2014-2015年浙江省台州市椒江区书生中学八年级上学期期中数学试卷和答案
14中初二数学期中试题与参考答案
![14中初二数学期中试题与参考答案](https://img.taocdn.com/s3/m/ae865fa4d1f34693daef3e72.png)
十四中2014~2015学年度第一学期期中考试 初二数学试卷重要提醒:请将答案写在答题纸上 一、选择题(每小题2分,共30分) 1.下列图形中,是轴对称图形的是( ).A .B .C .D .2.如图所示,a ,b ,c 分别表示△ABC 的三边长,则下面与△ABC 一定全等的三角形是( ).A B C D 3.下列式子从左到右变形是因式分解的是( ).A . ()2421421a a a a +-=+- B . ()()242137a a a a +-=-+C . ()()237421a a a a -+=+- D . ()22421225a a a +-=+-4.若等腰三角形的周长为26cm ,一边长为11cm ,则腰长为( ).A .11cmB .7.5cmC .11cm 或7.5cmD .以上都不对 5.如图所示,AC =CD ,∠B =∠E =90°,AC ⊥CD ,则不正确的结论是( ). A .∠A 与∠D 互为余角 B .∠A =∠2 C .△ABC ≌△CED D .∠1=∠26.下列因式分解中:①()3222x xy x x x y ++=+; ②()22442x x x ++=+;③()()22x y x y x y -+=+-.正确的个数为( ).A .3个B .2个C .1个D .0个7.如图,△ABC 中,AB =AC ,∠BAC =108︒,D ,E 两点在BC 边上,若AD ,AE 等分∠BAC ,则图中等腰三角形有( ).A . 3个B . 4个C . 5个D . 6个8.下列各式能用完全平方公式进行因式分解的是( ).A . 21x + B . 221x x +- C . 224x x -+ D . 244x x ++ 9.如图,AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB 于点E ,S △ABC =7,DE =2,AB =4,则AC 长是( ).A . 3B . 4C . 5D . 610.等腰三角形一腰上的高与另一腰的夹角是40︒,则这个等腰三角形的底角是( ). A . 65︒ B . 65︒或25︒ C . 65︒或50︒ D . 25︒或50︒11.如图,△ABC ≌△AED ,点D 在BC 边上,DE 与AB 交于点F ,则下列结论:①AD =AC ; ②∠EAB =∠DAC ;③∠BDF =∠DAC ;④AE ∥BC ;⑤AC =AF ,其中正确的个数是( ). A . 2个 B .3个 C . 4个 D . 5个12.等腰三角形ABC 在平面直角坐标系中,底边的两端点坐标是(-2,0),(6,0),则其顶点的坐 标,能确定的是( ).A .横坐标B .纵坐标C .横坐标和纵坐标D .横坐标或纵坐标 13.如图所示,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论 不一定成立的是( ).A .△ACE ≌△BCDB .△BGC ≌△AFC C .△DCG ≌△ECFD .△ADB ≌△CEA14.在△ABC 与△A'B'C' 中,已知∠A =∠A' ,CD 和C'D' 分别为∠ACB 和∠A'C'B' 的平分线, 再从以下三个条件:① ∠B =∠B',② AC = A'C',③ CD = C'D'中任取两个为题设, 另一个为结论, 则可以构成( )个正确的命题.A . 0B . 1C . 2D . 3ECBAFEDC B Aa 50°72°a b50°ab58°ba 50°A cba50°72°C BG FEDBA15.如图,在平面直角坐标系中,△ABC ≌△DEF , AB =BC =5.若A 点的坐标为(﹣3,1),B ,C 两点在直线y =3-上,D 、E 两点在y 轴上,则点F 的横坐标是( ) . A .2 B .3 C .4 D .5二、填空题(每空2分,共20分)16.已知点P 在线段AB 的垂直平分线上,若P A =6cm ,则PB 的长为= cm . 17.如图,BE ,CD 是△ABC 的高,且BD =EC ,判定△BCD ≌△CBE 的依据是“______”.18.等腰三角形中有一角为50︒,则底角的度数是 . 19.分解因式:2421x x --= .20.若点M (2,a )和点N (a +b ,3)关于x 轴对称,则b = .21.如图,已知正方形ABCD 的边长为2,将正方形ABCD 沿直线EF 折叠,则图中阴影部分的周 长为 .22.等腰三角形顶角为150︒,腰长是4cm ,则三角形的面积为 cm 2. .23.如图,△ABC 中,AB = AC ,∠BAC =100︒,点D ,E 分别为BC ,AB 边上一点,连接AD ,DE ,若AD = DE ,∠DAC =α,∠BDE =β,用含α的式子表示β,则β= .24.在4×4的正方形中,网格线将该正方形分割成16个边长为1的小正方形,如图所示,其中有4个小正方形已经被涂上颜色,若再将其中一个未涂色的小正方形涂上相同 颜色,使所有涂色部分的图形成为一个轴对称图形,则一共有 种方案.25.如果两个三角形的两条边和其中一边上的高分别对应相等,那么这两个三角形的第三边所对的角的关系是 . 三、因式分解(每题3分,共9分) 26. 23416m n n - 27. ()()2222221x x x x -+-+ 28. ()3064x x --四、解答题(写出必要的过程,第29-34题每题5分,第35题3分,第31题8分)29.如图,在△ABC 和△ABD 中,AC 与BD 相交于点E ,AD =BC ,∠DAB =∠CBA ,求证:AC =B D .30.如图,在△ABC 中,AB =AC ,M 是BC 的中点,D 、E 分别是AB ,AC 边上的点,且BD =CE . 求证:MD =ME .31.求证:在直角三角形中,如果一条直角边长等于斜边长的一半,那么这条直角边所对的角的度数为30︒.(提示:根据条件画图,写出已知,求证,并证明).32.如图,△ABC 为等边三角形,D ,E 两点分别在AB ,AC 边上,DB =AE ,BE ,CD 相交于点F ,BH ⊥CD 于点H ,若EF =1,CD =9,求HF 的长.AD ECBECBAEDCBAHFE DCBA ME DCBA33.已知:如图,CD 、BE 为△ABC 的高,且CD 、BE 交于O ,∠1=∠2.求证:AB =AC .34.如图,点P 为∠AOB 内一定点,小明从点P 出发,先到达OA 边上的某一位置M ,再到达OB 边上的某一位置N ,最后返回点P .(1)请设计一条路线,使小明走的总路径最短,在图中确定此时点M 和点N 的位置(保留画图痕迹,但不写画法);(2)在(1)的情况下,若点O 和点P 的距离为500m ,∠AOB =30︒,求小明走的最短路径的长.35.已知:201420151m =⨯-,222014201420152015n =-⨯+,比较m 与n 的大小.36. 一节数学课后,老师布置了一道课后练习题:如图1,已知在Rt △ABC 中,AB =BC ,∠ABC =90°,BO ⊥AC 于点O ,点P 、D 分别在AO 和BC 上,PB =PD ,DE ⊥AC 于点E ,求证:△BPO ≌△PDE . (1)理清思路,完成解答本题证明的思路可用下列框图表示:图1 图2根据上述思路,请你完整地书写本题的证明过程. (2)位置变化,探究结论若点P 在线段OC 上(不与端点重合),满足题中条件的点D 也随之在直线BC 上运动,其他条件不变,请在图2中画出图形,则结论“△BPO ≌△PDE ”是否还成立? 若成立,写出证明过程;若不成立,请说明理由. (3)知识迁移,探索新知若点P 是一个动点,点P 运动到OC 的中点P′时,满足题中条件的点D 也随之在直线BC 上运动到点D′,直接写出△BP C '面积与△P CD ''面积的数量关系.O 21ED CB A参考答案一、选择题(每小题2分,共30分)二、填空题(每空2分,共20分)16. 6 17. HL 18. 50°或65° 19. (x -7)(x +3) 20. 5 21. 8 22. 4 23. 60α︒- 24. 2 25. 相等或互补 三、因式分解(每题3分,共9分) 26. 原式=()()422n m n m n +- 27. 原式=()41x - 28. 原式=()()322x x -+四、解答题(写出必要的过程,第29-34题每题5分,第35题3分,第31题8分) 29-31. 略 32. HF=4 33. 略34. (1)略;(2)500m. 35. n >m36.(1)略;(2)成立,画图与证明略;(3)2BP C P CD S S '''∆∆=.。
八年级上学期八年级数学期中试卷(含参考答案)
![八年级上学期八年级数学期中试卷(含参考答案)](https://img.taocdn.com/s3/m/bec3ebc269dc5022aaea00ae.png)
10. 如图5,圆柱形开口杯底部固定在长方体水池底,向水池匀速注入水(倒在杯外),注满为止,水池中水面高度是h 注水时间为t ,则h 与t 之间的关系大致为下图中的 ( )二. 填空题(本大题共10小题,每小题3分,共30分) 11. 在下列数中:39-,1211,4.0,25,31-,-88,14.3-π,0,.1.0,2)3(-,225。
其中无理数的个数有 个。
12. 函数x y -=4中,自变量x 的取值范围是 。
13. 若函数m x m y m +-+=32)2(是一次函数,则m= 。
14. 已知函数⎩⎨⎧>-≤+=0,20,12x x x x y 若10=y ,则x = 。
15. 若一次函数的图象k x k y +--=1)3(不经过第二象限,则k的取值范围是 。
16. 已知点P(x,2x-6)在x 17. 如图,已知A 、B 两点的坐标分别是(-3,6)、(3,6)则直线AC 与y 轴相交的点的y 坐标为 。
18. 把直线4+-=x y 向右平移3个单位长度,所得直线与y 轴交点的y 坐标为 19. 设119-的整数部分是a,小数部分是b ,则()()a b ++191=20. 已知一条直线y= -3x+8与x 轴、y 轴分别交于A 、B 两点,将这条直线向左平移后与x 轴、y 轴分别交于C 、D 两点,若AB=AD ,则直线CD 的函数关系式为 。
三. 解答题(本大题共8小题,21~25题每题6分, 26、27两题每题9分,28题12分,共60分) 21. 计算:(1) (3分)30)21()14.3()25)(25(--+---+π(2) (3分)52)5(832402---++22. 已知y-3与x 成正比例,且当x=1时,y=5。
(1) (3分)求y 与x 的函数关系式;(2) (3分)求当x=-2时的函数值;23. 已知一次函数y=mx+n (m 、n 是常数)的图象经过第一、二、四象限,化简:122++--m n n m24. 如图,甲轮船以16海里/时的速度离开港口O 沿北偏东57°的方向航行,乙轮船同时从港口O 出发沿北偏西33°的方向航行,已知它们离开港口1.5小时后分别到达B 、A 两地,且AB=30海里,问乙轮船每小时航行多少海里?25.变量?哪个是函数?(2) (3分)如果用x(min)表示时间,用y (元)表示电话费,那么随着x 的变化,y 的变化趋势是怎样的?请写出它们的函数表达式。
浙江省台州市椒江区洪家二中2015年八年级(上)期中数学试题(含答案)
![浙江省台州市椒江区洪家二中2015年八年级(上)期中数学试题(含答案)](https://img.taocdn.com/s3/m/0eab300da300a6c30c229fd1.png)
2015学年(上)三区五校阶段性测试八年级数学供卷学校蓬街中学命题者林洪能审核者罗小来考试时间100分钟总分120分一、选择题(本题共10小题,每小题3分,共30分)1.下列四个汉字中,属于轴对称图形的是()A、B、C、D、2.已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值()A.5 B.10 C.2 D.13.如图,在△ABC中,∠A=50°,∠C=70°,则外角∠ABD的度数是()A.110°B.120°C.130°D.140°4.一个多边形的每个内角均为120°,则这个多边形是()A.正四边形B.正五边形C.正六边形D.正七边形5.如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2 B.3 C.5 D.2.56.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的( ) A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC7.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10 B.7 C.5 D.4(第3题)(第5题)(第6题)(第7题)8.如图,在△ABC 中,AC =4cm ,线段AB 的垂直平分线交AC 于点N ,△BCN 的周长是7cm ,则BC 的长为( )A .4cmB .3 cmC .2cmD .1cm 9.如图,一个足够大的五边形,它的一个内角是120°,将120°角的顶点绕一个小正三角形的中心O 旋转,则重叠部分的面积为正三角形面积的( ) A .不断变化 B .51 C .41 D .3110.如图,一枚棋子放在七角棋盘的第0号角,现依逆时针方向移动这枚棋子,其各步依次移动1,2,3,…,n 个角,如第一步从0号角移动到第1号角,第二步从第1号角移动到第3号角,第三步从第3号角移动到第6号角,….若这枚棋子不停地移动下去,则这枚棋子永远不能到达的角的个数是( )A .0B .1C .2D .3二、填空题(本题共6小题,每小题4分,共24分) 11.五边形的外角和等于 _____________度;12.点A (-3,2)关于x 轴的对称点A ′的坐标为 _________ 13.等腰三角形的一个外角是60°,则它的顶角的度数是_________ 14.如图,在△ABC 中,AB =AC =2,∠B =75°,则点B 到边AC 的距离为15.三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”,如果一个“特征三角形”的“特征角”为110°,那么这个“特征三角形”的最小内角的度数为_________________ 16.已知点A (1,2),B (5,5),C (5,2),试在平面内找到点E ,使△ACE 和△ACB 全等,写出所有满足条件的点E 的坐标:____________________________________CB(第14题)(第10题)(第8题)(第9题)2015学年(上)三区五校阶段性测试八年级数学供卷学校 蓬街中学 命题者 林洪能 审核者 罗小来 考试时间100分钟 总分120分一、选择题(每小题3分,共30分)二、填空题(每小题4分,共24分)11._________________ 12______________________ 13_______________________14._________________ 15_______________________ 16_______________________三、解答题(第17、18题每题6分,第19----22题每题8分,第23题10分,第24题12分,共66分) 17.作图题(1) 如图,在下列网格图中画出△ABC 关于直线l 的轴对称图形△A ′B ′C ′; (2) 如图,校园有两条路OA、OB ,在交叉口附近有两块宣传牌C 、D ,学校准备在这里安装一盏路灯,要求灯柱的位置P 离两块宣传牌一样远,并且到两条路的距离也一样远,请你用直尺和圆规画出灯柱的位置点P ;(3)如图,已知正五边形ABCDE ,请用无刻度的直尺,准确地画出它的一条对称轴(保留作图痕迹)。
