(北师大版)初中数学《应用二元一次方程组-鸡兔同笼》应用题精选
北师大版八年级数学第五章《应用二元一次方程组-鸡兔同笼》课时练习题(含答案)
![北师大版八年级数学第五章《应用二元一次方程组-鸡兔同笼》课时练习题(含答案)](https://img.taocdn.com/s3/m/c327c91582c4bb4cf7ec4afe04a1b0717fd5b3fe.png)
北师大版八年级数学第五章《3.应用二元一次方程组-鸡兔同笼》课时练习题(含答案)一、单选题1.甲是乙现在的年龄时,乙8岁,乙是甲现在的年龄时,甲26岁,那么()A.甲20岁,乙14岁B.甲22岁,乙16岁C.乙比甲大18岁D.乙比甲大34岁2.五一小长假,小华和家人到公园游玩.湖边有大小两种游船.小华发现1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人.则1艘大船与1艘小船一次共可以满载游客的人数为()A.30 B.26 C.24 D.223.《九章算术》中有这样一道题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?”其译文是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱.现有30钱,买得2斗酒.问醇酒、行酒各买得多少?设醇酒买得x斗,行酒买得y斗,则可列二元一次方程组为()A.2501030x yx y+=⎧⎨-=⎩B.2501030x yx y-=⎧⎨+=⎩C.2105030x yx y+=⎧⎨+=⎩D.2501030x yx y+=⎧⎨+=⎩4.《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的23,那么乙也共有钱50.问:甲、乙两人各带了多少钱?设甲、乙两人持钱的数量分别为x,y,则可列方程组为()A.15022503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩B.15022503x yy x⎧-=⎪⎪⎨⎪-=⎪⎩C.2502503x yx y+=⎧⎪⎨+=⎪⎩D.2502503x yx y-=⎧⎪⎨-=⎪⎩5.我国古代数学名著《九章算术》记载:“今有牛五、羊二,直金十九两;牛二、羊三,直金十二两.问牛、羊各直金几何?”题目大意是:5头牛、2只羊共19两银子;2头牛、3只羊共12两银子,每头牛、每只羊各多少两银子?设1头牛x两银子,1只羊y两银子,则可列方程组为()A.52192312x yx y+=⎧⎨+=⎩B.52122319x yx y+=⎧⎨+=⎩C.25193212x yx y+=⎧⎨+=⎩D.25123219x yx y+=⎧⎨+=⎩6.用如图的长方形和正方形纸板作侧面和底面,做成如图的竖式和横式两种无盖纸盒.现在仓库里有500张正方形纸板和1000张长方形纸板,问两种纸盒各做多少个,恰好将库存的纸板用完?若设做竖式纸盒x个,横式纸盒y个,则可列方程组()A.+=5004+3=1000x yx y⎧⎨⎩B.+2=5004+3=1000x yx y⎧⎨⎩C.2+=50003+4=1000x yx y⎧⎨⎩D.2+2=5003+4=1000x yx y⎧⎨⎩7.现用190张铁皮做盒子,每张铁皮可做8个盒身,或做22个盒底,一个盒身与两个盒底配成一个盒子.设用x张铁皮做盒身,y张铁皮做盒底正好配套,则可列方程组为()A.1902822x yx y+=⎧⎨⨯=⎩B.1902228x yy x+=⎧⎨⨯=⎩C.2190822y xx y+=⎧⎨=⎩D.21902822y xx y+=⎧⎨⨯=⎩8.普通火车从绵阳至成都历时大约2小时,成绵城际快车开通后,时间大大缩短至几十分钟,现假定普通火车与城际快车两列对开的火车于同一时刻发车,其中普通火车由成都至绵阳,城际快车由绵阳至成都,这两车在途中相遇之后,各自用了80分钟和20分钟到达自己的终点绵阳、成都,则城际快车的平均速度是普通火车平均速度的()倍.A.2 B.2.5 C.3 D.4二、填空题9.一名学生问老师:“你今年多大了?”老师风趣地说“我像你这样大的时候,你才2岁;你到我这么大时,我已经38岁了”,则今年老师的岁数是_____.10.《孙子算经》是中国古代重要的数学著作,其中记载了这样一道有趣的问题:“一百马,一百瓦,大马一拖三,小马三拖一.”意思是:“现有100匹马恰好拉100片瓦.已知1匹大马能拉3片瓦,3匹小马能拉1片瓦.”则共有大马_____匹.11.《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而亦钱五十,问甲、乙持钱各几何?”译文是:今有甲、乙两人持钱不知道各有多少,甲若得到乙所有钱的12,则甲有50钱,乙若得到甲所有钱的23,则乙也有50钱,问甲、乙各持钱多少?设甲持钱数为x钱,乙持钱数为y钱,列出关于x,y的二元一次方程组是______.12.某中学为积极开展校园足球运动,计划购买A和B两种品牌的足球,已知一个A品牌足球价格为120元,一个B品牌足球价格为150元.学校准备用3000元购买这两种足球(两种足球都买),并且3000元全部用完,请写出一种购买方案:买_______个A品牌足球,买________个B品牌足球.13.《九章算术》记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两,问一牛一羊共直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问一头牛和一只羊共值金多少两?”根据题意可得,一头牛和一只羊共值金____两.三、解答题14.一张方桌由1个桌面,4条桌腿组成,如果1m3木料可以做方桌的桌面50个或做桌腿300条,现有10m3木料,那么用多少立方米的木料做桌面,多少立方米的木料做桌腿,做出的桌面与桌腿,恰好能配成方桌?15.某村经济合作社决定把22吨竹笋加工后再上市销售,刚开始每天加工3吨,后来在乡村振兴工作队的指导下改进加工方法,每天加工5吨,前后共用6天完成全部加工任务,问该合作社改进加工方法前后各用了多少天?16.有A、B两种型号的货车:用2辆A型货车和1辆B型货车装满货物一次可运货10吨;用1辆A型货车和2辆B型货车装满货物一次可运货11吨.请用学过的方程(组)知识解答下列问题:(1)求A型、B型两种货车装满货物每辆分别能运货多少吨?(2)现某物流公司有31吨货物,计划同时租用A型车m辆,B型车n辆,一次运完,且恰好每辆车都装满货物.若A 型货车每辆需租金100元/次,B 型货车每辆需租金120元/次.请你帮该物流公司选出最省钱的租车方案,并求出最少租车费用.17.某地区2020年进出口总额为520亿元.2021年进出口总额比2020年有所增加,其中进口额增加了25%,出口额增加了30%.注:进出口总额=进口额+出口额. (1)设2020年进口额为x 亿元,出口额为y 亿元,请用含x ,y 的代数式填表:(2)已知2021年进出口总额比2020年增加了140亿元,求2021年进口额和出口额度分别是多少亿元?18.今年(2022年)4月20日,是云大附中建校95周年暨云大附中恢复办学40周年校庆日,我校初一年级数学兴趣小组的小明同学发现这样一个有趣的巧合;小明的爸爸和爷爷都是云附的老校友,且爸爸和妹妹的年龄差恰好与爷爷和小明的年龄差的和为95,而爸爸的年龄恰好比爷爷的年龄小40.已知小明今年13岁,妹妹今年4岁.(1)求今年小明的爸爸和爷爷的年龄分别是多少岁?(要求用二元一次方程组解答) (2)假如小明的爸爸和爷爷都是15岁初中华业的,请问小明的爸爸和爷爷分别是哪一年毕业的云附学子?19.某企业有A ,B 两条加工相同原材料的生产线,在一天内,A 生产线共加工a 吨原材料,加工时间为()41a +小时;在一天内,B 生产线共加工b 吨原材料,加工时间为()23b +小时. (1)当1a b ==时,两条生产线的加工时间分别时多少小时?(2)第一天,该企业把5吨原材料分配到A .B 两条生产线,两条生产线都在一天内完成了加工,且加工时间相同,则分配到两条生产线的的吨数是多少?(3)第二天开工前,该企业按第一天的分配结果分配了5吨原材料后,又给A 生产线分配了m 吨原材料,给B 生产线分配了n 吨原材料,若两条生产线都能在一天内加工完各自分配到的所有原材料,且加工时间相同,则m 和n 有怎样的数量关系?若此时m 与n 的和为6吨,则m 和n 的值分别为多少吨?参考答案1.A2.B3.D4.A5.A6.B7.A8.A 9.26 10.2511.15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩12. 10 12 13.187##42714.解:设用x 立方米的木料做桌面,y 立方米的木料做桌腿,即做桌面50x 个,做桌腿300y 条,此时恰好能配成方桌50x 张,根据题意得10450300x y x y +=⎧⎨⨯=⎩ 解得64x y =⎧⎨=⎩ 则能配成方桌650300⨯=(张)故用6 m 3的木料做桌面,4 m 3的木料做桌腿,恰好能配成方桌300张. 15.解:设改进加工方法前用了x 天,改进加工方法后用了y 天, 则6,3522.x y x y +=⎧⎨+=⎩解得4,2.x y =⎧⎨=⎩ 经检验,符合题意.答:改进加工方法前用了4天,改进加工方法后用了2天.16.(1)设1辆A 型车装满货物一次可运货x 吨,1辆B 型车装满货物一次可运货y 吨,依题意,得:210211x y x y +=⎧⎨+=⎩,解得:34x y =⎧⎨=⎩.答:1辆A 型车装满货物一次可运货3吨,1辆B 型车装满货物一次可运货4吨. (2)由题意可得:3m +4n =31,即3134mn -=, ∵m ,n 均为整数,∴有17m n =⎧⎨=⎩,54m n =⎧⎨=⎩,91m n =⎧⎨=⎩三种情况.设租车费用为W 元, 则W =100m +120n =100m +120•3134m- =10m +930, ∵10>0,∴W 随m 的增大而增大,∴当m =1时,W 最小,此时W =10×1+930=940.∴当租用A 型车1辆,B 型车7辆,最少租车费用为940元. 17.(1)解:故答案为:1.25x +1.3y ; (2)解:根据题意1.25x +1.3y =520+140,∴5201.25 1.3520140x y x y +=⎧⎨+=+⎩,解得:320200x y =⎧⎨=⎩,2021年进口额1.25x =1.25320400⨯=亿元,2021年出口额是1.3 1.3200260y =⨯=亿元. 18.(1)设今年小明的爸爸x 岁,爷爷y 岁.()()4139540x y y x ⎧-+-=⎨-=⎩. 解得:3676x y =⎧⎨=⎩答:今年小明的爸爸36岁,爷爷76岁; (2)202236152001-+=(年) 202276151961-+=(年)小明的爸爸是2001年华业,爷爷是1961年毕业的云附学子. 19.(1)解:当1a b ==时, 415a +=,235b +=; 即两条生产线的的加工时间分别为5小时和5小时.(2)解∶设分配到A 生产线x 吨,则分配到B 生产线y 吨,根据题意得:54123x y x y +=⎧⎨+=+⎩,解得23x y =⎧⎨=⎩, 即分配到A 生产线2吨,则分配到B 生产线3吨; (3)解:根据题意得:()()421233m n ++=++, 整理得:2m n =, ∵6m n +=, ∴2m =,4n =,答:m 与n 的关系为2m n =,当6m n +=吨时,m 为2吨,n 为4吨.。
应用二元一次方程组——鸡兔同笼-北师大版八年级数学上册
![应用二元一次方程组——鸡兔同笼-北师大版八年级数学上册](https://img.taocdn.com/s3/m/e29eab4e8762caaedd33d4da.png)
应用二元一次方程组——鸡兔同笼-北 师大版 八年级 数学上 册
轴杆15个或轴承24个,一个轴杆与两个轴承
配成一套.若分配x个工人加工轴杆,y个工
人加工轴承,正好使每天加工的产品成套,
则可列方程组为( B ).
