 同分母分数相加减,分母不变,把分子相加减. 异分母分数相加减,先通分,再把分子相加减. 2.类比分数的加减,你能说出分式的加减法则吗? (1)同分母分式相加减,分母不变,把分子相加减.用字母表示为a c ±b c =a ±bc.(2)异分母分式相加减,先先通分,变为同分母的分式,再加减. 用字母表示为a b ±c d =ad bd ±bc bd =ad ±bcbd .环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算: (1)x +3y x 2-y 2-x +2yx 2-y 2; (2)1a +3+6a 2-9; (3)m +2n n -m -n m -n +2m n -m ; (4)1x -3+1-x 6+2x -6x 2-9. 【互动探索】(引发学生思考)利用分式的加减法法则进行计算,异分母分式相加减时,应该注意什么?【解答】(1)原式=x +3y -(x +2y )x 2-y 2=5yx 2-y 2. (2)原式=a -3(a +3)(a -3)+6(a +3)(a -3)=a +3(a +3)(a -3)=1a -3. (3)原式=m +2n n -m +n n -m +2mn -m=3m +3n n -m.(4)原式=2(x +3)2(x +3)(x -3)+(1-x )(x -3)2(x +3)(x -3)-122(x +3)(x -3)=-(x 2-6x +9)2(x +3)(x -3)=-x -32x +6.【互动总结】(学生总结,老师点评)异分母分式相加减时,首先要通分,变为同分母分式再加减.活动2 巩固练习(学生独学) 1.下列运算中正确的是( C ) A.a a -b -b b -a=1 B .m a -n b =m -n a -bC.a 2a -b -b 2a -b =a +b D .b a -b +1a =1a3.计算: (1)3a +2b 5a 2b +a +b 5a 2b ;(2)b 2a -b +a 2b -a; (3)3b -a a 2-b 2-a +2b a 2-b 2-3a -4b b 2-a 2; (4)x x -y +x x +y -x 2x 2-y 2. 解:(1)4a +3b5a 2b .(2)-a -b .(3)a -3ba 2-b 2. (4)x 2(x +y )(x -y ). 活动3 拓展延伸(学生对学)【例2】已知3x +4x 2-x -2=A x -2-B x +1,其中A 、B 为常数,求4A -B 的值.【互动探索】要求4A -B 的值,需要先求出A 与B 的值.通过化简等式右边,再对比可求出A 、B 的值.【解答】Ax -2-Bx +1=A (x +1)(x +1)(x -2)-B (x -2)(x +1)(x -2)=(A -B )x +(A +2B )(x +1)(x -2).因为3x +4x 2-x -2=Ax -2-Bx +1=(A -B )x +(A +2B )(x +1)(x -2),所以⎩⎪⎨⎪⎧A -B =3,A +2B =4.解得⎩⎨⎧A =103,B =13.故4A -B =4×103-13=13.【互动总结】(学生总结,老师点评)通过对比等式中等号两边的分式,得出关于A 、B 的二元一次方程,求出A 、B 的值,从而求解.环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!第4课时 分式的混合运算一、基本目标 【知识与技能】1.明确分式混合运算的运算顺序.2.运用分式的运算法则正确计算分式的混合运算. 【过程与方法】经历计算、对比、归纳的过程,明确分式混合运算的运算顺序,在明确运算顺序的基础上,正确计算分数的混合运算.【情感态度与价值观】类比分数的混合运算的运算顺序得出分式的混合运算顺序,养成类比思考的习惯,通过运用分式的运算法则进行混合运算,提高运算能力.二、重难点目标 【教学重点】分式混合运算的运算顺序.【教学难点】正确计算分式的混合运算.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P141~P142的内容,完成下面练习. 