2014年浙江省台州市中考数学试卷含答案.docx
![2014年浙江省台州市中考数学试卷含答案.docx](https://img.taocdn.com/s3/m/4cb50e18a58da0116d174959.png)
2014 年中考真题浙江省台州市2014 年中考数学试卷一、选择题(本题有10 个小题,每小题 4 分,共40 分.请选出各题中一个符合题意的正确选项,不选,多选,错选,均不得分)1.( 4 分)( 2014?台州)计算﹣4×(﹣ 2)的结果是()A . 8B .﹣ 8C. 6D.﹣ 2考点:有理数的乘法.分析:根据有理数的乘法运算法则进行计算即可得解.解答:解:﹣ 4×(﹣ 2),=4 ×2,=8 .故选 A .点评:本题考查了有理数的乘法,是基础题,熟记运算法则是解题的关键.2.( 4 分)( 2014?台州)如图,由相同的小正方体搭成的几何体的主视图是()A .B .C.D.考点:简单组合体的三视图.分析:根据从正面看得到的图形是主视图,可得答案.解答:解;从正面看第一层是三个正方形,第二层是中间一个正方形,故选: D .点评:本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.( 4 分)( 2014?台州)如图,跷跷板垂足为 D, OD=50cm ,当它的一端BAB 的支柱 OD着地时,另一端经过它的中点O,且垂直与地面A 离地面的高度AC 为()BC,A . 25cmB .50cm C. 75cm D. 100cm考点:三角形中位线定理专题:应用题.分析:判断出 OD 是△ ABC 的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得AC=2OD .解答:解:∵ O 是 AB 的中点, OD 垂直于地面, AC 垂直于地面,∴ OD 是△ ABC 的中位线,∴ AC=2OD=2 ×50=100cm .故选 D.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,关键.熟记定理是解题的4.( 4 分)( 2014?台州)下列整数中,与最接近的是()A . 4B .5C. 6D. 7考点:估算无理数的大小分析:根据 5,25解答:解:与最接近的是故选: B .与5,30 的距离小于36 与 30的距离,可得答案.点评:本题考查了估算无理数的大小,两个被开方数的差小,算术平方根的差也小是解题关键.5.( 4 分)( 2014?台州)从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是()A .B.C. D .考点:圆周角定理.分析:根据圆周角定理(直径所对的圆周角是直角)求解,即可求得答案.解答:解:∵直径所对的圆周角等于直角,∴从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是 B .故选 B.点评:此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.6.( 4 分)( 2014?台州)某品牌电插座抽样检查的合格率为()A .购买 100 个该品牌的电插座,一定有99 个合格B .购买 1000 个该品牌的电插座,一定有10 个不合格C.购买 20 个该品牌的电插座,一定都合格D.即使购买一个该品牌的电插座,也可能不合格99%,则下列说法总正确的是考点:概率的意义.分析:根据概率的意义,可得答案.解答:解; A 、 B、 C、说法都非常绝对,故 A 、 B 、C 错误;D 、即使购买一个该品牌的电插座,也可能不合格,说法合理,故 D 正确;故选: D .点评:本题考查了概率的意义,本题解决的关键是理解概率的意义以及必然事件的概念.7.(4 分)( 2014?台州)将分式方程1﹣=去分母,得到正确的整式方程是()A . 1﹣ 2x=3 B .x﹣ 1﹣ 2x=3C. 1+2x=3D. x﹣ 1+2x=3考点:解分式方程.专题:计算题.分析:分式方程两边乘以最简公分母x﹣ 1,即可得到结果.解答:解:分式方程去分母得:x﹣ 1﹣ 2x=3,故选 B点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.v 8.( 4 分)( 2014?台州)如图,把一个小球垂直向上抛出,则下列描述该小球的运动速度(单位: m/s)与运动时间(单位:s)关系的函数图象中,正确的是()A .B .C.D.考点:动点问题的函数图象分析:一个小球垂直向上抛出,小球的运动速度v 越来越小,到达最高点是为0,小球下落时速度逐渐增加,据此选择即可.解答:解:根据分析知,运动速度v 先减小后增大,故选: C.点评:本题主要考查了动点问题的函数图象.分析小球的运动过程是解题的关键.9.( 4 分)( 2014?台州)如图, F 是正方形ABCD 的边 CD 上的一个动点,BF 的垂直平分线交对角线AC 于点 E,连接 BE ,FE,则∠ EBF 的度数是()A . 45°B .50°C. 60°D.不确定考点:全等三角形的判定与性质;正方形的性质.分析:证明 Rt△ BHE ≌ Rt△ EIF ,可得∠ IEF+ ∠ HEB=90 °,再根据BE=EF 即可解题.解答:解:如图所示,过 E 作 HI ∥ BC,分别交AB 、CD 于点 H、 I ,则∠ BHE= ∠EIF=90 °,∵E 是 BF 的垂直平分线 EM 上的点,∴ EF=EB ,∵E 是∠ BCD 角平分线上一点,∴ E 到 BC 和 CD 的距离相等,即BH=EI,Rt △ BHE 和 Rt△ EIF 中,,∴Rt△ BHE ≌ Rt△ EIF( HL ),∴∠ HBE= ∠ IEF ,∵∠HBE+ ∠HEB=90 °,∴∠ IEF+ ∠ HEB=90 °,∴∠ BEF=90 °,∵ BE=EF ,∴∠ EBF=∠ EFB=45 °,故选 A .点评:本题考查了正方形角平分线和对角线重合的性质,考查了直角三角形全等的判定,考查了全等三角形对应角相等的性质.10.( 4 分)( 2014?台州)如图,菱形 ABCD 的对角线 AC=4cm ,把它沿着对角线 AC 平移 1cm 得到菱形 EFGH ,则图中阴影部分图形的面积与四边形 EMCN 的面积之比为 (方向)A . 4: 3B .3: 2C . 14: 9D . 17: 9考点 :菱形的性质;平移的性质分析:首先得出 △ MEC ∽△ DAC ,则=,进而得出=,即可得出答案.解答:解:∵ ME ∥ AD ,∴△ MEC ∽△ DAC ,∴= ,∵菱形 ABCD 的对角线 AC=4cm ,把它沿着对角线 AC 方向平移 1cm 得到菱形 EFGH ,∴ AE=1cm , EC=3cm ,∴ =,∴ = ,∴图中阴影部分图形的面积与四边形EMCN 的面积之比为:=.故选: C .点评:此题主要考查了菱形的性质以及相似三角形的判定与性质,得出=是解题关键.二、填空题(本题有 6 小题,每小题5 分,共 30 分) 11.(5 分)( 2014?台州)计算 x?2x 2 的结果是 2x 3. 考点 :单项式乘单项式.分析:根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.2 3解答:解: x?2x =2x .故答案是: 2x 3.点评:本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.12.( 5 分)( 2014?台州)如图折叠一张矩形纸片,已知∠1=70 °,则∠ 2 的度数是55° .考点:平行线的性质;翻折变换(折叠问题).分析:根据折叠性质得出∠2=∠ EFG,求出∠ BEF ,根据平行线性质求出∠CFE,即可求出答案.解答:解:根据折叠得出∠EFG= ∠ 2,∵∠ 1=70°,∴∠ BEF=∠ 1=70°,∵AB ∥ DC ,∴∠ EFC=180°﹣∠ BEF=110 °,∴∠ 2=∠EFG= ∠ EFC=55 °,故答案为: 55°.点评:本题考查了平行线的性质,折叠的性质,对顶角相等的应用,解此题的关键是能根据平行线性质求出∠ CFE 的度数. !13.( 5 分)( 2014?台州)因式分解3的结果是a( a+2)( a﹣ 2).a ﹣4a考点:提公因式法与公式法的综合运用专题:计算题.分析:原式提取 a 后,利用平方差公式分解即可.2解答:解:原式 =a( a ﹣ 4)=a( a+2)( a﹣ 2).故答案为: a( a+2)( a﹣ 2).点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.(5 分)(2014?台州)抽屉里放着黑白两种颜色的袜子各在看不见的情况下随机摸出两只袜子,它们恰好同色的概率是1 双(除颜色外其余都相同),.考点:列表法与树状图法分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与它们恰好同色的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有 12 种等可能的结果,它们恰好同色的有 4 种情况,∴它们恰好同色的概率是:=.故答案为:.点评:本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.15.( 5 分)( 2014?台州)如图是一个古代车轮的碎片,小明为求其外圆半径,连结外圆上的两点 A 、B,并使 AB 与车轮内圆相切于点 D,做 CD ⊥ AB 交外圆于点 C.测得AB=60cm ,则这个车轮的外圆半径为 50 cm.CD=10cm ,考点:垂径定理的应用;勾股定理分析:设点 O 为外圆的圆心,连接OA 和 OC,根据 CD=10cm , AB=60cm ,设设半径为r,则 OD=r ﹣ 10,根据垂径定理得:222r =( r﹣ 10) +30,求得 r 的值即可.解答:解:如图,设点 O 为外圆的圆心,连接OA 和 OC,∵ CD=10cm , AB=60cm ,∴设半径为 r,则 OD=r ﹣10,222根据题意得: r =( r﹣ 10) +30,解得: r=50,故答案为50.2014 年中考真题点评:本题考查了垂径定理的应用,解题的关键是正确构造直角三角形.16.(5 分)( 2014?台州)有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:则第 n 次运算的结果y n=(用含字母x 和 n 的代数式表示).考点:分式的混合运算.专题:图表型;规律型.分析:将 y1代入 y2计算表示出y2,将 y2代入 y3计算表示出y3,归纳总结得到一般性规律即可得到结果.解答:解:将y1=代入得:y2==;将 y2 =代入得:y3==,依此类推,第n 次运算的结果y n=.故答案为:点评:此题考查了分式的混合运算,找出题中的规律是解本题的关键.2014 年中考真题三、解答题(本题共 8 小题,第17~ 20 题每题 8 分,第 21 题 10分,第 22、 23 题每题 12分,第24 题 14 分,共 80 分)17.( 8分)( 2014?台州)计算: |2﹣1|+(﹣()﹣ 1﹣ 1).考点:实数的运算;零指数幂;负整数指数幂.分析:分别根据 0 指数幂及负整数指数幂的运算法则、绝对值的性质计算出各数,再根据实数混合运算的法则进行计算即可;解答:解:原式 =2﹣1+1﹣=.点评:本题考查的是实数的运算,熟知0 指数幂及负整数指数幂的运算法则、绝对值的性质是解答此题的关键.18.( 8 分)( 2014?台州)解不等式组:,并把解集在如图数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.解答:解:∵解不等式①得: x> 2,解不等式②得: x< 3,∴不等式组的解集为2< x< 3,在数轴上表示为:.点评:本题考查了解一元一次不等式和解一元一次不等式组,在数轴上表示不等式组的解集的应用,解此题的关键是求出不等式组的解集.19.( 8 分)( 2014?台州)已知反比函数 y=,当x=2时,y=3.(1)求 m 的值;(2)当 3≤x≤6 时,求函数值 y 的取值范围.考点:待定系数法求反比例函数解析式;反比例函数的性质分析:( 1)把 x、 y 的值代入反比例函数解析式,通过方程来求m 的值;( 2)根据反比例函数图象的性质进行解答.解答:时, y=3 代入 y=,得解:( 1)把 x=22014 年中考真题3=,解得: m=﹣ 1;( 2)由 m=﹣ 1 知,该反比例函数的解析式为:y= .当x=3 时, y=2;当x=6 时, y=1.∴当 3≤x≤6 时,函数值 y 的取值范围是:1≤y≤2.点评:本题考查了反比例函数的性质,待定系数法求反比例函数解析式.(1)题,实际上是把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程20.( 8 分)(2014?台州)如图EF⊥ AD ,垂足为 A , AB=CD 1 是某公交汽车挡风玻璃的雨刮器,其工作原理如图 2.雨刷且AD=BC ,这样能使雨刷 EF 在运动时,始终垂直于玻璃窗下沿 BC,请证明这一结论.考点:平行四边形的判定与性质.专题:应用题.分析:首先证明四边形ABCD 是平行四边形,然后根据平行四边形的性质即可判断.解答:证明:∵ AB=CD 、 AD=BC ,∴四边形ABCD 是平行四边形,∴AD ∥BC ,又∵ EF⊥ AD ,∴EF⊥ BC .点评:本题考查了平行四边形的判定与性质,正确理解平行四边形的判定方法是关键.21.( 10 分)( 2014?台州)如图,某翼装飞行员从离水平地面高AC=500m 的 A 处出发,沿这俯角为 15°的方向,直线滑行 1600 米到达 D 点,然后打开降落伞以 75°的俯角降落到地面上的 B 点.求他飞行的水平距离 BC(结果精确到 1m).考点:解直角三角形的应用-仰角俯角问题.分析:首先过点 D 作 DE⊥ AC 于点 E,过点 D 作 DF⊥ BC 于点 F,进而里锐角三角函数关系得出 DE 、 AE 的长,即可得出 DF 的长,求出 BC 即可.解答:解:过点 D 作 DE⊥ AC 于点 E,过点 D 作 DF⊥ BC 于点 F,由题意可得:∠ADE=15 °,∠ BDF=15 °, AD=1600m , AC=500m ,∴ cos∠ ADE=cos15 °=≈0.97,∴≈0.97,解得: DE=1552 ( m),sin15°=≈0.26,∴≈0.26,解得; AE=416 ( m),∴DF=500﹣ 416=84 (m),∴ tan∠ BDF=tan15 °=≈0.27,∴≈0.27,解得: BF=22.68 ( m),∴BC=CF+BF=1552+22.68=1574.68 ≈1575 (m),答:他飞行的水平距离为 1575m .点评:此题主要考查了解直角三角形的应用,正确构造直角三角形得出CF,BF 的长是解题关键.22.( 12 分)( 2014?台州)为了估计鱼塘中成品鱼(个体质量在0.5kg 及以上,下同)的总质量,先从鱼塘中捕捞50条成品鱼,称得它们的质量如表:质量 /kg0.50.60.7 1.0 1.2 1.6 1.9数量 /条181518512然后做上记号再放回水库中,过几天又捕捞了100 条成品鱼,发现其中 2 条带有记号.(1)请根据表中数据补全如图的直方图(各组中数据包括左端点不包括右端点).(2)根据图中数据分组,估计从鱼塘中随机捕一条成品鱼,其质量落在哪一组的可能性最大?(3)根据图中数据分组,估计鱼塘里质量中等的成品鱼,其质量落在哪一组内?(4)请你用适当的方法估计鱼塘中成品鱼的总质量(精确到1kg ).考点:频数(率)分布直方图;用样本估计总体.分析:( 1)由函数图象可以得出 1.1﹣ 1.4 的有 5 条,就可以补全直方图;( 2)分别求出各组的频率,就可以得出结论;( 3)由这组数据的个数为50,就可以得出第25 个和第 26 个数的平均数就可以得出结论;( 4)设鱼塘中成品鱼的总质量为x,根据作记号的鱼50: x=2: 100 建立方程求出其解即可.