(A){1x5+xy==2544y,
(B) {x2+×y1=55x4=, 24y
(C) {1x5+xy==25×4,24y
应用二元一次方程组——鸡兔同笼-北 师大版 八年级 数学上 册
应用二元一次方程组——鸡兔同笼-北 师大版 八年级 数学上 册
等量关系:
鸡头数+兔头数=35,
总
鸡脚数+兔脚数=94.
数
解:设鸡有x只,兔有y只,头 x y 35
根据题意得:
足 2x 4y 94
x+y=35, ①
2x+4y=94. ②
应用二元一次方程组——鸡兔同笼-北 师大版 八年级 数学上 册
应用二元一次方程组——鸡兔同笼-北 师大版 八年级 数学上 册
对应训练1
今有牛五、羊二,值金十两.牛二、羊五, 值金八两.牛、羊各值金几何?
5头牛、2只羊共价值10两“金”; 2头牛、5只羊共价值8两“金”.问每头牛、 每只羊各价值多少“金”?
应用二元一次方程组——鸡兔同笼-北 师大版 八年级 数学上 册
应用二元一次方程组——鸡兔同笼-北 师大版 八年级 数学上 册
5 3 应用二元一次方程组--鸡兔同笼 课后练习 北师大版八年级数学上册
![5 3 应用二元一次方程组--鸡兔同笼 课后练习 北师大版八年级数学上册](https://img.taocdn.com/s3/m/093b701c30b765ce0508763231126edb6f1a76de.png)
5.3 应用二元一次方程组--鸡兔同笼一.选择题1.为了响应建设美丽家园的号召,现计划给甲、乙两校各若干株树苗.若甲校得到乙校所有树苗的,则甲校的树苗总数变为50株.若乙校得到甲校所有树苗的,那么乙校的树苗总数也变为50株.设计划分给甲校x株树苗,乙校y株树苗,则可列二元一次方程组为()A.B.C.D.2.古代“绳索量竿”问题:“一条竿子一条索.索比竿子长一托,折回索却量竿,却比竿子短一托.” 其大意为:现有一根竿和一条绳索.用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.则绳索和竿长分别为()A.30尺和15尺B.25尺和20尺C.20尺和15尺D.15尺和10尺3.为了丰富同学们的课余生活,体育委员小强到体育用品商店购买羽毛球拍和乒乓球拍,若购买1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍,若设每副羽毛球拍为x元,每副乒乓球拍为y元,列二元一次方程组得()A.506()320x yx y+=⎧⎨+=⎩B.50610320x yx y+=⎧⎨+=⎩C.506320x yx y+=⎧⎨+=⎩D.50106320x yx y+=⎧⎨+=⎩4.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是3219423x yx y+=⎧⎨+=⎩,类似地,图2所示的算筹图我们可以表述为()A.264327x yx y+=⎧⎨+=⎩B.2114327x yx y+=⎧⎨+=⎩C.3219423x yx y+=⎧⎨+=⎩D.3264327x yx y+=⎧⎨+=⎩5.为了节能减排,某公交公司计划购买A型和B型两种新能源公交车.若购买A型公交车1辆,B型公交车2辆,共需260万元;若购买A型公交车2辆,B型公交车1辆,共需280万元,列出方程组.若对该方程组进行变形可得到方程x﹣y=20,下列对“x﹣y=20”的含义说法正确的是()A.A型车比B型车多购买20辆B.A型车比B型车少购买20辆C.A型车比B型车每辆贵20万元D.A型车比B型车每辆便宜20万元6.大课间,12人跳绳队为尊重每个队员的意愿,准备把队员分成跳大绳组或跳小绳组,大绳组3人一组,小绳组2人一组,在全队同学能同时参加活动且符合小组规定人数的前提下,则不同的分组方法有()A.1种B.2种C.3种D.4种7.某工厂现有95个工人,一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套,现在要求工人每天做的螺杆和螺母完整配套而没有剩余,若设安排x个工人做螺杆,y个工人做螺母,则列出正确的二元一次方程组为()A.958220x yx y+=⎧⎨-=⎩B.954220x yx y+=⎧⎨-=⎩C.9516220x yx y+=⎧⎨-=⎩D.9516110x yx y+=⎧⎨-=⎩8.(我国古代问题)有大小两种盛酒的桶,已知5大桶加上1小桶可以盛酒3斛(斛,音hú,是古代的一种容量单位),已知1大桶加上5小桶可以盛酒2斛,1大桶加上1小桶可以各盛酒多少斛?如果设1大桶x斛、1小桶长y斛,则列出正确的方程组是()A.5253x yx y=+⎧⎨+=⎩B.5253x yx y+=⎧⎨=+⎩C.5253x yx y+=⎧⎨+=⎩D.5253x yx y+=⎧⎨+=⎩9.为了丰富同学们的课余生活,体育委员小强到体育用品商店购买羽毛球拍和乒乓球拍,若购买1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍,若设每副羽毛球拍为x元,每副乒乓球拍为y元,列二元一次方程组得()A.506()320x yx y+=⎧⎨+=⎩B.50610320x yx y+=⎧⎨+=⎩C.506320x yx y+=⎧⎨+=⎩D.50106320x yx y+=⎧⎨+=⎩10.我国古代数学著作《九章算术》的“方程”一章里,一次方程组是由算筹布置而成的.如图1,图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项,把图1所示的算筹图用我们现在所熟悉的方程组的形式表述出来,就是410,61134.x yx y+=⎧⎨+=⎩类似地,表述图2所示的算筹图的方程组是()A.27311x yx y+=⎧⎨+=⎩B.21236x yx y+=⎧⎨+=⎩C.212311x yx y+=⎧⎨+=⎩D.2736x yx y+=⎧⎨+=⎩二.填空题1.桂花村派男女村民共15人到山外采购建房所需的水泥,已知男村民一人挑两包,女村民两人抬一包,共购回15包.求这次采购的男村民人数和女村民人数;若设这次采购的水泥的男村民x人,女村民y人则可列方程组为.2.鸡兔同笼共有10个头,28只脚,则笼中鸡有只,兔有只.3.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,现在我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是2327214x yx y+=⎧⎨+=⎩.类似地,图2所示的算筹图我们可以表述为.4.《水浒传》中关于神行太保戴宗有这样一段描述:程途八百里,朝去暮还来.某日,戴宗去180里之外的地方打探情报,去时顺风,用了2小时;回来时逆风,用了6小时,则戴宗的速度为里/小时.5.有甲、乙两数,甲数的3倍与乙数的2倍之和等于47,甲数的5倍比乙数的6倍小1,这两个数分别为.三.解答题1.一项调查显示,全世界每天平均有13000人死于与吸烟有关的疾病,我国吸烟者约3.56亿人,占世界吸烟人数的四分之一,比较一年中死于与吸烟有关的疾病的人数占吸烟者总数的百分比,我国比世界其他国家约高0.1%.根据上述资料,试用二元一次方程组解决以下问题:我国及世界其他国家一年(按365天计算)中死于与吸烟有关的疾病的人数分别是多少?(只需设出未知数,列出方程组即可)2.我市某中学组织学生参加夏令营活动,原计划租用45座客车若干辆,但有15人没有座位:若租用同样数量的60座客车,则多出1辆车,且空出30个座位没人座.试问:此次参加夏令营的学生共有多少人?原计划租45座客车多少辆?3.某超市开业十周年举行了店庆活动,对A、B两种商品实行打折出售.打折前,购买5件A商品和1件B商品需用84元;购买6件A商品和3件B商品需用108元.而店庆期间,购买3件A商品和8件B商品仅需72元,求店庆期间超市的折扣是多少?4.某运动员在一场篮球比赛中的技术统计如表所示:根据以上信息,求本场比赛中该运动员投中2分球和3分球各几个.5.某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:名参加的学生人数少于100人.经核算,若两校分别组团共需花费20 800元,若两校联合组团只需花费18 000元.(1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么?(2)两所学校报名参加旅游的学生各有多少人?。
北师大版八年级数学上册 3 应用二元一次方程组——鸡兔同笼
![北师大版八年级数学上册 3 应用二元一次方程组——鸡兔同笼](https://img.taocdn.com/s3/m/5f618d767e21af45b307a840.png)
名师导学
新知
应用二元一次方程组——简单的古代数学问题 解决简单的古代数学问题,关键是要读懂题意,根
据题意找出等量关系,列出二元一次方程组并求解. 【例题精讲】 【例】以绳测井,若将绳三折测之,绳多五尺;若将绳
四折测之,绳多一尺. 绳长、井深各几何?(三尺为1米)
解析 设绳子的长度为x米,井深为y米,三尺为1米,根
据题意,列出二元一次方程组并求解即可.
解析 设设绳子的长度为x米,井深为y米,三尺为 1米,根据题意,列出二元一次方程组并求解即可. 解 设绳子的长度为x米,井深为y米.
【举一反三】
1. “龟鹤同池,龟鹤共100只,共有脚350只,问龟鹤各
多少只.”设龟有x只,鹤有y只,则下列方程组正确的是
( B )
牛二、羊五,直金八两. 问牛、羊各直金几何.”
译文:“假设有5头牛、2只羊,值金10两;2头牛、5只 羊,值金8两. 问每头牛、每只羊各值金多少两.” 设每头牛值金x两,每只羊值金y两,可列方程组为 __________________.
3. 一群鹅一群狗,鹅头狗头五十五,一百五十条腿齐步 走,多少只鹅多少只狗?设鹅与狗分别为x只,y只,由 题意可列出方程组_____________________.
广东学导练
数学
八年级上册
配北师大版
第五章
3
二元一次方程组
应用二元一次方程组——鸡兔同笼
课前预习
1. 笼中有x只鸡,y只兔,共有36只脚,能表示题中数量 关系的方程是 A. x+y=18 C. 4x+2y=36 B. x+y=36 D. 2x+4y=36 ( D )
2. 《九章算术》中记载:“今有牛五、羊二,直金十两;
2024八年级数学上册第五章二元一次方程组3应用二元一次方程组__鸡兔同笼习题课件新版北师大版
![2024八年级数学上册第五章二元一次方程组3应用二元一次方程组__鸡兔同笼习题课件新版北师大版](https://img.taocdn.com/s3/m/27e1b8aba0c7aa00b52acfc789eb172dec639952.png)
3
二元一次方程组
应用二元一次方程组——鸡兔同笼
CONTENTS
目
录
01
1星题
落实四基
02
2星题
提升四能
03
3星题
发展素养
知识点1用二元一次方程组解决和差倍分问题
1. [2024嘉兴模拟]“市长杯”青少年校园足球联赛的比赛规
则是:胜一场得3分,平一场得1分,负一场得0分.某校足
球队在第一轮比赛中赛了9场,只负了2场,共得17分.那
书《四元玉鉴》,原题如下:九百九十九文钱,甜果苦果
买一千,甜果九个十一文,苦果七个四文钱.试问甜苦果
几个?将题目译成白话文,内容如下:九百九十九文钱买
了甜果和苦果共一千个,已知十一文钱可买九个甜果,四
文钱可买七个苦果,那么甜果、苦果各买了多少个?设甜
果买了 x 个,苦果买了 y 个,根据题意,可列方程组
火柴棍连续搭建了如图所示的正三角形和正方形,学生搭
建正三角形和正方形共用了176根火柴棍,正三角形的个
数比正方形的个数多12个,搭建的正三角形和正方形的个
数分别是多少?
1
2
3
4
5
6
7
8
9
10
解:设搭建了 x 个正三角形, y 个正方形,
− = ,
= ,
根据题意,得ቊ
解得ቊ
= .
题意得60 m +80 n =540,
化简得3 m +4 n =27.所以 m =9- n ,取正整数解
= ,
= ,
有ቊ
或ቊ
= .
