第五章 氧化还原反应 电化学基础(材

合集下载

第五章电化学基础

第五章电化学基础

原电池是将化学能转化为电能的装置
第五章电化学基础
盐桥的作用: 沟通二溶液中的电第五章荷电化学基保础 证反应继续进行
形成原电池的条件
1.一个能够正向自发的氧化还原反应 。 2.氧化反应与还原反应分别在两极进行。 3.必须有盐桥(或多孔陶瓷、离子交换膜)
等连通装置。
第五章电化学基础
2. 电极反应和电池反应 由电流方向知两极反应: e-
金属置于其盐溶液时: M-ne-→Mn+
同时: Mn++ne-→M 当溶解和沉积二过程平
衡时,金属带电荷,
溶液带相反电荷。两种电
荷集中在固-液界面第五章附电化学基近础 。形成了双电层。
• 电极电势的产生


溶液


溶液
M
Mn+(aq) + 2e
双电层的电势差即该电极的平衡电势,
称为电极电势,表示为:
第五章电化学基础
5.2.2 电极电势的确定
1. 标准氢电极:
c(H+) =1 mol·dm-3 p(H2) = 105 Pa
H /H2
0.0000v
第五章电化学基础
2. 标准电极电势的测定:
第五章电化学基础
参比电极
装置图
第五章电化学基础
甘汞电极P表 , tH示 (gl)H 方 2C g2法 (lsC ): (lc) 电极:反 H应 2C g2(ls)2e⇌ 2Hg(2lC)l(aq )
任一自发的氧化还原反应都可以组成一个 原电池。如:
Cu+ FeCl3 CuCl+ FeCl2 (-)Cu∣CuCl(S)∣C第l五-章电化学‖基础 Fe3+,Fe2+∣Pt(+)

第五章 氧化还原与电化学

第五章 氧化还原与电化学

电子做有规则的定向流动
2. 原电池的组成:
(1)半电池和电极
锌半电池:锌片,锌盐-负极
铜半电池:铜片,铜盐-正极
正、负极也可以是惰性电极, 如:Pt、石墨等,只起导电作用。
(2)外电路 用金属导线把一个灵敏电流计 与两个半电池中的电极串连起来。 电子由锌 → 铜,电流由铜 → 锌。 (3)盐桥(是一种电解质溶液: 饱和KCl和琼胶) 加入盐桥,才能使电流完整,产生电流。 作用:沟通电路,使溶液中体系保持中性,使电极反 应得以继续进行。
液写离子; 4) 不同相用竖线“∣”隔开,同相用“,”
隔开,两个半电池用双竖线“‖”隔开 .
写出下列电池反应所对应的电池符号: Cu2+ + Zn ←→ Cu + Zn2+
( - ) Zn | Zn2+ (c1) || Cu2+(c2) | Cu ( + )
Cl2+2Fe2+ ←→ 2Fe3+ +2Cl( - )C | Fe2+(c1),Fe3+ (c2)||Cl-(c3)|Cl2(p)|C ( + )
2MnO4- +16H++ 10e 5SO32- + 5H2O
2MnO4- + 5SO32- + 6H+
2Mn2++8H2O 5SO42- +10H++10e +)
2Mn2+ + 5SO42- +3H2O
5)检查原子个数、电荷数,使之相等并还原 为分子反应式 。
2KMnO4 + 5K2SO3+ 3H2SO4 2MnSO4+ 6K2SO4 +3H2O

无机化学-氧化还原反应及电化学基础

无机化学-氧化还原反应及电化学基础
第二十六页,共69页。
6-3 电池电动势和电极电势
第二十七页,共69页。
6-3 电池电动势和电极电势
E 甘汞参比电极
构成: 由Hg/Hg2Cl2/KCl溶液组成;
2) 电极反响: H 2 C 2 g (s )l 2 e 2 H (l) g 2 C (a l)q 3) 电极电势:
-3,
; E 0.280V
电极符号:Pt2, H H2︱H2 +e(c ) H2PtC , C2l2l (p2 )︱eC l- (2c)Cl
“︱〞表示气体与溶液之间的界面,即气液界面
(p) 表示压力;
第十四页,共69页。
6-2 原电池
2 电极的类型和电池符号:
C 离子电极 组成:由同一种元素的不同氧化态的两种离子的溶液; 例:Fe3+/Fe2+电极
第十九页,共69页。
6-2 原电池
2.2 电池符号:
负极: 离子电极
电池反响:
电M 池符号4 : 8 n H O 5 F 2 e M 2 5 F n 3 4 e H 2 O
(-) Pt︱Fe2+ (c1), Fe3+(c2)‖MnO4+ (c3), H+(c4),Mn2+(c5)︱Pt (+)
和绿色Cr2(SO4)3,配平反响方程;
氧化数确定:
反响物: K2Cr2O7 [+6] FeSO4
[+2]
A
生成物: Cr2(SO4)3 [+3] Fe2(SO4)3 [+3]
每个Cr原子变化数=3
B
每个Fe原子变化数=1
C 总氧化数降低(2x3)x1
D
C 2 O 4 2 r 2 3 F 2 1 e H 4 2 C 3 2 r 3 F 3 7 e H 2 O