解答:解:( 1)由函数图象可以得出 1.1﹣ 1.4 的有 5 条,补全图形,得:( 2)由题意,得0.5﹣ 0.8 的频率为: 24÷50=0.48,0.8﹣ 1.1 的频率为: 18÷50=0.36,1.1﹣ 1.4 的频率为: 5÷50=0.1,1.4﹣ 1.7 的频率为: 1÷50=0.02,1.7﹣2.0 的频率为: 2÷50=0.04.∵ 0.48> 0.36> 0.1> 0.04>0.02.∴估计从鱼塘中随机捕一条成品鱼,其质量落在0.5﹣0.8的可能性最大;26 个数分别是 1.0,1.0,( 3)这组数据的个数为50,就可以得出第25 个和第∴( 1.0+1.0)÷2=1.0鱼塘里质量中等的成品鱼,其质量落在0.8﹣ 1.1 内;( 4)设鱼塘中成品鱼的总质量为x,由题意,得50: x=2: 100,解得: x=2500 .2500 ×=2260kg .点评:本题考查了频数分布直方图的运用,比较频率大小的运用,中位数的运用,平均数的运用,由样本数据估计总体数据的运用,解答时认真分析统计表和统计图的数据是关键.23.( 12 分)( 2014?台州)某公司经营杨梅业务,以 3 万元 / 吨的价格向农户收购杨梅后,分拣成A 、B 两类, A 类杨梅包装后直接销售; B 类杨梅深加工后再销售. A 类杨梅的包装成本为 1 万元 /吨,根据市场调查,它的平均销售价格 y(单位:万元 /吨)与销售数量 x(x≥2)之间的函数关系如图; B 类杨梅深加工总费用 s(单位:万元)与加工数量 t(单位:吨)之间的函数关系是 s=12+3t,平均销售价格为 9 万元 /吨.(1)直接写出 A 类杨梅平均销售价格 y 与销售量 x 之间的函数关系式;(2)第一次,该公司收购了 20 吨杨梅,其中 A 类杨梅有 x 吨,经营这批杨梅所获得的毛利润为 w 万元(毛利润 =销售总收入﹣经营总成本).①求 w 关于 x 的函数关系式;②若该公司获得了30 万元毛利润,问:用于直销的 A 类杨梅有多少吨?(3)第二次,该公司准备投入 132 万元,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润.考点:二次函数的应用分析:( 1)这是一个分段函数,分别求出其函数关系式;(2)① 当 2≤x< 8 时及当 x≥8 时,分别求出 w 关于 x 的表达式.注意 w= 销售总收入﹣经营总成本 =wA+wB ﹣ 3×20;②若该公司获得了30 万元毛利润,将30 万元代入①中求得的表达式,求出 A 类杨梅的数量;( 3)本问是方案设计问题,总投入为132 万元,这笔 132 万元包括购买杨梅的费用+A 类杨梅加工成本 +B 类杨梅加工成本.共购买了m 吨杨梅, 其中 A 类杨梅为 x 吨,B 类杨梅为( m ﹣ x )吨,分别求出当 2≤x < 8 时及当 x ≥8 时 w 关于 x 的表达式,并分别求出其最大值.解答:解:( 1) ① 当 2≤x < 8 时,如图,设直线 AB 解析式为: y=kx+b ,将 A ( 2,12)、 B ( 8, 6)代入得:,解得,∴ y=﹣ x+14 ;② 当 x ≥8 时, y=6 .∴ A 类杨梅平均销售价格y 与销售量 x 之间的函数关系式为:y=.( 2)设销售 A 类杨梅 x 吨,则销售 B 类杨梅( 20﹣ x )吨. ① 当 2≤x < 8 时,wA=x (﹣ x+14 )﹣ x= ﹣ x 2+13x ;wB=9 ( 20﹣ x )﹣ [12+3( 20﹣ x ) ] =108﹣ 6x∴ w=wA+wB ﹣ 3×202=(﹣ x +13x ) +(108﹣ 6x )﹣ 602=﹣ x +7x+48 ; 当 x ≥8 时, wA=6x ﹣x=5x ;wB=9 ( 20﹣ x )﹣ [12+3( 20﹣ x ) ] =108﹣ 6x ∴ w=wA+wB ﹣ 3×20 =( 5x ) +( 108﹣ 6x )﹣ 60 =﹣ x+48 .∴ w 关于 x 的函数关系式为: w=.2② 当 2≤x < 8 时,﹣ x +7x+48=30 ,解得 x 1=9, x 2=﹣ 2,均不合题意; 当 x ≥8 时,﹣ x+48=30 ,解得 x=18 .∴当毛利润达到 30 万元时,直接销售的A 类杨梅有18 吨.( 3)设该公司用 132 万元共购买了 m 吨杨梅, 其中 A 类杨梅为 x 吨,B 类杨梅为 (m ﹣ x )吨,则购买费用为 3m 万元, A 类杨梅加工成本为 x 万元, B 类杨梅加工成本为[12+3 (m﹣ x ) ] 万元,∴ 3m+x+[12+3 ( m ﹣ x ) ]=132,化简得: x=3m ﹣60.① 当 2≤x < 8 时,wA=x (﹣ x+14 )﹣ x= ﹣ x 2+13x ;wB=9 ( m﹣ x)﹣ [12+3 (m﹣x) ]=6m ﹣ 6x﹣ 12∴w=wA+wB ﹣ 3×m2﹣ 12)﹣ 3m=(﹣ x +13x ) +(6m﹣ 6x2=﹣ x +7x+3m ﹣ 12.22将 3m=x+60 代入得: w= ﹣x +8x+48=﹣( x﹣ 4) +64∴当 x=4 时,有最大毛利润64 万元,此时 m=, m﹣ x=;②当 x>8 时,wA=6x ﹣x=5x ;wB=9 ( m﹣ x)﹣ [12+3 (m﹣x) ]=6m ﹣ 6x﹣ 12∴w=wA+wB ﹣ 3×m=( 5x) +( 6m﹣ 6x﹣12)﹣ 3m=﹣ x+3m ﹣12.将3m=x+60 代入得: w=48∴当 x> 8 时,有最大毛利润48 万元.综上所述,购买杨梅共吨,其中 A 类杨梅 4 吨, B 类吨,公司能够获得最大毛利润,最大毛利润为64 万元.点评:本问是二次函数、一次函数的综合应用题,难度较大.解题关键是理清售价、成本、利润三者之间的关系.涉及到分段函数时,注意要分类讨论.24.(14 分)( 2014?台州)研究几何图形,我们往往先给出这类图形的定义,再研究它的性质和判定.定义:六个内角相等的六边形叫等角六边形.(1)研究性质①如图 1,等角六边形ABCDEF 中,三组正对边AB 与 DE, BC 与 EF, CD 与 AF 分别有什么位置关系?证明你的结论②如图 2,等角六边形ABCDEF 中,如果有AB=DE ,则其余两组正对边BC 与 EF,CD 与AF 相等吗?证明你的结论③如图 3,等角六边形ABCDEF 中,如果三条正对角线AD ,BE ,CF 相交于一点O,那么三组正对边AB 与 DE, BC 与 EF, CD 与 AF 分别有什么数量关系?证明你的结论.(2)探索判定三组正对边分别平行的六边形,至少需要几个内角为120°,才能保证六边形一定是等角六边形?。
初中数学浙江省台州市书生中学八年级上学期期中考模拟试数学考试题.docx
![初中数学浙江省台州市书生中学八年级上学期期中考模拟试数学考试题.docx](https://img.taocdn.com/s3/m/db2f048067ec102de3bd892d.png)
xx 学校xx 学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:下列“表情”中属于轴对称图形的是()A.B.C. D.试题2:在下图中,正确画出AC边上高的是().A B C D试题3:等腰三角形中,一个角为50°,则这个等腰三角形的顶角的度数为()A.150°B. 80°C.50°或80°D.70°试题4:①三角形的三条角平分线交于一点,这点到三个顶点的距离相等;②三角形的三条中线交于一点;③三角形的三条高线所在的直线交于一点;④三角形的三条边的垂直平分线交于一点,这点到三条边的距离相等.以上命题中真命题是()评卷人得分A.①④ B.②③ C.①②③④ D.①③④试题5:在⊿ABC中,三边长分别为、、,且>>,若=8,=3,则的取值范围是()A.3<<8B.5<<11C.6<<10D.8<<11试题6:.一个多边形的内角和是外角和的5倍,则这个多边形的边数为()A.9 B。
10 C。
11 D.12试题7:如图所示,分别表示△ABC的三边长,则下面与△全等的三角形( )A.B. C. D.试题8:如图E、B、F、C四点在一条直线上, EB=CF, ∠A=∠D,再添一个条件仍不能证明≌的是( )A.DF∥AC B.AB=DEC.AB∥DE D.∠E=∠ABC试题9:等腰ΔABC在直角坐标系中,底边的两端点坐标是(-2,0),(6,0),则其顶点的坐标能确定的是()A.横坐标 B.纵坐标 C.横坐标及纵坐标 D.横坐标或纵坐标试题10:如图,△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,DM⊥AC于M,连CD.下列结论:①;②;③°;④定值. 其中正确的有()A.1B.2C.3D.4试题11:如图,∠1=_____.试题12:如图,⊿ABC中,∠A = 30°,∠B = 70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF = 度。
2014-2015学年八年级上学期期中联考数学试题(含答案)
![2014-2015学年八年级上学期期中联考数学试题(含答案)](https://img.taocdn.com/s3/m/31701bcb8bd63186bcebbcc6.png)
2014-2015学年八年级上学期期中联考数学试题(含答案)(时间:100分钟,满分:100分)一、选择题(每题3分,共30分)1、下面各组线段中,能组成三角形的是( )A .5,11,6B .8,8,16C .10,5,4D .6,9,14 2、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等.其中真命题的个数有( )A.3个B.2个C.1个D.0个 3、一个多边形内角和是10800,则这个多边形的边数为 ( ) A 、 6 B 、 7 C 、 8 D 、 9 4、等腰三角形的一个角是50,则它的底角是( ) A. 50 B. 50或65 C 、80 D 、65 5、和点P (2,5-)关于x 轴对称的点是( )A (-2,5-)B (2,5-)C (2,5)D (-2,5) 6、已知直角三角形中30°角所对的直角边为2 cm ,则斜边的长为( ). A .2 cm B .4 cm C .6 cm D .8 cm7、如图,已知12=∠∠,AC AD =,增加下列条件:①AB AE =;②BC ED =;③C D =∠∠;④B E =∠∠.其中能使ABC AED △≌△的条件有( ) A.4个 B.3个C.2个 D.个8、如图,先将正方形纸片对折,折痕为MN ,再把B 点折叠在折痕MN 上,折痕为AE ,点B 在MN 上的对应点为H ,沿AH 和DH 剪下,这样剪得的三角形中 ( ) A .AD DH AH ≠= B .AD DH AH == C .DH AD AH ≠= D .AD DH AH ≠≠9、如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,∠A 与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( )A .∠A=∠1+∠2B .2∠A=∠1+∠2C .3∠A=2∠1+∠2D .3∠A=2(∠1+∠2)10、把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是( ) A .对应点连线与对称轴垂直 B .对应点连线被对称轴平分 C .对应点连线被对称轴垂直平分 D .对应点连线互相平行 二、填空题(每题3分,共24分)11、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是_________ ______。
初中数学八年级2014—2015第一学期期中学业水平测试卷附参考答案
![初中数学八年级2014—2015第一学期期中学业水平测试卷附参考答案](https://img.taocdn.com/s3/m/ca0cf7a0f242336c1eb95efd.png)
2014—2015 第一学期初二数学期中学业水平测试、选一选,牛刀初试露锋芒!(每小题3分,共42分)1.下列图形中,轴对称图形的个数是()A. 4个2 .下列说法正确的是()A .三角形的角平分线是射线。
B.三角形三条高都在三角形内。
C. 三角形的三条角平分线有可能在三角形内,也可能在三角形外。
D. 三角形三条中线相交于一点。
3 .两根木棒长分别为5cm和7cm,要选择第三根,将它们钉成一个三角形,?如果第三根木棒长为偶数, 则组成方法有b5E2RGbCAPA. 3种B. 4种C. 5种D. 6种4. 下列各组条件中,不能判定△AB4A A/B/C/的一组是()/ / / / / //—”//A、/ A=Z A,/B=Z B ,AB= A BB、/ A=Z A , AB= A B , AC=A C/ / / J / / / / / / /C、/ A=/ A , AB= A B , BC= B CD、AB= A B , AC=A C ,BC= B C5. 如图,已知△ ABC的六个元素,则下面甲、乙、丙三个三角形中和△ ABC全等的图形是(D.只有丙6.如图1,将长方形ABCD纸片沿对角线BD折叠,使点C落在C •处,BC交AD于丘,若• DBC =22.5 °,贝恠不添加任何辅助线的情况下, 则图中45的角(虚线也视为角的边)的个数是()A. 5个E 22.12.如图5,△ ABC 的三边 AB 、BC CA 长分别是 20、30、40,其三条 角平分线将△ ABC 分为三个三角形,则 S A ABO : S A BCO:CAO 等于( )A . 1 : 1 : 1B . 1 : 2 : 3C . 2 : 3 : 4D . 3 : 4 : 513.如图6, 一圆柱高8cm,底面半径2cm,—只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程 (二 取 3)是() DXDiTa9E3dA.20cm;B.10cm;C.14cm;D. 无法确定.7•如图2,有一张直角三角形纸片,两直角边 △ ABC 折叠,使点B 与点A 重合,折痕为DE 为( )A. 10 cm B . 12cmC8、若等腰三角形的腰长为10,底边长为12,A 、6B 、7C 、8AC=5cm BC=10cm则厶ACD 的周长盒命 图2 E.15cmD . 20cm则底边上的高为()D 、99.如图3,小明把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事 的办法是()p1EanqFDPwA.带①去B.带②去C.带③去D.带①和②去10、下列条件中,不能确定三角形是直角三角形的是(A.三角形中有两个角是互为余角; B.三角形三个内角之比为3 : 2 : 1; C.三角形的三边之比为3 : 2 : 1 ; D.三角形中有两个内角的差等于第三个内角 11.把两个都有一个锐角为30°的一样大小的直角三角形拼成如图 4所示的图形,两条直角边在同一直线上.则图中等腰三角形有( )个. A. 1个B . 2个C.3 个D.4 个F C D图4图5A图614.如图7所示,已知△ ABC和厶BDE都是等边三角形。
2014年八年级上期中数学试题及答案
![2014年八年级上期中数学试题及答案](https://img.taocdn.com/s3/m/783e43066c175f0e7cd137ce.png)