=
1
2
3
4
5
6
北师大版-数学-八年级上册-应用二元一次方程组--鸡兔同笼 同步作业
![北师大版-数学-八年级上册-应用二元一次方程组--鸡兔同笼 同步作业](https://img.taocdn.com/s3/m/d943eaf5336c1eb91a375de2.png)
应用二元一次方程组--鸡兔同笼1.21枚1角与5角的硬币,共是5元3角,其中1角与5角的硬币各是多少?
设1角硬币x枚,5角硬币y枚,填写下表,并求出x、y的值.
1角5角总和
硬币
数
钱数
2.小兰在玩具厂劳动,做4个小狗、7个小汽车用去3小时42分,做5个小狗、6个小汽车用去3小时37分.平均做一个小狗与1个小汽车各用多少时间?
设做1个小狗用x分,做1个小汽车用y分,填写下表,并求出x、y的值.
小
狗
小汽
车
总
数
用
时
用
时
3.某中学某班买了35张电影票,共用250元,其中甲种票每张8元,乙种票每张6元,甲、乙两种票各买了多少张?
设甲、乙两种票分别买了x张、y张,填写下表,并求出x、y的值.
甲乙总
4.有大小两种盛米的桶,已经知道5个大桶加上1个小桶可以盛3斛米,1个大桶加上5个小桶可以盛2斛米,问1个大桶、1个小桶分别可以盛多少斛米?
设大桶盛米量为x 斛,小桶盛米量为y 斛,填写下表,并求出x 、y 的值.
测验评价结果:________;对自己想说的一句话是:__________________。
参考答案
1.⎩⎨⎧=+=+53521y x y x ,解得⎩⎨⎧==813y x 填表略
2.⎩⎨⎧+⨯=++⨯=+37603654260374y x y x ,解得⎩⎨⎧==2217y x 表略
3.⎩⎨⎧=+=+2506835y x y x ,解得⎩
⎨⎧==1520y x 表略
4.⎩⎨⎧=+=+2535y x y x ,解得⎪⎪⎩
⎪⎪⎨
⎧
==247
2413y x 表略。
北师大版 八年级数学上册 应用二元一次方程组--鸡兔同笼 一课一练(含答案)
![北师大版 八年级数学上册 应用二元一次方程组--鸡兔同笼 一课一练(含答案)](https://img.taocdn.com/s3/m/158106c50b4c2e3f56276397.png)
5.3 应用二元一次方程组--鸡兔同笼一、选择题(共10小题).1.某车间需加工某种零件500个,若用2台自动化车床和6台普通车床加工一天,则还剩10个零件没加工;若用3台自动化车床和5台普通车床加工一天,则可以超额完成15个零件.如果一台自动化车床和一台普通车床一天加工的零件数分别为x个和y个,则下列所列方程组正确的是( )A.{3x+6y=500−102x+5y=600+15B.{2x+5y=500−103x+6y=500+15C.{2x+6y=500−103x+5y=500+15D.{3x+5y=500−102x+6y=500+152.小亮的妈妈用30元钱买了甲、乙两种水果,甲种水果每千克3元,乙种水果每千克5元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x千克,乙种水果y千克,则可列方程组为( )A.{3x+5y=30x=y−2B.{3x+5y=30x=y+2C.{5x+3y=30x=y−2D.{5x+3y=30x=y+23.《九章算术》中,一次方程组是由算筹布置而成的.如图1所示的算筹图,表示的方程组就是{3x+2y=19x+4y=23,类似地,图2所示的算筹图表示的方程组为( )A.{2x+y=114x+3y=22B.{2x+y=114x+3y=27C.{3x+2y=19x+4y=23D.{2x+y=64x+3y=274.《九章算术》中有一道题的条件是:“今有大器五小器一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,若设1个大桶可以盛米x斛,1个小桶可以盛米y斛,则可列方程组为( )A.{5x+y=3x+5y=2B.{x+5y=35x+y=2C.{3x+y=5x+5y=2D.{3x+y=5x+5y=35.某学校20位同学在植树节这天共种了48棵树苗,其中男生每人种2棵,女生每人种3棵,设男生有x人,女生有y人,根据题意.列方程组正确的是( )A.{x+y=482x+3y=20B.{x+y=483x+2y=20C.{x+y=202x+3y=48D.{x+y=203x+2y=486.《一千零一夜》记载了这样一段文字:一群鸽子,一部分在树上唱歌,一部分在树下觅食,树上的一只鸽子对树下的一只鸽子说:“若你们中的一个飞上来一只,则树上的鸽子就是树下的2倍”,树下的鸽子回应说:“树上的鸽子飞下来一只,树上、树下的鸽子就相同了”.设树上的鸽子x只,树下的鸽子y只,根据题意可列方程组为( )A.{x=2yx−1=y+1B.{x+1=2(y−1)x−1=y+1C.{x−1=2(y+1)x+1=y−1D.{x+1=2yx−1=y+17.现用160张铁皮做盒子,每张铁皮做6个盒身或做20个盒底,而一个盒身与两个盒底配成一个盒子,设用x张铁皮做盒身,y张铁皮做盒底,使盒底与盒身正好配套.则可列方程组为( )A.{x+y=1602×6x=20y B.{x+y=1606x=2×20yC.{2y+x=1602×6x=20y D.{2y+x=1606x=20y8.阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”大意是:“一群乌鸦在树上栖息,若每棵树上有3只,则5只没地方去,若每棵树上有5只,则多了一棵树.”设乌鸦x只,数y棵.依题意可列方程组( )A.{3y+5=x5(y−1)=x B.{3x+5=y5(x−1)=yC.{3y+5=x5y=x−5D.{3y=x+55y=x−59.某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元.设甲种票购买了x张,乙种票购买了y张,下面所列方程组正确的是( )A.{x+y=75024x+18y=35B.{x+y=75018x+24y=35C.{x+y=3518x+24y=750D.{x+y=3524x+18y=75010.《孙子算经》是中国古代数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是( )A.{y−x=4.5x−0.5y=1B.{y−x=4.52x−y=1C.{y−x=4.50.5y−x=1D.{y−x=4.5y−2x=1二、填空题11.《九章算术》是中国传统数学名著,其中记载:“今有牛六、羊三,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有6头牛,3只羊,值金10两;2头牛,5只羊,值金8两.问每头牛、每只羊各值金多少两?”若设每头牛、每只羊分别值金x两、y两,则可列方程组为.12.《孙子算经》中有鸡兔同笼问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”,如果设鸡有x只,兔有y只,以题意可得二元一次方程组.13.我国古代很早就开始对一次方程组进行研究,很多题目保留至今,如《九章算术》中有这样的一道古代问题,“有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?”在这个问题中,如果设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据题意,可列方程组为.14.某车间有60名工人,每人平均每天可加工螺栓14个或螺母20个,要使每天加工的螺栓和螺母配套(1个螺栓配2个螺母),设应分配x人生产螺母,y人生产螺栓,依题意列方程组得.15.《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系.其中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:5头牛、2只羊共值金10两.2头牛、5只羊共值金8两.每头牛、每只羊各值金多少两?设1头牛值金x两,1只羊值金y两,则可列方程组为.16.某汽车专卖店销售A,B两种型号的新能源汽车,上周售出1辆A型车和3辆B型车,销售额为96万元.本周售出2辆A型车和1辆B型车,销售额为62万元.若设每辆A型车的售价为x万元,每辆B型车的售价为y万元,根据题意可列出方程组.17.《孙子算经》中记载:“今有三人共车,二车空;二人共车,九人步.问人和车各几何?”其大意是:今有若干人乘车,每3人乘一车,最终剩余2辆空车;若每2人同乘一车,最终剩下9人因无车可乘而步行,问有多少人,多少辆车?设有x 辆车,y 个人,根据题意,可列方程组为 .18.《九章算术》是我国古代数学的经典著作,书中记载了这样一个问题“假令黄金九,白银一十一,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”译文:A 袋中装有黄金9枚(每枚黄金重量相同),B 袋中装有白银11枚(每枚白银重量相同),称重两袋相等;两袋互相交换1枚后,A 袋比B 袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x 两,每枚白银重y 两,请根据题意列方程组: .三、解答题19.我国古代数学名著《孙子算经》中记载了一道题,大意如下:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问大马和小马各有多少匹?请解答上述问题.20.某文具店,甲种笔记本标价每本8元,乙种笔记本标价每本5元(1)两种笔记本各销售了多少?(2)所得销售款可能是660元吗?为什么?21.《九章算术》中有记载:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十,问甲、乙持钱各几何?大意是:今有甲、乙两人持钱不知有多少.若甲得到乙所有钱的12,则有50钱;若乙得到甲所有钱的23,则也有50钱,问甲、乙各持钱多少?请解答此问题.22.为传承中华文化,学习六艺技能,某中学组织初二年级学生到孔学堂研学旅行.已知大型客车每辆能坐60人,中型客车每辆能坐45人,现该校有初二年级学生375人.根据题目提供的信息解决下列问题:(1)这次研学旅行需要大、中型客车各几辆才能使每个学生上车都有座位,且每辆车正好坐满?(2)若大型客车租金为1500元/辆,中型客车租金为1200元/辆,请帮该校设计一种最划算的租车方案.23.3辆小卡车和5辆大卡车一次可运货物31吨,4辆小卡车和3辆大卡车一次可运货物23吨,则小卡车和大卡车每辆每次可以各运货物多少吨?24.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十二两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了12两(袋子重量忽略不计),问黄金、白银每枚各重多少两?(请用方程组解答)答案一、选择题1.C .2.B .3.B .4.A .5.C .6.B .7.A .8.A .9.D .10.A .二、填空题11.{6x +3y =102x +5y =8. 12.{x +y =352x +4y =94. 13.{5x +y =3x +5y =2. 14.{x +y =6020x =2×14y. 15.{5x +2y =102x +5y =8. 16.{x +3y =962x +y =62. 17.{3(x −2)=y 2x +9=y. 18.{9x =11y 8x +y =x +10y −13. 三、解答题19.设大马x 匹,小马y 匹,依题意得:{x +y =1003x +y 3=100, 解得:{x =25y =75,答:大马有25匹,小马有75匹.20.(1)设甲种笔记本销售x 本,乙种笔记本销售y 本,依题意得{x +y =1008x +5y =695, 解得{x =65y =35, 答:甲种笔记本销售65本,乙种笔记本销售35本;(2)所得销售款不可能是660元设甲种笔记本销售x 本,乙种笔记本销售(100﹣x )本,则8x +(100﹣x )×5=660.解得该方程的解不是整数,故销售款不可能是660元.21.设甲、乙的持钱数分别为x ,y ,根据题意可得:{x +12y =50y +23x =50, 解得:{x =37.5y =25, 答:甲、乙的持钱数分别为37.5,25.22.(1)设需要大型客车x 辆,中型客车y 辆,根据题意,得:60x +45y =375,当x =1时,y =7;当x =2时,y =173;当x =3时,y =133;当x =4时,y =3;当x =5时,y =53;当x =6时,y =13;∵要使每个学生上车都有座位,且每辆车正好坐满,∴有两种选择,方案一:需要大型客车1辆,中型客车7辆;方案二:需要大型客车4辆,中型客车3辆.(2)方案一:1500×1+1200×7=9900(元),方案二:1500×4+1200×3=9600(元),∵9900>9600,∴方案二更划算.23.设每辆小卡车每次可以运货物x 吨,每辆大卡车每次可以运货物y 吨,依题意,得:{3x +5y =314x +3y =23,解得:{x =2y =5. 答:每辆小卡车每次可以运货物2吨,每辆大卡车每次可以运货物5吨.24.设每枚黄金重x 两,每枚白银重y 两,由题意得:{9x =11y (10y +x)−(8x +y)=12, 解得{x =33y =27. 答:每枚黄金重33两,每枚白银重27两.。
第5章 二元一次方程组 北师大版八年级上册习题课件 应用二元一次方程组——鸡兔同笼
![第5章 二元一次方程组 北师大版八年级上册习题课件 应用二元一次方程组——鸡兔同笼](https://img.taocdn.com/s3/m/2073e95d0640be1e650e52ea551810a6f524c883.png)
9.(黄石中考)我国传统数学名著《九章算术》记载:“今有牛五、羊二,直金 十九两;牛二、羊五,直金十六两.问牛、羊各直金几何?”译文:“假设有 5 头牛、 2 只羊,值 19 两银子;2 头牛、5 只羊,值 16 两银子.问每头牛、每只羊分别值银 子多少两?”根据以上译文,提出以下两个问题:
得:
x+2y=400, 3x+4y=1000,
解得
x=200, y=100,
答:冰墩墩毛绒玩具的单价为 200 元,雪容融
毛绒玩具的单价为 100 元
知识点二 用二元一次方程组解决古代数学问题
4.(2022·扬州)《孙子算经》是我国古代经典数学名著,其中有一道“鸡兔同笼”
问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何?”学了方程(组)
(1)求每头牛、每只羊各值多少两银子? (2)若某商人准备用 19 两银子买牛和羊(要求既有牛也有羊,且银两须全部用 完),请问商人有几种购买方法?列出所有的可能.