【3 min 反馈】1.分式的混合运算,关键是弄清运算顺序,与分数的加、减、乘、除及乘方的混合运算一样,先算乘方,再算乘除,最后算加减,有括号要先算括号里面的,在运算过程中要注意正确地运用运算法则,灵活地运用运算律,使运算尽量简便.2.分式运算与分数运算一样,结果必须化为最简,能约分的要约分,保证结果是最简分式或整式.活动1 小组讨论(师生互学) 【例1】计算:(1)x x -y ·y 2x +y -x 4y x 4-y 4÷x 2x 2+y 2; (2)⎝⎛⎭⎫2a b 2·1a -b -a b ÷b 4; (3)⎝⎛⎭⎪⎫x +2x 2-2x -x -1x 2-4x +4÷4-x x. 【互动探索】(引发学生思考)利用分式的混合运算运算顺序计算. 【解答】(1)原式=xx -y ·y 2x +y -x 4y(x 2+y 2)(x 2-y 2)·x 2+y 2x2=xy 2(x -y )(x +y )·-x 2yx 2-y 2=xy (y -x )(x -y )(x +y )=-xy x +y .(2)原式=4a 2b 2·1a -b -a b ÷b 4=4a 2b 2(a -b )-4a b2=4a 2-4a (a -b )b 2(a -b ) =4abb 2(a -b )=4ab (a -b ).(3)原式=[x +2x (x -2)-x -1(x -2)2]·x -(x -4) =[(x +2)(x -2)x (x -2)2-x (x -1)x (x -2)2]·x -(x -4)=x 2-4-x 2+x x (x -2)2·x -(x -4)=-1x 2-4x +4.【互动总结】(学生总结,老师点评)分式混合运算,先乘方,再乘除,最后加减,注意结果化成最简分式或整式.活动2 巩固练习(学生独学)1.若代数式⎝⎛⎭⎫A -3a -1·2a -2a +2的化简结果为2a -4,则整式A =( A ) A .a +1 B .a -1 C .-a -1 D .-a +12.计算:(1)⎝⎛⎭⎫x 2x -2+42-x ÷x +22x ; (2)⎝⎛⎭⎫a a -b -b b -a ÷⎝⎛⎭⎫1a -1b ; (3)⎝⎛⎭⎫1+y x -y ⎝⎛⎭⎫1-xx +y ;(4)⎝⎛⎭⎫x 2y 2·y 2x -x y 2·2y 2x.解:(1)2x . (2)-ab (a +b )(a -b )2. (3)xy x 2-y 2. (4)x -16y 8y.活动3 拓展延伸(学生对学)【例3】先化简⎝⎛⎭⎫1-1x -1÷x 2-4x +4x 2-1,再从不等式2x -1<6的正整数解中选择一个适当的数代入求值.【互动探索】先化简代数式→解一元一次不等式→从解集中选择一个数代入求值. 【解答】原式=x -2x -1÷(x -2)2(x +1)(x -1)=x +1x -2.由2x -1<6,得x <72.故不等式的正整数解为1,2,3.当x =3时,原式=x +1x -2=3+13-2=4.【互动总结】(学生总结,老师点评)选择x 的值时,要使每个分式都有意义. 环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!15.2.3 整数指数幂(第5课时)一、基本目标 【知识与技能】1.理解负整数指数幂的意义,掌握整数指数幂的运算性质.2.掌握利用10的负整数次幂,用科学记数法表示一些小于1的正数. 【过程与方法】经历思考、计算、对比的过程,理解负整数指数幂的意义,在此基础上,将正整数指数幂的性质推广到任意整数,从而掌握整数指数幂的性质.【情感态度与价值观】类比正整数幂的性质,结合负整数指数幂的意义,推导出整数指数幂的性质,养成类比思考的习惯,通过运用10的负整数次幂,用科学记数法表示一些小于1的正数,提高运用所学知识的能力.二、重难点目标 【教学重点】负整数指数幂的意义,整数指数幂的运算性质. 【教学难点】用科学记数法表示一些小于1的正数.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P142~P145的内容,完成下面练习. 