B CEAF 2013-2014学年八年级上学期期中考试数学(满分:120分;考试时间:120分钟)一、精心选一选:(本大题共15小题,每小题3分,共45分.每小题给出的四个选项中有且只有一个选项是符合题目要求的.答对的得3分,答错、不答或答案超过一个的一律得O 分.) 1.等腰三角形一腰上的高与另一腰的夹角为60°,则顶角的度数为 ( )A.30°B.30°或150° C.60°或150°D.60°或120°A .(1,-2)B .(-1,-2)C .(-1,2)D .(2,-1)2.如图,△ ABC 中,∠ B =60o,AB=AC ,BC =3,则△ABC 的周长为( )A .9B .8C .6D .12 3.如图,给出下列四组条件:①AB DE BC EF AC DF ===,,; ②AB DE B E BC EF =∠=∠=,,;③B E BC EF C F ∠=∠=∠=∠,,;④A B D E A C D F ==∠=∠,,.其中,能使ABC DEF △≌△的条件共有( )A .1组B .2组C .3组D .4组4.如图,∠E=∠F=90°,∠B=∠C , AE=AF,则下列结论:①∠1=∠2;②BE=CF ; ③CD=DN ;④△ACN ≌△ABM ,其中正确的有 ( )A.4个B.3个C.2个D.1个14.如图所示,在△ABC 中,AC ⊥BC,AE 为∠BAC 的平分线,DE ⊥AB,AB=7cm,AC=3cm ,则BD 等于 ( ) A.1cm B.2cm C.3cm D.4cm5. 平面内点A (-1,2)和点B (-1,-2)的对称轴是( ) A .x 轴 B .y 轴 C .直线y=4 D .直线x=-1 二、细心填一填:(本大题共5小题,每空3分,共18分.)1. 正十边形的每一个内角的度数是 ,每一个外角的度数是 。
2014-2015学年浙教版八年级上期中联考数学试卷及答案
![2014-2015学年浙教版八年级上期中联考数学试卷及答案](https://img.taocdn.com/s3/m/9ee350c4fd0a79563c1e729a.png)
温州市五校2014-2015学年第一学期期中联考八年级数学试卷考试时间:100分钟,总分100分一、选择题:(每小题3分,共30分) 1、在下列各组图形中,是全等的图形是( )A 、B 、C 、D 、 2.下列图形中,对称轴最多的是( )A 、等腰三角形B 、等边三角形C 、直角三角形D 、等腰直角三角形 3.以下列各数为边长,不能组成直角三角形的是( )A 、3,4,5B 、5,12,13C 、6,8,10D 、4,5,6 4、下列图形中,不具有稳定性的是( ).5、小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4), 你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃? 应该带( )去A 、第1块B 、第2块C 、第3块D 、第4块 6、下列命题的逆命题...是真命题的是( ) A 、直角都相等; B 、等边三角形是锐角三角形; C 、相等的角是对顶角; D 、全等三角形的对应角相等。
7.如图,在Rt △ABC 中,∠ACB=900,∠A=30°,CD 是斜边AB 上的中线,则图中与CD 的长度相等的线段有( ) A 、AD 与BD B 、BD 与BC C 、AD 与BC D 、AD 、BD 与BC8、如图,中国共产主义青年团团旗上的图案,点A 、B 、C 、D 、E 五等分圆,则A B C D E ∠+∠+∠+∠+∠的度数是( )A 、1800B 、1500C 、1350D 、1200 9、 下列条件中,不能判定....两个直角三角形全等的是( ) A 、两个锐角对应相等 B 、 一条边和一个锐角对应相等 C 、两条直角边对应相等 D 、 一条直角边和一条斜边对应相等A 、B 、C 、D 、12 3 4第5题图BCAD第7题图ECBDA第8题图 图610.在直线l 上依次摆放着七个正方形(如图所示)。
已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4等于( ) A 、 4 B 、 5 C 、 6 D 、 14二、填空题(每小题4分,共32分)11.等腰三角形一边长为1cm ,另一边长为2cm ,它的周长是_____cm . 12.在Rt △ABC 中,∠C=Rt ∠,∠A=70°,则∠B=_______.13、一个等腰三角形底边上的高、 和顶角的________互相重合。
2014-2015年浙江省台州市椒江区书生中学八年级上学期期中数学试卷及参考答案
![2014-2015年浙江省台州市椒江区书生中学八年级上学期期中数学试卷及参考答案](https://img.taocdn.com/s3/m/eaf18439a5e9856a561260e8.png)
2014-2015学年浙江省台州市椒江区书生中学八年级(上)期中数学试卷一、选择题(每题4分,共40分)1.(4分)下列“QQ表情”中属于轴对称图形的是()A. B.C.D.2.(4分)在如图中,正确画出AC边上高的是()A. B.C.D.3.(4分)等腰三角形中,一个角为50°,则这个等腰三角形的顶角的度数为()A.150°B.80°C.50°或80°D.70°4.(4分)①三角形的三条角平分线交于一点,这点到三条边的距离相等;②三角形的三条中线交于一点;③三角形的三条高线所在的直线交于一点;④三角形的三条边的垂直平分线交于一点,这点到三个顶点的距离相等.以上命题中真命题是()A.①④B.②③C.①②③④D.①③④5.(4分)△ABC的三边长是a、b、c,且a>b>c,若b=8,c=3,则a的取值范围是()A.3<a<8 B.5<a<11 C.8<a<11 D.6<a<106.(4分)如果一个多边形的内角和是外角和的5倍,那么这个多边形的边数是()A.10 B.11 C.12 D.137.(4分)如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A. B. C.D.8.(4分)如图E、B、F、C四点在一条直线上,EB=CF,∠A=∠D,再添加下列一个条件,仍不能判断出△ABC≌△DEF的是()A.DF∥AC B.AB=DE C.AB∥DE D.∠E=∠ABC9.(4分)等腰三角形ABC在直角坐标系中,底边的两端点坐标是(﹣2,0),(6,0),则其顶点的坐标,能确定的是()A.横坐标B.纵坐标C.横坐标及纵坐标 D.横坐标或纵坐标10.(4分)如图,△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,DM⊥AC于M,连CD.下列结论:①AC+CE=AB;②;③∠CDA=45°;④=定值.其中正确的有()A.1个 B.2个 C.3个 D.4个二、填空题(每题4分,共32分.)11.(4分)如图,∠1=.12.(4分)如图,△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=°.13.(4分)如图,△ABC中,AD是BC上的中线,BE是△ABD中AD边上的中线,若△ABC的面积是24,则△ABE的面积是.14.(4分)如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=°.15.(4分)在平面直角坐标系中,点A(2,0),B(0,4),作△BOC,使△BOC 与△ABO全等,则点C坐标为.(点C不与点A重合)16.(4分)在△ABC中,AC=5,中线AD=7,则AB边的取值范围是.17.(4分)已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B落在点Bˊ处,DBˊ,EBˊ分别交边AC于点F,G,若∠ADF=80°,则∠EGC的度数为.18.(4分)等腰三角形一边上的高等于一边的一半,则它的顶角度数为.三、解答题:(共48分)19.(6分)如图,AB=CD,DE⊥AC,BF⊥AC,E、F是垂足,DE=BF,求证:(1)AE=CF;(2)AB∥CD.20.(6分)如图,AD是△ABC的外角平分线,交BC的延长线于D点,若∠B=30°,∠DAE=55°,求∠ACD的度数.21.(6分)如图,∠AOB=30°,OA表示草地边,OB表示河边,点P表示家且在∠AOB内.某人要从家里出发先到草地边给马喂草,然后到河边喂水,最后回到家里.(1)请用尺规在图上画出此人行走的最短路线图(保留作图痕迹,不写作法和理由).(2)若OP=30米,求此人行走的最短路线的长度.22.(8分)如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并说明理由.23.(10分)如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数.24.(12分)如图,等腰直角三角形ABC中,∠BAC=90°,D、E分别为AB、AC 边上的点,AD=AE,AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M.(1)求证:△ADC≌△AEB;(2)判断△EGM是什么三角形,并证明你的结论;(3)判断线段BG、AF与FG的数量关系并证明你的结论.2014-2015学年浙江省台州市椒江区书生中学八年级(上)期中数学试卷参考答案与试题解析一、选择题(每题4分,共40分)1.(4分)下列“QQ表情”中属于轴对称图形的是()A. B.C.D.【解答】解:A、B、D都不是轴对称图形,C关于直线对称.故选:C.2.(4分)在如图中,正确画出AC边上高的是()A. B.C.D.【解答】解:画出AC边上高就是过B作AC的垂线,故选:C.3.(4分)等腰三角形中,一个角为50°,则这个等腰三角形的顶角的度数为()A.150°B.80°C.50°或80°D.70°【解答】解:①50°是底角,则顶角为:180°﹣50°×2=80°;②50°为顶角;所以顶角的度数为50°或80°.故选:C.4.(4分)①三角形的三条角平分线交于一点,这点到三条边的距离相等;②三角形的三条中线交于一点;③三角形的三条高线所在的直线交于一点;④三角形的三条边的垂直平分线交于一点,这点到三个顶点的距离相等.以上命题中真命题是()A.①④B.②③C.①②③④D.①③④【解答】解:①角平分线上的点到两边的距离相等,所以正确;②三角形中各边的中线都在三角形内,所以交点也在三角形内,所以正确;③三角形的高是线段,锐角三角形的三条高所在的直线相交,交点在三角形的内部;直角三角形的三条高所在的直线相交,交点在三角形的直角顶点;钝角三角形的三条高所在的直线相交,交点在三角形的外部,所以正确;④各边垂直平分线上的点到该边两个顶点的距离相等,以此类推,三角形的三条边的垂直平分线交于一点,这点到三个顶点的距离相等,所以正确.故选①②③④.故选:C.5.(4分)△ABC的三边长是a、b、c,且a>b>c,若b=8,c=3,则a的取值范围是()A.3<a<8 B.5<a<11 C.8<a<11 D.6<a<10【解答】解:∵a>b>c,b=8,c=3,∴根据三角形的三边关系,得8<a<11.故选:C.6.(4分)如果一个多边形的内角和是外角和的5倍,那么这个多边形的边数是()A.10 B.11 C.12 D.13【解答】解:设这个多边形是n边形,根据题意得,(n﹣2)•180°=5×360°,解得n=12.故选:C.7.(4分)如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A. B. C.D.【解答】解:A、与三角形ABC有两边相等,而夹角不一定相等,二者不一定全等;B、选项B与三角形ABC有两边及其夹边相等,二者全等;C、与三角形ABC有两边相等,但角不是夹角,二者不全等;D、与三角形ABC有两角相等,但边不对应相等,二者不全等.故选:B.8.(4分)如图E、B、F、C四点在一条直线上,EB=CF,∠A=∠D,再添加下列一个条件,仍不能判断出△ABC≌△DEF的是()A.DF∥AC B.AB=DE C.AB∥DE D.∠E=∠ABC【解答】解:∵EB=CF,∴EB+BF=BF+CF,即BC=EF,又∵∠A=∠D,且BC和EF分别是∠A和∠D的对边,∴要证明△ABC≌△DEF,只能再找一组角相等,利用AAS或ASA来证明,∴当添加AB=DE时,满足的条件是ASS,不能判定△ABC≌△DEF,故选:B.9.(4分)等腰三角形ABC在直角坐标系中,底边的两端点坐标是(﹣2,0),(6,0),则其顶点的坐标,能确定的是()A.横坐标B.纵坐标C.横坐标及纵坐标 D.横坐标或纵坐标【解答】解:因为底边两端点的坐标知道,而等腰三角形的横坐标正好在两端点中间,故可以求出横坐标,但由于腰不知道,所以纵坐标无法确定.故选:A.10.(4分)如图,△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,DM⊥AC于M,连CD.下列结论:①AC+CE=AB;②;③∠CDA=45°;④=定值.其中正确的有()A.1个 B.2个 C.3个 D.4个【解答】解:过E作EQ⊥AB于Q,∵∠ACB=90°,AE平分∠CAB,∴CE=EQ,∵∠ACB=90°,AC=BC,∴∠CBA=∠CAB=45°,∵EQ⊥AB,∴∠EQA=∠EQB=90°,由勾股定理得:AC=AQ,∴∠QEB=45°=∠CBA,∴EQ=BQ,∴AB=AQ+BQ=AC+CE,∴①正确;作∠ACN=∠BCD,交AD于N,∵∠CAD=∠CAB=22.5°=∠BAD,∴∠DBA=90°﹣22.5°=67.5°,∴∠DBC=67.5°﹣45°=22.5°=∠CAD,∴∠DBC=∠CAD,∵AC=BC,∠ACN=∠DCB,∴△ACN≌△BCD,∴CN=CD,∵∠ACN+∠NCE=90°,∴∠NCB+∠BCD=90°,∴∠CND=∠CDN=45°,∴∠ACN=45°﹣22.5°=22.5°=∠CAN,∴AN=CN,∴∠NCE=∠AEC=67.5°,∴CN=NE,∴CD=AN=EN=AE,∴②正确,③正确;过D作DH⊥AB于H,∵∠MCD=∠CAD+∠CDA=67.5°,∠DBA=90°﹣∠DAB=67.5°,∴∠MCD=∠DBA,∵AE平分∠CAB,DM⊥AC,DH⊥AB,∴DM=DH,在△DCM和△DBH中∠M=∠DHB=90°,∠MCD=∠DBA,DM=DH,∴△DCM≌△DBH,∴BH=CM,由勾股定理得:AM=AH,∴====2,∴④正确;故选:D.二、填空题(每题4分,共32分.)11.(4分)如图,∠1=120°.【解答】解:∠1=(180°﹣140°)+80°=120°.12.(4分)如图,△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=70°.【解答】解:∵∠A+∠B+∠ACB=180°,∠A=30°,∠B=70°,∴∠ACB=80°,∵CE平分∠ACB,∴∠BCE=∠ACB=×80°=40°,∵CD⊥AB,∴∠CDB=90°,∵∠B=70°,∴∠BCD=90°﹣70°=20°,∴∠FCD=∠BCE﹣∠BCD=20°,∵DF⊥CE,∴∠CFD=90°,∴∠CDF=90°﹣∠FCD=70°.故答案为:70.13.(4分)如图,△ABC中,AD是BC上的中线,BE是△ABD中AD边上的中线,若△ABC的面积是24,则△ABE的面积是6.【解答】解:∵AD是BC上的中线,=S△ACD=S△ABC,∴S△ABD∵BE是△ABD中AD边上的中线,=S△BED=S△ABD,∴S△ABE=S△ABC,∴S△ABE∵△ABC的面积是24,=×24=6.∴S△ABE故答案为:6.14.(4分)如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=135°.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故填135.15.(4分)在平面直角坐标系中,点A(2,0),B(0,4),作△BOC,使△BOC 与△ABO全等,则点C坐标为(2,4)或(﹣2,0)或(﹣2,4).(点C 不与点A重合)【解答】解:如图所示:有三个点符合,∵点A(2,0),B(0,4),∴OB=4,OA=2,∵△BOC与△AOB全等,∴OB=OB=4,OA=OC=2,∴C1(﹣2,0),C2(﹣2,4),C3(2,4).故答案为:(2,4)或(﹣2,0)或(﹣2,4).16.(4分)在△ABC中,AC=5,中线AD=7,则AB边的取值范围是9<AB<19.【解答】解:延长AD到E使DE=AD,连接BE,∵D是BC的中点,∴CD=BD.在△ACD和△EBD中,∴△ACD≌△EBD(SAS),∴AC=EB=5.∵AD=7,∴AE=14.