解:(1)设每头牛值 x
两银子,每只羊值
y
两银子,根据题意得
5x 2x
+2y=19, +5y=16
解
得
x=3, y=2.
答:每头牛值 3 两银子,每只羊值 2 两银子
3.(2022·大连)2022 年北京冬奥会吉祥物冰墩墩和冬残奥会吉祥物雪容融深受 大家喜爱.已知购买 1 个冰墩墩毛绒玩具和 2 个雪容融毛绒玩具用了 400 元,购买 3 个冰墩墩毛绒玩具和 4 个雪容融毛绒玩具用了 1000 元.这两种毛绒玩具的单价各 是多少元?
北师大版八年级数学上册5.3应用二元一次方程组—鸡兔同笼同步测试含答案
![北师大版八年级数学上册5.3应用二元一次方程组—鸡兔同笼同步测试含答案](https://img.taocdn.com/s3/m/589ad8c4e87101f69f3195a6.png)
北师大版八年级数学上册第五章5.3应用二元一次方程组---鸡兔同笼同步测试一.选择题1.某部队第一天行军5h,第二天行军6h,两天共行军120km,且第二天比第一天多走2km,设第一天和第二天行军的速度分别为xkm/h和ykm/h,则符合题意的二元一次方程是()A.5x+6y=118 B.5x=6y+2 C.5x=6y﹣2 D.5(x+2)=6y 2.已知甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数.若设甲数为x,乙数为y,由题意得方程组()A.42{43x yx y+==B.42{34x yx y+==C.42{1134x yx y-==D.42{43y xx y+==3.我国古代数学名著《孙子算经》中记载了一道题,大意是:有100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.B.C. D.4.现用160张铁皮做盒子,每张铁皮做6个盒身或做20个盒底,而一个盒身与两个盒底配成一个盒子,设用x张铁皮做盒身,y张铁皮做盒底,使盒底与盒身正好配套.则可列方程组为()A.B.C.D.5.《九章算术》中有一道“盈不足术”问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:现有几个人共同购买一件物品,每人出8钱,则多3钱;每人出7钱,则差4钱,求物品的价格和共同购买该物品的人数.设该物品的价格是x钱,共同购买该物品的有y人,则根据题意,列出的方程组是()A.B.C.D.6.如图,直线a∥b,∠1的度数比∠2的度数大56°,若设∠1=x°,∠2=y°,则可得到的方程组为()A .⎩⎨⎧=+-=18056y x y xB .⎩⎨⎧=++=18056y x y x C .⎩⎨⎧=+-=9056y x y x D .⎩⎨⎧=++=9056y x y x7.某班分组活动,若每组6人,则余下5人:若每组7人,则又少4人.设总人数为x ,组数为y ,则可列方程组( )A .B .C .D .8.某车间有60名工人生产太阳镜,1名工人每天可生产镜片200片或镜架50个.应如何分配工人生产镜片和镜架,才能使产品配套?设安排x 名工人生产镜片,y 名工人生产镜架,则可列方程组( )A .B .C .D .二.填空题9.甲、乙两人各工作5天,共生产零件80件.设甲每天生产零件x 件,乙天生产零件y 件,可列二元一次方程 .10.为了奖励数学社团的同学,张老师恰好用100元的网上购买《数学史话》、《趣味数学》两种书(两种书都购买了若干本),已知《数学史话》每本10元,《趣味数学》每本6元,则张老师最多购买了 《数学史话》11.甲班有男生x 人,女生y 人,其中男生比女生的2倍少8人,列出关于x ,y 的二元一次方程 .12.某车间有56名工人,每人每天能生产螺栓16个或螺母24个,设有x 名工人生产螺栓,其他y 名工人生产螺母,每天生产的螺栓和螺母按1:2配套,则列方程组为 .13.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知3匹小马能拉1片瓦,1匹大马能拉3片瓦,求小马、大马各有多少匹.若设小马有x 匹,大马有y 匹,依题意,可列方程组为 .14.如下图,在长方形ABCD 中,放入六个形状、大小相同的长方形,所标尺寸如图所示,则图中阴影部分的面积是 .三.解答题15.设甲数为x ,乙数为y ,根据下列语句,列出二元一次方程:(1)甲数的一半与乙数的的和为100;(2)甲数与乙数的2倍的和为﹣5;(3)甲数的2倍与乙数的的差为﹣1;(4)甲数翻一番后与乙数的差的一半等于9.16.列方程组解应用题:甲乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么在乙出发后3小时相遇;如果乙比甲先走2小时,那么在甲出发后2.5小时相遇.甲、乙两人每小时各走多少千米?17.为有效开展阳光体育活动,某中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知八年级一班在8场比赛中得到13分,问八年级一班胜、负场数分别是多少?18.北京2008年奥运会跳水决赛的门票价格如下表:等级 A B C票价(元/张)未知未知150小聪带了2700元购票款前往购票,若购买2张A等票和5张B等票,则购票款多出了200元;若购买5张A等票和1张B等票,则购票款还缺100元.(1)若小聪购买1张A等票和7张B等票共需花费多少元?(2)若小聪要将2700元的购票款全部用于购买这三种门票,并且每种门票至少一张,则他购买的门票总数为张.(该小题直接写出答案,不必写出过程.)19.甲、乙、丙三队要完成A、B两项工程.B工程的工作量比A工程的工作量多25%,甲、乙、丙三队单独完成A工程所需的时间分别是20天、24天、30天.为了共同完成这两项工程,先派甲队做A工程,乙、丙二队做B工程;经过几天后,又调丙队与甲队共同完成A工程.两项工程同时施工又同时完工,问乙、丙二队合作了多少天?20.甲、乙、丙三人到文具店购买同一种笔记本和钢笔,甲、乙两人购买的数量及总价分别如表:(1)求笔记本和钢笔的单价;(2)丙购买24本笔记本和若干支钢笔共花去526元,甲发现丙的总价算错了,请通过计算加以说明.21. 二果问价九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个?又问各该几个钱?答案提示1.C.2.B 3.D.4.A.5.B.6.B.7.D.8.C.9. 5(x+y)=80.10.7本.11.x=2y﹣8.12..13..14.44cm2.15.解:如果设甲数为x,乙数为y,那么:(1)甲的一半为x,乙数的为y,那么方程可列为x+y=100;(2)甲数与乙数的2倍分别为x,2y,那么方程可列为x+2y=﹣5;(3)甲数的2倍与乙数的分别为2x,y,所以方程可列为2x﹣y=﹣1;(4)甲数翻一番后为2x,甲数翻一番后与乙数的差的一半为(2x﹣y),那么方程可列为:(2x﹣y)=9.16.解:设甲,乙速度分别为x,y千米/时,,,甲的速度是3.6千米每小时,乙的速度是6千米每小时.17.5,3.18.解:(1)设购买1张A等票需要x元,1张B等票需花费y元,根据题意可得:,解得:,故500+7×300=2600(元),答:小聪购买1张A等票和7张B等票共需花费2600元;(2)若小聪要将2700元的购票款全部用于购买这三种门票,并且每种门票至少一张,则他购买的门票总数为8或9或10张.故答案为:8或9或10.19.解:设乙、丙二队合作了x 天,丙队与甲队合作了y 天.将工程A 视为1,则工程B 可视为1+25%=,由题意得,由此可解得x =15,答:乙、丙二队合作了15天.20.解:(1)设笔记本的单价为x 元,钢笔的单价为y 元,依题意可知:20123121525330x y x y ⎨⎩++⎧==, 解得126x y ⎧⎨⎩==. 答:笔记本的单价为12元,钢笔的单价为6元.(2)526-24×12=238(元),所以买钢笔的总钱数为238元,所以钢笔的支数=238÷6=3923, 这与钢笔支数为整数不符合,故总价算错了.21.分析:这首古诗词翻译成白话文,即:九百九十九文钱可买一千个甜果和苦果,已知十一文钱可买九个甜果,四文钱可买七个苦果,那么甜果、苦果各买多少个?买甜果、苦果各需多少文钱?解:设甜果x 个,苦果y 个,根据题意,得⎩⎨⎧ x +y =1 000,119x +47y =999. 解得⎩⎨⎧ x =657,y =343.因为119x =803,47y =196, 所以甜果657个需803文钱,苦果343个需196文钱.。
北师大版八年级数学上册《5.3应用二元一次方程组—鸡兔同笼》同步练习题-含答案
![北师大版八年级数学上册《5.3应用二元一次方程组—鸡兔同笼》同步练习题-含答案](https://img.taocdn.com/s3/m/3d64879f2dc58bd63186bceb19e8b8f67c1cef39.png)
北师大版八年级数学上册《5.3应用二元一次方程组—鸡兔同笼》同步练习题-含答案一、单选题1.一个两位数,把其十位数字与个位数字交换位置后,所得的数比原数多9,则这样的两位数的个位数字与十位数字的差是()A.0B.1C.2D.92.小明去买2元一支和3元一支的两种圆珠笔(一种圆珠笔至少买一支),恰好花掉30元,则购买方案有()A.4种B.5种C.6种D.7种3.甲是乙现在的年龄时,乙10岁,乙是甲现在的年龄时,甲25岁,那么()A.甲比乙大5岁B.甲比乙大10岁C.乙比甲大10岁D.乙比甲大5岁4.某中学现有学生500人,计划一年后女生在校人数增加3%,男生在校人数增加4%,这样,在校学生总数将增加3.4%.问该校现有女生和男生的人数分别是()A.女生180和男生320B.女生320和男生180C.女生200和男生300D.女生300和男生2005.我国古代数学著作《算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子来量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.5152x yx y=+⎧⎪⎨=-⎪⎩B.5152x yx y=+⎧⎪⎨-=⎪⎩C.525x yx y+=⎧⎨=-⎩D.5152x yx y=-⎧⎪⎨=+⎪⎩6.(中国古代数学问题)5头牛和2只羊,共值银10两;2头牛和5只羊,共值银8两.问一头牛和一只羊各值银几两?设一头牛值银x两,一只羊值银y两,则可列方程组为()A.2510,528x yx y+=⎧⎨+=⎩B.528,2510x yx y+=⎧⎨+=⎩C.5210,258x yx y+=⎧⎨+=⎩D.5510,228x yx y+=⎧⎨+=⎩7.玩具车间每天能生产甲种玩具零件24个或乙种玩具零件12个,若甲种玩具零件一个与乙种玩具零件2个能组成一个完整的玩具,怎样安排生产才能在60天内组装出最多的玩具设生产甲种玩具零件x天,乙种玩具零件y天,则有()A.602412x yx y+=⎧⎨=⎩B.601224x yx y+=⎧⎨=⎩C.6022412x yx y+=⎧⎨⨯=⎩D.6024212x yx y+=⎧⎨=⨯⎩8.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是32=19423x yx y+⎧⎨+=⎩,在图2所示的算筹图所表示的方程组是()A.2114327x yx y+=⎧⎨+=⎩B.21437x yx y+=⎧⎨+=⎩C.2274311x yx y+=⎧⎨+=⎩D.2114327y xy x+=⎧⎨+=⎩二、填空题9.某班共有学生45人,其中男生的2倍比女生的3倍少10人.则男生、女生的人生分别是;10.如图所示的两台天平均能保持平衡,已知每块巧克力的质量相等,每个果冻的质量也相等,则每块巧克力和每个果冻的质量分别为.11.