【3 min 反馈】 一、负整数指数幂1.正整数指数幂的运算有:(a ≠0,m 、n 为正整数) (1)a m ·a n =a m +n ; (2)(a m )n =a mn ; (3)(ab )n =a n b n ; (4)a m ÷a n =a m -n ; (5)⎝⎛⎭⎫a b n =a nb n ; (6)a 0=1.2.负整数幂:一般地,当n 是正整数时,a -n =1a n(a ≠0),这就是说,a -n (a ≠0)是a n 的倒数.二、科学记数法1.绝对值大于10的数记成a ×10n 的形式,其中1≤︱a ︱<10,n 是正整数.n 等于原数的整数数位减去1.(2)用科学记数法表示:100=102;2000=2.0×103;33000=3.3×104.2.类似地,我们可以利用10的负整数次幂,用科学记数法表示一些绝对值小于1的数,即将它们表示成a ×10-n 的形式.(其中n 是正整数,1≤|a |<10)3.用科学记数法表示:0.01=1×10-2;0.001=1×10-3;0.0033=3.3×10-3. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算: (1)x 2y -3(x -1y )3;(2)(2ab 2c -3)-2÷(a -2b )3;(3)3a -2b ·(2ab -2)-2;(4)4xy 2z ÷(-2x -2yz -1).【互动探索】(引发学生思考)利用整数指数幂的运算性质进行计算时应该注意些什么? 【解答】(1)原式=x 2y -3x -3y 3=x -1y 0=1x .(2)原式=14a -2b -4c 6÷(a -6b 3)=14a 4b -7c 6=a 4c 64b 7.(3)原式=3a -2b ·14a -2b 4=34a -4b 5=3b 54a4.(4)原式=-2x 3yz 2.【互动总结】(学生总结,老师点评)利用整数指数幂的运算性质进行计算,结果负整数指数幂写成分数的形式.【例2】用科学记数法表示下列各数: (1)0.0000001; (2)0.00024; (3)0.0000000035.【互动探索】(引发学生思考)用科学记数法表示小于1的正数,一般形式是怎样的? 【解答】(1)0.0000001=1×10-7. (2)0.00024=2.4×10-4. (3)0.0000000035=3.5×10-9.【互动总结】(学生总结,老师点评)小于1的正数可以用科学记数法表示为a ×10-n 的形式,其中1≤a <10,n 是正整数.【例3】计算:(1)(2×10-6)2·(3×10-4);(2)(3×10-5)3÷(10-3)-2.【互动探索】(学生总结,老师点评)用科学记数法表示的数的有关计算应该注意些什么?【解答】(1)(2×10-6)2·(3×10-4)=(4×10-12)·(3×10-4)=12×10-16=1.2×10-15. (2)(3×10-5)3÷(10-3)-2=(27×10-15)÷106=27×10-21=2.7×10-20.【互动总结】(学生总结,老师点评)用科学记数法表示的数的有关计算,结果应符合科学记数法.活动2 巩固练习(学生独学)1.计算(-π )0÷⎝⎛⎭⎫-13-2的结果是( D ) A .-16B .0C .6D .192.计算:(1)(m 3n )-2·(2m -2n -3)-2;(2)(2xy -1)2·xy ÷(-2x -2y );(3)⎝⎛⎭⎫b a -2·⎝⎛⎭⎫a b 2; (4)(2m 2n -1)2÷3m 3n -5.解:(1)n 44m 2.(2)-2x 5y 2.(3)a 4b 4.(4)43mn 3.3.用科学记数法表示下列各数:(1)0.000021; (2)0.00000034; (3)0.00102. 解:(1)2.1×10-5. (2)3.4×10-7. (3)1.02×10-3.环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!。