《无机化学》第五章 氧化还原反应和电化学基础

《无机化学》第五章 氧化还原反应和电化学基础

二、氧化还原反应方程式的配平
1. 氧化值法
配平原则:氧化剂中元素氧化值降低的总数等 于还原剂中元素氧化值升高的总数。
配平步骤: (1)写出反应方程式,标出氧化值有变化 的元素,求元素氧化值的变化值。
(2)根据元素氧化值升高总数和降低总数相等 的原则,调整系数,使氧化值变化数相等。
(3)用观察法使方程式两边的各种原子总数相 等。
酸表。
(4)E是电极处于平衡状态时表现出来的特
征,与反应速率无关。
(5)E仅适用于水溶液。
5.饱和甘汞电极:
Hg | Hg2Cl2(s) |KCl (饱和)
Hg2Cl2 (s) + 2e
2Hg(l) +2Cl-
E (Hg2Cl2/Hg)=0.245V
三、 影响电极电势的因素
1.影响 因素
(1)电极的本性:即电对中氧化型或还 原型物质的本性。
还原型:在电极反应中同一元素低氧化值的物质。)
电对:氧化型/还原型
例:MnO2 +4H+ + 2e
Mn2+ +2H2O
电对:MnO2 / Mn2+
(2)E与电极反应中的化学计量系数无关。
例:Cl2 + 2e 1/2Cl2 + e
2Cl- E(Cl2/Cl-)=1.358V Cl-
(3)电极反应中有OH- 时查碱表,其余状况查
(3)分别配平两个半反应,使等号两边的原子 数和电荷数相等。
(4)根据得失电子数相等的原则,给两个半 反应乘以相应的系数,然后合并成配平的离子 方程式。
(5)将离子方程式写成分子方程式。
离子电子法配平时涉及氧原子数的增加和减 少的法则:

第五章 电化学基础

第五章 电化学基础

0.05917 lg 0.10 0.05917 lg 0.010
0.10 E 0.05917 lg 0.05917 (V) 0.010
二. 比较氧化剂和还原剂的相对强弱
越大 电极的 氧化型物质氧化能力↑
共轭还原型物质还原能力↓
还原型物质还原能力↑ 共轭氧化型物质氧化能力↓
(1)Mn2+ + 2e
2
Mn
2
(Mn / Mn) (Mn
0.05917 / Mn) lg c(Mn 2 ) 2
(2)2H2O + 2e
H2 + 2OH0.05917 1 (H 2O / H 2 ) (H 2O / H 2 ) lg 2 p(H 2 ) {c(OH )}2 Ag + Br-
∵ ∴
(H / H 2 ) 0.00 V
E 待测
例如:测定Zn2+/Zn电极的标准电极电势
将Zn2+/Zn与SHE组成电池
(-)Pt,H2(100kPa)|H+(1mol· -1)||Zn2+(1mol· -1)|Zn(+) L L
298.15K时, E =-0.763V,
电池反应:
二、原电池符号
(-)Zn | Zn2+(c1) || Cu2+(c2) | Cu(+) 相界面 盐桥
电极导体
溶液
同相不同物种用“,”分开,
负极“ - ”在左边,正极“ + ”在右边; 溶液、气体要注明cB,pB ,固体浓度忽略
纯液体、固体和气体写在惰性电极(Pt)一边用“ , ”分开。
例1:将下列反应设计成原电池并以原电池符号表示。 2Fe2 1.0mol L1 Cl2 100kPa

氧化还原反应电化学基础N

氧化还原反应电化学基础N

这一反应可在下列装置中分开进行
盐桥:在U型管中装 满用饱和KCl溶液和 琼胶作成的冻胶。 盐桥的作用:使Cl向锌盐方向移动, K+向铜盐方向移动, 使Zn盐和Cu盐溶液 一直保持电中性, 从而使电子不断从 Zn极流向Cu极。
这种装置能将化学能转变为电能,称为原电池。
正极(铜电极): Cu2+ + 2eCu 负极(锌电极): Zn Zn2+ + 2e正、负两极分别发生的 反应,称为电极反应。 电池反应:Zn + Cu2+ = Cu + Zn2+(总反应)
例:
H5I O6 S2 O S4 O
2 3 2 6
I的氧化值为 7 S的氧化值为 2 S的氧化值为 2.5 8 Fe的氧化值为 3
Fe3O 4
2、氧化还原半反应和氧化还原电对
氧化还原反应的方程式可分解成两个“半反应”。 反应中,氧化剂(氧化型)在反应过程中氧化数降 低生成氧化数较低的还原型; 还原剂(还原型)在反应 过程中氧化数升高转化为氧化数较高的氧化型。 由一对氧化型和还原型构成的共轭体系称为氧化还 原电对,可用“氧化型/还原型”表示。
Fe3+
溶液中,另一铂片插入到含有MnO4- 、Mn2+ 及H+ 的溶液
正极反应: MnO4- + 8H+ + 5e- = Mn2+ + 4H2O 电池反应: MnO4- + 8H+ + 5Fe2+ = Mn2+ + 5Fe3+ + 4H2O
电池符号:
(-)Pt|Fe2+(c1),Fe3+(c2)||MnO4-(c3),H+(c4),Mn2+(c5)|Pt (+)

