初中数学第六章一次函数复习卷课堂练习

合集下载

八年级第六章一次函数测试题

八年级第六章一次函数测试题

八年级第六章一次函数测试题一填空题:一、已知某晚报的售价是每份0.50元,y表示销售x份报纸的总价,那么y与x的函数关系式是()。

假设直线y=kx通过点(1,2),那么k的值是()二、假设函数y=(m—2)x+5—m是一次函数,那么m知足的条件是()假设此函数是正比例函数,那么m的值是(),假设函数y=kx—4的图象平行于直线y=—2 x那么函数的表达式是()关于一次函数y=1—2x,y随着x的增大而()3、如图是某地域一天的气温随时刻转变的图象,依照图象回答(1)t=()时,气温最高,最高气温T=()0C(2)t=()时,气温最低,最低气温T=()0C(3)在()时段内,气温持续不变,(4)在()段内,气温不断下降。

(5)晚上8点时,气温()0C,(6)t=()时,气温达60C4、假定甲、乙在一次赛跑中,路程s与时刻t的关系如下图,那么能够明白,(1)这是一次()米赛跑,(2)甲、乙两人中先抵达终点的是()(3)乙在这次赛跑中的速度是()。

二、选择题一、以下说法不正确的选项是()A 一次函数不必然是正比例函数。

B 不是一次函数就必然不是正比例函数C 正比例函数是特殊的一次函数,D 不是正比例函数就必然不是一次函数二、假设一次函数y=—x+b的图象通过点A 1B —1C 4D -43、以下函数中,y随x的增大而增大的函A y=2—xB y=—2x+1C y=x—24、A、B两辆汽车均匀行驶的速度别离为VB(千米/小时),两辆汽车行驶的路程S(的函数关系图象别离是射线LA、TB如下图A VA= VB B VA>VBC VA<VB五、李明骑车上学,一开始以某一速度行进下来修车,车修好后,因怕迟到,于是加速四个函数图象中(S是距离,t是时刻),符A B C D六、一根蜡烛长20cm,点燃后每小时燃烧5与燃烧时刻t(小时)的函数关系用图象表A B C D7、假设一次函数y=2mx+(m2—2m)的值为()A 2B 0C 0或2D 无法三、解答题公司规定旅客可随一、已知一次函数y=x+2,(1)在平面直角身携带一定重量的行李,如果超过规坐标系中画出函数的y=x+2的图象。

苏科版初中数学第六章复习课:一次函数复习练习

苏科版初中数学第六章复习课:一次函数复习练习

一次函数复习姓名:旧知回顾:1.下列函数关系式:①;②③;④。

其中一次函数的个数是()A. 1个 B.2个 C.3个 D.4个2、函数y=2x图象经过点(0, )与点(1, ), y随x的增大而;3、直线y=-3x-6与x轴的交点坐标是_ ,与y轴的交点坐标为;4、函数y=(1-k)x中y随x的增大而减小,则k 的范围是;5、直线y=3x-1经过象限,直线y=-2x+5经过象限;6 若直线y=kx+b和直线y=-x平行,与y轴交点的纵坐标为-2,则直线的解析式为_______.知识点:1、一次函数的概念:函数y=_______(k、b为常数,k______)叫做一次函数。

当b_____时,函数y=____(k____)叫做正比例函数。

2、正比例函数y=kx(k≠0)的图象是过点(_____),(______)的_________。

3、一次函数y=kx+b(k≠0)的图象是过点(0,___),(____,0)的__________。

4、正比例函数y=kx(k≠0)的性质:⑴当k>0时,图象过______象限;y随x的增大而____。

⑵当k<0时,图象过______象限;y随x的增大而____。

5、一次函数y=kx+b(k ≠ 0)的性质:⑴当k>0时,y随x的增大而_________。

⑵当k<0时,y随x的增大而_________。

⑶根据下列一次函数y=kx+b(k ≠ 0)的草图回答出各图中k、b的符号:6、平面内两条直线的位置关系:平行或相交.若两条直线为y=x+和y=x+当__________________时,两直线平行,当__________________时,两直线相交于y轴上.互动合作:已知:一次函数y=x + 4⑴它的图像经过第______象限,不经过第__象限⑵它的图像与x轴交于点A(),与y轴交于点B()。

⑶y随x的增大(减小)而___(__)⑷S△AOB=___.⑸原点O到直线AB的距离是多少?⑹当x_____时,y>0;当x_____时,y=0;当x_____时,y<0;⑺当-6≤x≤3时,y的取值范围是__________⑻点M(3,8)____直线AB上, 点N(-2,5)____直线AB上(填在或不在).⑼将直线AB沿y轴向___平移___个单位,得y=x⑽将直线AB沿x轴向右平移一个单位,求新一次函数的关系式.(11)将直线AB沿y轴翻折,求新一次函数的关系式.生成反馈:1.已知一次函数+3,则= .2.已知点(-4,y1),(2,y2)都在直线y=-x+m上,则y1,y2的大小关系是_______.3.一次函数y=2x+4,当x_____时,y>0;当x>0时,y______.当-3≤x≤1时,y的取值范围是_4.如图,直线y=–x+12与x轴、y轴分别交于A点和B点,C是OB上的一点,若将△ABC沿AC 翻折得到△AB′C,B′落在x轴上,(1)求其图象与坐标轴的两个交点间的线段的长度;(2)求原点到该图象的距离.(3)A,C两点的直线的解析式.。

初二数学下第六章一次函数课后练习题答案(北师大版)

初二数学下第六章一次函数课后练习题答案(北师大版)

第六章⼀次函数随堂练习§6.1 函数1.(1)可将T看成t的函数;(2)可将y看成x的函数;(3)可将y看成m的函数。

习题6,l知识技能1.(1)反映了抛射距离s与⾼度h之问的关系;(2)依次为2.0,2.5,2.65,2.5,2.0,1.2,0;(3)确定;(4)⾼度h可以看成距离s的函数§6.2 ⼀次函数随堂练习1. y=2.2x,y是x的⼀次函数,也是x的正⽐例函数2. y=100+80x,y是x的⼀次函数.习题6.2知识技能1.y= ⼀3x.问题解决2.(1)y=50+0.4x;(2)152×0.4+50=l10.8元;(3)( 200—50)÷0.4=375分钟.3.(1)Y=0.6x;(2)152×0.6=91.2元;(3)200÷0.6≈333分钟,4.(1)选择A类收费⽅式;(2)每⽉通话250分时,两类收费⽅式所缴话费相等.§6.3 ⼀次函数的图像随堂练习略习题 6.3知识技能1.(2,1)。

2.略随堂练习3. y值随着x值的增⼤⽽减⼩的有(2)、(4).习题 6.4知识技能1.略。

2.函数Y=4x⼀3中,Y的值随X值的增⼤⽽增⼤.3.Y=3x,数学理解4.2m—l<0.m<1/2,m为 0,⼀l,⼀2时,y的值随X的增⼤⽽减⼩.§6.4 确定⼀次函数表达式随堂练习1.b=3,B(1,5),c(⼀3/2,0)2.(1)b=2,k= ⼀2/3;(2) ⼀18;(3)⼀42.习题 6.5知识技能1.Y= —3x/2.2. k= ⼀4/3 , b=1.问题解决4.(1)v=25—10t;(2)2.5秒§6.5 ⼀次函数图像的应⽤1.(1)x= ⼀2;(2)y=0.5x+1.习题 6.6知识技能1..约2.5kg.2.(1)约5.1 cm;(2)约11.4cm;(3)10天3.(1) 200km习题 6.7知识技能1.3 000元,3 500元,—500元.问题解决b d s f i d = " 3 3 5 " > f o n t s i z e = " 2 " b d s f i d = " 3 3 6 " > &n b s p ; / f o n t > / p > p b d s f i d = " 3 3 7 " >。

初中数学北师大版《八年级上》《第六章 一次函数》精选专项试题训练【57】(含答案考点及解析)

初中数学北师大版《八年级上》《第六章 一次函数》精选专项试题训练【57】(含答案考点及解析)

一次函数》精选专初中数学北师大版《八年级上》《第六章 ) 含答案考点及解析(】57项试题训练【___________ 分数:___________ 姓名::___________ 班级下面的折线图描述了某地某日的气温变化情况,根据图形提供的信息,下列结论错误的是1.()℃10.这一天的温差是A 时气温在逐渐下降00:00--4:0.在B C时气温都在上升00:00--14:4.在 [时气温最高00:14.D .C【答案】初中数学知识点》函数及其图像》函数基础知识【考点】【解析】℃,故选10℃,所以这一天的温差为22℃,最低温度为32、这一天的最高温度为A 试题分析:项正确;、在B时气温在逐渐下降,故选项正确;00:00--4:0:00--8:6气温上升,00:00--6:4、在C时气温在上升,故选00:00--14:8气温没有变化,00项错误;时气温最高,故选项正确.00:14、D C故选.考点:函数的图象.并使其面积为矩形面积,的形状ABCD若将四根木条钉成的矩形木框变形为平行四边形,如图2. ________________.则这个平行四边形的一个最小内角的值等于,的一半【答案】30°初中数学知识点》图形与证明》四边形【考点】使其面积为矩形面积的一半,由于两个四边形的底相等,所以平行四边形的高为矩形宽【解析】.30°的一半,在直角三角形中一条直角边等于斜边的一半,则它所对的锐角为CD的一半,即高为____________则地毯长度至少需,米的楼梯表面铺地毯5为AB坡面线段距离,米3在高,如图3.米. 7【答案】初中数学知识点》图形与证明》三角形【考点】两直角边的=,将楼梯表面向下和右平移,则地毯的总长4由勾股定理求出另一直角边为【解析】和=3+4=7.儿童节活动会场,气球的种类有笑脸和爱心两种,两”六一“陈老师打算购买气球装扮学校4.个气4种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为15.D16.C18.B19.A【答案】初中数学知识点》方程(组)与不等式(组)》二元一次方程组【考点】【解析】试题分析:要求出第三束气球的价格,根据第一、二束气球的价格列出方程组,应用整体思想求值:,元一个,由题意,得y元一个,爱心形的气球x设笑脸形的气球两式相加,得,。

