2019高中数学命题练习题精品教育.doc
2019年高中数学湘教版选修2-1讲义+精练:第1章1.1.1 命题的概念和例子含解析
1.1命题及其关系1.1.1命题的概念和例子[读教材·填要点]1.命题的概念可以判断成立或不成立的语句叫作命题.2.命题的分类(1)真命题:成立的命题叫作真命题.(2)假命题:不成立的命题叫作假命题.(3)猜想:暂时不知道真假的命题可以叫作猜想.[小问题·大思维]1.如果一个语句是命题,它必须具备什么条件?提示:如果一个语句是命题,那么该语句所陈述的事情必须能够判断其成立或不成立.2.数学中的定义、公理、定理、公式等是否是命题?是真命题还是假命题?提示:数学中的定义、定理、公理、公式等都是命题,且都是真命题.判断下列语句是否是命题,并说明理由.(1)求证π是无理数;(2)若x∈R,则x2+4x+5≥0;(3)一个数的算术平方根一定是负数;(4)梯形是不是平面图形呢?[自主解答](1)是祈使句,不是命题;(2)可以判断其是否成立,故为命题;(3)是命题,并且是假命题,因为一个数的算术平方根为非负数;(4)“梯形是不是平面图形呢?”是疑问句,所以它不是命题.判断一个语句是否是命题,关键是看语句的格式,也就是要看它是否符合“可以判断成立或不成立”这个条件,如果满足这个条件,该语句就是命题,否则就不是.1.判断下列语句是否为命题,并说明理由.(1)若平行四边形的边都相等,则它是菱形;(2)空集是任何非空集合的真子集;(3)对顶角相等吗?(4)x>3.解:(1)能判断其是否成立,是命题;(2)能判断其是否成立,是命题;(3)是疑问句,不是命题;(4)不能判断其是否成立,不是命题.判断下列命题的真假,并说明理由.(1)如果学好了数学,那么就会使用电脑;(2)若x=3或x=7,则(x-3)(x-7)=0;(3)正方形既是矩形又是菱形;(4)若a,b都是奇数,则ab必是奇数.[自主解答](1)是假命题,学好数学与会使用电脑不具有因果关系,因而无法推出结论,故为假命题.(2)是真命题,x=3或x=7能得到(x-3)(x-7)=0.(3)是真命题,由正方形的定义知正方形既是矩形又是菱形.(4)是真命题,令a=2k1+1,b=2k2+1(k1,k2∈Z),则ab=2(2k1k2+k1+k2)+1,显然2k1k2+k1+k2是一个整数,故ab是奇数.若将本例(4)中的“奇数”改为“无理数”,判断该命题的真假.解:当a =5,b =-5时,a ,b 都是无理数,但 5×(-5)=-5是有理数,故该命题为假命题.判断命题真假的策略(1)要判断一个命题是真命题,一般要有严格的证明或有事实依据,比如根据已学过的定义、公理、定理证明或根据已知的正确结论推证.(2)要判断一个命题是假命题,只要举一个反例即可.2.判断下列命题的真假,并说明理由. (1)形如a +6b 的数是无理数;(2)一个等比数列的公比大于1时,该数列为递增数列; (3)奇函数的图象关于原点对称; (4)能被2整除的数一定能被4整除.解:(1)假命题,反例:a 是有理数且b =0,则a +6b 是有理数.(2)假命题.若数列{a n }为等比数列,且a 1=-1,q =2,则该数列为递减数列. (3)真命题.根据奇函数的性质可知奇函数的图象一定关于原点对称. (4)假命题.反例:如2,6能被2整除,但不能被4整除.试探究命题“方程ax 2+bx +1=0有实数解”为真命题时,a ,b 满足的条件.[自主解答] 方程ax 2+bx +1=0有实数解,要考虑方程为一元一次方程和一元二次方程两种情况: 当a =0时,方程ax 2+bx +1=0为bx +1=0,只有当b ≠0时,方程有实数解x =-1b ; 当a ≠0时,方程ax 2+bx +1=0为一元二次方程,方程有实数解的条件为Δ=b 2-4a ≥0. 综上知,当a =0,b ≠0或a ≠0,b 2-4a ≥0时,方程ax 2+bx +1=0有实数解.(1)并不是任何语句都是命题.要判断一个句子是否为命题,关键在于能否判断其成立或不成立.一般地,疑问句、祈使句、感叹句都不是命题.(2)一个命题要么是真的,要么是假的,二者必居其一.3.下面的命题中是真命题的是( ) A .y =sin 2x 的最小正周期为2πB .