生物 第五章 氧化还原和电化学

生物 第五章 氧化还原和电化学

E0 = 0(+) – 0 (-)
如测定半电池: Cu2+(1mol.L-)/Cu(298K)与标准氢电极相 连时为正极,并得 E0=0.34 V. 则 E0 = 0(+) –
0 (-)
0.34= 0 (Cu2+/Cu)- 0(H+/H2)
0.34= 0 (Cu2+/Cu)- 0.0000 0 (Cu2+/Cu)=+0.34 (V)
= 0 + 0.0592 ———— ———lg [氧化型] n [还原型]
式中:(1) n—电极反应中的电子转移数
(2) [氧化型] 中括号里表示的是半反应式中的
[还原型]
各物质浓度次方的乘积
(3) . 纯液体,纯固体的浓度为常数,作1处理, 气体用分压表示.具体写法举例:
(1) Fe 3+ + e-
化合价升高物质称还原剂(Fe)
还原性
5-2
如:
氧化还原半反应式
Cu2+ + Fe = Cu + Fe2 + (还原反应) (氧化反应)
任何氧化还原反应方程式都可以分解成两个半反应式,
Cu2+ + 2e = Cu Fe - 2e = Fe2 +
1. 半反应式由同一元素的两种不同氧化数物种组成。 2. 表示:氧化型 / 还原型 == 电对 3. 标准电极电势表中就是按半反应式 的格式列表的.
标准电极电势是重要的化学参数.有多种理论价 值和实用价值,如:
(1)判断氧化剂和还原剂的强弱 电极电势负值越小,还原型物质的还原性越强; 电极电势正值越大,氧化型物质的氧化性越强。 Zn2+ +2eZn 0 =-0.76 V Cl2 +2e2Cl0 =1.3883 V

氧化还原反应及电化学基础

氧化还原反应及电化学基础
1)单质中,元素的氧化数等于零。(N2 、H2 、O2 等) 2)离子化合物中,与元素的电荷数相一致。 NaCl CaF2
+1,-1 +2,-1
3) 共价化合物中,成键电子对偏向电负性大的元素。
O: -2 (H2O 等);-1 (H2O2); -0.5 (KO2 超氧化钾) H: +1 (一般情况);-1 (CaH2 、NaH)
原电池,在恒温、恒压下,体系自由能降低等于体系所作的最大电功,则:
1) 电池G电=动– 势WmaEx 和 G
③ 盐桥(琼脂 + 强电解质KCl, KNO3等,作用是补充电荷、 维持电荷平衡)
2)电极反应:
正极(Cu): 负极(Zn):
Cu2+ + 2e = Cu Zn- 2e = Zn2+
3)电池反应及电池符号: Zn + Cu2+ = Zn2+ + Cu
(-)Zn | Zn2+ (c1) || Cu2+ (c2) | Cu (+)
历 年代
氧化反应
还原反应
认 识
史 18世纪末
与氧化合
从氧化物夺取氧

发 19世纪中 化合价升高
化合价降低
断 深
展 20世纪初
失去电子
得到电子

例如: Fe + Cu2+ = Fe2+ + Cu 称为全(总)反应
电子转移
氧化
Fe - 2e
Fe2+
(氧化)半反应
Cu2+ + 2e 还原 Cu (还原)半反应
2)标准电极电势的测定
将待测的标准电极与标准氢电极组成原电池,在 25ºC下,用检流计确定