小强问他的数学老师今年多少岁了,数学老师说:“我像你这么大时,你才1岁.你到我这么大时,我就40岁了.”那么数学老师今年的岁数是岁.12.《九章算术》第八卷《方程》记载:“今有六雀七燕,集称之衡,雀俱重,燕俱轻,一雀一燕交而处,衡视平.”意为:六只雀比七只燕重,若将这群雀和这群燕互相交换一只以后,两群鸟一样重;当然,每只雀一样重,每只燕也一样重.假设一只雀重a克,则用含a的式子表示一只燕的重量为克.13.第十四届三国文化旅游周吸引了大量的游客,游客们品读三国文化,赏鉴花都美景,感受许昌盛情,共赴了一场“许”久“魏”见的美好时光,旅游周期间,一家酒店接待了一个35人的旅游团,酒店的客房只剩下4间一人间和若干间三人间,住宿价格是一人间每晚100元,三人间每晚140元(说明:三人间客房可以不住满,但每间每晚仍需支付140元).已知该旅游团一晚的住宿房费为1740元,则他们租住了 间一人间.14.某酒店客房部有三人间普通客房,双人间普通客房,收费标准为:三人间150元间,双人间140元/间.为吸引游客,酒店实行团体入住5折优惠措施,一个48人的旅游团,优惠期间到该酒店入住,住了一些三人间普通客房和双人间普通客房,若每间客房正好住满,且一天共花去住宿费1380元,则该旅游团住了三人间普通客房和双人间普通客房共 间.三、解答题15.糖葫芦一般是用竹签串上山楂,再蘸以冰糖制作而成.现将一些山楂分别串在若干根竹签上.如果每根竹签串5个山楂,还剩余4个山楂;如果每根竹签串8个山楂,还剩余7根竹签.这些竹签有多少根?山楂有多少个?16.某家具厂生产一种方桌,1立方米的木材可做20个桌面或400条桌腿,现有12立方米的木材,怎样分配生产桌面和桌腿使用的木材,才能使桌面、桌腿刚好配套,一共可生产多少张方桌?(一张方桌有1个桌面,4条桌腿)17.某蔬菜种植户有甲、乙两块菜地,甲菜地去年收获kg x 西蓝花,乙菜地去年收获kg y 西蓝花,今年在县技术专家的帮助下,甲菜地增收10%,乙菜地增收15%.(1)今年两块菜地共收获__________kg 西蓝花;(用含x ,y 的代数式表示)(2)若去年两块菜地共收获10000kg 西蓝花,今年共收获11200kg 西蓝花,求甲、乙两块菜地今年分别收获多少千克西蓝花.18.某服装厂生产一批运动服,6米长的布料可做上衣4件或裤子6条,计划用300米长的布料生产该批次运动服(1)分别用多少米布料生产上衣和裤子才能恰好配套?(2)在(1)的条件下,若该布料的价格是25元/米,运动服售价80元/套,则生产该批次运动服能盈利多少元?19.某纸品加工厂利用边角料裁出正方形和长方形两种硬纸片,长方形的宽与正方形的边长相等(如图2),再将它们制作成甲乙两种无盖的长方体小盒(如图1).(注:图1中向上的一面无盖)(1)如果制作甲、乙两种无盖的长方体小盒各一个,则共需长方形纸片张,正方形纸片张;(2)现将400张长方形硬纸片和200张正方形硬纸片全部用于制作这两种小盒,可以做成甲乙两种小盒各多少个?参考答案1.B2.A3.A4.D5.A6.C7.C8.A9.男25,女2010.20 g ,30g11.2712.45a 13.214.1915.竹签有20根,山楂有104个16.桌面10立方米 桌腿2立方米 桌子200张 17.(1)()1.1 1.15x y +(2)甲菜地今年收获6600kg 西蓝花,乙菜地今年收获4600kg 西蓝花. 18.(1)用180米布料生产上衣,120米布料生产裤子(2)2100元 19.(1)7;3(2)可以做成甲乙两种小盒各40个,80个。
八年级数学上册 5.3 应用二元一次方程组—鸡兔同笼练
![八年级数学上册 5.3 应用二元一次方程组—鸡兔同笼练](https://img.taocdn.com/s3/m/25597fb589eb172ded63b7e3.png)
5.3 应用二元一次方程组——鸡兔同笼基础题知识点1 列二元一次方程组解应用题1.设马四匹,牛六头,共价四十八两;马三匹,牛五头,共价三十八两,则( )A .马价4两,牛价6两B .马价3两,牛价8两C .马价6两,牛价4两D .马价8两,牛价3两2.一群鹅来一群狗,鹅头狗头五十五,一百五十条腿齐步走,多少鹅来多少狗?设鹅与狗分别有x 、y 只,由题意可列方程组为________________.3.(绍兴中考)我国古代数学名著《孙子算经》中有这样一题,今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?此题的答案是:鸡有23只,兔有12只.现在小敏将此题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?则此时的答案是:鸡有________只,兔有________只.4.在《一千零一夜》中有这样一段文字:有一群鸽子一部分在树上欢歌,一部分在地上觅食,树上一只鸽子对地上觅食的鸽子说:“若从你们中飞上来一只,则地上的鸽子就是整群的13,若从树上飞下来一只到地上,则树上和地上的鸽子就一样多了”.则树上鸽子有________只,地上鸽子有________只.5.《九章算术》方程问题:“五只雀、六只燕,共重1斤(等于16两),雀重燕轻.互换其中一只,恰好一样重.问:每只雀、燕的重量各为多少?”知识点2 列二元一次方程组解和、差、倍、分问题6.(温州中考)20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x 人,女生有y 人.根据题意,列方程组正确的是( )A.⎩⎪⎨⎪⎧x +y =523x +2y =20B.⎩⎪⎨⎪⎧x +y =522x +3y =20 C.⎩⎪⎨⎪⎧x +y =202x +3y =52 D.⎩⎪⎨⎪⎧x +y =203x +2y =52 7.学校的篮球比排球数的2倍少3个,篮球数与排球数的比是3∶2,求两种球各有多少个.若设篮球有x 个,排球有y 个,根据题意列方程组为( )A.⎩⎪⎨⎪⎧x =2y -33x =2yB.⎩⎪⎨⎪⎧x =2y +33x =2y C.⎩⎪⎨⎪⎧x =2y +32x =3y D.⎩⎪⎨⎪⎧x =2y -32x =3y8.小鸣的妈妈叫他到农贸市场买猪肉,到了市场后他发现妈妈给的钱,若买1千克猪肉,则少4元;若买0.5千克猪肉,则余8元.那么猪肉每千克________元,妈妈给他的钱是________元.9.为迎接中考,平时很多同学购买了2B 铅笔和涂卡尺.根据图中信息,求2B 铅笔和涂卡尺的单价.中档题10.(鞍山中考)如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15.两根铁棒长度之和为220 cm ,此时木桶中水的深度是________cm.11.阅读下面的诗句,求出诗句中的鸦与树的数量:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”12.(铜仁中考)某旅行社组织一批游客外出旅游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元,问:(1)这批游客的人数是多少?原计划租用多少辆45座客车?(2)若租用同一种车,要使每位游客都有座位,应该怎样租用才合算?综合题13.某班将举行“庆祝建党95周年知识竞赛”活动,班长安排小明购买奖品,下面两图是小明买回奖品时与班长的对话情境:请根据上面的信息,解决问题:(1)试计算两种笔记本各买了多少本?(2)请你解释:小明为什么不可能找回68元?参考答案1.C2.⎩⎪⎨⎪⎧x +y =552x +4y =150 3.22 11 4.7 5 5.设每只雀、燕的重量各为x 两,y 两,由题意得⎩⎪⎨⎪⎧5x +6y =16,4x +y =5y +x.解得⎩⎪⎨⎪⎧x =3219,y =2419.答:每只雀、燕的重量各为3219两,2419两.6.D7.D8.24 209.设2B 铅笔和涂卡尺的单价分别为x 元、y 元,根据题意,得⎩⎪⎨⎪⎧5x +y =5.5,3x +2y =5.4.解得⎩⎪⎨⎪⎧x =0.8,y =1.5.答:2B 铅笔和涂卡尺的单价分别为0.8元和1.5元.10.8011.设鸦有x 只,树有y 棵.根据题意,得⎩⎪⎨⎪⎧x -53=y ,x 5=y -1,解得⎩⎪⎨⎪⎧x =20,y =5.答:鸦有20只,树有5棵.12.(1)设这批游客的人数共x 人,原计划租用45座客车y 辆. 根据题意,得⎩⎪⎨⎪⎧45y +15=x ,60(y -1)=x. 解得⎩⎪⎨⎪⎧x =240,y =5.答:这批游客共240人,原计划租45座客车5辆.(2)租45座客车:240÷45≈5.3(辆),所以需租6辆,租金为220×6=1 320(元);租60座客车:240÷60=4(辆),所以需租4辆,租金为300×4=1 200(元).答:租用4辆60座客车更合算.13.(1)设5元、8元的笔记本分别买x 本、y 本,依题意,得⎩⎪⎨⎪⎧x +y =40,5x +8y =300-68+13.解得⎩⎪⎨⎪⎧x =25,y =15.答:5元和8元的笔记本分别买了25本和15本.(2)假设小明找回68元,设5元,8元的笔记本分别买m 本,n 本, 则⎩⎪⎨⎪⎧m +n =40,5m +8n =300-68.解得⎩⎪⎨⎪⎧m =883,n =323.因为m ,n 为正整数,所以不合题意.故不可能找回68元.。
应用二元一次方程组——鸡兔同笼 同步练习 北师大版八年级数学上册(含答案)
![应用二元一次方程组——鸡兔同笼 同步练习 北师大版八年级数学上册(含答案)](https://img.taocdn.com/s3/m/0cf3fa9b58fafab068dc02e7.png)
5.3 应用二元一次方程组——鸡兔同笼一、填空题1. 《算法统宗》是中国古代数学名著,作者是明代著名数学家程大位.在其中有这样的记载“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”译文:有100名和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各有几人?设有大和尚x人,小和尚y人,可列方程组为.2某学校有两种类型的学生宿舍30间,大宿舍每间可以住8人,小宿舍每间可以住5人,该学校共有198个住宿生,恰好可以住满这30间宿舍,若设大宿舍x间,小宿舍y间,则可以列出的方程组为:.3现有古代数学问题:“今有牛五羊二值金八两;牛二羊五值金六两,则牛一羊一值金两.”4商店里把塑料凳整齐地叠放在一起,据图的信息,当有10张塑料凳整齐地叠放在一起时的高度是cm.二、选择题5学校的篮球数比排球数的2倍少3个,篮球数与排球数的比是3:2,求两种球各有多少个?若设篮球有x个,排球有y个,根据题意得方程组()A.B.C.D.6“十•一”国庆期间,学校组织466名八年级学生参加社会实践活动,现已准备了49座和37座两种客车共10辆,刚好坐满,设49座客车x辆,37座客车y辆.根据题意,得()A.B.C.D.7如图,将正方形ABCD的一角折叠,折痕为AE,∠BAD比∠BAE大48°.设∠BAE和∠BAD的度数分别为x,y,那么x,y所适合的一个方程组是()A.B.C.D.8我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.B.C.D.三、解答题9疫情无情人有情,八方相助暖人心.一爱心人士向某社区捐赠了A品牌一次性医用口罩5000个和B品牌免洗消毒液100瓶,总价值18000元.已知10个A品牌一次性医用口罩与1瓶B品牌免洗消毒液共需84元.求A品牌一次性医用口罩和B品牌免洗消毒液的单价分别是多少?10“两果问价”问题出自我国古代算书《四元玉鉴》,原题如下:九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个?又问各该几个钱?