若方程ax 2+bx +c =0(a ≠0)的两根同号,则ca >0 C .如果M ⊆N ,那么M ∪N =MD .在△ABC 中,若AB ―→·BC ―→>0,则B 为锐角解析:选B y =sin 2x =1-cos 2x 2,T =2π2=π,故A 为假命题;当M ⊆N 时,M ∪N =N ,故C 为假命题;在三角形ABC 中,当AB ―→·BC ―→>0时,向量AB ―→与BC ―→的夹角为锐角,B 应为钝角,故D 为假命题.故选B.解题高手 妙解题 什么是智慧,智慧就是简单、高效、不走弯路若命题“如果5x -1>a ,那么x >1”是真命题,求实数a 的取值范围.[巧思] “如果5x -1>a ,那么x >1”是真命题,则不等式5x -1>a 的解集是x >1的子集. [妙解] 由5x -1>a ,得x >15(1+a ).∵命题“如果5x -1>a 那么x >1”是真命题, ∴⎝⎛⎭⎫1+a 5,+∞⊆(1,+∞). ∴1+a5≥1,即a ≥4. 即a 的取值范围是[4,+∞).1.“红豆生南国,春来发几枝?愿君多采撷,此物最相思.”这是唐代诗人王维的《相思》,这首诗中,在当时条件下,可以作为命题的是( )A .红豆生南国B .春来发几枝C .愿君多采撷D .此物最相思解析:“红豆生南国”是陈述句,所述事件在唐代是事实,所以本句是命题,且是真命题;“春来发几枝”是疑问句,“愿君多采撷”是祈使句,“此物最相思”是感叹句,都不是命题,故选A.答案:A2.下列命题中的真命题是( ) A .互余的两个角不相等 B .相等的两个角是同位角 C .若a 2=b 2,则|a |=|b |D .三角形的一个外角等于和它不相邻的一个内角 解析:由平面几何知识可知A 、B 、D 三项都是错误的. 答案:C3.给出命题“方程x 2+ax +1=0没有实数根”,则使该命题为真命题的a 的一个值可以是( ) A .4 B .2 C .0D .-3解析:方程无实根时,应满足Δ=a2-4<0.故a=0时适合条件.答案:C4.设a,b,c是任意的非零平面向量,且相互不共线,则:①(a·b)c=(c·a)b;②|a|-|b|<|a-b|;③(b·c)a-(c·a)b不与c垂直;④(3a+2b)·(3a-2b)=9|a|2-4|b|2中,是真命题的有________(只填序号).解析:因为a,b,c相互不共线,所以(a·b)c与(c·a)b不一定相等.又因为[(b·c)a-(c·a)b]·c=(b·c)(a·c)-(c·a)·(b·c)=0,所以①③为假命题,易证②④为真命题.答案:②④5.下列命题:①y=x2+3为偶函数;②0不是自然数;③{x∈N|0<x<12}是无限集;④如果a·b=0,那么a=0或b=0.其中是真命题的是________(写出所有真命题的序号).解析:①为真命题,②③④为假命题.答案:①6.若命题p(x):x2+2>3x为真命题,求x的取值范围.解:∵x2+2>3x,∴x2-3x+2>0.解得x>2或x<1,∴x的取值范围是(2,+∞)∪(-∞,1).一、选择题1.下列语句中是命题的是()A.周期函数的和是周期函数吗?B.sin 0°=0C.求x2-2x+1>0的解集D.作△ABC∽△EFG解析:A选项是疑问句,不是命题,C、D选项中的语句显然不是.答案:B2.已知命题“非空集合M中的元素都是集合P中的元素”是假命题,那么下列命题中真命题的个数为()①M中的元素都不是P的元素;②M中有不属于P的元素;③M中有属于P的元素;④M中的元素不都是P的元素.A.1B.2C.3 D.4解析:①③错误;②④正确.答案:B3.下列命题中,为真命题的是()A.对角线相等的四边形是矩形B.若一个球的半径变为原来的2倍,则其体积变为原来的8倍C.若两组数据的平均数相等,则它们的标准差也相等D.直线x+y+1=0与圆x2+y2=1相切解析:等腰梯形对角形相等,不是矩形,故A中命题是假命题;由球的体积公式可知B中命题为真命题;C 中命题为假命题,如“3,3,3”和“2,3,4”的平均数相等,但标准差显然不相等;圆x2+y2=1的圆心(0,0)到直线x+y+1=0的距离d=22<1,故直线与圆相交,所以D中命题为假命题.答案:B4.