氧化还原反应中的电化学

氧化还原反应中的电化学

氧化还原反应中的电化学氧化还原反应是化学反应中非常重要的一类反应,其中电化学是研究和应用氧化还原反应的重要分支。

本文将重点探讨氧化还原反应中的电化学原理、应用以及相关实验技术。

一、电化学基础电化学是研究电荷传递和电流的性质与变化的学科,它与化学反应密切相关。

氧化还原反应中的电化学可以通过观察和控制电子的转移和离子的迁移来实现。

在电化学中,通过两个电极之间的电子流和离子流来实现电荷转移。

在氧化还原反应中,氧化剂接受电子并发生还原,而还原剂失去电子并发生氧化。

这个过程中,氧化剂和还原剂通过电子的转移,来传递电荷并发生化学反应。

这一过程可以通过电池或电解槽实现。

二、电化学反应类型根据氧化还原反应的不同特点,电化学反应可以分为两种类型:电解和电池。

1. 电解反应电解是通过外加电流来促使非自发性反应发生的过程。

在电解过程中,通过外部电源提供电流,使得化学反应在电解槽中发生。

这种电化学反应对于一些化学分析、合成和电镀等领域非常重要。

2. 电池反应电池是将化学反应中释放的化学能转化为电能的装置。

电池反应是自发性的反应,可以通过将氧化剂和还原剂分离并通过导线连接来产生电流。

根据电池反应类型的不同,电池可以分为原电池和电解池。

原电池内部的反应是自发的,产生电能;而电解池通过外部电源来推动非自发的电化学反应。

三、电化学实验技术在研究和应用氧化还原反应中的电化学,各种实验技术被广泛应用。

1. 极化曲线极化曲线是评估电化学电极性能的重要实验技术。

通过测量电极在不同电位下的电流和电势,可以得到极化曲线。

这些曲线提供了有关于电极在特定条件下的电流传输和反应速率等信息。

2. 循环伏安技术循环伏安技术是一种用于研究电化学反应和材料表征的常用实验方法。

通过变化电极电位来研究反应机理、动力学和电化学性能等方面的信息。

3. 电动势测量电动势测量是用于评估电化学反应的重要实验技术。

电动势测量可以帮助我们了解反应的热力学特征,包括电动势的大小和反应的方向。

第五章 氧化还原反应和电化学

第五章  氧化还原反应和电化学

左边
右边
酸性 多O缺H时,多一个O加2个 加相应的H2O 介质 H+, 缺1个H加1个H+
碱性 多H缺O时,多一个H加1个 加相应的H2O 介质 OH– ,缺1个O加2个OH –
中性 多 n 个 O 加 n个 H2O 介质 加 n 个 H2O
加 2n 个 OH– 多 n个 O 加 2n 个H+
酸性介质中配平的半反应方程式不应出现OH–,在 碱性介质中配平的半反应不应出现H+
氧化值和化合价
• 氧化值是元素在化合状态时的形式电荷,按一定 规则得到,不仅可有正、负值,而且可为分数。 • 化合价是指元素在化合时原子的个数比,它只能 是整数。
1. 多数情况下二者数值相同,也可混用,但它们在 数值上也有不一致的情况 2. 在离子化合物中元素的氧化值等于其离子单原子 的电荷数 3. 在共价化合物中元素的氧化值和共价数常不一致
倍数。找出氧化剂、还原剂的系数。 4. 核对,可用H+, OH–, H2O配平。
例题 (1)
HClO3 + P4 HCl + H3PO4 氧化值升高的元素:
Cl5+ Cl–
氧化值降低 6
P4 4PO43– 氧化值升高20 10 HClO3 + 3P4 10HCl + 12H3PO4 方程式左边比右边少36个H原子,少18个O原子,应 在左边加18个H2O
配平 Cl2 (g) + NaOH → NaCl + NaClO3 解: 半反应
Cl2 (g) + 2e- =2Cl-
(1)
Cl2 (g) + 12OH- = 2ClO3- + 6H2O + 10 e- (2)

氧化还原反应 电化学基础

氧化还原反应 电化学基础

电池反应 Sn2++ 2Fe3+ = Sn4+ + 2Fe2+
(-) (Pt) H2(pθ)H+(1mol·dm-3) Fe3+(1mol·dm-3) , Fe2+ (1 mol·dm-3) Pt(+) 负极,氧化反应: 负极,氧化反应: H2 - 2e = 2H+ 正极,还原反应: 正极,还原反应: Fe3+ + e = Fe2+ 电池反应: 电池反应: H2 + 2 Fe3+ = 2H+ + 2 Fe2+
(Pt)H2(p)H+(1 mol·dm-3) Cl2(p)Cl– (c mol·dm-3)Pt
负极,氧化反应: 负极,氧化反应: H2 - 2e = 2H+ 正极,还原反应: 正极,还原反应: Cl2 + 2 e = 2Cl– 电池反应: 电池反应: H2 + Cl2 = 2H+ + 2Cl–
二、确定氧化态的规则 (the rules for the determination of oxidation state) 1. 离子型化合物中,元素的氧化数等于该离子所 离子型化合物中, 带的电荷数 2. 共价型化合物中,共用电子对偏向于电负性大 共价型化合物中, 的原子 ,两原子的形式电荷数即为它们的氧化数 3. 单质中,元素的氧化数为零; 离子 n-氧化数为 单质中,元素的氧化数为零; 离子X n4. 中性分子中,各元素原子的氧化数的代数和为 中性分子中, 零 ,复杂离子的电荷等于各元素氧化数的代数和
Zn + Cu2+ = Zn2+ + Cu 氧化反应 Zn = Zn2+ + 2e Cu2+ + 2e = Cu 还原反应