由三角形的三边关系为:14﹣5<AB<14+5,即9<AB<19.故答案为:9<AB<19.17.(4分)已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B落在点Bˊ处,DBˊ,EBˊ分别交边AC于点F,G,若∠ADF=80°,则∠EGC的度数为80°.【解答】解:由翻折可得∠B′=∠B=60°,∴∠A=∠B′=60°,∵∠AFD=∠GFB′,∴△ADF∽△B′GF,∴∠ADF=∠B′GF,∵∠EGC=∠FGB′,∴∠EGC=∠ADF=80°.故答案为:80°.18.(4分)等腰三角形一边上的高等于一边的一半,则它的顶角度数为30°、90°、120°或150°.【解答】解:如图,分四种情况:1、AB=BC,AD⊥BC,AD在三角形的内部,由题意知,AD=BC=AB,∵sin∠B==,∴∠B=30°;2、AC=BC,AD⊥BC,AD在三角形的外部,由题意知,AD=BC=AC,∵sin∠ACD==,∴∠ACD=30°,∴∠ACB=180°﹣30°=150°;3、AB=AC,AD⊥BC,BC边为等腰三角形的底边,由等腰三角形的底边上的高、底边上中线、顶角的平分线互相重合知,点D为BC的中点,由题意知,AD=BC=CD=BD,∴△ABD,△ADC均为等腰直角三角形,∴∠BAD=∠CAD=45°,∴∠BAC=90°.4、AC=BC,AD⊥BC,AD在三角形的外部,由题意知,AD=AB,∵sin∠B==,∴∠B=30°,∴∠ACB=180°﹣60°=120°;故填30°、90°、120°或150°.三、解答题:(共48分)19.(6分)如图,AB=CD,DE⊥AC,BF⊥AC,E、F是垂足,DE=BF,求证:(1)AE=CF;(2)AB∥CD.【解答】解:(1)∵DE⊥AC,BF⊥,∴∠CED=∠AFB=90°,在Rt△ABF和Rt△CDE中,,∴Rt△ABF≌Rt△CDE(HL),∴AF=CE,∴AF+EF=CE+EF,即AE=CF;(2)∵Rt△ABF≌Rt△CDE,∴∠A=∠C,∴AB∥CD.20.(6分)如图,AD是△ABC的外角平分线,交BC的延长线于D点,若∠B=30°,∠DAE=55°,求∠ACD的度数.【解答】解:∵∠DAE=55°,ADF平分∠CAE,∴∠CAE=110°,∵∠CAE是△ABC的外角,∠B=30°,∴∠ACB=110°﹣30°=80°,∴∠ACD=180°﹣80°=100°.21.(6分)如图,∠AOB=30°,OA表示草地边,OB表示河边,点P表示家且在∠AOB内.某人要从家里出发先到草地边给马喂草,然后到河边喂水,最后回到家里.(1)请用尺规在图上画出此人行走的最短路线图(保留作图痕迹,不写作法和理由).(2)若OP=30米,求此人行走的最短路线的长度.【解答】解:(1)如图所示:此人行走的最短路线为:PC→CD→DP;(2)连接OP′,OP″,由题意可得:OP′=OP″,∠P′OP″=60°,则△P′OP″是等边三角形,∵OP=30米,∴PC+CD+DP=P′P″=30(m),答;此人行走的最短路线的长度为30m.22.(8分)如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并说明理由.【解答】解:(1)∵BG∥AC,∴∠DBG=∠DCF.∵D为BC的中点,∴BD=CD又∵∠BDG=∠CDF,在△BGD与△CFD中,∵∴△BGD≌△CFD(ASA).∴BG=CF.(2)BE+CF>EF.∵△BGD≌△CFD,∴GD=FD,BG=CF.又∵DE⊥FG,∴EG=EF(垂直平分线到线段端点的距离相等).∴在△EBG中,BE+BG>EG,即BE+CF>EF.23.(10分)如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数.【解答】解:(1)∠CMQ=60°不变.∵等边三角形中,AB=AC,∠B=∠CAP=60°又由条件得AP=BQ,∴△ABQ≌△CAP(SAS),∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°.(2)设时间为t,则AP=BQ=t,PB=4﹣t①当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,得4﹣t=2t,t=;②当∠BPQ=90°时,∵∠B=60°,∴BQ=2BP,得t=2(4﹣t),t=;∴当第秒或第秒时,△PBQ为直角三角形.(3)∠CMQ=120°不变.∵在等边三角形中,BC=AC,∠B=∠CAP=60°∴∠PBC=∠ACQ=120°,又由条件得BP=CQ,∴△PBC≌△QCA(SAS)∴∠BPC=∠MQC又∵∠PCB=∠MCQ,∴∠CMQ=∠PBC=180°﹣60°=120°24.(12分)如图,等腰直角三角形ABC中,∠BAC=90°,D、E分别为AB、AC 边上的点,AD=AE,AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M.(1)求证:△ADC≌△AEB;(2)判断△EGM是什么三角形,并证明你的结论;(3)判断线段BG、AF与FG的数量关系并证明你的结论.【解答】(1)证明:∵等腰直角三角形ABC中,∠BAC=90°,∴AC=AB,∠ACB=∠ABC=45°,在△ADC和△AEB中∴△ADC≌△AEB(SAS),(2)△EGM为等腰三角形;理由:∵△ADC≌△AEB,∴∠1=∠3,∵∠BAC=90°,∴∠3+∠2=90°,∠1+∠4=90°,∴∠4+∠3=90°∵FG⊥CD,∴∠CMF+∠4=90°,∴∠3=∠CMF,∴∠GEM=∠GME,∴EG=MG,△EGM为等腰三角形.(3)线段BG、AF与FG的数量关系为BG=AF+FG.理由:如图所示:过点B作AB的垂线,交GF的延长线于点N,∵BN⊥AB,∠ABC=45°,∴∠FBN=45°=∠FBA.∵FG⊥CD,∴∠BFN=∠CFM=90°﹣∠DCB,∵AF⊥BE,∴∠BFA=90°﹣∠EBC,∠5+∠2=90°,由(1)可得∠DCB=∠EBC,∴∠BFN=∠BFA,在△BFN和△BFA中∴△BFN≌△BFA(ASA),∴NF=AF,∠N=∠5,又∵∠GBN+∠2=90°,∴∠GBN=∠5=∠N,∴BG=NG,又∵NG=NF+FG,∴BG=AF+FG.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。
初中数学浙江省台州市八年级数学上学期期中调研考试考试题 新部编版.docx
![初中数学浙江省台州市八年级数学上学期期中调研考试考试题 新部编版.docx](https://img.taocdn.com/s3/m/8162ce3083d049649a66582d.png)
xx学校xx学年xx 学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx 题评卷人得分(每空xx 分,共xx分)试题1:两个三角形只有以下元素对应相等,不能判定两个三角形全等的是……………()A.两角和一边 B.两边及夹角 C.三个角 D.三条边试题2:实数,,,,中,无理数的个数是……………………………()A.2 B.3 C.4 D.5试题3:下列四句话中的文字有三句具有对称规律,其中没有这种规律的一句是………()A.上海自来水来自海上 B.有志者事竞成 C.清水池里池水清 D.蜜蜂酿蜂蜜试题4:一个正方形的面积是15,估计它的边长大小在…………………………………()A.2与3之间B.3与4之间C.4与5之间D.5与6之间试题5:若,,则y的值是…………………………………………()A.10 B.100 C.1000 D.10000试题6:如图所示,将矩形ABCD沿AE折叠,若∠CED′=56°,则∠AED的大小是…()A.28°B.34°C.56°D.62°试题7:如图,DE是ABC中AC边的垂直平分线,若BC= 8,AB=10,则EBC的周长为()A.16 B.18 C.26 D.28试题8:如图,AB∥CD,AD∥BC,OE=OF,则图中全等三角形的组数是………………()A.3 B. 4 C.5 D.6试题9:若等腰三角形的周长为26cm,一边为6cm,则腰长为……………………………()A.10cm B. 6cm C. 6cm或10cm D.以上都不对试题10:如图,AD是的中线,E、F分别是AD和AD延长线上的点,且,连结BF、CE.下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE;⑤AE=CE.其中正确的个数有…………………………………()A.2个 B.3个 C.4个 D.5个试题11:4的平方根是试题12:如图,若△ABC≌△DEF,则∠E= °试题13:如图,要测量河两岸相对的两点A,B的距离,在AB的垂线BF上取两点C,D,使BC=CD,再定出BF的垂线DE,使A,C,E在一条直线上,这时测得DE=16米,则AB=米.试题14:点A(1,y)、B(x,-3)关于y轴对称,则x+y=_________试题15:如图:从镜子中看到一钟表的时针和分针,此时的实际时刻是________.试题16:如图,△ABC中,AB=AC,∠B=70°,AD⊥BC, 则∠CAD=_________.试题17:如图把Rt△ABC(∠C=90°)折叠,使A、B两点重合,得到折痕ED•,再沿BE折叠,C点恰好与D点重合,则∠A等于_______度.试题18:写出一个比-3大的无理数是.试题19:对于两个不相等的实数、,定义一种新的运算如下,,如:,那么=。
2014-2015八年级第一学期期中试卷(含答案)
![2014-2015八年级第一学期期中试卷(含答案)](https://img.taocdn.com/s3/m/e12b54e5b52acfc788ebc9d7.png)
ACB D E 人教版2014-2015学年度第一学期八年级数学期中考试试卷(含参考答案)一、选择题:(本题满分24分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填在题后的括号内。
......... 1.下列各组线段能组成一个三角形的是( ).(A)5cm ,8cm ,12cm (B)2cm ,3cm ,6cm (C)3cm ,3cm ,6cm (D)4cm ,7cm ,11cm 2.下列图案是轴对称图形的有( )。
A.(1)(2)B.(1)(3)C.(1)(4)D.(2)(3)(1) (2) (3) (4)3.下列几种说法:①全等三角形的对应边相等;②面积相等的两个三角形全等;③周长相等的两个三角形全等;④全等的两个三角形一定重合。
其中正确的是( )。
A. ①② B. ②③ C. ③④ D. ①④ 4.已知直角三角形中30°角所对的直角边为2㎝,则斜边的长为( )。
A. 2 ㎝B. 4 ㎝C. 6 ㎝D. 8㎝ 5.点M (1,2)关于y 轴对称的点的坐标为 ( )。
A.(—1,2)B.(-1,-2)C. (1,-2)D. (2,-1) 6.如图,∠B=∠D=90°,CB=CD ,∠1=40°,则∠2=( )。
A .40° B. 45° C. 60° D. 50°7. 如图所示,在△ABC 中,已知点D,E,F 分别为边BC,AD,CE 的中点,且S △ABC=4cm 2,则阴影部分的面积等于( )A.2cm 2B.1cm 2C.12cm 2D.1 4 cm 28.已知等腰三角形一个内角是70°,则另外两个内角的度数是( )A.55°, 55°B.70°, 40°C.55°, 55°或70°, 40°D.以上都不对 二 、填空题:(本题满分24分,每小题3分)9.一扇窗户打开后,用窗钩可将其固定,这里运用的几何原理为 。
浙教版2014-2015学年度八年级上学期数学期中模拟试卷二(1-3章)
![浙教版2014-2015学年度八年级上学期数学期中模拟试卷二(1-3章)](https://img.taocdn.com/s3/m/b78beb3e4a73f242336c1eb91a37f111f0850d5c.png)
浙教版2014-2015学年度八年级上学期数学期中模拟试卷二(1-3章)答案一.选择题题号 1 2 3 4 5 6 7 8 9 10 答案 C A B A B C B A B B三.解答题17.(1) :x≥﹣2.(2). -1<x<0.5 整数解为018.解:(1)∵△ABC是等边三角形∴ BC=AC又∵D为AC中点∴BD⊥AC又∵AE⊥EC∴∠BDC=∠AEC=90°又∵BD=CE∴Rt△BDC≌Rt△CEA(HL)(2)△ADE是等边三角形,理由如下:∵Rt△BDC≌Rt△CEA∴∠EAC=∠ACB=60°,AE=CD又∵D为边AC的中点,∴AD=CD,∴AD=AE∴△ADE是等边三角形.()⎩⎨⎧><m x x 81.19 解8<∴m 要使不等式有解必须 ()ax b x a x b x <⎩⎨⎧≤<∴>∴的解为原不等式组的解为,:220.解:(1)y=50x+45(8000﹣x )=5x+360000,由题意得,,解不等式①得,x ≤44000,解不等式②得,x ≥40000,所以,不等式组的解集是40000≤x ≤44000,∴y 与x 的函数关系式是y=5x+360000(40000≤x ≤44000);(2)∵k=5>0,∴y 随x 的增大而增大,∴当x=44000时,y 最大=580000,即生产N 型号的时装44000套时,该厂所获利润最大,最大利润是580000元22.解:(1)由∠C=90°,AB=10cm,BC=6cm,∴AC=4,动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,∴出发2秒后,则CP=2,∵∠C=90°,∴PB=42,∴△ABP的周长为:AP+PB+AB=6+10+42=16+42.(4分)(2)若P在边AC上时,BC=CP=6cm,此时用的时间为6s,△BCP为等腰三角形;若P在AB边上时,有两种情况:i)若使BP=CB=6cm,此时AP=4cm,P运动的路程为12cm,所以用的时间为12s,△BCP为等腰三角形;ii)若CP=BC=3cm,过C作斜边AB的高,根据面积法求得高为4.8cm,根据勾股定理求得BP=7.2cm,所以P运动的路程为18-7.2=10.8cm,则用的时间为10.8s,△BCP为等腰三角形;ⅲ)若BP=CP时,P的路程为13cm,所以时间为13s。
2014-2015学年新人教版八年级上期中数学试卷及答案解析
![2014-2015学年新人教版八年级上期中数学试卷及答案解析](https://img.taocdn.com/s3/m/9e5dfcf83169a4517723a3d3.png)