给出下列命题:①若直线l⊥平面α,直线m⊥平面α,则l⊥m;②若a,b都是正实数,则a+b≥2ab;③若x2>x,则x>1;④函数y=x3是指数函数.其中假命题的个数为()A.1 B.2C.3 D.4解析:①中,显然l∥m或l与m重合,所以①是假命题;由基本不等式,知②是真命题;③中,由x2>x,得x<0或x>1,所以③是假命题;④中,函数y=x3是幂函数,不是指数函数,所以④是假命题.故选C.答案:C二、填空题5.下列语句:①mx2+2x-1=0是一元二次方程吗?②抛物线y=ax2+2x-1与x轴至少有一个交点;③互相包含的两个集合相等;④若m>0,a>b>0,则b+ma+m>ba.其中真命题的序号为________.解析:①不是命题;②错,可能没交点;③正确,若A⊆B,B⊆A,则A=B;④显然正确,可以证明.答案:③④6.给出下列命题:①方程x 2-x +1=0有两个实根; ②对于实数x ,若x -2=0,则x -2≤0; ③若p >0,则p 2>p ; ④正方形不是菱形.其中真命题是________,假命题是________.解析:①假,因Δ<0;②真;③假,p =12时,p 2<p ;④假,正方形是菱形,也是矩形.答案:② ①③④7.函数f (x )的定义域为A ,若当x 1,x 2∈A 且f (x 1)=f (x 2)时,总有x 1=x 2,则称f (x )为单函数.例如,函数f (x )=2x +1(x ∈R)是单函数.下列命题:①函数f (x )=x 2(x ∈R)是单函数;②指数函数f (x )=2x (x ∈R)是单函数;③在定义域上具有单调性的函数一定是单函数.其中的真命题是________.(填序号)解析:由x 21=x 22,未必有x 1=x 2,故①为假命题;对于f (x )=2x,当f (x 1)=f (x 2)时一定有x 1=x 2,故②为真命题;当函数在其定义域上单调时,一定有“若f (x 1)=f (x 2),则x 1=x 2”,故③为真命题.故真命题是②③.答案:②③8.若命题“ax 2-2ax -3>0不成立”是真命题,则实数a 的取值范围是________. 解析:∵ax 2-2ax -3>0不成立,∴ax 2-2ax -3≤0恒成立.当a =0时,-3≤0恒成立;当a ≠0时,则有⎩⎪⎨⎪⎧a <0,Δ=4a 2+12a ≤0,解得-3≤a <0. 综上,-3≤a ≤0. 答案:[-3,0] 三、解答题9.判断下列语句是否是命题,若是,判断其真假,并说明理由. (1)一个数不是合数就是质数. (2)大角所对的边大于小角所对的边. (3)x +y 是有理数,则x ,y 也都是有理数. (4)求证x ∈R ,方程x 2+x +1=0无实根. 解:(1)是假命题,1不是合数,也不是质数. (2)是假命题,必须在同一个三角形或全等三角形中. (3)是假命题,如x =2,y =- 2. (4)祈使句,不是命题.10.判断命题:“若a +b =2,则直线x +y =0与圆(x -a )2+(y -b )2=2相切”的真假. 解:由已知a +b =2,圆心(a ,b )到直线x +y =0的距离d =|a +b |2=22=2=r , 所以直线与圆相切,即命题为真.。
2019-2020学年苏教版高中数学选修2-2同步课堂精练:2.3数学归纳法Word版含答案
2019-2020学年苏教版数学精品资料1.数列1,1+3,1+3+5,1+3+5+7,…的一个通项公式为________.2.用数学归纳法证明不等式2n >n 2成立时,n 应取的第一个值为________.3.用数学归纳法证明不等式n 3+1≥4n +1时,n 所取的第一个值n 0为__________.4.用数学归纳法证明“1+12+13+…+121n <n (n ∈N *,且n >1)”时,由n =k (k >1)不等式成立,推证n =k +1时,左边应增加的项数是________.5.凸n 边形有f (n )条对角线,则凸n +1边形的对角线条数f (n +1)与f (n )之间的关系为.6.用数学归纳法证明2n +1≥n 2+n +2(n ∈N )时,第一步的验证为____________________.7.已知x >-1且x ≠0,n ∈N *,且n ≥2,求证:(1+x )n >1+nx .8.