无机化学(人卫版)第五章_氧化还原反应以及电极电势

无机化学(人卫版)第五章_氧化还原反应以及电极电势


M活泼
M不活泼
M 稀
n+
M 浓
n+
溶解 〉沉积
电极电势:E M /M
(
沉积 〉溶解
n+
)
电池电动势: MF E ( + ) E ( ) E
标准氢电极和甘汞电极 标准电极电势和标准电动势 浓度对电极电势的影响 ——Nernst方程式
一、标准氢电极和甘汞电极
1. 标准氢电极
电极反应 : + 2e 2 H ( aq) 电对: H /H 2 E (H + /H 2 ) 0 .000 V
6Fe2+ + Cr2O72- + 14H+ = 6Fe3+ + 2Cr3+ +7H2O
三、半反应和氧化还原电对
1、半反应
对反应:Zn + Cu2+ = Zn2+ + Cu
半反应:Zn = Zn2+ + 2e-
Cu2+ +2e- =Cu
2、氧化还原电对
Zn2+/Zn, Cu2+/Cu
氧化型/还原型
( Cu
(
+ 2H+ Cu
2+
2+
/Cu 0.337V
)
)
( /H ) 0.337V H
+ 2
如:测Zn2+/Zn标准电极的 Eθ(Zn2+/Zn)=? 使其与标准氢电极组 成原电池,测得:Eθ =0.7626V(由电子流动方向确定正、负极) 。 根据 Eθ = E -E ∴E =-0.7626V
2+