北师大课标版 - 八年级上第六章 一次函数 练习试卷

北师大课标版 - 八年级上第六章 一次函数 练习试卷

第十七章 反比例函数单元测试题 一、选择题(每小题5分.共25分) 1.下列函数中.y 是x 的反比例函数的是( ) (A)12y x =- (B) 21y x = (C) 11y x =- (D) 11y x =- 2.已知y 与x 成正比例.z 与y 成反比例,那么z 与x 之间的关系是( ) (A)成正比例, (B)成反比例 (c)有可能成正比例,也有可能是反比例 (D)无法确定. 3.如图,函数(1)y k x =+与k y x =在同一坐标系中,图象只能是下图中的( ) 4.三角形的面积为24cm ,底边上的高()y cm 与底边()x cm 之间的函数关系图象大致应为( )5.已知反比例函数(0)ky k x =<的图象上有两点1122(,)(,)A x y B x y ,且12x x <则12y y -的值是( )(A)正数 (B)负数 (C)非正数 (D)不能确定二、填空题(每小题5分,共25分)密封线初二( )班姓名 编号:6.某奶粉生产厂要制造一种容积为2升(1升=1立方分米)的圆柱形桶,桶的底面面积S 与桶高h 有怎样的函数关系式 .7.一水桶的下底面积是盖面积的2倍,如果将其底朝下放在桌子上,它对桌面的压强是600Pa ,翻过来放, 对桌面的压强是 .8.设有反比例函数1k y +=,1122(,)(,)x y x y 为其图象上两点,若12x x <0<,12y y >则k 的取值范围 .9.直线y kx b =+过一、三、四象限,则函数b y kx=的图象在 象限,并且在每一个象限内y 随x 的增大而 .10.如图所示是三个反比例函数1k y x =,2k y x =,3k y x=的图象,由此观察1k 、2k 、3k 的大小关系是 (用“<”连接).三、解答下列问题.(第11、12两题各10分,13题14分,14题16分,共50分)11.已知变量y 与()1x +成反比例,且当2x =时,1y =-,求y 和x 之间的函数关系.12.如图.正比例函数(0)y kx k =>与反比例函数k y x=的图象相交于A 、C 两点,过A 作x 轴的垂线交x 轴于B ,连 BC ,求△ABC 的面积13.某空调厂的装配车间计划组装9000台空调: ⑴从组装空调开始,每天组装的台数m (单位:台/天)与生产的时间t (单位:天)之间有怎样的函数关系?⑵原计划用2个月时间(每月以30天计算)完成,由于气温提前升高,厂家决定这批空调提前十天上市,那么装配车间每天至少要组装多少空调?14.如图,正方形OABC 的面积为9,点O 为坐标原点,点B 在函数(0,0)ky k x x =>>的图象上,点(,)P m n 是函数(0,0)ky k x x =>>的图象上任意一点,边点P 分别作x 轴、y 轴的垂线,垂足分别为E 、F ,并设矩形OEPF 和正方形OABC 不重合部分的面积为S.(提示:考虑点P 在点B 的左侧或右侧两种情况) ⑴求B 点的坐标和k 的值; ⑵当92S =时,求P 点的坐标;⑶写出S 关于m 的函数关系式.。

最新初中八年级数学题库 八年级第六章 一次函数复习题

最新初中八年级数学题库 八年级第六章 一次函数复习题

班 学号 姓名__________________________◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆第六章 一次函数复习卷课堂练习一、填空题1、点P (2,—1)在第 象限,关于x 轴对称的点坐标为 ,关于Y 轴对称的点坐标为 关于原点对称的点坐标为2. 如右图,用(0,0)表示O 点的位置, 用(2,3)表示M 点的 位置, 则用 表示N 点的位置. 3、正比例函数y=kx 的图象是经过 点的一条直线当k >0时,图像从左到右 ,直线经过第 象限 当k <0时,图像从左到右 ,直线经过第 象限4、一次函数y=kx+b 的图象是 当k >0时,y 的值随x 的值的增大而 当k <0时,y 的值随x 的值的增大而5、已知正比例函数y=k x 的图象经过点(-1,3),函数的表达式是 .6、已知一次函数y=kx+4的图象经过点(-1,2),则函数的表达式是 二、选择题1、点P (13++m m ,)在直角坐标系的x 轴上,则点P 的坐标为( )A .(0,-2)B .(2,0)C .(4,0)D .(0,-4)2、将平面直角坐标系内的△ABC 的三个顶点坐标的横坐标乘以-1,纵坐标不变,•则所得的三角形与原三角形( ).A .关于x 轴对称B .关于y 轴对称;C .关于原点对称D .无任何对称关系 3、下面哪个点不在函数y = -2x+3的图象上( )A .(-5,13) B.(0.5,2) C.(3,0) D.(1,1) 4、下列函数中,y 的值随x 的值增大而增大的是( ) A. y= -3x B. y=2x - 1 C. y= -3x+10 D. y= -2x+1 5、函数b kx y +=(k >0,b <0)的图象大致是( )三、解答题1、画出函数y=-2x —4的图象,(1)图象与x 轴交于点 ,与y 轴交于点 。

初二数学上册第六章一次函数复习题

初二数学上册第六章一次函数复习题

初二数学上册第六章一次函数复习题八年级数学上册第六章一次函数复习题1、请你写出一个经过点(1,1)的函数解析式 .2、在函数y??2x?3中,当自变量x满足时,图象在第一象限.3、中国电信宣布,从2001年2月1日起,县城和农村电话收费标准一样,在县内通话3分钟内的收费是0.2元,每超1分钟加收0.1元,则电话费y(元)与通话时间t(t?3分,t为正整数)的函数关系是;4、老师给出一个函数,甲、乙、丙各正确指出了这个函数的一个性质:甲:函数的图象经过第一象限;乙:函数的图象经过第三象限;丙:在每个象限内,y随x的增大而减小.请你根据他们的叙述构造满足上述性质的一个函数: 5、一个函数的图象经过点(1,2),且y随x的增大而增大而这个函数的解析式是(只需写一个) 6、如果点A(―2,a)在函数y=?1x+3的图象上,那么a的值等于2A、―7 B、3 C、―1 D、47、小明、小强两人进行百米赛跑,小明比小强跑得快,如果两人同时跑,小明肯定赢,现在小明让小强先跑若干米,图中的射线a、b分别表示两人跑的路程与小明追赶时间的关系,根据图象判断:小明的速度比小强的速度每秒快A、1米B、1.5米C、2米D、2.5米8、2021年6月3日中央新闻报道,为鼓励居民节约用水,北京市将出台新的居民用水收费标准:①若每月每户居民用水不超过4立方米,则按每立方米2元计算;②若每月每户居民用水超过4立方米,则超过部分按每立方米4.5元计算(不超过部分仍按每立方米2元计算).现假设该市某户居民某月用水x立方米,水费为y元,则y与x的函数关系用图象表示正确的是9、如图,l1反映了某公司的销售收入与销售量的关系,l2反映了该公司产品的销售成本与销售量的关系,当该公司赢利(收入大于成本)时,销售量()A 小于3吨B 大于3吨C 小于4吨D 大于4吨10、如图中的图象(折线ABCDE)描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为80千米/时;④汽车自出发后3小时至4.53小时之间行驶的速度在逐渐减少.其中正确的说法共有()A、1个B、2个C、3个D、4个11、某影碟出租店开设两种租碟方式:一种是零星租碟,每张收费1元;另一种是会员卡租碟,办卡费每月12元,租碟费每张0.4元 . 小彬经常来该店租碟,若每月租碟数量为x张.(1)写出零星租碟方式应付金额y1(元)与租碟数量x(张)之间的函数关系式: (2)写出会员卡租碟方式应付金额y2(元 )与租碟数量x(张)之间的函数关系式: (3)小彬选取哪种租碟方式更合算?12、某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:x(元) 15 20 30 ? y(件) 25 20 10 ?若日销售量y是销售价x的一次函数.(1)求出日销售量y(件)与销售价x(元)的函数关系式: (2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?S/km 13、图9是某汽车行驶的路程S(km)与时间t(min)40 的函数关系图.观察图中所提供的信息,解答下列问题:(1)汽车在前9分钟内的平均速度是(2)汽车在中途停了多长时间?12 (3)当16≤t≤30时,求S与t的函数关系式.0 9 16 30 t/min14、如图15―1和15―2,在20×20的等距网格(每格的宽和高均是1个单位长)中,Rt△ABC从点A与点M重合的位置开始,以每秒1个单位长的速度先向下平移,当BC边与网的底部重合时,继续同样的速度向右平M Q 移,当点C与点P重合时,Rt△ABC停止移A 动.设运动时间为x秒,△QAC的面积为y.(1)如图15―1,当Rt△ABC向下平移到Rt△BC A1B1C1的位置时,请你在网格中画出Rt△A1B1C1A1 O 关于直线QN成轴对称的图形;(2)如图15―2,在Rt△ABC向下平移的过程B1 C1 中,请你求出y与x的函数关系式,并说明当x分别取何值时,y取得最大值和最小值?最大值和最小值分别是多少?P N 图15―1M Q (3)在Rt△ABC向右平移的过程中,请你说明当x取何值时,y取得最大值和最小值?最大值和最值分别是多少?为什么?AOBC15、在某地,人们发现某种蟋蟀1分钟所叫次数与当地温度之间近似为一次函数关系。

八年级数学上册第六章一次函数复习试题_1

八年级数学上册第六章一次函数复习试题_1

创作人:历恰面日期:2020年1月1日一次函数【学习目的】1、进一步感受生活中的常量与变量,领会变量之间的互相依存与制约;进一步明确函数表示法的灵敏性与多样性,进一步领会一次函数的定义、图像、性质、应用以及它与正比例函数的关系;2、经历数学知识的应用过程,开展应用数学知识的意识和才能,进一步感知本章课本表达和浸透的重要数学思想方法。

3、进一步培养初步的数形结合的意识和才能,激发学习兴趣。

【重点难点】重点:能较纯熟地运用一次函数有关知识解决相关问题难点:能较纯熟地运用一次函数有关知识解决相关问题一、【学前预习反应】1、请举例说明什么是常量,什么是变量,什么是函数?2、我们可用怎样的方式表达变量之间的函数关系?3、什么样的函数是一次函数?它与正比例函数有什么关系?4、一次函数的图像是;创作人:历恰面日期:2020年1月1日5、在一次函数y=kx+b〔k、b 为常数,K≠0〕的图象中,〔1〕当k>0时,y的值随x值的而;函数图象一定经过、象限。