用数学归纳法证明:1+5+9+13+…+(4n -3)=2n 2-n .9.求证:a n +1+(a +1)2n -1能被a 2+a +1整除,n ∈N *.10.已知函数31x f x x (x ≥0).设数列{a n }满足a 1=1,a n +1=f (a n ),数列{b n }满足b n =|a n -3|,用数学归纳法证明1(31)2nn n b .参考答案1答案:n22答案:53答案:24答案:2k解析:增加的项数为(2k+1-1)-(2k-1)=2k.5答案:f(n+1)=f(n)+n-1 解析:如图,设凸n+1边形为A1A2…A n A n+1,连结A1A n,则凸n+1边形的对角线是由凸n边形A1A2…A n的对角线加上A1A n,再加上从A n+1点出发的n-2条对角线,即f(n+1)=f(n)+1+n-2=f(n)+n-1.6答案:当n=0时,20+1=2≥02+0+2=2,结论成立7答案:证明:(1)当n=2时,左边=(1+x)2=1+2x+x2,∵x≠0,∴1+2x+x2>1+2x.∴左边>右边,不等式成立.(2)假设当n=k时,不等式成立,即(1+x)k>1+kx成立,则当n=k+1时,左边=(1+x)k+1=(1+x)k(1+x).∵x>-1,∴1+x>0.∴(1+x)k(1+x)>(1+kx)(1+x)=1+(k+1)x+kx2.∵x≠0,∴1+(k+1)x+kx2>1+(k+1)x.∴(1+x)k+1>1+(k+1)x成立,即当n=k+1时不等式成立.由(1)(2)可知,不等式对于所有的n≥2的正整数都成立.8答案:证明:(1)当n=1时,左边=1,右边=1,命题成立.(2)假设n=k(k≥1)时,命题成立,即1+5+9+13+…+(4k-3)=2k2-k.则当n=k+1时,1+5+9+13+…+(4k-3)+(4k+1)=2k2-k+(4k+1)=2k2+3k+1=2(k+1)2-(k+1).∴当n=k+1时,命题成立.综上所述,原命题成立.9答案:证明:(1)当n =1时,a1+1+(a +1)2×1-1=a 2+a +1,命题显然成立. (2)假设n =k 时,a k +1+(a +1)2k -1能被a 2+a +1整除,则当n =k +1时,a k +2+(a +1)2k +1=a ·a k +1+(a +1)2·(a +1)2k -1=a +(a +1)2(a +1)2k -1-a (a +1)2k -1=a +(a 2+a +1)(a +1)2k -1.由归纳假设知,上式中的两部分均能被a 2+a +1整除,故n =k +1时命题成立. 根据(1)(2)知,对任意n ∈N*,命题成立.10答案:证明:当x ≥0时,f (x )=1+21x >1. 因为a 1=1,所以a n ≥1(n ∈N *).下面用数学归纳法证明不等式1(31)2n n n b . (1)当n =1时,b 1=3-1,不等式成立.(2)假设当n =k (k ≥1)时,不等式成立,即1(31)2k k k b ,那么b k +1=|a k +1-3|=1(31)|3|31(31)122k kk k ka b a . 所以,当n =k +1时,不等式也成立. 根据(1)和(2),可知不等式对任意n ∈N*都成立.。
万唯中考数学试题2)
A.1 B.0 C. -2 D. -1 2
2.如图,直线 AB、CD相交于点 O,OE平分∠AOD,若∠BOC=70°,则∠COE的度数是
A.110°
B.120°
C.135°
D.145°
第 2题图
3.2018年 12月 18日,庆祝改革开放 40周年大会在北京人民大会堂隆重举行.改革开放四十年
A.(1,1)
B.(0,槡2)
二、填空题(每小题 3分,共 15分)
C.(-槡2,Leabharlann )D.(-1,1)11.计算:|-2|-(1)-1 = . 4
12.若关于 x的一元二次方程 x2+4x-2a=0有两个不相等的实数根,则 a的取值范围是 . 13.抛物线 y=-x2+2x+c与 x轴交于两点,其中一个交点的坐标为(3,0),则当函数值 y<0时,x
三、解答题(本大题共 8个小题,满分 75分) 16.(8分)先化简,再求值:(2x-1)2-2(x-1)(x+1)-x(x-2),其中 x= +1.