将题目译成白话文,内容如下:九百九十九文钱买了甜果和苦果共一千个,已知十一文钱可买九个甜果,四文钱可买七个苦果,那么甜果、苦果各买了多少个?买甜果和苦果各需要多少文钱?11某化妆晚会上,男生脸上涂蓝色油彩,女生脸上涂红色油彩,游戏时,每个男生都看见涂红色油彩的人数比涂蓝色油彩的人数的2倍少1人,而每个女生都看见涂蓝色油彩的人数是涂红色油彩的人数的,问晚会上男、女生各多少人?12如图是由截面为同一种长方形的墙砖粘贴的部分墙面,其中三块横放的墙砖比一块竖放的墙砖高10cm,两块横放的墙砖比两块竖放的墙砖低40cm,求每块墙砖的截面面积.13小林、小芳和小亮三人玩飞镖游戏,各投5支飞镖,规定在同一圆环内得分相同,中靶和得分情况如图,则小亮的得分是.14我国古代问题:以绳测井,若将绳三折测之,绳多四尺,若将绳四折测之,绳多一尺,井深几何?这段话的意思是:用绳子量井深,把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺,井深几尺?则该问题的井深是尺.15如图,在大长方形ABCD中,放入6个相同的小长方形,则图中阴影的面积为.16某文具店最近有A,B两款毕业纪念册比较畅销,近两周的销售情况是:第一周A款销售数量是15本,B款销售数量是10本,销售总价是230元;第二周A款销售数量是20本,B款销售数量是10本,销售总价是280元.(1)求A,B两款毕业纪念册的销售单价;(2)若某班准备用不超过529元购买这两种款式的毕业纪念册共60本,求最多能够买多少本A款毕业纪念册.17阅读理解(Ⅰ)我国古代很早就开始对一次方程组进行研究,其中不少成果被收录在中国古代数学著作《九章算术》中,它的方程章中就有许多关于一次方程组的内容.下面的两幅算筹图就表示了两个二元一次方程组:把它们写成我们现在的方程组是与.(Ⅱ)对于二元一次方程组,我们可以将x,y的系数和相应的常数项排成一个数表,通过运算使数表变为,即可求得的方程组的解为,用数表简化解二元一次方程组的过程如下:∴方程组的解为.解答下列问题:(1)直接写出下面算筹图(图2)表示的关于x,y的二元一次方程组.(2)依照阅读材料(Ⅱ)中数表的解法格式解(1)中你写出的二元一次方程组.5.3 应用二元一次方程组——鸡兔同笼一、填空题1. 《算法统宗》是中国古代数学名著,作者是明代著名数学家程大位.在其中有这样的记载“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”译文:有100名和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各有几人?设有大和尚x人,小和尚y人,可列方程组为.【考点】由实际问题抽象出二元一次方程组.【答案】见试题解答内容【分析】设大和尚有x人,则小和尚有y人,根据“有100个和尚”和大和尚一人分3只,小和尚3人分一只刚好分完100个馒头”列出方程组即可.解:设大和尚有x人,则小和尚有y人,根据题意得,故答案为:.2某学校有两种类型的学生宿舍30间,大宿舍每间可以住8人,小宿舍每间可以住5人,该学校共有198个住宿生,恰好可以住满这30间宿舍,若设大宿舍x间,小宿舍y间,则可以列出的方程组为:.【分析】要求大小宿舍各有多少间,就要设出未知数,根据:宿舍30间;大的宿舍每间可住8人,小的每间可住5人,该校198个住宿生恰好住满这30间宿舍.这两个等量关系列方程.解:由题意可得,,故答案是:.3现有古代数学问题:“今有牛五羊二值金八两;牛二羊五值金六两,则牛一羊一值金两.”【分析】设一牛值金x两,一羊值金y两,根据“牛五羊二值金八两;牛二羊五值金六两”,即可得出关于x、y的二元一次方程组,两方程相加除以7,即可求出一牛一羊的价值.解:设一牛值金x两,一羊值金y两,根据题意得:,(①+②)÷7,得:x+y=2.故答案为:二.4商店里把塑料凳整齐地叠放在一起,据图的信息,当有10张塑料凳整齐地叠放在一起时的高度是cm.【分析】设塑料凳桌面的厚度为xcm,腿高hcm,根据题意得,求出塑料凳桌面的厚度和腿高,然后即可计算出当有10张塑料凳整齐地叠放在一起时的高度.解:设塑料凳桌面的厚度为xcm,腿高hcm,根据题意得,,解之得,x=3,h=20,则10张塑料凳整齐地叠放在一起时的高度是20+3×10=50cm.二、选择题5学校的篮球数比排球数的2倍少3个,篮球数与排球数的比是3:2,求两种球各有多少个?若设篮球有x个,排球有y个,根据题意得方程组()A.B.C.D.【分析】此题中的等量关系有:①学校的篮球数比排球数的2倍少3个;②篮球数与排球数的比是3:2.解:根据学校的篮球数比排球数的2倍少3个,得方程x=2y﹣3;根据篮球数与排球数的比是3:2,得方程x:y=3:2,即2x=3y.可列方程组.故选:D.6“十•一”国庆期间,学校组织466名八年级学生参加社会实践活动,现已准备了49座和37座两种客车共10辆,刚好坐满,设49座客车x辆,37座客车y辆.根据题意,得()A.B.C.D.【答案】A【分析】根据“准备了49座和37座两种客车共10辆,且466人刚好坐满”,即可得出关于x,y的二元一次方程组,此题得解.解:依题意,得:.故选:A.7如图,将正方形ABCD的一角折叠,折痕为AE,∠BAD比∠BAE大48°.设∠BAE和∠BAD的度数分别为x,y,那么x,y所适合的一个方程组是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组;翻折变换(折叠问题).【答案】A【分析】设∠BAE和∠BAD的度数分别为x,y,根据将正方形ABCD的一角折叠,折痕为AE,∠BAD比∠BAE大48°可列出方程组.解:设∠BAE和∠BAD的度数分别为x,y,.故选:A.8我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【专题】一次方程(组)及应用.【答案】A【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.解:设索长为x尺,竿子长为y尺,根据题意得:.故选:A.三、解答题9疫情无情人有情,八方相助暖人心.一爱心人士向某社区捐赠了A品牌一次性医用口罩5000个和B品牌免洗消毒液100瓶,总价值18000元.已知10个A品牌一次性医用口罩与1瓶B品牌免洗消毒液共需84元.求A品牌一次性医用口罩和B品牌免洗消毒液的单价分别是多少?【考点】二元一次方程组的应用.【专题】一次方程(组)及应用;应用意识.【答案】A品牌一次性医用口罩单价是2.4元/个,B品牌免洗消毒液的单价是60元/瓶.【分析】设A品牌一次性医用口罩单价是x元/个,B品牌免洗消毒液的单价是y元/瓶,由“A品牌一次性医用口罩5000个和B品牌免洗消毒液100瓶,总价值18000元.已知10个A品牌一次性医用口罩与1瓶B品牌免洗消毒液共需84元”列出方程组可求解.解:设A品牌一次性医用口罩单价是x元/个,B品牌免洗消毒液的单价是y元/瓶,由,解得:,答:A品牌一次性医用口罩单价是2.4元/个,B品牌免洗消毒液的单价是60元/瓶.10“两果问价”问题出自我国古代算书《四元玉鉴》,原题如下:九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个?又问各该几个钱?将题目译成白话文,内容如下:九百九十九文钱买了甜果和苦果共一千个,已知十一文钱可买九个甜果,四文钱可买七个苦果,那么甜果、苦果各买了多少个?买甜果和苦果各需要多少文钱?【考点】一元一次方程的应用;二元一次方程组的应用.【专题】一次方程(组)及应用;应用意识.【答案】见试题解答内容【分析】设甜果买了x个,苦果买了y个,根据九百九十九文钱买了甜果和苦果共一千个,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入x,y中即可求出结论.解:设甜果买了x个,苦果买了y个,依题意,得:,解得:,∴x=803,y=196.答:甜果买了657个,需要803文钱;苦果买了343个,需要196文钱.11某化妆晚会上,男生脸上涂蓝色油彩,女生脸上涂红色油彩,游戏时,每个男生都看见涂红色油彩的人数比涂蓝色油彩的人数的2倍少1人,而每个女生都看见涂蓝色油彩的人数是涂红色油彩的人数的,问晚会上男、女生各多少人?【考点】二元一次方程组的应用.【答案】见试题解答内容【分析】等量关系:①每个男生都看见涂红色油彩的人数比涂蓝色油彩的人数的2倍少1人;②每个女生都看见涂蓝色油彩的人数是涂红色油彩的人数的.解:设晚会上女、男生各x,y人,根据题意,得,解得.答:晚会上男、女生人数各12人、21人.12如图是由截面为同一种长方形的墙砖粘贴的部分墙面,其中三块横放的墙砖比一块竖放的墙砖高10cm,两块横放的墙砖比两块竖放的墙砖低40cm,求每块墙砖的截面面积.【考点】一元一次方程的应用;二元一次方程组的应用.【专题】一次方程(组)及应用;应用意识.【答案】525cm2.【分析】设每块墙砖的长为xcm,宽为ycm,根据“三块横放的墙砖比一块竖放的墙砖高10cm,两块横放的墙砖比两块竖放的墙砖低40cm”列方程组求解可得.解:设每块墙砖截面的长为x cm,宽为y cm.根据题意,得,解得,∴每块墙砖的截面面积是35×15=525(cm2).答:每块墙砖的截面积是525cm2.13小林、小芳和小亮三人玩飞镖游戏,各投5支飞镖,规定在同一圆环内得分相同,中靶和得分情况如图,则小亮的得分是.【考点】二元一次方程组的应用.【答案】见试题解答内容【分析】设掷中外环区、内区一次的得分分别为x,y分,根据等量关系列出方程组,再解方程组即可.解:设掷中外环区、内区一次的得分分别为x,y分,依题意得:,解这个方程组得:,则小亮的得分是2x+3y=6+15=21分.故答案为21;14我国古代问题:以绳测井,若将绳三折测之,绳多四尺,若将绳四折测之,绳多一尺,井深几何?这段话的意思是:用绳子量井深,把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺,井深几尺?则该问题的井深是尺.【考点】一元一次方程的应用;二元一次方程组的应用.【专题】一次方程(组)及应用;应用意识.【答案】见试题解答内容【分析】可设绳长为x尺,井深为y尺,根据等量关系:①绳长的﹣井深=4尺;②绳长的﹣井深=1尺;列出方程组求解即可.解:设绳长是x尺,井深是y尺,依题意有,解得,.故井深是8尺.故答案为:8.15如图,在大长方形ABCD中,放入6个相同的小长方形,则图中阴影的面积为.【考点】二元一次方程组的应用.【专题】方程思想;一次方程(组)及应用.【答案】见试题解答内容【分析】设小长方形的长为x厘米,宽为y厘米,观察图中给定的数据,可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再利用阴影部分的面积=大长方形的面积﹣6×小长方形的面积,即可求出结论.解:设小长方形的长为x厘米,宽为y厘米,依题意,得:,解得:,∴14×(6+2y)﹣6xy=44.故答案为:44cm2.16某文具店最近有A,B两款毕业纪念册比较畅销,近两周的销售情况是:第一周A款销售数量是15本,B款销售数量是10本,销售总价是230元;第二周A款销售数量是20本,B款销售数量是10本,销售总价是280元.(1)求A,B两款毕业纪念册的销售单价;(2)若某班准备用不超过529元购买这两种款式的毕业纪念册共60本,求最多能够买多少本A款毕业纪念册.【考点】二元一次方程组的应用;一元一次不等式的应用.【专题】一元一次不等式(组)及应用.【答案】见试题解答内容【分析】(1)直接利用第一周A款销售数量是15本,B款销售数量是10本,销售总价是230元;第二周A款销售数量是20本,B款销售数量是10本,销售总价是280元,分别得出方程求出答案;(2)利用不超过529元购买这两种款式的毕业纪念册共60本,得出不等式求出答案.解:(1)设A款毕业纪念册的销售价为x元,B款毕业纪念册的销售价为y元,根据题意可得:,解得:,答:A款毕业纪念册的销售价为10元,B款毕业纪念册的销售价为8元;(2)设能够买a本A款毕业纪念册,则购买B款毕业纪念册(60﹣a)本,根据题意可得:10a+8(60﹣a)≤529,解得:a≤24.5,则最多能够买24本A款毕业纪念册.17阅读理解(Ⅰ)我国古代很早就开始对一次方程组进行研究,其中不少成果被收录在中国古代数学著作《九章算术》中,它的方程章中就有许多关于一次方程组的内容.下面的两幅算筹图就表示了两个二元一次方程组:把它们写成我们现在的方程组是与.(Ⅱ)对于二元一次方程组,我们可以将x,y的系数和相应的常数项排成一个数表,通过运算使数表变为,即可求得的方程组的解为,用数表简化解二元一次方程组的过程如下:∴方程组的解为.解答下列问题:(1)直接写出下面算筹图(图2)表示的关于x,y的二元一次方程组.(2)依照阅读材料(Ⅱ)中数表的解法格式解(1)中你写出的二元一次方程组.【考点】数学常识;规律型:数字的变化类;二元一次方程组的解;解二元一次方程组;由实际问题抽象出二元一次方程组.【专题】构造法;一次方程(组)及应用;模型思想.【答案】(1);(2).【分析】(1)模仿(Ⅰ)利用图1写出方程组的方式可写出图2对应的二元一次方程组是;(2)按照(Ⅱ)中图解消元法可求得此方程组的解为.解:(1)图2对应的二元一次方程组是;(2)按照(Ⅱ)中图解此方程组如下∴此方程组的解为.。