分式的乘除 教学设计 第一课时

分式的乘除 教学设计 第一课时

分式的乘除教学设计第一课时课时安排2课时第一课时教学设计思想本节主要学习分式的乘、除运算法则。

首先一起探究,让学生通过观察、思考类比分数的乘除法法则总结出分式的乘除法运算法则,然后安排典型的例题和课堂练习,让学生多实践,这是促使学生熟悉运算顺序和步骤的关键。

教学目标知识与技能1.类比分数乘除法的运算法则,探索分式乘除法的运算法则。

2.在分式乘除法运算过程中,体会因式分解在分式乘除法中的作用,发展有条理的思考和语言表达能力。

3.能够用分式的乘除法解决生活中的实际问题。

过程与方法经历积极思考,参与活动的过程,类比分数的乘除法的运算法则总结出分式乘除法的运算法则。

情感态度价值观1.通过共同交流、探讨,在掌握知识的基础上,认识事物之间的内在联系,获得成就感。

2.培养创新意识,应用数学的意识。

教学重点和难点重点:分式乘除法的法则及其应用。

难点:分子、分母是多项式的分式的乘除法的运算。

教学方法启发引导、小组讨论教学媒体课件教学设计过程(一)创设问题情境、引入新课出示教科书13页的问题1、问题2。

师生共同分析得出结果,通过以上问题的学习,我们知道了学习分式的乘除运算的必要。

(二)讲授新课我们在前面学习了分式的概念、基本性质、通分、约分,我们是通过什么方法来学习这些知识的呢,这节课我们要学习的是分式的乘除,又该怎样来得出这些知识呢?由分数的基本性质类比地得到分式的基本性质,由分数的通分、约分类比得到分式的通分、约分。

由分数乘除法的法则同样可类比地得到分式的乘除法的法则。

现在我们来学习分式的乘除法。

(板书课题)活动1思考1.分数的乘除法法则是什么?2.类比分数的乘除法法则,你能说出分式的乘除法法则吗?学生分组讨论、归纳,教师引导、说明。

1.分数的乘法法则:分数乘分数,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

分数的除法法则:两个分数相除,把除数的分子和分母颠倒位置后,再与被除数相乘。

即:b d bd ,ac acb d bc bc a c ad ad ⨯=÷=⨯= 2.类似分数,分式有:乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。

15.2.1分式的乘除(教案)

15.2.1分式的乘除(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分式乘除的基本概念。分式乘除是指将两个或多个分式进行乘法或除法运算,它遵循特定的法则。分式乘除在解决实际问题,尤其是涉及比例、速率等问题时非常重要。
2.案例分析:接下来,我们来看一个具体的案例。假设我们有两条船,一条船的速度是5 km/h,另一条船的速度是它的2/3,我们如何计算第二条船的速度?通过分式乘除,我们可以轻松得出答案。
难点解析:通过举例和几何图形等手段,解释分式乘除法则的直观意义,如分配律等。
(2)分式简化:在因式分解和约分过程中,学生可能难以找出公因式,或者忽略掉可以约分的部分。
难点解析:教授学生通过交叉相乘等方法找出公因式,强调检查分子分母是否还有可约分的部分。
(3)实际问题的抽象:将实际问题抽象为分式乘除运算,学生可能难以把握问题中的数量关系。
我还发现,在学生小组讨论环节,有些学生不够积极主动,可能是因为他们对这个话题还不够感兴趣,或者是对自己的解题能力缺乏信心。我应该在以后的教学中,更多地鼓励这些学生,提供给他们更多的支持和引导,帮助他们建立起自信心。
此外,对于教学难点和重点的解析,我感觉我做得还不够。尽管我已经尽力通过不同的例子来解释,但仍然有一些学生在难点上徘徊不前。我需要反思如何能够更有效地突破这些难点,或许可以通过引入更多的可视化工具,或者让学生在课后通过在线平台复习和巩固知识点。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“分式乘除在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。

15.2.1分式的乘除(第一课时)教案

15.2.1分式的乘除(第一课时)教案

课堂解决方案教学详案15.2.1分式的乘除(第1课时)【设计说明】本节课从生活中的问题引入,让学生感受到学习分式乘除运算是生产和生活的实际需要,从而激发学生的学习兴趣。