当k<0时,y的值随x值的而;函数图象一定经过、象限。

〔2〕假如k>0、b>0,那么一次函数的图象经过、、象限;假如k>0、b<0,那么一次函数的图象过、、象限;假如k<0、b>0,那么一次函数的图象经过、、象限;假如k<0、b<0,那么一次函数的图象经过、、象限;6、直线y=kx+b是由直线y=kx沿y轴平移| 个单位得到的;直线y=kx+b是由直线y=kx沿X轴平移个单位得到的。

二、【新知探求】例题分析:例1、如图表示一个正比例函数与一个一次函数的图象,它们交于点A〔4,3〕交于点B,且OA=OB,求这两个函数的解析式. 分析:确定一次函数解析式需要两个HY条件,创 作人: 历恰面 日 期:2020年1月1日创 作人: 历恰面 日 期: 2020年1月1日此题的关键是确定点B 的坐标.例2、一次函数的图像与x 轴正半轴交于点A ,与y 轴负半轴交于点B,与正比例函数y=32x 的图像交于点C ,假设C 点的横坐标为6,求: 〔1〕一次函数的解析式;〔2〕△ABC 的面积;〔3〕原点O 到直线AB 的间隔 。

苏科版八年级数学上册第六章一次函数单元复习必刷卷

苏科版八年级数学上册第六章一次函数单元复习必刷卷

苏科版八年级数学上册第六章一次函数单元复习必刷卷一、单选题1.下列函数中y 不是x 的函数的是( )A .1y x = B .y =x C .y =﹣x D .y 2=x2.函数:①y= -2x+1; ②x+y=0;③xy=3;④y= x 2+1;⑤y=(x+5)-x 中,属于y 是x 的一次函数的有( )A .1个B .2个C .3个D .4个3.正比例函数y =kx (k ≠0)的函数值y 随x 的增大而增大,则一次函数y =﹣x ﹣k 的图象是( )A .B .C .D .4.甲、乙两车从A 城出发匀速驶向B 城,在整个行驶过程中,两车离开A 城的距离()y km 与甲车行驶的时间()t h 之间的函数关系如图,则下列结论中错误的是( )A .A ,B 两相距300千米B .乙车比甲车晚出发1小时,却早到1小时C .乙车出发1.5小时后追上甲车D .当甲、乙两车相距50千米时,54t =或1545.已知直线1y k x b =+与直线2y k x =都经过点()2,4--,则方程组12y k x b y k x =+⎧⎨=⎩的解是( )A .24x y =⎧⎨=⎩B .24x y =⎧⎨=-⎩C .24x y =-⎧⎨=⎩D .24x y =-⎧⎨=-⎩6.如图,函数y =ax +4和y =2x 的图象相交于点A (m ,3),则不等式ax +4>2x 的解集为( )A .x 32<B .x <3C .x 32>D .x >37.在平面直角坐标系中,已知一次函数y=﹣34x+6与x ,y 轴分别交于A ,B 两点,点C (0,n )是y 轴上一点,把坐标平面沿直线AC 折叠,点B 刚好落在x 轴上,则点C 的坐标是( )A .(0,3)B .(0,43)C .(0,83) D .(0,73) 8.如图,点A 、B 以及直线l 在66⨯的正方形网格中,每个小正方形的边长为单位1.在网格中建立直角坐标系后,A 、B 两点的坐标分别()1,2-、()3,0,在直线l 上找一点P 使得AP BP +最小,则P 点的坐标为( )A .()1,1-B .()2,1-C .()0,1-D .()2,2-9.周末,明明步行去爷爷、奶奶家看望爷爷、奶奶,在爷爷、奶奶家呆了一段时间后,他按原路返回家中,明明离家的距离y (单位:m )与他所用的时间t (单位:min )之间的函数关系如图所示,下列说法正确的是( )A .明明家离爷爷、奶奶家900mB .明明从家去爷爷、奶奶家的平均速度为75m /minC .明明从爷爷、奶奶家返回家中的平均速度仍为75m /minD .明明在爷爷、奶奶家呆了60min10.若一次 函数()131y m x =-+的图象经过点()11,A x y 和点()22,B x y ,当12x x <时,12y y <,则m 的取值范围是( )A .0m <B .0m >C .13m < D .13m > 11.如图,小刚骑电动车到单位上班,最初以某一速度匀速行进,途中由于遇到火车挡道,停下等待放行,耽误了几分钟,为了按时到单位,小刚加快了速度,仍保持匀速行进,结果准时到单位.小刚行进的路程y (千米)与行进时间t (小时)的函数图象的示意图,你认为正确的是( )A .B .C .D .12.已知直线l 1:y =kx+b 与直线l 2:y =﹣12x+m 都经过C (﹣65,85),直线l 1交y 轴于点B (0,4),交x 轴于点A ,直线l 2交y 轴于点D ,P 为y 轴上任意一点,连接PA 、PC ,有以下说法:①方程组12y kx b y x m =+⎧⎪⎨=-+⎪⎩的解为6585x y ⎧=-⎪⎪⎨⎪=⎪⎩;②△BCD 为直角三角形;③S △ABD =6;④当PA+PC 的值最小时,点P 的坐标为(0,1).其中正确的说法是( )A .①②③B .①②④C .①③④D .①②③④二、填空题 13.直线y =kx ﹣4与两坐标轴所围成三角形的面积是4,则k =_____.14.若y =(m ﹣2)235m x -+是一次函数函数,则其解析式为_____.15.如图,一次函数483y x =-+的图像与x 轴、y 轴分别交于A 、B 两点,P 是x 轴正半轴上的一个动点,连接BP ,将△OBP 沿BP 翻折,点O 恰好落在AB 上,则点P 的坐标为______.16.如图,直线y =3x 和y =kx +2相交于点P (a ,3),则不等式3x >kx +2的解集为_____.17.如图,在平面直角坐标系中,点P 是正比例函数y =x 图象上的一点,点A 的坐标为(0,1),点B 的坐标为(4,1),当PB +PA 取最小值时,点P 的坐标为_____.18.如图,在平面直角坐标系xoy 中,点A 1,A 2,A 3…都在x 轴上,点B 1,B 2,B 3…都在直线1y x =+上,11A OB ∆,122A B A ∆,233A B A ∆…,都是等腰直角三角形,若OA 1=1,则点B 2020的坐标是_______.三、解答题19.已知,直线l经过点A(4,0),B(0,2).(1)画出直线l的图象,并求出直线l的解析式;(2)求S△AOB;(3)在x轴上是否存在一点P,使S△PAB=3?若存在,求出点P的坐标,若不存在,请说明理由.20.某校服生产厂家计划在年底推出两款新校服A和B共80套,预计前期投入资金不少于20900元,但不超过20960元,且所投入资金全部用于两种校服的研制,其成本和售价如下表:(1)该厂家有哪几种生产新校服的方案可供选择?(2)该厂家采用哪种生产方案可以获得最大的利润,最大利润为多少?m ),(3)经市场调查,年底前每套B款校服售价不会改变,而每套A款校服的售价将会提高m元(0且所生产的两种校服都可以售完,该厂家又该如何安排生产校服才能获得最大利润呢?21.如图,在平面直角坐标系中,直线y=kx+b交x轴于点A(﹣3,0),交y轴于点B(0,1),过点C(﹣1,0)作垂直于x轴的直线交AB于点D,点E(﹣1,m)在直线CD上且在直线AB的上方.(1)求k 、b 的值;(2)用含m 的代数式表示S 四边形AOBE ,并求出当S 四边形AOBE =5时,点E 的坐标;(3)当m =2时,以AE 为边在第二象限作等腰直角三角形△PAE .直接写出点P 的坐标.22.如图,直线y =﹣12x +3与坐标轴分别交于点A ,B ,与直线y =x 交于点C ,线段OA 上的点Q 以每秒1个长度单位的速度从点O 出发向点A 作匀速运动,运动时间为t 秒,连结CQ .(1)点C 的坐标为 ;(2)若CQ 将△AOC 分成1:2两部分时,t 的值为 ;(3)若S △ACQ :S 四边形CQOB =1:2时,求直线CQ 对应的函数关系式.23.如图,直线1l :12y kx =+()0k ≠与直线2l :244y x =-交于点(),4P m ,直线1l 分别交x 轴、y 轴于点A 、B ,直线2l 交x 轴于点C .(1)求k 、m 的值.(2)请直接写出使得不等式244kx x +<-成立的x 的取值范围.(3)在直线2l 上找点Q ,使得QAC BPC S S =,求点Q 的坐标.24.已知:在平面直角坐标系xOy 中,点(,0)A a ,(0,)B b ,且a ,b 满足2248200a b a b ++-+=.(1)求a ,b 的值;(2)如图1,若AC AB ⊥,AC AB =,点C 在第四象限,AC 与y 轴交于点M ,BC 与x 轴交于点N ,连接OC ,①求点C 的坐标;②求AOC S 及点M 的坐标; (3)如图2,在(2)的条件下,连接MN .两个结论:①ABO NMC ∠=∠;②ABO NMC ∠+∠为定值,只有一个结论成立,请你判断正确的结论加以证明.word 版 初中数学9 / 9 参考答案1.D2.B3.B4.D5.D6.A7.C8.B9.B10.C11.D12.B13.±2.14.y =﹣4x +5.15.(83,0) 16.x >1 17.()1,1 18.20192019(21,2) 19.y =﹣12x +2;(2)S △AOB =4;(3)P 的坐标为(7,0)或(1,0). 20.(1)厂家共有三种方案可供选择,分别是:方案一、购买A 校服48套,购买B 校服32套;方案二、购买A 校服49套,购买B 校服31套;方案三、购买A 校服50套,购买B 校服30套;(2)该厂家采用生产方案一可以获得最大的利润,最大利润为4320元;(3)当0<m <10时,安排生产A 校服48套,生产B 校服32套,可获得最大利润,当m =10时,怎么安排生产利润总是定值4800元,当m >10时,安排生产A 校服50套,生产B 校服30套,可获得最大利润.21.(1)13k =,1b =;(2)S 四边形AOBE =32m +12,点E (﹣1,3);(3)满足条件的点P 的坐标为(﹣3,2)或(﹣5,2)或(﹣3,4).22.(1)(2,2);(2)2或4;(3)直线CQ 的表达式为y =﹣2x +6.23.(1)1k =,2m =;(2)2x >;(3)Q 点的坐标为1,22⎛⎫- ⎪⎝⎭或3,22⎛⎫ ⎪⎝⎭24.(1)2a =-,4b =;(2)①C (2,2)-②2AOC S =△,M (0,1)-(3)ABO NMC ∠+∠为定值正确。