2Cl

氧化还原反应与电化学

氧化还原反应与电化学

氧化还原反应与电化学氧化还原反应(简称氧化反应或还原反应)是化学反应的一种重要类型,也是电化学研究的基础。

电化学研究了物质在电场和电流的作用下的性质和变化规律,将电能与化学变化联系起来。

本文将着重介绍氧化还原反应与电化学之间的关系,探讨电流与氧化还原反应的本质联系,以及电化学在实际应用中的重要性。

1. 氧化还原反应的基本概念和原理氧化还原反应是指物质中的原子、离子或分子失去电子的过程为氧化反应,而得到电子的过程称为还原反应。

在氧化还原反应中,存在着氧化剂和还原剂两个参与物质,氧化剂接受电子,还原剂失去电子。

这一过程可以用化学方程式表示,例如:2Na + Cl2 → 2NaCl。

在这个反应中,钠(Na)失去了电子,发生了氧化反应;氯气(Cl2)接受了钠的电子,发生了还原反应。

2. 电流与氧化还原反应的联系氧化还原反应离不开电流的存在。

电流是指电荷在单位时间内通过导体横截面的量,其方向由正电荷流动的方向确定。

在氧化还原反应中,氧化剂接受电子,必须有电子从还原剂中流向氧化剂,才能维持反应的进行。

这个电子的流动过程形成了电流。

因此,可以说氧化还原反应是电流流动的结果,电流的存在促使了氧化还原反应的进行。

3. 电化学的研究内容电化学研究了物质在电场和电流的作用下的性质和变化规律。

其研究内容主要包括三个方面:电解学、电池学和电化学分析。

(1)电解学:电解学研究了物质在电解过程中的行为和特性。

电解是指将电能转化为化学能的过程,通过电解可以将化合物分解成对应的离子,或将离子还原为相应的化合物。

例如,通过电解水可以将水分解为氢气和氧气。

(2)电池学:电池学研究了电化学电池的工作原理和特性。

电化学电池是指利用氧化还原反应转化化学能为电能的装置。

电池由正极、负极和电解质组成,正极发生氧化反应,负极发生还原反应,通过电路和外部载荷与电解质之间的电子流动将化学能转化为电能。

(3)电化学分析:电化学分析是利用氧化还原反应进行分析的一种方法。

氧化还原反应与电化学

氧化还原反应与电化学

氧化还原反应与电化学氧化还原反应(Redox Reaction)是化学反应中常见的一种类型,也是电化学的基础。

在氧化还原反应中,物质会发生电荷转移过程,其中一个物质被氧化(失去电子),另一个物质被还原(获得电子)。

这种电荷转移过程伴随着电流的流动,因此氧化还原反应与电化学密切相关。

1. 氧化还原反应的基本原理在氧化还原反应中,常常可以观察到电子的转移与氧原子的参与。

在一些反应中,物质会失去电子,被称为氧化剂(Oxidizing Agent),而另一些物质则会获得电子,被称为还原剂(Reducing Agent)。

这种电子的转移与氧原子的参与使得物质的氧化态和还原态发生变化。

2. 氧化还原反应的重要性氧化还原反应在生活和工业中具有广泛的应用。

例如,我们所熟悉的腐蚀现象就是一种氧化还原反应。

金属物质在与氧气接触时会发生氧化反应,形成金属氧化物。

此外,氧化还原反应还被广泛应用于电池、电解、电镀等方面。

3. 电化学的基本概念电化学是研究化学反应与电流之间关系的学科。

它主要涉及电解反应(Electrolysis)和电化学电池(Electrochemical Cell)两个方面。

3.1 电解反应电解反应是在外加电压的作用下,将化学反应逆转的过程。

电解反应的基本原理是利用外部电压提供能量,使得自发不利反应变得可逆,从而实现物质的分解或转化。

3.2 电化学电池电化学电池是将化学能转化为电能的装置。

它由两个半电池组成,分别包含一个氧化反应和一个还原反应。

这两个半电池通过电解质溶液(Electrolyte)或电解质桥(Salt Bridge)连接起来,形成一个闭合的电路。

4. 电化学电池的工作原理电化学电池中,氧化反应和还原反应在两个半电池中同时进行。

在氧化反应中,电子流从还原剂移动到电解质溶液中;而在还原反应中,电子从电解质溶液流向氧化剂。

这一过程中,电子的流动经过外部电路,形成了电流。

根据电化学电池反应的性质和电流的方向,我们可以将电化学电池分为两类:电解池(Electrolytic Cell)和电池(Galvanic Cell)。

氧化还原反应 电化学基础

氧化还原反应   电化学基础


①×2+②×5得
4
+ 16H + + 10e = 2Mn 2 + + 8H 2 O 2MnO
+ ) 5SO 2 + 5H O = 5SO 2 + 10H + + 10e 3 2 4
2MnO + 5SO + 6H = 2Mn + 5SO + 3H2O 2KMnO + 5K 2SO3 + 3H2SO4 4 = 2MnSO4 + 6K2SO4 + 3H2O
负极,氧化反应
Zn(s) Zn2+(aq)+2e-
正极,还原反应 2H+(aq)+2e氧化还原反应 H2(g)
Zn(s)+2H+(aq)
Zn2+(aq)+H2(g)
11.2.3 原电池的电动势
( ) Zn Zn 2+ (1.0mol L1 ) ‖ 2+ (1.0mol L1 ) Cu ( + ) Cu
4
2 3
+
2+
2 4
例2:配平
Cl2 (g) + NaOH(aq) NaCl(aq) + NaClO3 (aq)