由于分式的乘除法法则与分数的乘除法法则类似,故以类比的方法得出分式的乘除法则,易于学生理解、接受。

利用表格给出分式的乘除法法则更利于学生的对比和理解;例题采取学生自主运用新知识代替单纯的教师讲授,这是教学方法的一大尝试。

本节课采取把自主权交给学生,遵循“教师为主导,学生为主体”原则。

体现了自主探索,合作学习的新理念,在实际问题解决的过程中培养了学生分析问题和解决问题的能力。

【教学目标】1、理解并掌握分式的乘除法法则,能进行简单的分式乘除法运算,能解决一些与分式乘除有关的实际问题。

2、经历从分数的乘除法运算到分式的乘除法运算的过程,培养学生类比的探究能力,加深从特殊到一般的数学思想认识。

3、教学中渗透类比转化的思想,培养学生主动探究,合作交流的能力,使学生在学知识的同时感受探索的乐趣和成功的体验。

【教学重点难点】重点:运用分式的乘除法法则进行运算。

难点:分子、分母为多项式的分式乘除运算。

【课前准备】课件、多媒体【教学过程】(-)导入新课一、提出问题,引入课题(出示多媒体)活动1:问题1 :一个水平放置的长方体容器器,其容积为V,底面的长为a,宽为b,当容器内的水占容积的时,水面的高度为多少?问题2:大拖拉机m天耕地ahm2,小拖拉机n天耕地b hm2,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?师生活动:学生根据题意,分别列出问题1、问题2所求的数量关系式为:问题 1:求得容积的高:问题2:大拖拉机的工作效率是小拖拉机的倍教师引导学生观察分析以上两式的特点得出它们分别是分式的乘法和分式的除法。

从上面的问题可知,解决生活中的问题有时需要进行分式的乘除运算,那么分式的乘除是怎样运算的呢?这是我们本节课要学习的内容。

.教师板书课题。

(二)探究新知活动2 :类比联想,探究新知计算下式:类比分数的乘除法则猜想分式的乘除法则本环节的任务:让学生从分数的乘除法法则类比探究得出分式的乘除法法则。

分式的乘除法教案

分式的乘除法教案

《分式的乘除法》教案(第1课时)一、素质教育目标知识目标经历探索分式的乘除法运算法则的过程,并能结合具体情境说明其合理性。

能力目标会进行简单分式的乘除运算,具有一定的代数化归能力,能解决一些实际问题。

情感目标培养学生的观察、类比、归纳的能力和与同伴合作交流的情感,进一步体会数学知识的实际价值。

二、学法引导通过类比分数的乘除法法则,获得分式的乘除法法则,并会利用法则进行分式的乘除法运算及解决有关的简单的实际问题。

三、教学设想难点:理解分式乘除法法则的意义及法则运用。

重点:分子、分母为多项式的分式乘除运算。

疑点:如何找分子和分母的公因式,即系数的最大公约数,相同因式的最低次幂。

四、媒体平台多媒体课件(自制)构思:激发学生的求知欲,巩固所学的知识。

五、教学步骤(一)情境导入引出“类比”是数学学习中常用的一种重要方法。

提出问题,让学生大胆去猜想。

多媒体显示小学学过的分数运算和猜想问题。

观察下列运算(二)解读探究1、学生回答猜想后,多媒体显示过程,然后引导学生运用“数式相通”的类比思想,归纳分式乘除法法则。

两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母两个分式相除,把除式的分子和分母颠 倒位置后再与被除式相乘。