17.(9分)“古圣先贤孝为宗,万善之门孝为基,礼敬尊亲如活佛,成就生命大意义,父母恩德重如 山,知恩报恩不忘本,做人饮水要思源,才不愧对父母恩…”.某实验中学为加强对学生的感恩 教育,教学生唱《跪羊图 》,并 对 学 生 的 学 习 成 果 进 行 随 机 抽 查,现 对 部 分 学 生 的 成 绩 (x为 整 数,满分 100分)进行了统计,绘制了如下尚不完整的统计图表.
6.某小组 8位学生的中招体育测试成绩(满分 70分)依次为 69,70,65,67,70,68,70,68,则这组数
据的众数与中位数分别是
A.70,69
B.70,67
C.69,70
D.70,68.5
2019福建省高考数学考试说明:难度控制在0.6左右精品教育.doc
2019年福建省高考数学考试说明:难度控制在
0.6左右
考试内容:文科数学考试内容为《普通高中数学课程标准(实验)》的必修课程与选修课程系列1的内容。
理科数学考试内容分为必考内容和选考内容。
必考内容为《普通高中数学课程标准(实验)》的必修课程和选修课程系列2的内容。
选考内容为《普通高中数学课程标准(实验)》的选修课程系列4的4-2《矩阵与变换》、4-4《坐标系与参数方程》、4-5《不等式选讲》等三个专题的内容。
试卷结构:考试时间120分钟,考试方式为闭卷、笔试。
全卷满分150分,考试不使用计算器。
理科数学试卷选择题共10题,每题5分,总共50分;填空题共5题,每题4分,共计20分;解答题共6题,其中必考题5题,选考题1题(包含3小题,每小题7分,考生从中任选2小题作答,满分14分),共计80分。
文科数学试卷选择题共12题,每题5分,共计60分;填空题共4题,每题4分,共计16分;解答题共6题,共计74分。
试卷难度:整卷难度值应控制在0.6左右。
试卷中各道试题
的难度值一般控制在0.2~0.8之间,整份试卷中各种难度的试题得分数分布应当适当。
试卷应由容易题、中等题和难题组成。
难度值在0.7以上的试题为容易题,难度值在0.4~0.7的试题为中等题,难度值在0.4以下的试题为难题。
易、中、难试题的比例约为4:4:2,全卷难度控制在0.6左右。
来源:中国教育在线。
高中数学命题练习题
高中数学命题练习题高中数学命题练习题课前准备1、“凡直角均相等“的否命题是()(A)凡不是直角均不相等。
(B)凡相等的两角均为直角。
(C)不都是直角的角不相等。
(D)不相等的角不是直角。
2、已知P:|2x-3|1;q: ;则﹁p是﹁q的()条件(A) 充分不必要条件(B) 必要不充分条件(C) 充分必要条件 (D) 既非充分条件又非必要条件3、“ ”是“ 或”的()(A) 充分不必要条件 (B) 必要不充分条件 (C) 充要条件(D) 既不充分也不必要条件4、命题甲:x+y3,命题乙:x1且y2.则甲是乙的条件.5、有下列四个命题:① 命题“若,则,互为倒数”的逆命题;② 命题“面积相等的三角形全等”的否命题;③ 命题“若 1,则有实根”的逆否命题;④ 命题“若 = ,则”的逆否命题。
其中是真命题的是(填上你认为正确的命题的序号). 6、写出命题“若 xy= 0 则 x = 0或y = 0”的逆命题、否命题、逆否命题课后作业一、选择:(3) 的______________条件7、的一个充分不必要条件是 _______________8、指出下列各题中甲是乙的什么条件?(1)甲:a、b、c成等比数列;乙:b2=ac________________. (2)甲: ______________________(3)甲:直线l1∥l2,乙:直线l1与l2的斜率相等_______________________三、解答9、已知命题P:方程x2+mx+1=0有两个不相等的负根;Q:方程4x2+4(m-2)x+1=0无实根.若P或Q为真,P且Q为假,求m的取值范围.10、试写出一元二次方程,①有两个正根②两个小于的根③一个正根一个负根的一个充要条件。
11、a1、b1、c1、a2、b2、c2均为非零实数,不等式a1x2+b1x+c10和a2x2+b2x+c20的解集分别为集合M和N,试判断“ ”是“M=N”的什么条件,并说明理由。
高中数学命题与充要条件练习题附答案精选全文完整版