苏教版八年级数学第六章《一次函数》专练(选择、填空题)(含解析)

苏教版八年级数学第六章《一次函数》专练(选择、填空题)(含解析)

第六章《一次函数》专练(选择、填空题)一.选择题1.若以二元一次方程x+2y﹣b=0的解为坐标的点(x,y)都在直线y=﹣x+b﹣1上,则常数b=()A.B.2C.﹣1D.12.在函数y=中,自变量x的取值范围是()A.x≥1B.x>1C.x<1D.x≤13.若函数y=kx+b的图象如图所示,则关于x的不等式kx+2b<0的解集为()A.x<3B.x>3C.x<6D.x>64.均匀地向一个容器注水,最后将容器注满.在注水过程中,水的高度h随时间t的变化规律如图所示,这个容器的形状可能是()A.B.C.D.5.甲、乙两地相距80km,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20km/h,并继续匀速行驶至乙地,汽车行驶的路程y(km)与时间x(h)之间的函数关系如图所示,该车到达乙地的时间是当天上午()A.10:35B.10:40C.10:45D.10:506.如图,直线y=kx+b(k≠0)经过点A(﹣2,4),则不等式kx+b>4的解集为()A.x>﹣2B.x<﹣2C.x>4D.x<47.有一天,兔子和乌龟赛跑.比赛开始后,兔子飞快地奔跑,乌龟缓慢的爬行.不一会儿,乌龟就被远远的甩在了后面.兔子想:“这比赛也太轻松了,不如先睡一会儿.”而乌龟一刻不停地继续爬行.当兔子醒来跑到终点时,发现乌龟已经到达了终点.正确反映这则寓言故事的大致图象是()A.B.C.D.8.如图,一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满.容器内水面的高度h(cm)与注水时间t(s)之间的函数关系图象大致是()A.B.C.D.9.小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公交汽车到了学校.如图是他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图.则下列说法中错误的是()A.小明吃早餐用时5分钟B.小华到学校的平均速度是240米/分C.小明跑步的平均速度是100米/分D.小华到学校的时间是7:5510.如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位:天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润.下列结论错误的是()A.第24天的销售量为300件B.第10天销售一件产品的利润是15元C.第27天的日销售利润是1250元D.第15天与第30天的日销售量相等11.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时间后到达学校,小刚从家到学校行驶路程s(单位:m)与时间t(单位:min)之间函数关系的大致图象是()A.B.C.D.12.甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x (h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的有()A.4个B.3个C.2个D.1个13.如图是自动测温仪记录的图象,它反映了齐齐哈尔市的春季某天气温T如何随时间t的变化而变化,下列从图象中得到的信息正确的是()A.0点时气温达到最低B.最低气温是零下4℃C.0点到14点之间气温持续上升D.最高气温是8℃14.“龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行最终贏得比赛,下列函数图象可以体现这一故事过程的是()A.B.C.D.15甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米.其中正确的结论有()A.1个B.2个C.3个D.4个16.小明参加100m短跑训练,2018年1~4月的训练成绩如下表所示:月份1234成绩(s)15.615.415.215体育老师夸奖小明是“田径天才”,请你预测小明5年(60个月)后100m短跑的成绩为()(温馨提示;目前100m短跑世界纪录为9秒58)A.14.8s B.3.8sC.3s D.预测结果不可靠17.如图,在物理课上,老师将挂在弹簧测力计下端的铁块浸没于水中,然后缓慢匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧测力计的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是()A.B.C.D.18.小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y与时间x 之间的对应关系.根据图象,下列说法正确的是()A.小明吃早餐用了25minB.小明读报用了30minC.食堂到图书馆的距离为0.8kmD.小明从图书馆回家的速度为0.8km/min19.如图,一个函数的图象由射线BA、线段BC、射线CD组成,其中点A(﹣1,2),B(1,3),C(2,1),D(6,5),则此函数()A.当x<1时,y随x的增大而增大B.当x<1时,y随x的增大而减小C.当x>1时,y随x的增大而增大D.当x>1时,y随x的增大而减小20.某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱21.根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y 值相等,则b等于()A.9B.7C.﹣9D.﹣722.如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为()A.B.C.D.23.为积极响应市委、市政府提出的“绿色发展,赛过江南”的号召,市园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为()A.25平方米B.50平方米C.75平方米D.100平方米24.小明同学从家里去学校,开始采用匀速步行,走了一段路后,发觉照这样走下去会迟到,于是匀速跑步完成余下的路程,下面坐标系中,横轴表示小明从家里出发后的时间t,纵轴表示小明距离学校的路程S,则S与t之间函数关系的图象大致是()A.B.C.D.25.某移动通讯公司有两种移动电话计费方式,这两种计费方式中月使用费y(元)与主叫时间x(分)的对应关系如图所示:(主叫时间不到1分钟,按1分钟收费)下列三个判断中正确的是()①方式一每月主叫时间为300分钟时,月使用费为88元②每月主叫时间为350分钟和600分钟时,两种方式收费相同③每月主叫时间超过600分钟,选择方式一更省钱A.①②B.①③C.②③D.①②③26.一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,慢车先出发一段时间,这辆列车之间的距离y(km)与慢车行驶的时间x(h)之间的函数关系如图所示,则慢车出发8h时,两列车相距()A.525km B.575.5km C.600km D.660km二.填空题27.A、B两地相距20km,甲乙两人沿同一条路线从A地到B地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2km/h的速度度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A地的距离s(km)与时间t(h)的关系如图所示,则甲出发小时后和乙相遇.28.函数y=+中自变量x的取值范围是.29.甲、乙两人分别从A,B两地相向而行,他们距B地的距离s(km)与时间t(h)的关系如图所示,那么乙的速度是km/h.30.实验室里有一个水平放置的长方体容器,从内部量得它的高是15cm,底面的长是30cm,宽是20cm,容器内的水深为x cm.现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过顶点A的三条棱的长分别10cm,10cm,y cm(y≤15),当铁块的顶部高出水面2cm时,x,y满足的关系式是.31.如图,直线y=kx+b交x轴于点A,交y轴于点B,则不等式x(kx+b)<0的解集为.32.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是.33.某日上午,甲,乙两车先后从A地出发沿同一条公路匀速前往B地,甲车8点出发,如图是其行驶路程s(千米)随行驶时间t(小时)变化的图象.乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v(单位:千米/小时)的范围是.34.如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组的解集为.35.A,B两地相距的路程为240千米,甲、乙两车沿同一线路从A地出发到B 地,分别以一定的速度匀速行驶.甲车先出发40分钟后,乙车才出发.途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达B地.甲、乙两车相距的路程y(千米)与甲车行驶时间x(小时)之间的关系如图所示,求乙车修好时,甲车距B地还有千米.36.一天早晨,小玲从家出发匀速步行到学校,小玲出发一段时间后,她的妈妈发现小玲忘带了一件必需的学习用品,于是立即下楼骑自行车,沿小玲行进的路线,匀速去追小玲,妈妈追上小玲将学习用品交给小玲后,立即沿原路线匀速返回家里,但由于路上行人渐多,妈妈返回时骑车的速度只是原来速度的一半,小玲继续以原速度步行前往学校,妈妈与小玲之间的距离y(米)与小玲从家出发后步行的时间x(分)之间的关系如图所示(小玲和妈妈上、下楼以及妈妈交学习用品给小玲耽搁的时间忽略不计).当妈妈刚回到家时,小玲离学校的距离为米.37.星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家.他离家的距离y(千米)与时间t(分钟)的关系如图所示,则上午8:45小明离家的距离是千米.38.如图,在一次自行车越野赛中,甲、乙两名选手所走的路程y(千米)随时间x(分钟)变化的图象(全程)分别用实线(O→A→B→C)与虚线(OD)表示,那么,在本次比赛过程中,乙领先甲时的x的取值范围是.39.一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,分别以各自的速度在甲乙两地间匀速行驶,行驶1小时后,快车司机发现有重要文件遗忘在出发地,便立即返回出发地,拿上文件后(取文件时间不计)立即再从甲地开往乙地,结果快车先到达乙地,慢车继续行驶到甲地.设慢车行驶时间x(h),两车之间的距离为y(km),y与x的函数图象如图所示,则a=.40.一辆货车从A地匀速驶往相距350km的B地,当货车行驶1小时经过途中的C地时,一辆快递车恰好从C地出发以另一速度匀速驶往B地,当快递车到达B地后立即掉头以原来的速度匀速驶往A地.(货车到达B地,快递车到达A地后分别停止运动)行驶过程中两车与B地间的距离y(单位:km)与货车从出发所用的时间x(单位:h)间的函数关系如图所示.则货车到达B 地后,快递车再行驶h到达A地.答案与解析一.选择题1.【分析】直线解析式乘以2后和方程联立解答即可.【解答】解:因为以二元一次方程x+2y﹣b=0的解为坐标的点(x,y)都在直线y=﹣x+b﹣1上,直线解析式乘以2得2y=﹣x+2b﹣2,变形为:x+2y﹣2b+2=0所以﹣b=﹣2b+2,解得:b=2,故选:B.【点评】此题考查一次函数与二元一次方程问题,关键是直线解析式乘以2后和方程联立解答.2.【分析】根据被开方数大于等于0,分母不等于0列式求解即可.【解答】解:根据题意得x﹣1≥0,1﹣x≠0,解得x>1.故选:B.【点评】本题主要考查了函数自变量的取值范围的确定,根据分母不等于0,被开方数大于等于0列式计算即可,是基础题,比较简单.3.【分析】由一次函数图象过(3,0)且过第二、四象限知b=﹣3k、k<0,代入不等式求解可得.【解答】解:∵一次函数y=kx+b经过点(3,0),∴3k+b=0,且k<0,则b=﹣3k,∴不等式为kx﹣6k<0,解得:x>6,故选:D.【点评】本题主要考查一次函数与一元一次不等式,解题的关键是掌握一次函数的图象与性质及解一元一次不等式的能力.4.【分析】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.【解答】解:注水量一定,从图中可以看出,OA上升较快,AB上升较慢,BC 上升最快,由此可知这个容器下面容积较大,中间容积最大,上面容积最小,故选:D.