解:Cl 2 + 2e = 2Cl




3
Cl 2 + 12OH = 2ClO + 6H2 O + 10e
①×5+②得:
3

6Cl2 + 12OH = 10Cl + 2ClO + 6H2 O

氧化还原反应与电化学

氧化还原反应与电化学

氧化还原反应与电化学氧化还原反应是化学反应中十分重要的一类反应。

与之密切相关的是电化学,它研究的是电流与化学反应之间的关系。

本文将探讨氧化还原反应与电化学之间的联系以及其在实际应用中的重要性。

一、氧化还原反应的基本概念氧化还原反应是指物质失去电子的过程称为氧化,物质获得电子的过程称为还原。

氧化还原反应是通过电子的转移来达到化学变化的。

在氧化还原反应中,被氧化的物质被称为还原剂,因为它促使其他物质被氧化;而被还原的物质被称为氧化剂,因为它促使其他物质被还原。

氧化还原反应中,电子的转移通常会伴随着原子的转移,使得反应物在电荷上发生变化。

二、电化学基础知识电化学是研究电荷与化学反应之间相互转化关系的学科。

其中最重要的概念是电解质溶液和电解池。

电解质溶液是指在溶液中存在自由离子的物质,能够导电。

电解质溶液中,正负离子在电场作用下会迁移,形成电流。

而电解池是由两个电极和其中的电解质溶液构成的系统。

电极又分为阴极和阳极,阴极是在电解质溶液中的负极,而阳极则是正极。

电解质溶液中的离子在电极上发生氧化还原反应,产生电流。

三、氧化还原反应与电化学之间的联系氧化还原反应与电化学密不可分。

在电化学中,氧化还原反应是产生电流的基础。

电化学反应中,阴极上发生还原反应,而阳极上发生氧化反应。

阴极接受来自阳极的电子,使得阴极上的物质还原;而阳极失去电子,使得阳极上的物质氧化。

四、氧化还原反应在实际应用中的重要性氧化还原反应在实际应用中有着广泛的应用。

以下是一些例子:1. 电池:电池是将化学能转化为电能的装置。

其中的电化学反应是氧化还原反应的典型例子。

在电池中,化学反应将化学能转化为电能,提供给我们的日常生活所需。

2. 腐蚀:金属的腐蚀也是一种氧化还原反应。

金属与氧气或其他化合物反应,使金属表面形成氧化物,从而损坏金属的性能。

腐蚀的控制和防治是保护金属材料的重要方法。

3. 电解制氢:电解水是将水分解为氢气和氧气的过程。

在电解水过程中,水发生氧化还原反应,电流通过水分子,将水分解为氧气和氢气。

氧化还原反应和电化学

氧化还原反应和电化学

氧化还原反应和电化学氧化还原反应(Redox)是化学反应中的一种重要类型,涉及物质间的电子的转移。

它在许多行业中都有广泛应用,尤其在电化学领域中占有重要地位。

一、氧化还原反应基础氧化还原反应是指在化学反应中,原子、离子或分子中的电子由一个物质转移给另一个物质的过程。

其中,电子的转移发生在氧化剂和还原剂之间。

氧化剂是指能够接受电子的物质,而还原剂则是能够捐赠电子的物质。

氧化还原反应常常伴随着物质的氧化与还原状态的改变。

二、氧化还原反应的重要性1. 电池和蓄电池:氧化还原反应是电池工作的基础。

电池中的正极发生氧化反应,负极发生还原反应,通过外部电路,电子从负极流向正极,从而产生电流供应给外部设备。

蓄电池则将反应进行逆转,将电流用于电解还原,实现电能转化和储存。

2. 腐蚀和防腐:许多金属材料在氧化还原环境中容易发生腐蚀现象,因此了解氧化还原反应规律可以帮助我们有效地进行防腐措施,延长材料的使用寿命。

3. 化学分析:氧化还原反应在化学分析中发挥着重要的作用。

比如电位滴定、氧化还原指示剂的应用等,使得化学分析的方法更加全面和准确。

4. 电解和电镀:电解过程是利用外加电流使物质发生化学反应,氧化还原反应是其中关键环节。

电化学反应在电镀工艺中广泛运用,可使金属表面得到保护或改变其性质。

三、电化学基础电化学是研究电能与化学能之间相互转化关系的学科。

它与氧化还原反应有着密切的联系,通过电化学实验可以研究电流与氧化还原反应之间的关系。

电化学反应包括两种基本类型:非自发反应(电解反应)和自发反应(电池反应)。

电解反应是指在外界电源的作用下,使非自发的氧化还原反应发生。

而电池反应则是在没有外界电源的情况下,使自发的氧化还原反应发生,从而产生电能。

电化学反应中的重要参数包括电位和电解质浓度。

电位是物质发生氧化还原反应时与标准氢电极之间电势差的度量。

而电解质浓度的改变会影响电解反应的速率和方向。

电化学反应在电池、电解、电镀、电解分析等领域都有广泛应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 氧化还原反应 电化学基础
1.填空题
(1)在K 2MnO 4中,锰的氧化值为( );在Na 2S 2O 4中,硫的氧化值为( )。

(2)在反应P 4+3OH - +3H 2O →3H 2PO 2 -
+PH 3中,氧化剂是( ),其被还原的产物为( );还原剂是( ),其被氧化的产物为( )。

(3)在原电池中,E 值很大的电对是( )极,发生的是( )反应;E 值很小的电对是( )极,发生的是( )反应。

E 值越大的电对的氧化型得电子能力( ),其( )越( );E 值越小的电对的还原型失电子能力越( ),其( )越( )。

(4)已知θ
E
(Ag +
/Ag )=0.7991V ,
θ
E
(Ni 2+/ Ni )= -0.2363V 。

如果设计一个银—镍原电池,则电池图示为
( ),电池反应为( ),该原电池的θ
MF
E =( )V ,电池反应的
θ
m
r G ∆=( )
KJ·mol -1
,反应的标准平衡常数
θ
K
=( )。

(5)在电对Zn 2+
/Zn ,I 2 / I -,BrO 3-/ Br -
,Fe (OH )3 / Fe (OH )2中,其电极电势随溶液的PH 变小而改变的电对有( ),( )。

(6)对于反应①
反应②
则有z 1/z 2=( ),θ
1,MF E /θ
2
,MF E =( ),
θ1,m r G ∆/θ
2
,m r G ∆=( ),
Lg
θ
1
K / Lg
θ
2
K =( )。

(7)已知
θ
E
(Cu 2+/ Cu +
)<
θ
E
(I 2 / I -),但Cu 2+能与 I – 反应生成I 2 和CuI (s ),这是因为( ),
使电对( )的
θ
E
( )于电对( )的
θ
E
,使电对( )>
θ
E
(I 2 / I -),故反应可以进行。

(8)已知
θ
sp
K (Co(OH) 2)>
θ
sp
K (Co(OH) 3),
θ
E
(Co(NH) 3) 63+/ Co(NH) 3) 62+
) <
θ
E
(Co 3+/ Co 2+
),则
θ
E
(Co 3+
/
Co 2+
)( )于
θ
E
(Co(OH) 3) / Co(OH) 2) ),
θ
f
K
(Co(NH) 3) 63+
)( )于
θf
K
(Co(NH) 3) 62+
)。

(9)已知
θ
E
(Cu 2+/ Cu +
)=0.1607V ,
θ
E
(Cu 2+
/ Cu )=0.3394 V ;则
θ
E
(Cu +/ Cu )=( )V ,铜元素
的电势图为( ),Cu + 在水中( )歧化。

Cl 2(g)+2Br -
(aq)
Br 2(l)+2Cl -
(aq)
1/2Cl 2(g)+Br -
2(l)+Cl -
(aq)
(10)氧化还原反应进行的方向一定是电极电势大的电对的( )作为氧化剂与电极电势小的电对的( )作为还原剂反应,直到两电对的电势差( ),即反应达到平衡。

2.选择题
(1)关于原电池的下列叙述中错误的是( )。

(A )盐桥中的电解质可以保持两半电池中的电荷平衡 (B )盐桥用于维持电池反应的进行 (C )盐桥中的电解质不参与电池反应 (D )电子通过盐桥流动
(2)FeCl 3(aq )可用来刻蚀铜板。