可编辑修改精选全文完整版1.已知x∈R,命题“若x2>0,则x>0”的逆命题、否命题和逆否命题中,正确命题的个数是()A.0B.1C.2 D.3解析:选C.命题“若x2>0,则x>0”的逆命题是“若x>0,则x2>0”,是真命题;否命题是“若x2≤0,则x≤0”,是真命题;逆否命题是“若x≤0,则x2≤0”,是假命题.综上,以上3个命题中真命题的个数是2.故选C.2.已知命题p:“正数a的平方不等于0”,命题q:“若a不是正数,则它的平方等于0”,则q是p的()A.逆命题B.否命题C.逆否命题D.否定解析:选B.命题p:“正数a的平方不等于0”可写成“若a是正数,则它的平方不等于0”,从而q是p的否命题.3.(2018·陕西质量检测(一))设a,b∈R,则“(a-b)a2<0”是“a<b”的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件解析:选A.由(a-b)a2<0可知a2≠0,则一定有a-b<0,即a<b;但是a<b即a -b<0时,有可能a=0,所以(a-b)a2<0不一定成立,故“(a-b)a2<0”是“a<b”的充分不必要条件,选A.4.在△ABC中,角A,B,C的对边分别为a,b,c,则“sin A>sin B”是“a>b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选C.设△ABC外接圆的半径为R,若sin A>sin B,则2R sin A>2R sin B,即a>b;若a>b,则a2R>b2R,即sin A>sin B,所以在△ABC中,“sin A>sin B”是“a>b”的充要条件,故选C.5.有下列命题:①“若x+y>0,则x>0且y>0”的否命题;②“矩形的对角线相等”的否命题;③“若m ≥1,则mx 2-2(m +1)x +m +3>0的解集是R ”的逆命题; ④“若a +7是无理数,则a 是无理数”的逆否命题. 其中正确的是( ) A .①②③ B .②③④ C .①③④D .①④解析:选C .①的逆命题为“若x >0且y >0,则x +y >0”为真,故否命题为真; ②的否命题为“不是矩形的图形对角线不相等”,为假命题; ③的逆命题为“若mx 2-2(m +1)x +m +3>0的解集为R ,则m ≥1”. 因为当m =0时,解集不是R ,所以应有⎩⎪⎨⎪⎧m >0,Δ<0,即m >1.所以③是真命题;④原命题为真,逆否命题也为真.6.(2018·石家庄模拟)“log 2(2x -3)<1”是“4x >8”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选A .由log 2(2x -3)<1⇒0<2x -3<2⇒32<x <52,4x >8⇒2x >3⇒x >32,所以“log 2(2x -3)<1”是“4x >8”的充分不必要条件,故选A .7.已知直线l ,m ,其中只有m 在平面α内,则“l ∥α”是“l ∥m ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选B .当l ∥α时,直线l 与平面α内的直线m 平行、异面都有可能,所以l ∥m 不一定成立;当l ∥m 时,根据直线与平面平行的判定定理知直线l ∥α,即“l ∥α”是“l ∥m ”的必要不充分条件,故选B .8.命题“对任意x ∈[1,2),x 2-a ≤0”为真命题的一个充分不必要条件可以是( ) A .a ≥4 B .a >4 C .a ≥1D .a >1解析:选B .要使“对任意x ∈[1,2),x 2-a ≤0”为真命题,只需要a ≥4,所以a >4是命题为真的充分不必要条件.9.(2017·高考浙江卷)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选C .因为{a n }为等差数列,所以S 4+S 6=4a 1+6d +6a 1+15d =10a 1+21d ,2S 5=10a 1+20d ,S 4+S 6-2S 5=d ,所以d >0⇔S 4+S 6>2S 5,故选C .10.(2018·惠州第三次调研)设函数y =f (x ),x ∈R ,“y =|f (x )|是偶函数”是“y =f (x )的图象关于原点对称”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件解析:选C .设f (x )=x 2,y =|f (x )|是偶函数,但是不能推出y =f (x )的图象关于原点对称.反之,若y =f (x )的图象关于原点对称,则y =f (x )是奇函数,这时y =|f (x )|是偶函数,故选C .11.(2018·贵阳检测)设向量a =(1,x -1),b =(x +1,3),则“x =2”是“a ∥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A .依题意,注意到a ∥b 的充要条件是1×3=(x -1)(x +1),即x =±2.