【点评】本题考查利用函数的图象解决实际问题,正确理解函数的图象所表示的意义是解题的关键,注意容器粗细和水面高度变化的关系.5.【分析】根据速度之间的关系和函数图象解答即可.【解答】解:因为匀速行驶了一半的路程后将速度提高了20km/h,所以1小时后的路程为40km,速度为40km/h,所以以后的速度为20+40=60km/h,时间为分钟,故该车到达乙地的时间是当天上午10:40;故选:B.【点评】此题主要考查了函数的图象值,根据速度之间的关系和函数图象解答是解题关键.6.【分析】结合函数的图象利用数形结合的方法确定不等式的解集即可.【解答】解:观察图象知:当x>﹣2时,kx+b>4,故选:A.【点评】本题考查了一次函数与一元一次不等式的知识,解题的关键是根据函数的图象进行解答.7.【分析】根据题意得出兔子和乌龟的图象进行解答即可.【解答】解:乌龟运动的图象是一条直线,兔子运动的图象路程先增大,而后不变,再增大,并且乌龟所用时间最短,故选:D.【点评】此题考查函数图象问题,本题需先读懂题意,根据实际情况找出正确函数图象即可.8.【分析】根据实心长方体在水槽里,长方体底面积减小,水面上升的速度较快,水淹没实心长方体后一直到水注满,底面积是圆柱体的底面积,水面上升的速度较慢进行分析即可.【解答】解:根据题意可知,刚开始时由于实心长方体在水槽里,长方体底面积减小,水面上升的速度较快,水淹没实心长方体后一直到水注满,底面积是圆柱体的底面积,水面上升的速度较慢,故选:D.【点评】此题考查函数的图象问题,关键是根据容器内水面的高度h(cm)与注水时间t(s)之间的函数关系分析.9.【分析】根据函数图象中各拐点的实际意义求解可得.【解答】解:A、小明吃早餐用时13﹣8=5分钟,此选项正确;B、小华到学校的平均速度是1200÷(13﹣8)=240(米/分),此选项正确;C、小明跑步的平均速度是(1200﹣500)÷(20﹣13)=100(米/分),此选项正确;D、小华到学校的时间是7:53,此选项错误;故选:D.【点评】本题考查了函数图象,读懂函数图象,从图象中获取必要的信息是解决本题的关键.10.【分析】A、利用图象①即可解决问题;B、利用图象②求出函数解析式即可判断;C、求出销售量以及每件产品的利润即可解决问题;D、求出第15天与第30天的日销售量比较即可;【解答】解:A、根据图①可得第24天的销售量为300件,故正确;B、设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=kx+b,把(0,25),(20,5)代入得:,解得:,∴z=﹣x+25,当x=10时,y=﹣10+25=15,故正确;C、当24≤t≤30时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=k1t+b1,把(30,200),(24,300)代入得:,解得:,∴y=﹣t+700,当t=27时,y=250,∴第27天的日销售利润为;250×5=1250(元),故C正确;D、当0<t<24时,可得y=t+100,t=15时,y≠200,故D错误,故选:D.【点评】本题考查一次函数的应用,解题的关键是读懂图象信息,灵活运用所学知识解决问题,属于中考常考题型.11.【分析】根据小刚行驶的路程与时间的关系,确定出图象即可.【解答】解:根据题意得:小刚从家到学校行驶路程s(单位:m)与时间t(单位:min)之间函数关系的大致图象是故选:B.【点评】此题考查了函数的图象,由图象理解对应函数关系及其实际意义是解本题的关键.12.【分析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【解答】解:由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.故选:B.【点评】本题以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态.13.【分析】根据齐齐哈尔市某一天内的气温变化图,分析变化趋势和具体数值,即可求出答案.【解答】解:A、由函数图象知4时气温达到最低,此选项错误;B、最低气温是零下3℃,此选项错误;C、4点到14点之间气温持续上升,此选项错误;D、最高气温是8℃,此选项正确;故选:D.【点评】本题考查了函数图象,由纵坐标看出气温,横坐标看出时间是解题关键.14.【分析】根据兔子的路程在一段时间内保持不变、乌龟比兔子所用时间少逐一判断即可得.【解答】解:由于兔子在途中睡觉,所以兔子的路程在一段时间内保持不变,所以D选项错误;因为乌龟最终赢得比赛,即乌龟比兔子所用时间少,所以A、C均错误;故选:B.【点评】本题主要考查函数图象,解题的关键是弄清函数图象中横、纵轴所表示的意义及实际问题中自变量与因变量之间的关系.15.【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【解答】解:由图可得,甲步行的速度为:240÷4=60米/分,故①正确,乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,乙追上甲用的时间为:16﹣4=12(分钟),故③错误,乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,故选:A.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16.【分析】由表格中的数据可知,每加1个月,成绩提高0.2秒,所以y与x 之间是一次函数的关系,可设y=kx+b,利用已知点的坐标,即可求解.【解答】解:(1)设y=kx+b依题意得(1分),解答,∴y=﹣0.2x+15.8.当x=60时,y=﹣0.2×60+15.8=3.8.因为目前100m短跑世界纪录为9秒58,显然答案不符合实际意义,故选:D.【点评】本题考查一次函数的应用、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.【分析】根据题意,利用分类讨论的数学思想可以解答本题.【解答】解:由题意可知,铁块露出水面以前,F拉+F浮=G,浮力不变,故此过程中弹簧的度数不变,当铁块慢慢露出水面开始,浮力减小,则拉力增加,当铁块完全露出水面后,拉力等于重力,故选:D.【点评】本题考查函数图象,解答本题的关键是明确题意,利用数形结合和分类讨论的数学思想解答.18.【分析】根据函数图象判断即可.【解答】解:小明吃早餐用了(25﹣8)=17min,A错误;小明读报用了(58﹣28)=30min,B正确;食堂到图书馆的距离为(0.8﹣0.6)=0.2km,C错误;小明从图书馆回家的速度为0.8÷10=0.08km/min,D错误;故选:B.【点评】本题考查的是函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合题意正确计算是解题的关键.19.【分析】根据函数图象和题目中的条件,可以写出各段中函数图象的变化情况,从而可以解答本题.【解答】解:由函数图象可得,当x<1时,y随x的增大而增大,故选项A正确,选项B错误,当1<x<2时,y随x的增大而减小,当x>2时,y随x的增大而增大,故选项C、D错误,故选:A.【点评】本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.20.【分析】A、观察函数图象,可得出:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可得出:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、利用待定系数法求出:当x≥25时,y A与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35时y A的值,将其与50比较后即可得出结论C正确;D、利用待定系数法求出:当x≥50时,y B与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70时y B的值,将其与120比较后即可得出结论D错误.综上即可得出结论.【解答】解:A、观察函数图象,可知:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、设当x≥25时,y A=kx+b,将(25,30)、(55,120)代入y A=kx+b,得:,解得:,∴y A=3x﹣45(x≥25),当x=35时,y A=3x﹣45=60>50,∴每月上网时间为35h时,选择B方式最省钱,结论C正确;D、设当x≥50时,y B=mx+n,将(50,50)、(55,65)代入y B=mx+n,得:,解得:,∴y B=3x﹣100(x≥50),当x=70时,y B=3x﹣100=110<120,∴结论D错误.故选:D.【点评】本题考查了函数的图象、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象,利用一次函数的有关知识逐一分析四个选项的正误是解题的关键.21.【分析】先求出x=7时y的值,再将x=4、y=﹣1代入y=2x+b可得答案.【解答】解:∵当x=7时,y=6﹣7=﹣1,∴当x=4时,y=2×4+b=﹣1,解得:b=﹣9,故选:C.【点评】本题主要考查函数值,解题的关键是掌握函数值的计算方法.22.【分析】根据定义可将函数进行化简.【解答】解:当﹣1≤x<0,[x]=﹣1,y=x+1当0≤x<1时,[x]=0,y=x当1≤x<2时,[x]=1,y=x﹣1……故选:A.【点评】本题考查函数的图象,解题的关键是正确理解[x]的定义,然后对函数进行化简,本题属于中等题型.23.【分析】根据休息后2小时的绿化面积100平方米,即可判断;【解答】解:休息后园林队每小时绿化面积为==50平方米.故选:B.【点评】本题考查函数的图象,解题的关键是读懂图象信息,属于中考常考题型.24.【分析】根据去学校,可得与学校的距离逐渐减少,根据跑步比步行快,可得答案.【解答】解:由题意,得步行时,小明距离学校的路程S缓慢减少,匀速跑步时,小明距离学校的路程S迅速减少直至为零,故D符合题意,故选:D.【点评】本题考查了函数图象,理解题意与学校的距离逐渐减少是解题关键.25.【分析】①根据待定系数法求出方式一,当x≥200时的一次函数解析式,再求出y=88时x的值即可求解;②得出两交点坐标即可求解;③观察函数图形即可求解.【解答】解:①当x≥200时,设方式一的一次函数解析式为y=kx+b,依题意有,解得.则当x≥200时,方式一的一次函数解析式为y=0.2x+18,当y=88时,0.2x+18=88,解得x=350.故方式一每月主叫时间为350分钟时,月使用费为88元.题干原来的说法是错误的;②观察图形可知两交点坐标分别是(350,88),(600,138),故每月主叫时间为350分钟和600分钟时,两种方式收费相同.题干原来的说法是正确的;③观察图形可知每月主叫时间超过600分钟,选择方式一更省钱.题干原来的说法是正确的.故选:C.【点评】考查了一次函数的应用,渗透了函数与方程的思想,关键是求出x≥200时的一次函数解析式.26.【分析】根据图象得:甲乙两地相距900km,慢车12小时到达甲地,慢车的速度=900÷12=75km/h,由图象可得快车在慢车出发6.5小时时,到达乙地.那么慢车8h时,两车的距离就是慢车8h的路程.【解答】解:根据图象得:甲乙两地相距900km,慢车12小时到达甲地,慢车的速度=900÷12=75km/h,由图象可得快车在慢车出发6.5小时时,到达乙地,所以慢车出发8h时,两车相距75×8=600km.故选:C.【点评】本题是一道典型的识图题,考查学生结合实际情况从图中挖掘信息的能力,知道图象中每个数据表示的意义是解题关键二.填空题27.【分析】由图象得出解析式后联立方程组解答即可.【解答】解:由图象可得:y甲=4t(0≤t≤5);y乙=;由方程组,解得t=.故答案为.【点评】此题考查一次函数的应用,关键是由图象得出解析式解答.28.【分析】根据被开方数大于等于0,分母不等于0列不等式计算即可得解.【解答】解:由题意得,解得:x≥1且x≠2,故答案为:x≥1且x≠2.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.29.【分析】根据题意,甲的速度为6km/h,乙出发后2.5小时两人相遇,可以用方程思想解决问题.【解答】解:由题意,甲速度为6km/h.当甲开始运动时相距36km,两小时后,乙开始运动,经过2.5小时两人相遇.设乙的速度为xkm/h2.5×(6+x)=36﹣12解得x=3.6故答案为:3.6。