5 3 应用二元一次方程组 鸡兔同笼(课后练习) 北师大版数学八年级上册
![5 3 应用二元一次方程组 鸡兔同笼(课后练习) 北师大版数学八年级上册](https://img.taocdn.com/s3/m/776a5ad6dbef5ef7ba0d4a7302768e9951e76e8f.png)
5.3 应用二元一次方程组--鸡兔同笼(课后练习)北师大版八年级上册一.选择题1.《九章算术》中有这样的问题:质问隔壁人分银,不知多少银和人,每人6两少6两,每人半斤多半斤,试问各位善算者,多少人分多少银?(注:这里的斤是指市斤,1市斤=1﹣两),设共有x人,y两银子,下列方程组中,正确的是()A.B.C.D.2.如图,直线AB与CD相交于点O,且∠AOD=150°.∠EOB比∠COE大90°,设∠COE=x°,∠EOB=y°,则可得到的方程组为()A.B.C.D.3.一道来自课本的习题:从甲地到乙地先有一段上坡路后有一段平路.如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地需54分钟,从乙地到甲地需42分钟,甲地到乙地全程是多少?小红将这个实际问题转化为二元一次方程组问题,采用间接设法:设坡路有xkm,平路有ykm,则全程为(x+y)km.已经列出一个方程=,则另一个方程正确的是()A.=B.C.D.=4.程大位,明代商人,珠算发明家,被称为珠算之父、卷尺之父.少年时,读书极为广博,对数学颇感兴趣,60岁时完成其杰作《直指算法统宗》(简称《算法统宗》).在《算法统宗》里记载了一道趣题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人?下列是四位同学的解答:①小明:设大和尚有x人,小和尚有y人,根据题意可列方程组为;②小丽:设大和尚有x人,小和尚有y人,根据题意可列方程组为;③小东:设大和尚有x人,则小和尚有(100﹣x)人,根据题意可列方程为;④小华:设大和尚有x人,则小和尚有(100﹣x)人,根据题意可列方程为100﹣3x=.其中,以上解答一定正确的是()A.①②③B.②③④C.①④D.①③5.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是()A.B.C.D.6.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺?设木长为x尺,绳子长为y尺,则可列方程组为()A.B.C.D.7.《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有二人共车九人步;三人共车,二车空.问:人与车各几何?译文:若每辆车都坐2人,则9需要步行:若每辆车都坐3人,则两辆车是空的,问:车与人各多少?设有x辆车,y个人,根据题意,列方程组是()A.B.C.D.8.《增删算法统宗》提到:“今有布绢三十疋,共卖价钞五百七.四疋绢价九十贯,三疋布价该五十.欲问绢布各几何?……”其大意是:今有绢与布30疋,卖得570贯钱,4疋绢价90贯,3疋布价50贯,问绢与布各有多少.设绢有x疋,布有y疋,依据题意可列方程组为()A.B.C.D.9.某工厂有26名工人,一个工人每天可加工800个螺栓或1000个螺帽,1个螺栓与2个螺帽配套,现要求工人每天加工的螺栓和螺帽完整配套且没有剩余.若设安排x个工人加工螺栓,y个工人加工螺帽,则列出正确的二元一次方程组为()A.B.C.D.10.一条船顺流航行,每小时行25km;逆流航行,每小时行17km.设轮船在静水中的速度为xkm/h,水的流速为ykm/h.根据题意,得到的方程组是()A.B.C.D.二.填空题11.某校准备购买签字笔和笔袋奖励优秀学生,第一次购买签字笔40支,笔袋30个,购买总价为960元.第二次购买签字笔60支,笔袋50个,购买总价为1500元.每次购买签字笔和笔袋的单价都相同,求签字笔和笔袋的单价分别是多少元?若设签字笔x元/支,笔袋y 元/个,则根据题意可列方程组为.12.某校为美化校园,计划对一些区域进行绿化,安排了甲、乙两个工程队完成,两队共完成了面积为400m2区域的绿化.已知甲队每天能完成绿化的面积是10m2,乙队每天能完成绿化的面积是5m2,甲队比乙队晚10天完成任务.设甲队和乙队分别完成的绿化面积为xm2和ym2,根据题意列出方程组:.13.甲乙两人加工一批零件,甲先加工了一半,然后乙加工了剩下部分,前后共用了10天完成,如果甲乙两人一起加工,6天可加工完,如设甲、乙两人单独加工完成这批零件各需x天、y天可列方程组为.14.小明与爸爸的年龄和是52岁,爸爸对小明说:“当我的年龄是你现在的年龄的时候,你还要16年才出生呢.”如果设现在小明的年龄是x岁,爸爸的年龄是y岁,则可列二元一次方程组为:.15.根据图中提供的信息,写出T恤衫的单价x(元/件)与驱虫剂的单价y(元/瓶)满足的二元一次方程组.三.解答题16.《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文.甲、乙两人原来各有多少钱?17.如图:用8块相同的长方形拼成一个宽为48厘米的大长方形,每块小长方形的长和宽分别是多少?解:设小长方形的长是x厘米,宽是y厘米题中的两个相等关系:(1)小长方形的长+=大长方形的宽可列方程为:;(2)小长方形的长=,可列方程为:.18.根据题意列二元一次方程组:(1)两批货物,第一批360吨,用5节火车皮和12辆汽车正好装完;第二批500吨,用7节火车皮和16辆汽车正好装完.每节火车皮和每辆汽车平均各装货物多少吨?(2)某校课外小组的学生准备外出活动;若每组7人,则余下3人;若每组8人,则有一组只有3人;求这个课外小组分成几组?共有多少人?19.某县在创建省级卫生文明县城中,对县城内的河道进行整治.现有一段长为180米的河道整治任务由甲、乙两个工程队先后接力完成.甲工程队每天整治8米,乙工程队每天整治12米,共用时20天.(1)小明、小华两位同学提出的解题思路如下:小明同学:设整治任务完成后甲工程队整治河道x米,乙工程队整治河道y米.根据题意,得小华同学:设整治任务完成后,m表示,n表示;得请你补全小明、小华两位同学的解题思路.(2)求甲、乙两工程队分别整治河道多少米?请从中任选一个方程组求解.(写出完整的解答过程)20.在当地农业技术部门指导下,小明家种植的菠萝喜获丰收.去年菠萝的收入结余12000元,今年菠萝的收入比去年增加了20%,支出减少10%,结余今年预计比去年多11400元.请计算:(1)今年结余元;(2)若设去年的收入为x元,支出为y元,则今年的收入为元,支出为元.(以上两空用含x、y的代数式表示)(3)列方程组计算小明家今年种植菠萝的收入和支出.。
北师大版八年级数学上册--第五单元 《应用二元一次方程组-鸡兔同笼》应用题精选练习题(含答案)
![北师大版八年级数学上册--第五单元 《应用二元一次方程组-鸡兔同笼》应用题精选练习题(含答案)](https://img.taocdn.com/s3/m/b9d4b3b187c24028915fc3d8.png)
《应用二元一次方程组---鸡兔同笼》应用题精选一.列方程组:1、一个笼里装有鸡和兔子,它们共有8个头、22只脚。
设笼中有x只鸡,y只兔子,根据题意,可列方程组为2、我市某企业向玉树地震灾区捐助价值26万元的甲、乙两种帐篷共300顶.已知甲种帐篷每顶800元,乙种帐篷每顶1000元。
设甲帐篷有x顶,乙种帐篷有y 顶,根据题意,可列方程组为3、受气候等因素的影响,今年某些农产品的价格有所上涨. 张大叔在承包的10亩地里所种植的甲、乙两种蔬菜共获利13800元.其中甲种蔬菜每亩获利1200元,乙种蔬菜每亩获利1500元。
设甲种蔬菜种植了x亩,乙种蔬菜种植了y亩,根据题意可列方程组为4、花农培育甲种花木2株,乙种花木3株,共需成本1700元;培育甲种花木3株,乙种花木1株,共需成本1500元.设甲种花木每株成本为x元,乙种花木每株成本为y元,可列方程组为5、在实施“中小学校舍安全工程”之际,某市计划对A、B两类学校的校舍进行改造,根据预算,改造一所A类学校和三所B类学校的校舍共需资金480万元,改造三所A类学校和一所B类学校的校舍共需资金400万元.如果改造一所A类学校的校舍需要x万元,改造一所B类学校的校舍需要y万元,根据题意,可列方程组为6、去冬今春,我市部分地区遭受了罕见的旱灾.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.设饮用水有x件,蔬菜有y 件,则可列方程组为7、2009年北京市生产运营用水和居民家庭用水的总和为5.8亿立方米,其中居民家庭用水比生产运营用水的3倍还多0.6亿立方米。
设生产运营用水x亿立方米,生产居民家庭用水y亿立方米,根据题意可列方程组为二.列方程并解答:1、某住宅小区计划购买并种植甲、乙两种树苗共300株.已知甲种树苗每株60元,乙种树苗每株90元.若购买树苗共用21000元,问甲、乙两种树苗应各买多少株?2、2010年1月1日,全球第三大自贸区——中国——东盟自由贸易区正式成立,标志着该贸易区开始步入“零关税”时代.广西某民营边贸公司要把240吨白砂糖运往东盟某国的A、B两地,现用大、小两种货车共20辆,恰好能一次性装完这批白砂糖.已知这两种货车的载重量分别为15吨/辆和10吨/辆,求这两种货车各用多少辆;3、为了抓住世博会商机,某商店决定购进A、B两种世博会纪念品.若购进A 种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品5件,B种纪念品3件,需要550元.求购进A、B两种纪念品每件各需多少元?4、郑老师想为希望小学四年(3)班的同学购买学习用品,了解到某商店每个书包的价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典。
数学北师大版八年级上册应用二元一次方程组——鸡兔同笼.3应用二元一次方程组——鸡兔同笼
![数学北师大版八年级上册应用二元一次方程组——鸡兔同笼.3应用二元一次方程组——鸡兔同笼](https://img.taocdn.com/s3/m/d611ecc8551810a6f5248647.png)
把y=12代入③,得x=23 24, y 12.