2014-2015学年八年级(上)期中数学试卷一、选择题(本大题共12个小题,每小题3分,共36分.)1.下列交通标志是轴对称图形的是( )A.B.C. D.2.三角形的一个外角小于和它相邻的内角,这个三角形为( )A.锐角三角形B.直角三角形C.钝角三角形D.以上三种都有可能3.已知图中的两个三角形全等,则∠1等于( )A.72°B.60°C.50°D.58°4.已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是( )A.13cm B.6cm C.5cm D.4cm5.下列等式成立的是( )A.(﹣3)﹣2=﹣9 B.m•m﹣2•m3=m5C.(﹣a﹣1b﹣3)﹣2=﹣a2b6D.(﹣2m)2÷2m3=6.若b为常数,要使16x2+bx+1成为完全平方式,那么b的值是( )A.4 B.8 C.±4 D.±87.若分式的值为零,则x的值为( )A.0 B.﹣3 C.3 D.3或﹣38.已知,△ABC和△ADC关于直线AC轴对称,如果∠BAD+∠BCD=160°,那么△ABC 是( )A.直角三角形B.等腰三角形C.钝角三角形D.锐角三角形9.如图,在等腰△ABC中,∠BAC=120°,DE是AC的垂直平分线,线段DE=1cm,则BD 的长为( )A.6cm B.8cm C.3cm D.4cm10.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为( )A.B.C.D.11.如图,设k=(a>b>0),则有( )A.k>2 B.1<k<2 C.D.12.如图,正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为( )A.B.3 C.4 D.二、填空题(本大题共5小题,每小题3分,共18分)13.一生物教师在显微镜下发现某种植物的细胞直径约为0.000000102mm,用科学记数法表示这个数为__________.14.分解因式:ab2﹣4ab+4a=__________.15.若3x=4,9y=7,则3x﹣2y的值为__________.16.在△ABC中,AB=AC,AB的中垂线与AC所在直线相交所得的锐角为50°,则底角∠B=__________.17.如图,在长方形ABCD中,AB>BC,BE⊥AC,垂足为E,延长BE交CD于F,S表示面积,则给出的下列命题:①Rt△ABC≌Rt△CDA;②S△AEF<S△BCE;③∠DAE+∠DFE=180°;④∠AFB>∠ACB 其中正确命题的代号是__________.三、解答题:(本大题共6小题,共46分)18.(1)解不等式:(2x﹣5)2+(3x+1)2>13(x2﹣10)(2)解分式方程:.19.先化简:÷(a+),当b=﹣1时,请你为a任选一个适当的数代入求值.20.如图,∠1=∠2,∠3=∠4,求证:AC=AD.21.如图,已知△ABC,P为内角平分线AD,BE,CF的交点,过点P作PG⊥BC于G,试说明∠BPD与∠CPG的大小关系,并说明理由.22.用电脑程序控制小型赛车进行50m比赛,“畅想号”和“和谐号”两辆赛车进入了决赛.比赛前的练习中,两辆车从起点同时出发,“畅想号”到达终点时,“和谐号”离终点还差3m.已知“畅想号”的平均速度为2.5m/s.(1)求“和谐号”的平均速度;(2)如果两车重新开始比赛,“畅想号”从起点向后退3m,两车同时出发,两车能否同时到达终点?若能,求出两车到达终点的时间;若不能,请重新调整一辆车的平均速度,使两车能同时到达终点.23.如图③,点E,D分别是正三角形ABC,正四边形ABCM,正五边形ABCMN中以点C为顶点的一边延长线和另一边反向延长线上的点,且△ABE与△BCD能相互重合,DB的延长线交AE于点F.(1)在图①中,求∠AFB的度数;(2)在图②中,∠AFB的度数为__________,图③中,∠AFB的度数为__________;(3)继续探索,可将本题推广到一般的正n边形情况,用含n的式子表示∠AFB的度数.2014-2015学年四川省绵阳中学八年级(上)期中数学试卷一、选择题(本大题共12个小题,每小题3分,共36分.)1.下列交通标志是轴对称图形的是( )A.B.C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、是轴对称图形,故正确;D、不是轴对称图形,故错误.故选C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.三角形的一个外角小于和它相邻的内角,这个三角形为( )A.锐角三角形B.直角三角形C.钝角三角形D.以上三种都有可能【考点】三角形的外角性质.【分析】此题依据三角形的外角性质,即三角形的外角与它相邻的内角互为邻补角,可判断出此三角形有一内角为钝角,从而得出这个三角形是钝角三角形的结论.【解答】解:∵三角形的一个外角与它相邻的内角和为180°,而题中说这个外角小于它相邻的内角,∴与它相邻的这个内角是一个大于90°的角即钝角,∴这个三角形就是一个钝角三角形.故选C.【点评】本题考查的是三角形的外角性质,解题的关键是熟练掌握三角形的外角与它相邻的内角互为邻补角.3.已知图中的两个三角形全等,则∠1等于( )A.72°B.60°C.50°D.58°【考点】全等三角形的性质.【分析】根据三角形内角和定理求得∠2=58°;然后由全等三角形是性质得到∠1=∠2=58°.【解答】解:如图,由三角形内角和定理得到:∠2=180°﹣50°﹣72°=58°.∵图中的两个三角形全等,∴∠1=∠2=58°.故选:D.【点评】本题考查了全等三角形的性质,解题的关键是找准对应角.4.已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是( )A.13cm B.6cm C.5cm D.4cm【考点】三角形三边关系.【分析】此题首先根据三角形的三边关系,求得第三边的取值范围,再进一步找到符合条件的数值.【解答】解:根据三角形的三边关系,得:第三边应大于两边之差,且小于两边之和,即9﹣4=5,9+4=13.∴第三边取值范围应该为:5<第三边长度<13,故只有B选项符合条件.故选:B.【点评】本题考查了三角形三边关系,一定要注意构成三角形的条件:两边之和>第三边,两边之差<第三边.5.下列等式成立的是( )A.(﹣3)﹣2=﹣9 B.m•m﹣2•m3=m5C.(﹣a﹣1b﹣3)﹣2=﹣a2b6D.(﹣2m)2÷2m3=【考点】负整数指数幂;整式的除法.【分析】根据负整数指数幂、同底数幂的乘法以及整式的除法运算法则进行计算.【解答】解:A、原式=9,故本选项错误;B、原式=m(1﹣2+3)=m2,故本选项错误;C、原式=(﹣1)﹣2•a﹣1×(﹣2)•b(﹣3)×(﹣2)=a2b6,故本选项错误;D、原式==,故本选项正确.‘故选:D.【点评】本题考查了负整数指数幂、整式的除法.掌握运算法则的解题的关键.6.若b为常数,要使16x2+bx+1成为完全平方式,那么b的值是( )A.4 B.8 C.±4 D.±8【考点】完全平方式.【专题】常规题型.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定b的值.【解答】解:16x2+bx+1=(4x)2+bx+1,∴bx=±2×4x×1,解得b=±8.故选D.【点评】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.7.若分式的值为零,则x的值为( )A.0 B.﹣3 C.3 D.3或﹣3【考点】分式的值为零的条件.【专题】计算题.【分析】根据分式的值为零的条件得到当x2﹣9=0且x+3≠0时,分式的值为零,然后解方程和不等式即可得到x的值.【解答】解:∵分式的值为零,∴x2﹣9=0且x+3≠0,∴x=3.故选C.【点评】本题考查了分式的值为零的条件:分式的分子为零且分母不为零时,分式的值为零.也考查了解方程与不等式.8.已知,△ABC和△ADC关于直线AC轴对称,如果∠BAD+∠BCD=160°,那么△ABC 是( )A.直角三角形B.等腰三角形C.钝角三角形D.锐角三角形【考点】轴对称的性质.【分析】作出图形,根据轴对称的性质可得∠BAC=∠DAC,∠ACB=∠ACD,然后求出∠BAC+∠ACB,再根据三角形的内角和定理求出∠B,然后判断三角形的形状即可.【解答】解:如图,∵△ABC和△ADC关于直线AC轴对称,∴∠BAC=∠DAC,∠ACB=∠ACD,∴∠BAC+∠ACB=(∠BAD+∠BCD)=×160°=80°,在△ABC中,∠B=180°﹣(∠BAC+∠ACB)=180°﹣80°=100°,∴△ABC是钝角三角形.故选C.【点评】本题考查了轴对称的性质,根据成轴对称的两个图形能够完全重合得到相等的角是解题的关键,作出图形更形象直观.9.如图,在等腰△ABC中,∠BAC=120°,DE是AC的垂直平分线,线段DE=1cm,则BD 的长为( )A.6cm B.8cm C.3cm D.4cm【考点】线段垂直平分线的性质;含30度角的直角三角形;三角形中位线定理.【专题】计算题.【分析】过A作AF∥DE交BD于F,则DE是△CAF的中位线,根据线段垂直平分线的性质,即可解答.【解答】解:过A作AF∥DE交BD于F,则DE是△CAF的中位线,∴AF=2DE=2,又∵DE⊥AC,∠C=30°,∴FD=CD=2DE=2,在△AFB中,∠1=∠B=30°,∴BF=AF=2,∴BD=4.故选D.【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段两个端点的距离相等.10.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为( )A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】根据乘私家车平均速度是乘公交车平均速度的2.5倍,乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,利用时间得出等式方程即可.【解答】解:设乘公交车平均每小时走x千米,根据题意可列方程为:=+,故选:D.【点评】此题主要考查了由实际问题抽象出分式方程,解题关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,把列方程的问题转化为列代数式的问题.11.如图,设k=(a>b>0),则有( )A.k>2 B.1<k<2 C.D.【考点】分式的乘除法.【专题】计算题.【分析】分别计算出甲图中阴影部分面积及乙图中阴影部分面积,然后计算比值即可.【解答】解:甲图中阴影部分面积为a2﹣b2,乙图中阴影部分面积为a(a﹣b),则k====1+,∵a>b>0,∴0<<1,∴1<+1<2,∴1<k<2故选B.【点评】本题考查了分式的乘除法,会计算矩形的面积及熟悉分式的运算是解题的关键.12.如图,正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为( )A.B.3 C.4 D.【考点】轴对称-最短路线问题;正方形的性质.【分析】由于点B与D关于AC对称,所以连接BE,与AC的交点即为P点.此时PD+PE=BE 最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为16,可求出AB的长,从而得出结果.【解答】解:设BE与AC交于点P',连接BD.∵点B与D关于AC对称,∴P'D=P'B,∴P'D+P'E=P'B+P'E=BE最小.∵正方形ABCD的面积为16,∴AB=4,又∵△ABE是等边三角形,∴BE=AB=4.故选C.【点评】本题考查的是正方形的性质和轴对称﹣最短路线问题,熟知“两点之间,线段最短”是解答此题的关键.二、填空题(本大题共5小题,每小题3分,共18分)13.一生物教师在显微镜下发现某种植物的细胞直径约为0.000000102mm,用科学记数法表示这个数为1.02×10﹣7.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000102=1.02×10﹣7.故答案为:1.02×10﹣7.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.分解因式:ab2﹣4ab+4a=a(b﹣2)2.【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】先提取公因式a,再根据完全平方公式进行二次分解.完全平方公式:a2﹣2ab+b2=(a﹣b)2.【解答】解:ab2﹣4ab+4a=a(b2﹣4b+4)﹣﹣(提取公因式)=a(b﹣2)2.﹣﹣(完全平方公式)故答案为:a(b﹣2)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.15.若3x=4,9y=7,则3x﹣2y的值为.【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】根据3x﹣2y=3x÷32y=3x÷9 y即可代入求解.【解答】解:3x﹣2y=3x÷32y=3x÷9 y=.故答案是:.【点评】本题考查了同底数的幂的除法运算,正确理解3x﹣2y=3x÷32y=3x÷9 y是关键.16.在△ABC中,AB=AC,AB的中垂线与AC所在直线相交所得的锐角为50°,则底角∠B=70°或20°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】由于△ABC的形状不能确定,故应分△ABC是锐角三角形与钝角三角形两种情况进行讨论.【解答】解:如图①,当AB的中垂线与线段AC相交时,则可得∠ADE=50°,∵∠AED=90°,∴∠A=90°﹣50°=40°,∵AB=AC,∴∠B=∠C==70°;如图②,当AB的中垂线与线段CA的延长线相交时,则可得∠ADE=50°,∵∠AED=90°,∴∠DAE=90°﹣50°=40°,∴∠BAC=140°,∵AB=AC,∴∠B=∠C==20°.∴底角B为70°或20°.故答案为:70°或20°.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.17.如图,在长方形ABCD中,AB>BC,BE⊥AC,垂足为E,延长BE交CD于F,S表示面积,则给出的下列命题:①Rt△ABC≌Rt△CDA;②S△AEF<S△BCE;③∠DAE+∠DFE=180°;④∠AFB>∠ACB 其中正确命题的代号是①③④.【考点】矩形的性质;全等三角形的判定与性质.【分析】由矩形的性质得出∠ABC=∠D=∠BCD=∠BAD=90°,BC=DA,AB=CD,由SAS 证明△ABC≌△CDA,①正确;由△ABF的面积=△ABC的面积,得出△AEF的面积=△BCE的面积,②不正确;证明A、E、F、D四点共圆,得出∠DAE+∠DFE=180°,③正确;延长AF交矩形ABCD的外接圆于G,连接BG,由圆周角定理得出∠AGB=∠ACB,由三角形的外角性质得出∠AFB>∠AGB,得出∠AFB>∠ACB,④正确;即可得出结论.【解答】解:∵四边形ABCD是矩形,∴∠ABC=∠D=∠BCD=∠BAD=90°,BC=DA,AB=CD,在△ABC和△CDA中,,∴△ABC≌△CDA(SAS),∴①正确;∵△ABF的面积=△ABC的面积=AB•BC,∴△AEF的面积=△BCE的面积,∴②不正确;∵BE⊥AC,∴∠AEF=90°,∴∠AEF+∠D=180°,∴A、E、F、D四点共圆,∴∠DAE+∠DFE=180°,∴③正确;∵A、B、C、D四点共圆,如图所示:延长AF交矩形ABCD的外接圆于G,连接BG,则∠AGB=∠ACB,∵∠AFB>∠AGB,∴∠AFB>∠ACB,∴④正确;正确的代号是①③④;故答案为:①③④.【点评】本题考查了矩形的性质、全等三角形的判定与性质、四点共圆、圆周角定理、圆内接四边形的性质;熟练掌握矩形的性质,并能进行推理论证是解决问题的关键.三、解答题:(本大题共6小题,共46分)18.(1)解不等式:(2x﹣5)2+(3x+1)2>13(x2﹣10)(2)解分式方程:.【考点】整式的混合运算;解分式方程;解一元一次不等式.【分析】(1)直接利用完全平方公式化简求出即可;(2)首先去分母进而合并同类项求出即可.【解答】解:(1)(2x﹣5)2+(3x+1)2>13(x2﹣10)去括号得:4x2+25﹣20x+9x2+1+6x>13x2﹣130整理得:﹣14x>﹣156解得:x<11;(2)去分母得:x(x+2)﹣(x﹣1)(x+2)=3(x﹣1),x2+2x﹣(x2+2x﹣x﹣2)=3x﹣3,则﹣2x=﹣5,解得:x=,检验:当x=时,(x﹣1)(x+2)≠0,则x=是原方程的根.【点评】此题主要考查了整式的混合运算以及分式方程的解法,正确利用乘法公式是解题关键.19.先化简:÷(a+),当b=﹣1时,请你为a任选一个适当的数代入求值.【考点】分式的化简求值.【专题】开放型.【分析】主要考查了分式的化简求值,其关键步骤是分式的化简.要熟悉混合运算的顺序,正确解题.注意化简后,代入的数不能使分母的值为0.【解答】解:原式=÷==,∵a≠0、a≠±1,∴答案不唯一.当a=2时,原式=1.【点评】本题主要考查分式的化简求值,式子化到最简是解题的关键.20.如图,∠1=∠2,∠3=∠4,求证:AC=AD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】先证出∠ABC=∠ABD,再由ASA证明△ABC≌△ABD,得出对应边相等即可.