苏科版八年级数学上册《第六章一次函数》单元测试卷-附带答案

苏科版八年级数学上册《第六章一次函数》单元测试卷-附带答案

苏科版八年级数学上册《第六章一次函数》单元测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________考点一函数的概念1.下列图像中,y不是x的函数的是 ( )2.下列式子中,y不是x的函数的是 ( )A.y=x²B.y=x−2x−1C.y=√x−1D.y=±√x3.小红的仰卧起坐成绩y与日期x之间近似为一次函数关系,则该函数表达式为.考点二函数自变量的取值范围及函数值4. 函数y=2+√3x−1中自变量x的取值范围是 ( )A. x≥2B.x≥13C.x≤13D.x≠135. 函数y=1x+3中,自变量x的取值范围是 ( )A. x>-3B. x<3C. x≠-3D. x≠36.已知函数y=√x+2x−3,则自变量 x的取值范围是 .7.按如图所示的程序计算函数y的值,若输入的x值为-3,则输出y的结果为 .考点三函数的图像8.若定义一种新运算:a⊗b={a−b(a≥2b),a+b−6(a<2b),例如:3⊗1=3-1=2;5⊗4=5+4-6=3.则函=(x+2)⊗(x-1)的图像大致是 ( )9.将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯内水面的高度h(cm)与注水时间t(min)的函数图像大致为图中的 ( )10.某企业用货车向乡镇运送农用物资,行驶2 小时后,天空突然下起大雨,影响车辆行驶速度,货车行驶的路程y(km)与行驶时间x(h)的函数关系如图所示,2小时后货车的速度是 km/h.11.如图为小强在早晨8时从城市出发到郊外所走的路程与时间的变化图像.根据图像回答问题:(1)图像中自变量是,因变量是;(2)9时,10时30分,12 时小强所走的路程分别是千米,千米, 千米;(3)小强中途休息了小时;(4)求小强从休息后直至到达目的地这段时间的平均速度.考点四一次函数的图像与性质12. 已知正比例函数y=kx(k≠0)的图像过点((2,3),把正比例函数y=kx(k≠0)的图像平移,使它过点(1,-1),则平移后的图像大致是 ( )13.在平面直角坐标系中,一次函数y=x+1的图像是 ( )14.若一次函数y=kx+2 的函数值y 随自变量x 增大而增大,则实数k 的取值范围是 15. 一次函数y=-2x+b,且b>0,则它的图像不经过第 象限.16.已知一次函数y=kx+b(k≠0)的图像经过A(1,-1),B(-1,3)两点,则k (填“>”或“<”).17. 已知函数y=(2m+1)x+m-3. (1)若函数图像经过原点,求m 的值;(2)若函数图像在y 轴的截距为-2,求m 的值; (3)若函数的图像平行于直线y=3x-3,求m 的值;(4)若这个函数是一次函数,且y 随着x 的增大而减小,求 m 的取值范围.考点五 三个“一次”之间的关系18. 如图,直线y=kx+b(k 、b 是常数且k≠0)与直线y=2交于点A(4,2),则关于x 的不等式kx+b <2的解集为 .19. 如图,已知函数y=ax+3 和 y=bx+7 的图像交于点 P(2,5),则关于x 、y 的方程组 {ax −y =−3,bx −y =−7的解是 . 20.已知关于x 、y 的二元一次方程组 {y =ax +b,y =kx 的解是 {x =−4,y =2,则一次函数 y=ax+b 和y=kx的图像的交点坐标为 .21. 在平面直角坐标系xOy 中,一次函数y=kx+b(k≠0)的图像由函数y=x 的图像平移得到,且经过点(1,2).(1)求这个一次函数的表达式;(2)当x>1时,对于x 的每一个值,函数y=mx(m≠0)的值均大于一次函数y=kx+b 的值,直接写出m 的取值范围.参考答案1. C2. D3. y=3x+374. B5. C6.x≥-2且x≠37. 188. A9. B 10. 6511.(1)时间路程 (2)4 9 15 (3)0.5(4)4千米/时12. D 13. C 14. k>0 15. 三 16. <17. (1)∵函数图像经过原点,∴m-3=0,且2m+1≠0,解得:m=3. (2)∵函数图像在y轴的截距为-2,∴m-3=-2,且2m+1≠0,解得:m=1. (3)∵函数的图像平行于直线y=3x-3,∴2m+1=3,解得:m=1..(4)∵y随着x的增大而减小,∴2m+1<0,解得:m<−1218. x<4 19.{x=2} 520.(-4,2)21. (1)∵ 一次函数y=kx+b(k≠0)的图像由函数y=x的图像平移得到,∴k=1.将点(1,2)代入:y=x+b,得1+b=2,解得b=1,∴一次函数的表达式为.y=x+1.(2)m≥2。

八年级数学第六章一次函数练习

八年级数学第六章一次函数练习

一次函数练习班级某某一、填空1、在函数y=2x中,函数y随自变量x的增大__________。

2、已知一次函数y=kx+5过点P(-1,2),则k=_____。

3、已知一次函数y=2x+4的图像经过点(m,8),则m=________。

4、若一次函数y=x+b的图象过点A(1,-1),则b=__________。

5、已知y与x成正比例,且当x=1时,y=2,那么当x=3时,y=_________。

6、一弹簧,不挂重物时,长6cm,挂上重物后,重物每增加1kg,弹簧就伸长,但所挂重物不能超过10kg,则弹簧总长y(cm)与重物质量x(kg)之间的函数关系式为___________。

7、物体沿一个斜坡下滑,它的速度v(米/秒)与其下滑t(秒)的关系如图所示,则(1)下滑2秒时物体的速度为__________________.(2)V(米/秒)与t(秒)之间的函数关系式为________________.(3)下滑3秒时物体的速度为________________.8、一次函数y=kx+b的图象如图所示,看图填空:(1)当x=0时,y=____________;当x=____________时,y=0.(2)k=__________,b=____________.(3)当x=5时,y=__________;当y=30时,x=___________.二、解答题:9、已知y-3与x成正比例,有x=2时,y=7。

(1)写出y与x之间的函数关系式。

(2)计算x=4时,y的值。

(3)计算y=4时,x的值。

10、已知一次函数y=kx+b的图像与y=2x+1的交点的横坐标为2,与直线y=-x-8的交点的纵坐标为-7,求直线的表达式。

11、某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用租书卡,使用这两种卡租书,租书金额y(元)与租书时间x(天)之间的关系如下图所示。

1)分别写出用租书卡和会员卡租书金额y (元)与租书时间x (天)之间的关系式。

北师大八年级上第六章一次函数试卷及答案

北师大八年级上第六章一次函数试卷及答案

第六章 《一次函数》班级: 姓名: 学号: 成绩:一、填空题(共40分,每空2分)。

(1)点A 在y 轴右边,距y 轴6个单位长度,距x 轴8个单位长度,则A 点的坐标是 ,A 点离开原点的距离是 。

(2)点(-3,2),(a ,1+a )在函数1-=kx y 的图像上,则______,==a k(3)正比例函数的图像通过点(-3,5),则函数的关系式是 。

(4)函数25+-=x y 与x 轴的交点是 ,与y 轴的交点是 ,与两坐标轴围成的三角形面积是 。

( 5)已知y 与4x-1成正比例,且当x=3时,y=6,写出y 与x 的函数关系式 。

(6)写出下列函数关系式①速度60千米的匀速运动中,路程S 与时刻t 的关系②等腰三角形顶角y 与底角x 之间的关系③汽车油箱中原有油100升,汽车每行驶50千米耗油9升,油箱剩余油量y (升)与汽车行驶路程x (千米)之间的关系④矩形周长30,则面积y 与一条边长x 之间的关系在上述各式中, 是一次函数, 是正比例函数(只填序号)(7)正比例函数的图像必然通过点 。

(8)若点(3,a )在一次函数13+=x y 的图像上,则=a 。

(9)一次函数1-=kx y 的图像通过点(-3,0),则k= 。

(10)已知y 与2x+1成正比例,且当x=3时,y=6,写出y 与x 的函数关系式 。

(11)函数2m x y +-=与14-=x y 的图像交于x 轴,则m= 。

二、选择:(每题3分,共9分)(1)下面哪个点不在函数32+-=x y 的图像上( )A.(-5,13)B.(,2) C (3,0) D (1,1)(2)下列函数关系中表示一次函数的有( )①12+=x y ②x y 1=③x x y -+=21④t s 60=⑤x y 25100-= 个 个 个 个(3)下列函数中,y 随x 的增大而减小的有( )①12+-=x y ②x y -=6③31x y +-=④x y )21(-= 个 个 个 个三 、(12分) 在同一坐标系中作出y=2x+1,x y 3=,34-=x y 的图像;在上述三个函数的图像中,哪个函数的值先达到30 ?四、(13分)某市自来水公司为限制单位用水,每一个月只给某单位打算内用水3000吨,打算内用水每吨收费元,超打算部份每吨按元收费。