解:设鸡为x 只,兔为y 只.则 x+y=35, ① 2x+4y=94. ②
加减消元
①×2 得: 2x+2y=70, ③ ②-③ 得:2y=24, y=12. 把 y=12 代入①, 得x=23. 答:有鸡23只,兔12只.
例1
以绳测井。若将绳三折测之,绳 多五尺;若将绳四折测之,绳多 一尺。绳长、井深各几何?
题 目 大 意 是 :
用绳子测水井深度,如果将绳 子折成三等份,一份绳长比井 深多5米;如果将绳子折成四等 份,一份绳长比井深多1尺。问 绳长、井深各是多少尺?
等量关系: 绳长的 绳长的
1 3
1 4
— 井深=5 —井深=1
1、解:设每头牛价值为x两,每只羊价值y两.
{
5x+2y=10, 2x+5y=8.
x+y=100 , 0.5x+y=80.
2、解:设铅笔x支,圆珠笔y支.
3、解:设有板凳x个,木马y个
x y 33, 4 x 3 y 101.
指出下列方程组求解过程中是否有错误,若有请给予订正:
2x 2 y 6 ① ( 2) 4x 3y 8 ②
解:由①×2得: 4x+4y=12③ ③- ②得:y=4 把y=4代入①得x=-1 原方程组的解是
原方程组的解是
x=1, y=-1.
x=-1, y=4.
应用二元一次方程组 ——鸡兔同笼
今有鸡兔同笼, 上有三十五头, 下有九十四足, 问鸡兔各几何? 1、“上有三十五头” 是什么意思?
2、“下有九十四足” 又是什么意思?
鸡兔同笼
今有鸡兔同笼,
北师大版八年级数学上册《应用二元一次方程组—鸡兔同笼》二元一次方程组
![北师大版八年级数学上册《应用二元一次方程组—鸡兔同笼》二元一次方程组](https://img.taocdn.com/s3/m/9a69230ba66e58fafab069dc5022aaea998f41f7.png)
(2)A,B两种花卉每株的价格各是多少元? 解: 设A,B两种花卉每株的价格分别是x元、y元.
10x+25 y=225,
根据题意x=,10得, 20x+15 y=275.
y=5.
解得
所以A,B两种花卉每株的价格分别是10元、5元.
第十八页,共十九页。
列二元一次方程组解决实际问题是把“未知”
第十四页,共十九页。
同类变式
9.如图,分别用火柴棍连续搭建正三角形和正六边
形,公共边只用一根火柴棍,如果搭建正三角形
和正六边形共用了2 016根火柴棍,并且正三角形
的个数比正六边形的个数多6个,请分别求出能连
续搭建正三角形、正六边形的个数.
第十五页,共十九页。
10.【2016·镇江】校田园科技社团计划购进A,B两
转化成“已知”的过程,关键是把已知量和未知量
联系起来.一般来说,有几个未知量就必须列出几
个方程,所列方程必须满足: (1)方程两边表示的是同类量; (2)同类量的单位要统一;
(3)方程两边的数值要相等.
足球的总费用是1 000元. 第九页,共十九页。
题型 3 盈余问题
7.食堂存有一批粮食,若每天用去140 kg,按预 计天数计算,就缺少50 kg;若每天用去120 kg, 那么到期后还可余70 kg.食堂的师傅估计现有 存粮700~800 kg,你能否通过计算检验他的估
计?
第十页,共十九页。
解: 设现有存粮为x kg,预计天数为y天.
3.小龙和小刚两人玩“打弹珠”游戏,小龙对小 刚说:“把你弹珠的一半给我,我就1有10颗弹 珠.”小刚却说:“只要把你的 3给我,我 就有10颗弹珠.”那么小刚的弹珠颗数是多少?
北师大版八年级数学上册应用二元一次方程组——鸡兔同笼测试卷
![北师大版八年级数学上册应用二元一次方程组——鸡兔同笼测试卷](https://img.taocdn.com/s3/m/9256b3c55a8102d277a22f23.png)
北师大版八年级数学测试卷(考试题)5.3 应用二元一次方程组——鸡兔同笼1.21枚1角与5角的硬币,共是5元3角,其中1角与5角的硬币各是多少?设1角硬币x枚,5角硬币y枚,填写下表,并求出x、y的值.1角5角总和硬币数x y21钱数5元3角2.小兰在玩具厂劳动,做4个小狗、7个小汽车用去3小时42分,做5个小狗、6个小汽车用去3小时37分.平均做一个小狗与1个小汽车各用多少时间?设做1个小狗用x分,做1个小汽车用y分,填写下表,并求出x、y的值.小狗小汽车总数用时用时3.某中学某班买了35张电影票,共用250元,其中甲种票每张8元,乙种票每张6元,甲、乙两种票各买多少张?设甲、乙两种票分别买了x张、y张,填写下表,并求出x、y的值.甲乙总和票数x y钱数4.有大小两种盛米的桶,已经知道5个大桶加上一个小桶可以盛3斛米,1个大桶加上5个小桶可以盛2斛米,问1个大桶、1个小桶分别可以盛多少斛米?设大桶盛米量为x斛,小桶盛米量为y斛,填写下表,并求出x、y的值.大桶小桶总量盛米盛米测验评价结果:________;对自己想说的一句话是:__________________。
参考答案1.⎩⎨⎧=+=+53521y x y x ,解得⎩⎨⎧==813y x 填表略2.⎩⎨⎧+⨯=++⨯=+37603654260374y x y x ,解得⎩⎨⎧==2217y x 表略3.⎩⎨⎧=+=+2506835y x y x ,解得⎩⎨⎧==1520y x 表略4.⎩⎨⎧=+=+2535y x y x ,解得⎪⎪⎩⎪⎪⎨⎧==2472413y x 表略附赠材料:怎样提高答题效率 直觉答题法相信自己的第一感觉厦门英才学校彭超老师说,“经验表明,从做题的过程来看,同学们要相信自己的第一感觉,不要轻易改动第一次做出的选择,第一感觉的正确率在80%以上。
”这是因为当我们回忆时以往学过的知识时,往往是自己平时的书写习惯或阅读习惯的内容首先浮现于脑际。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《应用二元一次方程组---鸡兔同笼》应用题精选
一.列方程组:
1、一个笼里装有鸡和兔子,它们共有8个头、22只脚。
设笼中有x只鸡,y只兔子,根据题意,可列方程组为
2、我市某企业向玉树地震灾区捐助价值26万元的甲、乙两种帐篷共300顶.已知甲种帐篷每顶800元,乙种帐篷每顶1000元。
设甲帐篷有x顶,乙种帐篷有y 顶,根据题意,可列方程组为
3、受气候等因素的影响,今年某些农产品的价格有所上涨. 张大叔在承包的10亩地里所种植的甲、乙两种蔬菜共获利13800元.其中甲种蔬菜每亩获利1200元,乙种蔬菜每亩获利1500元。
设甲种蔬菜种植了x亩,乙种蔬菜种植了y亩,根据题意可列方程组为
4、花农培育甲种花木2株,乙种花木3株,共需成本1700元;培育甲种花木3株,乙种花木1株,共需成本1500元.设甲种花木每株成本为x元,乙种花木每株成本为y元,可列方程组为
5、在实施“中小学校舍安全工程”之际,某市计划对A、B两类学校的校舍进行改造,根据预算,改造一所A类学校和三所B类学校的校舍共需资金480万元,改造三所A类学校和一所B类学校的校舍共需资金400万元.如果改造一所A类学校的校舍需要x万元,改造一所B类学校的校舍需要y万元,根据题意,可列方程组为
6、去冬今春,我市部分地区遭受了罕见的旱灾.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.设饮用水有x件,蔬菜有y 件,则可列方程组为
7、2009年北京市生产运营用水和居民家庭用水的总和为5.8亿立方米,其中居民家庭用水比生产运营用水的3倍还多0.6亿立方米。
设生产运营用水x亿立方米,生产居民家庭用水y亿立方米,根据题意可列方程组为
二.列方程并解答:
1、某住宅小区计划购买并种植甲、乙两种树苗共300株.已知甲种树苗每株60元,乙种树苗每株90元.若购买树苗共用21000元,问甲、乙两种树苗应各买多少株?
2、2010年1月1日,全球第三大自贸区——中国——东盟自由贸易区正式成立,标志着该贸易区开始步入“零关税”时代.广西某民营边贸公司要把240吨白砂糖运往东盟某国的A、B两地,现用大、小两种货车共20辆,恰好能一次性装完这批白砂糖.已知这两种货车的载重量分别为15吨/辆和10吨/辆,求这两种货车各用多少辆;
3、为了抓住世博会商机,某商店决定购进A、B两种世博会纪念品.若购进A 种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品5件,B种纪念品3件,需要550元.求购进A、B两种纪念品每件各需多少元?
4、郑老师想为希望小学四年(3)班的同学购买学习用品,了解到某商店每个书包的价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典。
每个书包和每本词典的价格各是多少元?
5、某校团委为了教育学生,开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,共用110元; 且买甲种笔记本30个比买乙种笔记本20个少花10元。
求甲、乙两种笔记本的单价各是多少元?
参考答案
一.列方程组:
1、 82422x y x y +=⎧⎨+=⎩,
2、3008001000260000
x y x y +=⎧⎨+=⎩,
3101200150013800x y x y +=⎧⎨+=⎩、 4、23170031500x y x y +=⎧⎨+=⎩
5、33803400x y x y +=⎧⎨+=⎩,
6、32080
x y x y +=⎧⎨=+⎩,
7、 5.830.6x y x y +=⎧⎨=+⎩
二.列方程并求解:
1、解:设甲种树苗买x 株,乙种树苗买y 株.
300609021000x y x y +=⎧⎨+=⎩,解得200100x y =⎧⎨=⎩
答:甲种树苗买200株,乙种树苗买100株.
2、解:设大车用x 辆,小车用y 辆.依据题意,得
20x y x y +=⎧⎨⎩,15+10=240.,解得812x y =⎧⎨=⎩
,. 答:大车用8辆,小车用12辆
3、解:设该商店购进一件A 种纪念品需要a 元,购进一件B 种纪念品需要b 元
105100053550a b a b ⎧⎨⎩+=+=,解方程组得50100a b ⎧⎨⎩==
答∴购进一件A 种纪念品需要50元,购进一件B 种纪念品需要100元
4、解:设每个书包的价格为x 元,词典的价格为y 元/个,由题意可得:
832124x y x y -=⎧⎨+=⎩,解得2820
x y =⎧⎨=⎩ 答:每个书包的价格为28元,每个词典的价格为20元
5、解:设甲种笔记本的单价是x 元,乙种笔记本的单价是y 元.
根据题意可得
23110
301020
x y
x y
+=
⎧
⎨
+=
⎩
,解得
3
5
x
y
=
⎧
⎨
=
⎩
答:甲种笔记本的单价是3元,乙种笔记本的单价是5元。