下列叙述中错误的是( )。

(A )生产了Fe 和Cu 2+ (B )生产了Fe 2+ 和Cu 2+
(C )θ
E
(Fe 3+/ Fe 2+
)>
θ
E
(Cu 2+
/ Cu )
(D )
θ
E
(Fe 3+
/ Fe )>
θ
E
(Cu 2+/ Cu )
(3)H 2O 2即可作氧化剂又可作还原剂。

下列叙述中错误的是( )。

(A )H 2O 2可被氧化生成O 2 (B )H 2O 2可被还原生成H 2O (C )PH 变小,H 2O 2的氧化性增强 (D )PH 变小,H 2O 2的还原性也增强
(4)对于浓差电池M│M n+(c 1)┆┆M n+
(c 2)│M ,下列关系中正确的是( )。

(A )θ
MF
E ≠ 0 ,
MF
E = 0 (B )
θ
MF
E =0 ,
MF
E ≠0
(C )
θ
MF
E = 0 ,
MF
E = 0 (D )
θ
MF
E ≠ 0 ,
MF
E ≠ 0
(5)已知反应的
θ
MF
E =0.5032V ,
θ
E
(Sn 4+/ Sn 2+
)=0.1539V ,则
θ
E
(HgCl 2/ Hg 2Cl 2)=( )V 。

2HgCl 2(aq)+Sn
2+
(aq)Sn
4+
(aq)+Hg 2Cl 2(S )+2Cl -
(aq)
(A)0.3493 (B)0.3286 (C)1.314 (D)0.6571
(6)已知
θ
E
(Cr2O7 2-/ Cr 3+)>
θ
E
(Fe3+/ Fe 2+)>
θ
E
(Cu2+/ Cu)>
θ
E
(Fe 2+/ Fe),则上述诸电对的各物
种中最强的氧化剂和最强的还原剂分别为()。

(A)Cr2O7 2-,Fe 2+(B)Fe 3+,Cu
(C)Cr2O7 2-,Fe(D)Cu2+,Fe 2+
(7)已知
θ
E
(Pb2+/Pb)= -0.1266V,
θ
sp
K
(PbCl2)=1.7⨯10-5,则
θ
E
(PbCl2/Pb)= ()V
(A)0.268 (B)- 0.409 (C)-0.268 (D)0.015
(8)25℃时,铜—锌原电池中Zn2+ 和Cu2+ 的浓度分别为0.10mol·L-1和1.0⨯10-3mol·L-1,此时电池电动势比标准电动势()。

(A)减小0.1184V (B)减小0.0592V
(C)增大0.1184V (D)增大0.0592V
(9)已知原电池(—)Pt│Hg(l)│HgBr42-(aq)┆┆Fe3+(aq),Fe2+(aq)│Pt(+)的
θ
MF
E=0.538V,θ
E
(Hg2+/
Hg)=0.8518V,
θ
E
(Fe3+/ Fe 2+)=0.769V,则
θ
f
K
(HgBr42-)=()。

(A)3.1⨯1010(B)3.8⨯1036(C)2.0⨯1018(D)9.5⨯1020
(10)将氢电极(p(H2)=100KPa)插入纯水中,与标准氢电极组成一个原电池,则MF
E=()V。

(A)0.414 (B)-0.414 (C)0 (D)0.828
3.配平下列氧化还原反应方程式
(1)As2S3 + HNO3 + H2 O→H3AsO4 + H2SO4 + NO
(2)IBr + Br03- + H2O →IO3- + Br- + H+
(3)[Fe(CN) 6] 3- + N2H4 + OH- →[Fe(CN) 6] 4- + N2 + H2O
(4)C2H5OH + K2Cr2O7 + H2SO4 →H4C2O + Cr2 (SO4) 3 + K2SO4
(5)CrI3 + Cl2 + OH-→ IO3- + CrO42- + Cl-
(6)PbO2 + HNO3→ Pb(NO3) 2 + 2H2O + O2
4.计算题
(1)已知
θ
E
(Zn2+/ Zn)= - 0.7621V,
θ
E
(Ag+/ Ag)= 0.7991V。

某锌—银原电池中,c(Zn2+)=c(Ag+)=0.200
mol·L-1。

①计算25℃时电池的电动势。

②如果将少量浓氨水仅加在Zn2+溶液中,电池电动势将如何变化?③若仅
在Ag+/ Ag半电池中加入等体积的3.00 mol·L-1的氨水,测得电动势为1.082V,计算
θ
f
K
(Ag(NH3)2+)。

(2)将氢电极插入含有0.50 mol·L-1HA和0.10 mol·L-1NaA的缓冲溶液中,作为原电池的负极。

将银电极插入含
有AgCl沉淀和1.0 mol·L-1 Cl-的AgNO3溶液中,将其作为原电池的正极。

已知
θ
E
(Ag+/ Ag)=0.7991V,
θ
sp
K
(AgCl)
=1.8⨯10-10,p(H2)=100KPa时,测得原电池的电动势为0.450V。

①写出电池符号和电池反应方程式;②计算
正、负极的电极电势;③计算负极溶液中的c(H+)和HA的解离常数
θ
a
K。

相关文档
最新文档