苏科版八年级数学上册《第六章一次函数》单元测试卷带答案

苏科版八年级数学上册《第六章一次函数》单元测试卷带答案

苏科版八年级数学上册《第六章一次函数》单元测试卷带答案1.下列函数:① y=2−3x;② y=−x2;③ y=2x2−3x+4;④ y=6x;⑤ y=2x+2x−1.其中y是x的一次函数的有( )A.1个B.2个C.3个D.4个2.函数y=1x−3+√x−2的自变量x的取值范围是( )A.x≥2,且x≠3B.x≥2C.x≠3D.x>2,且x≠33.下列说法不正确的是( )A.点A(m,2m−3)在函数y=2x−3的图象上B.正比例函数的图象必经过原点C.函数y=1−x,y随x的增大而增大D.直线y=−2x−8不经过第一象限4.将一次函数y=−2x+3的图象沿y轴向上平移2个单位长度,则平移后的图象所对应的函数表达式为( )A.y=−2x+1B.y=−2x−5C.y=−2x+5D.y=−2x+75.将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度ℎ(cm)与注水时间t(min)的函数图象大致为图中的( )A.B.C.D.6.在平面直角坐标系xOy中,直线y=−12x−b与x轴、y轴分别相交于点A,B,且S△AOB=9,则b的值为( )A.3B.−3C.±9D.±37.快车从甲地驶往乙地,慢车从乙地驶往甲地,两车同时出发并且在同一条公路上匀速行驶.图中折线表示快、慢两车之间的路程y(km)与它们的行驶时间x(h)之间的函数关系.小欣同学结合图象得出如下结论:①快车途中停留了0.5h;②快车速度比慢车速度多20km/h;③图中a=340;④快车先到达目的地.其中正确的是( )A.①③B.②③C.②④D.①④8.在平面直角坐标系中,横坐标和纵坐标都是整数的点叫做整点,已知直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则t的取值范围是( )A.12≤t<2B.12<t≤1C.1<t≤2D.12≤t≤2且t≠19.关于x的一次函数y=kx+b的图象与直线y=2x+1平行,且过点(−1,1),则k+b的值是.10.若点A(a,b)在一次函数y=−x+3的图象上,则2a2+2(b2+2ab)+2024的值为.11.已知四个正比例函数:① y=ax,② y=bx,③ y=cx,④ y=dx的图象如图所示,将实数a,b,c,d从小到大排列,并用“<”连接为.12.已知k为正整数,无论k取何值,直线l1:y=kx+k+1与直线l2:y=(k+1)x+k+2都交于一个固定的点,这个点的坐标是;记直线l1和l2与x轴围成的三角形面积为S k,则S1=,S1+S2+S3+⋯+S100的值为.13.张阳从家里跑步去体育场,在那里锻炼了一会儿后,又走到文具店去买笔,然后走回家,如图是张阳离家的距离与时间的关系图象.根据图象回答下列问题:(1) 体育场离张阳家多少千米?(2) 体育场离文具店多少千米?张阳在文具店逗留了多长时间?(3) 张阳从文具店走回家的速度是多少?14.一次函数y=kx+b(k≠0)的图象为直线l.(1) 若直线l与正比例函数y=2x的图象平行,且过点(0,−2),求直线l的表达式.(2) 若直线l过点(3,0),且与两坐标轴围成的三角形的面积等于3,求b的值.15.政府工作中有关“通信费用再降”的报告指出:移动网络流量平均资费再降低20%以上,在全国实行“携号转网”规范套餐设置,使降费实实在在、消费者明明白白.某通信运营商积极响应国家号召,推出A,B,C 三种手机通话的收费方式,如下表所示.收费方式月通话费/元包时通话时间/h 超时费/(元/min)A 30 25 0.1B 50 50 0.1C 100 不限时(1) 设月通话时间为x h,则A,B,C三种收费方式的收费金额y1,y2,y3都是x的函数,请分别求出y1和y2关于x的函数表达式;(2) 若选择方式A最省钱,求月通话时间x的取值范围;(3) 小明、小华今年5月份的月通话费均为80元,但小明比小华通话的时间长,求小明该月的通话时间.16.阅读下列三则材料,回答问题.材料一:定义直线y=ax+b与直线y=bx+a互为“互助直线”,例如,直线y=x+4与直线y=4x+1互为“互助直线”.材料二:对于平面直角坐标系中的任意两点P1(x1,y1),P2(x2,y2),P1,P2两点间的直角距离d(P1,P2)=∣x1−x2∣+∣y1−y2∣.如:Q1(−3,1),Q2(2,4)两点间的直角距离为d(Q1,Q2)=∣−3−2∣+∣1−4∣=8.材料三:设P0(x0,y0)为一个定点,Q(x,y)是直线y=ax+b上的动点,我们把d(P0,Q)的最小值叫做P0到直线y=ax+b的直角距离.(1) 计算S(−1,6),T(−2,3)两点间的直角距离d(S,T)=.(2) H(a,b)是直线y=−2x+3上的一点,又是它的“互助直线”上的点,求点H的坐标.(3) 对于直线y=ax+b上的任意一点M(m,n),都有点N(3m,2m−3n)在它的“互助直线”上,试求点L(5,−1)到直线y=ax+b的直角距离.参考答案1. 【答案】B2. 【答案】A3. 【答案】C4. 【答案】C5. 【答案】B6. 【答案】D7. 【答案】B8. 【答案】D9. 【答案】510. 【答案】204211. 【答案】c<d<a<b12. 【答案】(−1,1)1450 10113. 【答案】(1) 体育场离张阳家2.5km.(2) 因为2.5−1.5=1(km)所以体育场离文具店1km.因为65−45=20(min)所以张阳在文具店逗留了 20 min .(3) 文具店到张阳家的距离为 1.5 km ,张阳从文具店走回家用的时间为 100−65=35(min ) 所以张阳从文具店走回家的速度为 1.5÷3560=187(km/h ).14. 【答案】(1) 根据题意得 k =2 ∴y =2x +b把点 (0,−2) 代入得 b =−2 ∴ 直线 l 的表达式为 y =2x −2.(2) ∵ 一次函数 y =kx +b 的图象过点 (3,0) ∴3k +b =0 ∴b =−3k令 y =0,则 x =−bk =3∵ 直线 l 与两坐标轴围成的三角形的面积为 3 ∴12×3×∣b ∣=3,即 ∣b ∣=2,解得 b =±2.15. 【答案】(1) 因为 0.1元/min =6元/h 所以由题意可得 y 1={30,0≤x ≤256x −120,x >25y 2={50,0≤x ≤506x −250,x >50.(2) 若选择方式A 最省钱,则 6x −120≤50,解得 x ≤853所以若选择方式A 最省钱,则月通话时间 x 的取值范围为 0≤x ≤853.(3) 因为小明、小华今年 5 月份的月通话费均为 80 元,但小明比小华通话的时间长所以小华选择的是方式A ,小明选择的是方式B ,将 y =80 代入 y 2={50,0≤x ≤506x −250,x >50可得 6x −250=80,解得 x =55 所以小明该月的通话时间为 55 h .16. 【答案】(1) 4(2) 直线 y =−2x +3 的“互助直线”为 y =3x −2 ∵ 点 H (a,b ) 在直线 y =−2x +3 上 ∴b =−2a +3.将点 H (a,−2a +3) 代入 y =3x −2,得 −2a +3=3a −2 解得 a =1,故点 H (1,1).(3) ∵M (m,n ) 在直线 y =ax +b 上,则 n =am +b, ⋯⋯①点 N (3m,2m −3n ) 在直线 y =ax +b 的“互助直线”y =bx +a 上,则 2m −3n =3bm +a, ⋯⋯②联立①②并整理得 m (2−3a −3b )=a +3b .∵ 对于直线 y =ax +b 上的任意一点 M (m,n ) 等式均成立 ∴{2−3a −3b =0,a +3b =0,解得 {a =1,b =−13,∴ 函数表达式为 y =x −13设点 P (x,x −13) 是直线 y =x −13 上的点 ∵L (5,−1)∴d (L,P )=∣5−x ∣+∣∣−1−x +13∣∣=∣x −5∣+∣∣x +23∣∣则 d (L,P ) 的最小值为 523∴ 点 L (5,−1) 到直线 y =x −13 的直角距离为 523.。