因此,由x =2可得a ∥b ,“x =2”是“a ∥b ”的充分条件;由a ∥b 不能得到x =2,“x =2”不是“a ∥b ”的必要条件,故“x =2”是“a ∥b ”的充分不必要条件,选A .12.(2018·郑州第一次质量预测)已知命题p :1a >14,命题q :∀x ∈R ,ax 2+ax +1>0,则p 成立是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A .命题p 等价于0<a <4.命题q ,对∀x ∈R ,ax 2+ax +1>0,必有⎩⎪⎨⎪⎧a =01>0或⎩⎪⎨⎪⎧a >0a 2-4a <0,则0≤a <4,所以命题p 成立是命题q 成立的充分不必要条件,故选A . 13.下列命题中为真命题的是________. ①命题“若x >1,则x 2>1”的否命题; ②命题“若x >y ,则x >|y |”的逆命题; ③命题“若x =1,则x 2+x -2=0”的否命题; ④命题“若x 2>1,则x >1”的逆否命题.解析:对于①,命题“若x >1,则x 2>1”的否命题为“若x ≤1,则x 2≤1”,易知当x =-2时,x 2=4>1,故①为假命题;对于②,命题“若x >y ,则x >|y |”的逆命题为“若x >|y |,则x >y ”,分析可知②为真命题;对于③,命题“若x =1,则x 2+x -2=0”的否命题为“若x ≠1,则x 2+x -2≠0”,易知当x =-2时,x 2+x -2=0,故③为假命题;对于④,命题“若x 2>1,则x >1”的逆否命题为“若x ≤1,则x 2≤1”,易知当x =-2时,x 2=4>1,故④为假命题.答案:②14.给出命题:若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限.在它的逆命题、否命题、逆否命题3个命题中,真命题的个数是________.解析:原命题是真命题,故它的逆否命题是真命题;它的逆命题为“若函数y =f (x )的图象不过第四象限,则函数y =f (x )是幂函数”,显然逆命题为假命题,故原命题的否命题也为假命题.因此在它的逆命题、否命题、逆否命题3个命题中真命题只有1个.答案:115.若命题“ax 2-2ax -3>0不成立”是真命题,则实数a 的取值范围是________. 解析:由题意知ax 2-2ax -3≤0恒成立,当a =0时,-3≤0成立;当a ≠0时,得⎩⎪⎨⎪⎧a <0,Δ=4a 2+12a ≤0,解得-3≤a <0,故-3≤a ≤0. 答案:[-3,0]16.(2018·长沙模拟)给出下列命题:①已知集合A ={1,a },B ={1,2,3},则“a =3”是“A ⊆B ”的充分不必要条件; ②“x <0”是“ln(x +1)<0”的必要不充分条件;③“函数f (x )=cos 2ax -sin 2ax 的最小正周期为π”是“a =1”的充要条件;④“平面向量a 与b 的夹角是钝角”的充要条件是“a·b <0”.其中正确命题的序号是________.(把所有正确命题的序号都写上)解析:①因为“a =3”可以推出“A ⊆B ”,但“A ⊆B ”不能推出“a =3”,所以“a =3”是“A ⊆B ”的充分不必要条件,故①正确;②“x <0”不能推出“ln(x +1)<0”,但“ln(x +1)<0”可以推出“x <0”,所以“x <0”是“ln(x +1)<0”的必要不充分条件,故②正确;③f (x )=cos 2ax -sin 2ax =cos 2ax ,若其最小正周期为π,则2π2|a |=π⇒a =±1,因此“函数f (x )=cos 2ax -sin 2ax 的最小正周期为π”是“a =1”的必要不充分条件,故③错误;④“平面向量a 与b 的夹角是钝角”可以推出“a·b <0”,但由“a·b <0”,得“平面向量a 与b 的夹角是钝角或平角”,所以“a·b <0”是“平面向量a 与b 的夹角是钝角”的必要不充分条件,故④错误.正确命题的序号是①②.答案:①②1.(2017·高考天津卷)设θ∈R ,则“⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件解析:选A .因为⎪⎪⎪⎪θ-π12<π12⇔-π12<θ-π12<π12⇔0<θ<π6, sin θ<12⇔θ∈⎝⎛⎭⎫2k π-7π6,2k π+π6,k ∈Z ,⎝⎛⎭⎫0,π6⎝⎛⎭⎫2k π-7π6,2k π+π6,k ∈Z ,所以“⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的充分而不必要条件. 2.