【解答】证明:∵∠3=∠4,∴∠ABC=∠ABD,在△ABC和△ABD中,,∴△ABC≌△ABD(ASA),∴AC=AD.【点评】本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法,证明三角形全等是解决问题的关键.21.如图,已知△ABC,P为内角平分线AD,BE,CF的交点,过点P作PG⊥BC于G,试说明∠BPD与∠CPG的大小关系,并说明理由.【考点】三角形内角和定理.【分析】利用AD平分∠BAC,BE平分∠ABC,CF平分∠ACB,得出∠BAD=∠BAC,∠ABE=∠ABC,∠BCF=∠ACB,再利用三角形的外角意义得出∠BPD=∠BAD+∠ABE 等量代换得出∠BPD=90°﹣∠ACB;再利用PG⊥BC,得出三角形CPG是直角三角形,利用三角形的内角和表示出∠CPG=90°﹣∠ACB,证明结论成立.【解答】∠BPD=∠CPG证明:∵AD平分∠BAC,BE平分∠ABC,CF平分∠ACB,∴∠BAD=∠BAC,∠ABE=∠ABC,∠BCF=∠ACB,∴∠BPD=∠BAD+∠ABE=(∠BAC+∠ABC),∵∠BAC+∠ABC=180﹣∠ACB,∴∠BPD=(180﹣∠ACB)=90°﹣∠ACB;∵PG⊥BC,∴∠PGC=90°,∴∠BCP+∠CPG=180°﹣∠PGC=90°,∴∠CPG=90°﹣∠BCP=90°﹣∠ACB,∴∠BPD=∠CPG.【点评】此题考查角平分线的性质,三角形内角和定理,三角形外角的意义,垂直的性质等知识点.22.用电脑程序控制小型赛车进行50m比赛,“畅想号”和“和谐号”两辆赛车进入了决赛.比赛前的练习中,两辆车从起点同时出发,“畅想号”到达终点时,“和谐号”离终点还差3m.已知“畅想号”的平均速度为2.5m/s.(1)求“和谐号”的平均速度;(2)如果两车重新开始比赛,“畅想号”从起点向后退3m,两车同时出发,两车能否同时到达终点?若能,求出两车到达终点的时间;若不能,请重新调整一辆车的平均速度,使两车能同时到达终点.【考点】分式方程的应用.【分析】(1)设“和谐号”的平均速度为x,根据,“畅想号”运动50m与“和谐号”运动47m所用时间相等,可得方程,解出即可.(2)不能同时到达,设调整后“和谐号”的平均速度为y,根据时间相等,得出方程求解即可.【解答】解:(1)设“和谐号”的平均速度为x,由题意得,=,解得:x=2.35,经检验x=2.35是原方程的解.答:“和谐号”的平均速度2.35m/s.(2)不能同时到达.设调整后“和谐号”的平均速度为y,=,解得:y=.答:调整“畅想号”的车速为m/s可使两车能同时到达终点.【点评】本题考查了分式方程的应用,解答本题的关键是仔细审题,找到等量关系,建立方程,难度一般.23.如图③,点E,D分别是正三角形ABC,正四边形ABCM,正五边形ABCMN中以点C为顶点的一边延长线和另一边反向延长线上的点,且△ABE与△BCD能相互重合,DB 的延长线交AE于点F.(1)在图①中,求∠AFB的度数;(2)在图②中,∠AFB的度数为90°,图③中,∠AFB的度数为108°;(3)继续探索,可将本题推广到一般的正n边形情况,用含n的式子表示∠AFB的度数.【考点】正多边形和圆;全等三角形的判定与性质;相似三角形的判定与性质.【分析】(1)先根据等边三角形的性质得出∠AC=60°,再由补角的定义可得出∠ABE与∠BCD的度数,根据△ABE与△BCD能相互重合可得出∠E=∠D,∠DBC=∠BAE,由三角形外角的性质可得出结论;(2)根据(1)中的方法可得出△BEF∽△BDC,进而可得出结论;(3)根据(1)(2)的结论找出规律即可.【解答】解:(1)∵△ABC是等边三角形,∴AB=BC,∠ABC=∠ACB=60°,∴∠ABE=∠BCD=120°.∵△ABE与△BCD能相互重合,∴∠E=∠D,∠DBC=∠BAE.∵∠FBE=∠CBD,∴∠AFB=∠E+∠FBE=∠D+∠CBD=∠ACB=60°;(2)图②中,∵△ABE与△BCD能相互重合,∴∠E=∠D.∵∠FBE=∠CBD,∠D+∠CBD=90°,∴∠AFB=∠E+∠FBE=∠D+∠CBD=90°;同理可得,图③中∠AFB=108°.故答案为:90°,108°;(3)由(1)(2)可知,在正n边形中,∠AFB=.【点评】本题考查的是正多边形和圆,在解答此题时要注意正三角形、正四边形及正五边形的性质的应用,根据题意找出规律是解答此题的关键.。
2014-2015学年度八年级第一学期期中测试数学试卷
![2014-2015学年度八年级第一学期期中测试数学试卷](https://img.taocdn.com/s3/m/66fa6b1ef12d2af90242e610.png)
一.选择题(共71A.钝角三角形B2.王师傅用4再钉上几根木条?(A.0根B.1根C3数为()A.80 B.50 C第2题4.如图所示,在△AC=6,则EFA.4 B.5 C5.如图,∠1=∠2,A.PD=PE B.6A. B. C. D.7.如图,D是()A.锐角三角形BC)度,则这个多边形的边数是.△ACD和△BCD°,∠C=36°,13题OM上一个动点,若P=.°,∠ACB=80°,这个多边形是边形.P到两城镇第 2 页 共2 页 18.如图,已知△ABC 的AC 边的延长线AD ∥EF ,若∠A=60°,∠B=43°,试用推理的格式求出∠E 的大小.19.如图,在△ABC 中,∠ACB=90°,AC=BC ,BE ⊥CE 于点E .AD ⊥CE 于点D . 求证:△BEC ≌△CDA .20.如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC (即三角形的顶点都在格点上).(1)在图中作出△ABC 关于直线l 对称的△A 1B 1C 1;(要求:A 与A 1,B 与B 1,C 与C 1相对应)(2)在(1)问的结果下,连接BB 1,CC 1,求四边形BB 1C 1C 的面积.21.如图,在等腰△ABC 中,AB=AC ,点O 是底边BC 的中点,OD ⊥AB ,OE ⊥AC ,垂足分别为D 、E .试说明:AD=AE .22.如图,△ABC 中,∠C=90°,∠ABC=60°,BD 平分∠ABC ,若AD=6,求AC 的长.23.已知:如图,OA 平分∠BAC ,∠1=∠2.求证:△ABC 是等腰三角形.。
浙江省台州市书生中学2014-2015学年八年级数学上学期第三次月考试题浙教版
![浙江省台州市书生中学2014-2015学年八年级数学上学期第三次月考试题浙教版](https://img.taocdn.com/s3/m/f3bb16444afe04a1b171dea5.png)
题
(满分: 120 分 一、选择题(每题 4 分,共 40 分)
考试时间: 100 分钟)
1、下列各组线段为边能组成三角形的是: ( )
A.1cm,2cm,4cm. B.2cm ,3cm,5cm. C.5cm ,6cm,12cm. D.4cm ,6cm,8cm.
(1) 2a( x y) 3b( y x)
(2)( x+ y) 2+ 2( x+ y) + 1.
21、(本题 7 分)已知: BE⊥ CD, BE= DE, BC= DA.
B
F
A
2、如右图所示,△ ABE≌△ ACD, AB=AC, BE=CD,∠ B=50°,∠ AEC=120°
则∠ DAC的度数等于: ( )
A. 120°
B . 70°
C . 60°
D . 50°
3、三角形中至少有一个内角大于或等于(
).
A . 45° B .55° C .60° D .65°
4、三条线段 a 5,b 3,c 的值为整数,由 a、 b、 c 为边可组成三角形(
12、当
时,代数式
的值为
.
13、等腰三角形是轴对称图形,其对称轴是 _________________已知二次三项式: 4x2+ mx+ 9 是完全平方式,则一次项系数 m=_________.
A
15、如图,已知 P 是△ ABC内一点, 则 PA+PB+PC (填“>”或“<”或“≤”或“≥” ).
)
A.6cm
B.5cm
C.8cm D.7cm
10、已知 724-1 可被 40 至 50 之间的两个整数整除,则这两个整数是(
浙江省台州市八年级上学期数学期中考试试卷
![浙江省台州市八年级上学期数学期中考试试卷](https://img.taocdn.com/s3/m/c2b7a063eff9aef8941e06e0.png)
浙江省台州市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤当△PMN∽△AMP时,点P是AB的中点.其中正确的结论有()A . 2个B . 3个C . 4个D . 5个2. (2分) (2018八上·孟州期末) 如图,分别以直角三角形的三边为边长向外作等边三角形,面积分别记为S1、S2、S3 ,则S1、S2、S3之间的关系是()A . S12+S22=S32B . S1+S2>S3C . S1+S2<S3D . S1+S2=S33. (2分)下列实数中属于无理数的是()A . 3.14B .C .D .4. (2分)在实数范围内,下列判断正确的是()A . 若|a|=|b|,则a=bB . 若|a|=() 2 ,则a=bC . 若a>b,则a2>b2D . 若=,则a=b5. (2分) (2016七下·房山期中) 若|x﹣2|+(3y+2)2=0,则的值是()A . ﹣1B . ﹣2C . ﹣3D .6. (2分)若x3=(﹣2)3 , y2=(﹣1)2 ,则x+y的值为()A . -3B . -1C . 3D . ﹣1或﹣37. (2分)下列各数中,是无理数的是()A . 2B . πC . 1.7323232…D .8. (2分) (2018八上·郑州期中) 在平面直角坐标系中,点P在x轴的下方,y轴右侧,且到x轴的距离为5,到y轴距离为1,则点P的坐标为()A . (1,-5)B . (5,1)C . (-1,5)D . (5,-1)9. (2分) (2019八上·皇姑期末) 如图,在点M,N,P,Q中,一次函数y=kx+2(k<0)的图象不可能经过的点是()A . MB . NC . PD . Q10. (2分)在直线上依次摆放着七个正方形(如右图所示)。
2014-2015八年级数学期中试卷(有答案)
![2014-2015八年级数学期中试卷(有答案)](https://img.taocdn.com/s3/m/eea18a1731126edb6f1a10ca.png)
2014-2015八年级数学期中试卷(有答案)嘉兴市实验中学2014-2015学年第一学期期中考试八年级数学试卷请仔细审题,细心答题,相信你一定会有出色的表现!一、选择题(每小题3分,共30分) 1.△ABC中,∠B=30°,∠C=70°,则∠A的度数是(▲ )(A)70° (B)30° (C)80° (D)90° 2.要组成一个三角形,三条线段的长度可取(▲ )(A) 1,2,3 (B)4,6,11 (C) 5,6,7 (D) 1.5,2.5,4.5 3.满足-1< x ≤ 2的数在数轴上表示为(▲ )4. 如图,BE=CF,AB=DE,添加下列哪些条件可以推证△ABC≌△DFE (▲ )(A)BC=EF (B)∠A=∠D (C)AC//DF (D)AC=DF 5.下列各组数中,不能作为直角三角形的三边长是(▲ )(A)1.5,2,3 (B)7,24,25 (C)6,8,10 (D)9,12,15 6.下列命题中,是真命题的是(▲ )(A)一个角的补角大于这个角(B)面积相等的两个三角形全等(C)三角形的三条高线相交于三角形内一点(D)成轴对称的两个图形是全等图形. 7. 在△ABC中,∠A、∠B、∠C的对应边分别是a、b、c,若∠A+∠C=90°,则下列等式中成立的是(▲ )(A)a2+b2=c2 (B)b2+c2=a2 (C)a2+c2=b2 (D)c2-a2=b2 8.在△ABC中,∠A的相邻外角是70°,要使△ABC为等腰三角形, 则∠B为( ▲ ) (A)70° (B)35° (C)110° 或35° (D)110° 9. 已知为任意实数,则下列不等式总是成立的是(▲ )(A)(B)(C)(D) 10. 如图是一张直角三角形的纸片,两直角边AC=6 cm、BC=8 cm,现将△ABC折叠,使点B与点A重合,折痕为DE,则CD的长为(▲ )(A) cm (B) cm (C) cm (D)无法确定二、填空题(每小题3分,共30分) 11. 已知a的2倍比1小,将这一数量关系用不等式表示是▲ . 12.命题“两直线平行,同位角相等”的逆命题是:_ ▲___ 13.边长为2的等边三角形的高为▲ . 14.若三角形的两条边分别是2和5,第三边的长x是奇数,则x=_ ▲___. 15.已知直角三角形的两直角边长为6cm和8cm,则斜边上的中线长为_ ▲___. 16.已知等腰三角形有一个内角为80°,则另两个角的度数为▲_ . 17.在△ABC中,若,则∠A= ▲ . 18.不等式3x+7≥0的负整数解是▲ . 19.已知三个连续自然数之和小于20,则这样的自然数共有▲ 组. 20.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C= ▲ 度. 三、解答题(共40分) 21.解下列一元一次不等式(组)(6分,每小题3分) (1)≥1 (2)22.已知∠O及其边上两点A和B(如图),用直尺和圆规作一点P,使点P到∠O的两边的距离相等,且到点A、B的距离也相等.(保留作图痕迹)(6分) 23.已知:如图,∠C=∠D=Rt∠,AC=AD.求证:(1)∠ABD=∠ABC;(2)BC=BD.(6分)24.如图,在△ABC中,AB=AC,∠A=36°,CD是∠ACB的平分线交AB于点D,(1)求∠ADC的度数;(3分)(2)过点A作AE∥BC,交CD的延长线于点E,试问△ADE是等腰三角吗?请说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-2015学年浙江省台州市椒江区书生中学八年级(上)期中数学试卷一、选择题(每题4分,共40分)1.(4分)下列“QQ表情”中属于轴对称图形的是()A. B.C.D.2.(4分)在如图中,正确画出AC边上高的是()A. B.C.D.3.(4分)等腰三角形中,一个角为50°,则这个等腰三角形的顶角的度数为()A.150°B.80°C.50°或80°D.70°4.(4分)①三角形的三条角平分线交于一点,这点到三条边的距离相等;②三角形的三条中线交于一点;③三角形的三条高线所在的直线交于一点;④三角形的三条边的垂直平分线交于一点,这点到三个顶点的距离相等.以上命题中真命题是()A.①④B.②③C.①②③④D.①③④5.(4分)△ABC的三边长是a、b、c,且a>b>c,若b=8,c=3,则a的取值范围是()A.3<a<8 B.5<a<11 C.8<a<11 D.6<a<106.(4分)如果一个多边形的内角和是外角和的5倍,那么这个多边形的边数是()A.10 B.11 C.12 D.137.(4分)如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A. B. C.D.8.(4分)如图E、B、F、C四点在一条直线上,EB=CF,∠A=∠D,再添加下列一个条件,仍不能判断出△ABC≌△DEF的是()A.DF∥AC B.AB=DE C.AB∥DE D.∠E=∠ABC9.(4分)等腰三角形ABC在直角坐标系中,底边的两端点坐标是(﹣2,0),(6,0),则其顶点的坐标,能确定的是()A.横坐标B.纵坐标C.横坐标及纵坐标 D.横坐标或纵坐标10.(4分)如图,△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,DM⊥AC于M,连CD.下列结论:①AC+CE=AB;②;③∠CDA=45°;④=定值.其中正确的有()A.1个 B.2个 C.3个 D.4个二、填空题(每题4分,共32分.)11.(4分)如图,∠1=.12.(4分)如图,△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=°.13.