苏教版初中数学八年级上册第6章《一次函数》教学设计及课堂练习

苏教版初中数学八年级上册第6章《一次函数》教学设计及课堂练习

苏教版初中数学八年级上册第6章《一次函数》教学设计及课堂练习6.1函数(1)一、自主先学列车从甲地驶往乙地,在16:17到16:22这个时段,列车在匀速行驶的过程中,有哪些量是没有变化的?哪些量是不断变化的?变化的量:没有变化的量:常量:变量:你还能举出生活中的某些变化过程,并说明其中的常量和变量吗?归纳:在各种变化过程中往往存在着两个互相联系的变量.二、合作助学问题1:一石激起千层浪,水滴泛起层层波.变化中的波纹可以看作是一个不断向外扩展的圆.问题2:已知水库的水位变化与蓄水量变化情况如下表所示问题3:如图,搭一条小鱼需要8根火柴,每多搭一条小鱼就要增加6根火柴,请说出搭小鱼过程中的常量和变量.提问:找出问题中的变量,并说出变量之间的关系.函数的概念:三、拓展导学1、把一根2m长的铁丝围成一个长方形.(1)当长方形的宽为0.1m时,长为多少?(2)当长方形的宽为0.2m时,长为多少?(3)这个长方形的长是宽的函数吗?为什么?四、检测促学1、“沙漏”是我国古代一种计量时间的仪器,它根据一个容器里的细沙漏到另一个容器中的数量来计算时间.请说出该变化过程中有哪几个变量,自变量什么?数吗?为什么?五、反思悟学苏教版初中数学八年级上册第6章《一次函数》教学设计及课堂练习6.1函数(2)一、自主先学汽车以100km/h 的速度匀速行驶,在这一变化过程中, (1)有哪些变量?哪些常量? (2)变量之间是函数关系吗?为什么?(3)若汽车行驶的时间为t(h),汽车行驶的路程为y(km).怎样表示函数y 与自变量t 的关系?方式一、列表.方式二、画图方式三、列式函数关系式的定义: 二、合作助学1、汽车油箱内存油40L,每行驶100km耗油10L.(1)求行驶过程中油箱内剩余油量Q (L)与行驶路程s (km) 的函数表达式.(2)汽车行驶250km时,油箱里还有多少油?(3)你认为这辆汽车现有油量够它行驶多远?(4)s的值最小取多少?s的取值范围是什么?归纳:在实际问题中,自变量的取值通常有一定的范围.2、在太阳和月球引力的影响下,海水定时涨落的现象称为潮汐,涨落的水位称为潮位.如图是我国某港某天的实时潮位图.在图中,潮位仪绘制的平滑曲线,揭示了潮位y(m)与时间t(h)之间的函数关系.在图中你读到了什么信息?归纳:在直角坐标系中,以函数的自变量的值为横坐标、相应的函数值为纵坐标的点所组成的图形叫做这个函数的图像.三、拓展导学1、小明骑自行车从甲地到乙地,图中的折线表示小明的行程s (km)与途中所花时间t(h)之间的函数关系.(1)小明从甲地到乙地用了多少时间?(2)小明出发5h时,距离甲地有多远?(3)折线中有一条平行于t轴的线段,它的意义是什么?(4)你还能从图中获得哪些信息?请与同伴交流.四、检测促学1、商店有100支铅笔.(1)如果卖出x支,还剩y 支,那么y =(2)当x越来越大时,y会发生什么变化?(3)请写出自变量取值范围..(2)按1-12月的顺序,顺次连接各点.(3)与上月相比,哪些月份产量上升、下降或不升不降?3、求下列函数的自变量取值范围:(1)4+=x y ; (2)131-=x y ; (3)3-=x y .4、甲、乙两人出去散步,用20 min 走了900 m 后,甲随即按原速返回.乙遇到一位朋友,并与朋友交谈了10min 后,用15min 时间回到家里.下面4个图像中,哪一个表示甲离家的路程s (m )与时间t (min )的函数关系?哪一个表示乙离家的路程与时间之间的函数关系?五、反思悟学苏教版初中数学八年级上册第6章《一次函数》教学设计及课堂练习6.2一次函数(1)一、自主先学给汽车加油的加油枪流量为25L/min. 如果加油前油箱里没有油,那么在加油过程中,用y(L)表示油箱中的油量,x (min)表示加油时间. (1)y 是x 的函数吗?说说你的理由. (2)y 与x 之间有怎样的函数表达式?(3)如果加油前油箱里有6L 油,y 与x 之间有怎 样的函数表达式? 归纳:这些函数表达式有什么共同特点?定义:一般地,如果两个变量 x 与 y 之间的函数关系,可以表示为y = k x + b (k 、b 为常数,且 k ≠0) 的形式.那么称 y 是 x 的一次函数(linear function). 特别地,当 b =0 时,y 叫做 x 的正比例函数. 说明:正比例函数 y = k x 是特殊的一次函数同桌之间互写三个一次函数表达式,并指出其中的k 和b .二、合作助学下列变化过程中,变量 y 是变量 x 的一次函数吗?是正比例函数吗? (1)正方形面积 S 与边长 x 之间的函数关系; (2)正方形周长 l 与边长 x 之间的函数关系.(3)长方形的长为常量 a 时,面积 S 与宽x 之间的函数关系;(4)高速列车以 300 km /h 的速度匀速驶离 A 站,在行驶过程中,这列火车离开 A 站的路程 y (km)与行驶时间 x (h)之间的函数关系;.、、、、10100104062525-==-=+==h g t y sQ x y x yB200 km三、拓展导学如图, A 、B 两地相距 200 km ,一列火车从B 地出发沿 BC 方向以 120 km/h 的速度行驶,在行驶过程中,这列火车离A 地的路程 y (km)与行驶时间 x (h)之间的函数关系.四、检测促学1、下列函数:①6-=x y ;②x y 2=;③8xy =;④x y -=7.其中y 是x 的一次函数的是 ( )A.①②③B.①③④C.①②③④D.②③④2、水池中有水 4653m ,每小时排水153m ,排水 t h 后,水池中还有水 y 3m .试写出 y 与 t 之间的函数表达式,并判断 y 是否为 t 的一次函数,是否为 t 的正比例函数;写出自变量的取值范围.3、 一个长方形的长为15 cm ,宽为10 cm .如果将长方形的长减少x cm ,宽不变,那么长方形的面积y cm 2与x cm 之间有怎样的函数表达式?判断 y 是否为 x 的一次函数,是否为 x 的正比例函数.五、反思悟学苏教版初中数学八年级上册第6章《一次函数》教学设计及课堂练习6.2一次函数(2)一、自主先学写出下列各题中y与x之间的函数表达式,并判断:y是否为x的一次函数?是否为正比例函数?(1)摩托车以50千米/时的速度匀速行驶,行驶路程y km与行驶时间x h之间的关系;(2)正方体的表面积y cm2与它的棱长x cm 之间的关系;(3)一棵树现在高40 cm,每个月长高3 cm,x月后这棵树的高度为y cm;(4)多边形的内角和s与边数n的函数关系.二、合作助学1、填空(1)已知函数y=4x+5,当x=-3时,y=;当y=5时,x=.(2)已知函数y=-3x+1,当x=2时,y=____;当y=0时,x=.2、一盘蚊香长105cm,点燃时每小时缩短10 cm.(1)写出蚊香点燃后的长度y cm与点燃时间t h之间的函数表达式;(2)该盘蚊香可以燃烧多长时间?三、拓展导学在弹性限度内,弹簧长度y(cm)是所挂物体的质量x(g)的一次函数.已知一根弹簧挂10g物体时的长度为11cm,挂30g物体时的长度为15cm,试求y与x的函数表达式.归纳:先写出含有未知系数的函数表达式,再根据条件求出这些未知系数的值,从而确定函数表达式,这样的方法叫做待定系数法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

班级 学号 姓名__________________________
◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆
第六章 一次函数复习卷
课堂练习
一、填空题
1、点P (2,—1)在第 象限,关于x 轴对称的点坐标为 , 关于Y 轴对称的点坐标为 关于原点对称的点坐标为
2. 如右图,用(0,0)表示O 点的位置, 用(2,3)表示M 点的 位置, 则用 表示N 点的位置. 3、正比例函数y=kx 的图象是经过 点的一条直线
当k >0时,图像从左到右 ,直线经过第 象限 当k <0时,图像从左到右 ,直线经过第 象限
4、一次函数y=kx+b 的图象是 当k >0时,y 的值随x 的值的增大而 当k <0时,y 的值随x 的值的增大而
5、已知正比例函数y=k x 的图象经过点(-1,3),函数的表达式是 .
6、已知一次函数y=kx+4的图象经过点(-1,2),则函数的表达式是 二、选择题
1、点P (13++m m ,)在直角坐标系的x 轴上,则点P 的坐标为( )
A .(0,-2)
B .(2,0)
C .(4,0)
D .(0,-4)
2、将平面直角坐标系内的△ABC 的三个顶点坐标的横坐标乘以-1,纵坐标不变,•则所得的三角形与原三角形( ).
A .关于x 轴对称
B .关于y 轴对称;
C .关于原点对称
D .无任何对称关系 3、下面哪个点不在函数y = -2x+3的图象上( )
A .(-5,13) B.(0.5,2) C.(3,0) D.(1,1) 4、下列函数中,y 的值随x 的值增大而增大的是( ) A. y= -3x B. y=2x - 1 C. y= -3x+10 D. y= -2x+1 5、函数b kx y +=(k >0,b <0)的图象大致是( )
三、解答题
1、画出函数y=-2x —4的图象,
(1)图象与x 轴交于点 ,与y 轴交于点 。

(2)x 时,y ﹥0 x 时,y ﹤0
(4)函数图象与两坐标轴围成的三角形面积为
2、某地长途汽车客运公司规定旅客可随身携带一定质量的行 李,如果超过规定,则需要购买行李票,行李票费用y 元是行李质量x (千克)的一次函数,其图象如下图所示.
(1)写出y 与x 之间的函数关系式; (2)旅客可免费携带多少千克行李?
3、某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表:
X (元) 15 20 25 … Y (件)
25
20
15

假设日销售量y 是销售价x 的一次函数
(1)求出日销售量y (件)与销售价x (元)的函数关系式 (2)求销售价定为30元时,每日的销售量和销售利润
y
x
12345-1-2-3-4-5-6
1
2
3
4
5
-1
-2
-3
-4
-5
-6
o O •M
•N
课后作业
1、若正比例函数kx y =(k ≠0)过点(1-,2),则该正比例函数的解析式为=y ___________。

2、正比例函数kx y =(k <0
)的图像经过第 象限。

3、如图,已知一次函数(1)y a x b =-+的图象,那么a 的取值范围是( ) A .1a >
B .1a <
C .0a >
D .0a <
4、一次函数21y x =-的图象大致是( )
5、如果点A (—2,a )在函数y=2
1
-
x+3的图象上,那么a 的值等于 6、如图,正比例函数图象经过点A ,求该函数解析式.
7、如图,一次函数y ax b =+的图象经过A 、B 两点,
求一次函数的表达式.
8、某公司市场营销部的营销员的个人月收入与该营销员每月的销量成一次函数关系,其图象如图所示. 根据图象提供的信息,解答下列问题: (1)求出营销人员的个人月收入y 元与该营销员每月的销售量x 万件(x ≥0)之间的函数关系式;
(2)已知该公司营销员李平5月份的销售量为1.2万件,求李平5月份的收入.
9、某学校需要购买一批电脑,有两种方案如下:
方案l :到商家直接购买,每台需要7000元;
方案2:学校买零部件组装,每台需要6000元,另外需要支付安装费等其它费用合计3000元.设学校需要电脑x 台,方案1与方案2的费用分别为y 1,y 2元. (1) 分别写出y 1,y 2的函数关系式;
(2) 当学校添置多少台电脑时,两种方案的费用相同?
(3) 若学校需要添置电脑50台,那么采用哪一种方案较省钱?说说你的理由.
O
x
y
O
x
y
O
x
y
y
x
O
A.
B .
C . D.
(第7题图) 第6
1600
x(万件) y(元)
0 1 400 2 第3。

相关文档
最新文档