(让学生全面参与、独立思考,由自己总结出分式的乘除法法则,培养学生的归纳、创造能力。

)2、乘法法则运用53425432⨯⨯=⨯97259275⨯⨯=⨯435245325432⨯⨯=⨯=÷279529759275⨯⨯=⨯=÷多媒体示题并解答。

学习例1,理解和巩固分式乘法法则。

并强调分式的运算结果通常要化成最简分式和整式。

例1 计算 (1)(2) 3、除法法则运用学习例2,多媒体示题和答案。

巩固分式乘除法法则的运用,通过提示语,突破难点,解决疑点,使学生能正确找出分子和分母的公因式。

例2 计算 (1) (2)(三)巩固练习完成随堂练习。

重点看学生能否正确运用分式乘除法法则,能否利用分式的基本性质约分化简分式。

八年级上册数学15.2.1分式的乘除教案

八年级上册数学15.2.1分式的乘除教案
本节是从分数的乘除法则的角度引导学生通过观察、探究、归纳总结出分式的乘除法 则.这种温故而知新的做法不仅有利于学生接受新知识,而且能体现由数到式的发展过程.在 学生得出分式的乘除法则时,要求他们分别用文字和式子两种形式进行表述,这样不仅加深 了学生对法则的理解,而且锻炼了他们的数学表达能力.为了进一步加深学生对基本法则的 理解和运用,又由浅到深设计了一些练习题,这样学生就会把所学的知识融会贯通.
1 1 2ab 解:设花生的总产量是 1,a2+b2÷2ab=a2+b2(倍).
2ab 答:老王家种植的花生单位面积产量是老李家种植的单位面积产量的a2+b2倍. 方法总结:此题考查分式乘除运算的运用,注意理清题意,正确列式计算即可. 三、板书设计
分式的乘除 1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母. 2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相除.
【类型三】 根据分式的除法,判断分式中字母的取值范围
若式子xx+ +12÷xx+ +34有意义,则 x 的取值范围是(
)
A.x≠-2,x≠-4
B.x≠-2
第2页共3页
C.x≠-2,x≠-3,x≠-4 D.x≠-2,x≠-3
x+3 解析:∵x+4≠0,x+2≠0,∴x+3≠0 且 x+4≠0,解得 x≠-2,x≠-3,x≠-4,故选 C. 方法总结:在分式的除法中,求字母的取值范围时要使被除式的分母不为 0,同时还要 使除式的分子、分母不为 0. 【类型四】 分式乘除法的应用
x(x+3)
3-x x -(x-3)
x
(2) x2-9 ·x+2=(x+3)(x-3)·x+2=x-3· x+2 =-x+2.
第1页共3页
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式的乘除(第1课时)教案〖教学目标〗
〔-〕知识目标
1.同分母的分式加减法的运算法那么及其应用.
2. 异分母的分式加减法的运算法那么及其应用.
〔二〕能力目标
1.经历用字母表示数量关系的过程,发展符号感.
2.会进行同分母分式的加减运算和简单的异分母分式的加减运算,并能类比分数的加减运算,得出分式的加减法的运算法那么,发展有条理的思考及其语言表达能力.
〔三〕情感目标
1.从现实情境中提出问题,提高〝用数学〞的意识.
2.结合已有的数学经验,解决新问题,获得成就感以及克服困难的方法和勇气.
〖教学重点〗
1.同分母的分式加减法.
2. 异分母的分式加减法.
〖教学难点〗
当分式的分子是多项式时的分式的减法.
〖教学过程〗
【一】课前布置
自学:阅读课本P12~P14,试着做一做本节练习,提出在自学中发现的问题〔鼓励提问〕
【二】学情诊断
1.了解学生原有认知机构,解答学生提出的问题.
【三】师生互动
〔一〕
[师]你昨天自学本节后,有什么收获?
[生]P12的〝一起探究〞挺有意思
[师生讨论]一起探究中这组题目从几何的角度对同分母分式加减运算法那么进行验证。