(4分)如图,△ABC中,AD是BC上的中线,BE是△ABD中AD边上的中线,若△ABC的面积是24,则△ABE的面积是.14.(4分)如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=°.15.(4分)在平面直角坐标系中,点A(2,0),B(0,4),作△BOC,使△BOC 与△ABO全等,则点C坐标为.(点C不与点A重合)16.(4分)在△ABC中,AC=5,中线AD=7,则AB边的取值范围是.17.(4分)已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B落在点Bˊ处,DBˊ,EBˊ分别交边AC于点F,G,若∠ADF=80°,则∠EGC的度数为.18.(4分)等腰三角形一边上的高等于一边的一半,则它的顶角度数为.三、解答题:(共48分)19.(6分)如图,AB=CD,DE⊥AC,BF⊥AC,E、F是垂足,DE=BF,求证:(1)AE=CF;(2)AB∥CD.20.(6分)如图,AD是△ABC的外角平分线,交BC的延长线于D点,若∠B=30°,∠DAE=55°,求∠ACD的度数.21.(6分)如图,∠AOB=30°,OA表示草地边,OB表示河边,点P表示家且在∠AOB内.某人要从家里出发先到草地边给马喂草,然后到河边喂水,最后回到家里.(1)请用尺规在图上画出此人行走的最短路线图(保留作图痕迹,不写作法和理由).(2)若OP=30米,求此人行走的最短路线的长度.22.(8分)如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并说明理由.23.(10分)如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数.24.(12分)如图,等腰直角三角形ABC中,∠BAC=90°,D、E分别为AB、AC 边上的点,AD=AE,AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M.(1)求证:△ADC≌△AEB;(2)判断△EGM是什么三角形,并证明你的结论;(3)判断线段BG、AF与FG的数量关系并证明你的结论.2014-2015学年浙江省台州市椒江区书生中学八年级(上)期中数学试卷参考答案与试题解析一、选择题(每题4分,共40分)1.(4分)下列“QQ表情”中属于轴对称图形的是()A. B.C.D.【解答】解:A、B、D都不是轴对称图形,C关于直线对称.故选:C.2.(4分)在如图中,正确画出AC边上高的是()A. B.C.D.【解答】解:画出AC边上高就是过B作AC的垂线,故选:C.3.(4分)等腰三角形中,一个角为50°,则这个等腰三角形的顶角的度数为()A.150°B.80°C.50°或80°D.70°【解答】解:①50°是底角,则顶角为:180°﹣50°×2=80°;②50°为顶角;所以顶角的度数为50°或80°.故选:C.4.(4分)①三角形的三条角平分线交于一点,这点到三条边的距离相等;②三角形的三条中线交于一点;③三角形的三条高线所在的直线交于一点;④三角形的三条边的垂直平分线交于一点,这点到三个顶点的距离相等.以上命题中真命题是()A.①④B.②③C.①②③④D.①③④【解答】解:①角平分线上的点到两边的距离相等,所以正确;②三角形中各边的中线都在三角形内,所以交点也在三角形内,所以正确;③三角形的高是线段,锐角三角形的三条高所在的直线相交,交点在三角形的内部;直角三角形的三条高所在的直线相交,交点在三角形的直角顶点;钝角三角形的三条高所在的直线相交,交点在三角形的外部,所以正确;④各边垂直平分线上的点到该边两个顶点的距离相等,以此类推,三角形的三条边的垂直平分线交于一点,这点到三个顶点的距离相等,所以正确.故选①②③④.故选:C.5.(4分)△ABC的三边长是a、b、c,且a>b>c,若b=8,c=3,则a的取值范围是()A.3<a<8 B.5<a<11 C.8<a<11 D.6<a<10【解答】解:∵a>b>c,b=8,c=3,∴根据三角形的三边关系,得8<a<11.故选:C.6.(4分)如果一个多边形的内角和是外角和的5倍,那么这个多边形的边数是()A.10 B.11 C.12 D.13【解答】解:设这个多边形是n边形,根据题意得,(n﹣2)•180°=5×360°,解得n=12.故选:C.7.(4分)如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A. B. C.D.【解答】解:A、与三角形ABC有两边相等,而夹角不一定相等,二者不一定全等;B、选项B与三角形ABC有两边及其夹边相等,二者全等;C、与三角形ABC有两边相等,但角不是夹角,二者不全等;D、与三角形ABC有两角相等,但边不对应相等,二者不全等.故选:B.8.(4分)如图E、B、F、C四点在一条直线上,EB=CF,∠A=∠D,再添加下列一个条件,仍不能判断出△ABC≌△DEF的是()A.DF∥AC B.AB=DE C.AB∥DE D.∠E=∠ABC【解答】解:∵EB=CF,∴EB+BF=BF+CF,即BC=EF,又∵∠A=∠D,且BC和EF分别是∠A和∠D的对边,∴要证明△ABC≌△DEF,只能再找一组角相等,利用AAS或ASA来证明,∴当添加AB=DE时,满足的条件是ASS,不能判定△ABC≌△DEF,故选:B.9.(4分)等腰三角形ABC在直角坐标系中,底边的两端点坐标是(﹣2,0),(6,0),则其顶点的坐标,能确定的是()A.横坐标B.纵坐标C.横坐标及纵坐标 D.横坐标或纵坐标【解答】解:因为底边两端点的坐标知道,而等腰三角形的横坐标正好在两端点中间,故可以求出横坐标,但由于腰不知道,所以纵坐标无法确定.故选:A.10.(4分)如图,△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,DM⊥AC于M,连CD.下列结论:①AC+CE=AB;②;③∠CDA=45°;④=定值.其中正确的有()A.1个 B.2个 C.3个 D.4个【解答】解:过E作EQ⊥AB于Q,∵∠ACB=90°,AE平分∠CAB,∴CE=EQ,∵∠ACB=90°,AC=BC,∴∠CBA=∠CAB=45°,∵EQ⊥AB,∴∠EQA=∠EQB=90°,由勾股定理得:AC=AQ,∴∠QEB=45°=∠CBA,∴EQ=BQ,∴AB=AQ+BQ=AC+CE,∴①正确;作∠ACN=∠BCD,交AD于N,∵∠CAD=∠CAB=22.5°=∠BAD,∴∠DBA=90°﹣22.5°=67.5°,∴∠DBC=67.5°﹣45°=22.5°=∠CAD,∴∠DBC=∠CAD,∵AC=BC,∠ACN=∠DCB,∴△ACN≌△BCD,∴CN=CD,∵∠ACN+∠NCE=90°,∴∠NCB+∠BCD=90°,∴∠CND=∠CDN=45°,∴∠ACN=45°﹣22.5°=22.5°=∠CAN,∴AN=CN,∴∠NCE=∠AEC=67.5°,∴CN=NE,∴CD=AN=EN=AE,∴②正确,③正确;过D作DH⊥AB于H,∵∠MCD=∠CAD+∠CDA=67.5°,∠DBA=90°﹣∠DAB=67.5°,∴∠MCD=∠DBA,∵AE平分∠CAB,DM⊥AC,DH⊥AB,∴DM=DH,在△DCM和△DBH中∠M=∠DHB=90°,∠MCD=∠DBA,DM=DH,∴△DCM≌△DBH,∴BH=CM,由勾股定理得:AM=AH,∴====2,∴④正确;故选:D.二、填空题(每题4分,共32分.)11.(4分)如图,∠1=120°.【解答】解:∠1=(180°﹣140°)+80°=120°.12.(4分)如图,△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=70°.【解答】解:∵∠A+∠B+∠ACB=180°,∠A=30°,∠B=70°,∴∠ACB=80°,∵CE平分∠ACB,∴∠BCE=∠ACB=×80°=40°,∵CD⊥AB,∴∠CDB=90°,∵∠B=70°,∴∠BCD=90°﹣70°=20°,∴∠FCD=∠BCE﹣∠BCD=20°,∵DF⊥CE,∴∠CFD=90°,∴∠CDF=90°﹣∠FCD=70°.故答案为:70.13.(4分)如图,△ABC中,AD是BC上的中线,BE是△ABD中AD边上的中线,若△ABC的面积是24,则△ABE的面积是6.【解答】解:∵AD是BC上的中线,=S△ACD=S△ABC,∴S△ABD∵BE是△ABD中AD边上的中线,=S△BED=S△ABD,∴S△ABE=S△ABC,∴S△ABE∵△ABC的面积是24,=×24=6.∴S△ABE故答案为:6.14.(4分)如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=135°.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故填135.15.(4分)在平面直角坐标系中,点A(2,0),B(0,4),作△BOC,使△BOC 与△ABO全等,则点C坐标为(2,4)或(﹣2,0)或(﹣2,4).(点C 不与点A重合)【解答】解:如图所示:有三个点符合,∵点A(2,0),B(0,4),∴OB=4,OA=2,∵△BOC与△AOB全等,∴OB=OB=4,OA=OC=2,∴C1(﹣2,0),C2(﹣2,4),C3(2,4).故答案为:(2,4)或(﹣2,0)或(﹣2,4).16.(4分)在△ABC中,AC=5,中线AD=7,则AB边的取值范围是9<AB<19.【解答】解:延长AD到E使DE=AD,连接BE,∵D是BC的中点,∴CD=BD.在△ACD和△EBD中,∴△ACD≌△EBD(SAS),∴AC=EB=5.∵AD=7,∴AE=14.由三角形的三边关系为:14﹣5<AB<14+5,即9<AB<19.故答案为:9<AB<19.17.(4分)已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B落在点Bˊ处,DBˊ,EBˊ分别交边AC于点F,G,若∠ADF=80°,则∠EGC的度数为80°.【解答】解:由翻折可得∠B′=∠B=60°,∴∠A=∠B′=60°,∵∠AFD=∠GFB′,∴△ADF∽△B′GF,∴∠ADF=∠B′GF,∵∠EGC=∠FGB′,∴∠EGC=∠ADF=80°.故答案为:80°.18.(4分)等腰三角形一边上的高等于一边的一半,则它的顶角度数为30°、90°、120°或150°.【解答】解:如图,分四种情况:1、AB=BC,AD⊥BC,AD在三角形的内部,由题意知,AD=BC=AB,∵sin∠B==,∴∠B=30°;2、AC=BC,AD⊥BC,AD在三角形的外部,由题意知,AD=BC=AC,∵sin∠ACD==,∴∠ACD=30°,∴∠ACB=180°﹣30°=150°;3、AB=AC,AD⊥BC,BC边为等腰三角形的底边,由等腰三角形的底边上的高、底边上中线、顶角的平分线互相重合知,点D为BC的中点,由题意知,AD=BC=CD=BD,∴△ABD,△ADC均为等腰直角三角形,∴∠BAD=∠CAD=45°,∴∠BAC=90°.4、AC=BC,AD⊥BC,AD在三角形的外部,由题意知,AD=AB,∵sin∠B==,∴∠B=30°,∴∠ACB=180°﹣60°=120°;故填30°、90°、120°或150°.三、解答题:(共48分)19.(6分)如图,AB=CD,DE⊥AC,BF⊥AC,E、F是垂足,DE=BF,求证:(1)AE=CF;(2)AB∥CD.【解答】解:(1)∵DE⊥AC,BF⊥,∴∠CED=∠AFB=90°,在Rt△ABF和Rt△CDE中,,∴Rt△ABF≌Rt△CDE(HL),∴AF=CE,∴AF+EF=CE+EF,即AE=CF;(2)∵Rt△ABF≌Rt△CDE,∴∠A=∠C,∴AB∥CD.20.(6分)如图,AD是△ABC的外角平分线,交BC的延长线于D点,若∠B=30°,∠DAE=55°,求∠ACD的度数.【解答】解:∵∠DAE=55°,ADF平分∠CAE,∴∠CAE=110°,∵∠CAE是△ABC的外角,∠B=30°,∴∠ACB=110°﹣30°=80°,∴∠ACD=180°﹣80°=100°.21.(6分)如图,∠AOB=30°,OA表示草地边,OB表示河边,点P表示家且在∠AOB内.某人要从家里出发先到草地边给马喂草,然后到河边喂水,最后回到家里.(1)请用尺规在图上画出此人行走的最短路线图(保留作图痕迹,不写作法和理由).(2)若OP=30米,求此人行走的最短路线的长度.【解答】解:(1)如图所示:此人行走的最短路线为:PC→CD→DP;(2)连接OP′,OP″,由题意可得:OP′=OP″,∠P′OP″=60°,则△P′OP″是等边三角形,∵OP=30米,∴PC+CD+DP=P′P″=30(m),答;此人行走的最短路线的长度为30m.22.(8分)如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并说明理由.【解答】解:(1)∵BG∥AC,∴∠DBG=∠DCF.∵D为BC的中点,∴BD=CD又∵∠BDG=∠CDF,在△BGD与△CFD中,∵∴△BGD≌△CFD(ASA).∴BG=CF.(2)BE+CF>EF.∵△BGD≌△CFD,∴GD=FD,BG=CF.又∵DE⊥FG,∴EG=EF(垂直平分线到线段端点的距离相等).∴在△EBG中,BE+BG>EG,即BE+CF>EF.23.(10分)如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数.【解答】解:(1)∠CMQ=60°不变.∵等边三角形中,AB=AC,∠B=∠CAP=60°又由条件得AP=BQ,∴△ABQ≌△CAP(SAS),∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°.(2)设时间为t,则AP=BQ=t,PB=4﹣t①当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,得4﹣t=2t,t=;②当∠BPQ=90°时,∵∠B=60°,∴BQ=2BP,得t=2(4﹣t),t=;∴当第秒或第秒时,△PBQ为直角三角形.(3)∠CMQ=120°不变.∵在等边三角形中,BC=AC,∠B=∠CAP=60°∴∠PBC=∠ACQ=120°,又由条件得BP=CQ,∴△PBC≌△QCA(SAS)∴∠BPC=∠MQC又∵∠PCB=∠MCQ,∴∠CMQ=∠PBC=180°﹣60°=120°24.(12分)如图,等腰直角三角形ABC中,∠BAC=90°,D、E分别为AB、AC 边上的点,AD=AE,AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M.(1)求证:△ADC≌△AEB;(2)判断△EGM是什么三角形,并证明你的结论;(3)判断线段BG、AF与FG的数量关系并证明你的结论.【解答】(1)证明:∵等腰直角三角形ABC中,∠BAC=90°,∴AC=AB,∠ACB=∠ABC=45°,在△ADC和△AEB中∴△ADC≌△AEB(SAS),(2)△EGM为等腰三角形;理由:∵△ADC≌△AEB,∴∠1=∠3,∵∠BAC=90°,∴∠3+∠2=90°,∠1+∠4=90°,∴∠4+∠3=90°∵FG⊥CD,∴∠CMF+∠4=90°,∴∠3=∠CMF,∴∠GEM=∠GME,∴EG=MG,△EGM为等腰三角形.(3)线段BG、AF与FG的数量关系为BG=AF+FG.理由:如图所示:过点B作AB的垂线,交GF的延长线于点N,∵BN⊥AB,∠ABC=45°,∴∠FBN=45°=∠FBA.∵FG⊥CD,∴∠BFN=∠CFM=90°﹣∠DCB,∵AF⊥BE,∴∠BFA=90°﹣∠EBC,∠5+∠2=90°,由(1)可得∠DCB=∠EBC,∴∠BFN=∠BFA,在△BFN和△BFA中∴△BFN≌△BFA(ASA),∴NF=AF,∠N=∠5,又∵∠GBN+∠2=90°,∴∠GBN=∠5=∠N,∴BG=NG,又∵NG=NF+FG,∴BG=AF+FG.赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。