〔数学的法那么是可以从多角度验证的. 〕
同分母的分式相加减,分母不变,把分子相加减,用式子表示是:
c a ±c b =c b a ± (其中a 、b 既可以是数,也可以是整式,c 是含有字母的非零的整式).
〔二〕
[师]下面开始〝你编我来算〞环节〔找同学编同分母分式加减的题目,学生积极〕
[生]编:
(1) a 1+a 2=____________. (2) 22-x x - 24-x =____________. (3) 12++x x -11+-x x +13+-x x =____________. 〝我来算〞.
〔大家同时做先做完的同学到
黑板上板演. 找先做完的同学到老师——到黑板上判同学的解答〕 [生1]解:(1)a 1+a 2=a 21+=a 3; [生2]解:(2)22-x x - 24-x =242--x x ; [生3]解:12++x x -11+-x x +13+-x x =1312+-+--+x x x x =12+-x x . [师]我们先请当老师的同学来讲评一下运算过程.
[生]第(1)小题是正确的.
[生]第(2)小题没有把结果化简.应该为原式=242--x x =2
)2)(2(-+-x x x =x +2. [师]这位同学很仔细.我们学习分式乘除法时就强调运算结果必须是最简的,如果分子、分母中有公因式,一定要把它约去,使分式最简.
[生]第(3)小题,我认为也有错误.同分母的分式相加减,分母不变,把分子相加减,我觉得(x +1)分母不变,做得对,但三个分式的分子x +2、x-1、x-3相加减应为(x +2)-(x-1)+(x-3).最后应为1
+x x
[师]的确如此,我们知道列代数式时,(x-1)÷(x +1)要写成分式的形式即
1
1+-x x ,因此分数线既有除号的作用,还有括号的作用,即分子、分母应该是一个整体. 〔三〕鼓励学生讲解教师提供的例题. 〔例题的设置是分层的,安排不同基础的学生尝试讲解,教师予以补充〕 1.计算:m n n m -+2+n m n --m n n
-2. 解:原式=m n n m -+2+m n n ---m n n -2 =m n n n n m ---+2)(2=m n n m --=m n m n ---)
(=
-1
2. 计算:2)(23b a b a -+-2
)(32a b b a -+ 解:原式=2)(23b a b a -+-2)(32b a b a -+=2)(3223b a b a b a ---+=2)(b a b a --=b a -1 〔三〕
【师】如何计算异分母的分式加减法呢?
[生]我们已学过分式的一些知识,如分式的概念,分式的约分以及分式的乘除法等.这些知识,都是在与分数类比中得到的.我想异分母的分式的加减法也可类比分数的加减法,应先把异分母的分式加减法转化为同分母的分式的加减法
通过看书我知道,在分式的加减法中,把异分母的分式化成同分母分式的过程也叫做通分.
[师生讨论]
(1)分式的通分是要运用分式的基本性质,把几个异分母的分式化为与原来分式相等的同分母的分式.
通分的关键在于确定最简公分母,取各分母的系数的最小公倍数和所有因式的最高次幂的积就得到最简公分母.
当公分母不是最简时,虽然也能达到通分的目的,但会使运算变得繁琐.
(2)异分母的分式的加减法那么:异分母的两个分式相加〔减〕,先通分,化为同分母的分式,再相加〔减〕.上述法那么用式子表示为:
〔二〕鼓励学生讲解教师提供的例题.〔例题的设置是分层的,安排不同基础的学生尝试讲解,教师予以补充〕
例 计算(1)24a -a 1; (2)ab b a +-bc c
b + 解: (1)24a -a 1=24a -a a a ⨯⨯1=24a -2a a =24a a
-; (2) ab b a +-bc c
b +
【四】补充练习
作业P14-15习题
〖分层练习〗
1. 计算:
2. 某人用电脑录入汉字文稿的效率相当于手抄的3倍,设他手抄的速度为a 字/时,那
么他录入3000字文稿比手抄少用多少时间?
〖答案提示〗
1解: 原式=.131112a a a -=-+-
2. 解:这个人用电脑录入3000字的文稿需a 33000小时,利用分式的基本性质化简,即为a 1000小时;用手抄3000字文稿那么需用a 3000小时,因此这个人录入3000字的文稿比手抄少用(a 3000-a 1000)小时.a 3000-a 1000=a 10003000-=a 2000,所以这个人录入3000字文稿比手抄少用a 2000个小时.。

相关文档
最新文档