下列选项中,p 是q 的必要不充分条件的是( ) A .p :x =1,q :x 2=x B .p :|a |>|b |,q :a 2>b 2 C .p :x >a 2+b 2,q :x >2ab D .p :a +c >b +d ,q :a >b 且c >d解析:选D.A 中,x =1⇒x 2=x ,x 2=x ⇒x =0或x =1⇒/ x =1,故p 是q 的充分不必要条件;B 中,因为|a |>|b |,根据不等式的性质可得a 2>b 2,反之也成立,故p 是q 的充要条件;C 中,因为a 2+b 2≥2ab ,由x >a 2+b 2,得x >2ab ,反之不成立,故p 是q 的充分不必要条件;D 中,取a =-1,b =1,c =0,d =-3,满足a +c >b +d ,但是a <b ,c >d ,反之,由同向不等式可加性得a >b ,c >d ⇒a +c >b +d ,故p 是q 的必要不充分条件.综上所述,故选D.3.已知p :x ≥k ,q :(x +1)(2-x )<0,如果p 是q 的充分不必要条件,则实数k 的取值范围是( )A .[2,+∞)B .(2,+∞)C .[1,+∞)D .(-∞,-1]解析:选B .由q :(x +1)(2-x )<0,得x <-1或x >2,又p 是q 的充分不必要条件,所以k >2,即实数k 的取值范围是(2,+∞),故选B .4.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <8,x ∈R ,B ={x |-1<x <m +1,x ∈R },若x ∈B 成立的一个充分不必要条件是x ∈A ,则实数m 的取值范围是________.解析:因为A =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <8,x ∈R ={x |-1<x <3},x ∈B 成立的一个充分不必要条件是x ∈A ,所以A B ,所以m +1>3,即m >2.答案:m >25.已知集合A =⎩⎨⎧⎭⎬⎫y |y =x 2-32x +1,x ∈⎣⎡⎦⎤34,2,B ={x |x +m 2≥1}.若“x ∈A ”是“x ∈B ”的充分条件,求实数m 的取值范围.解:y =x 2-32x +1=⎝⎛⎭⎫x -342+716,因为x ∈⎣⎡⎦⎤34,2,所以716≤y ≤2, 所以A =⎩⎨⎧⎭⎬⎫y |716≤y ≤2.由x +m 2≥1,得x ≥1-m 2, 所以B ={x |x ≥1-m 2}.因为“x ∈A ”是“x ∈B ”的充分条件,所以A ⊆B ,所以1-m 2≤716,解得m ≥34或m ≤-34,故实数m 的取值范围是⎝⎛⎦⎤-∞,-34∪⎣⎡⎭⎫34,+∞. 6.已知两个关于x 的一元二次方程mx 2-4x +4=0和x 2-4mx +4m 2-4m -5=0,求两方程的根都是整数的充要条件.解:因为mx 2-4x +4=0是一元二次方程,所以m ≠0.又另一方程为x 2-4mx +4m 2-4m -5=0,且两方程都要有实根,所以⎩⎪⎨⎪⎧Δ1=16(1-m )≥0,Δ2=16m 2-4(4m 2-4m -5)≥0,解得m ∈⎣⎡⎦⎤-54,1. 因为两方程的根都是整数, 故其根的和与积也为整数,所以⎩⎪⎨⎪⎧4m∈Z ,4m ∈Z ,4m 2-4m -5∈Z .所以m 为4的约数. 又因为m ∈⎣⎡⎦⎤-54,1, 所以m =-1或1.当m =-1时,第一个方程x 2+4x -4=0的根为非整数; 而当m =1时,两方程的根均为整数, 所以两方程的根均为整数的充要条件是m =1.。
高中真假命题练习题及讲解
高中真假命题练习题及讲解### 高中真假命题练习题及讲解#### 一、基础命题判断1. 命题:如果一个数是偶数,那么它一定能被2整除。
- 判断:真命题。
- 解释:偶数的定义就是能被2整除的整数。
2. 命题:所有直角三角形的斜边都比两直角边长。
- 判断:真命题。
- 解释:根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和,因此斜边一定大于任一直角边。
3. 命题:存在一个实数x,使得x^2 = -1。
- 判断:假命题。
- 解释:实数的平方总是非负的,因此不存在实数的平方为负数。
4. 命题:如果两个角相等,那么它们所对的边也相等。
- 判断:假命题。
- 解释:这个命题在等腰三角形中成立,但并非所有三角形都满足此条件。
5. 命题:对于任意实数a和b,如果a > b,则a^2 > b^2。
- 判断:假命题。
- 解释:考虑a = -2和b = -3,虽然a > b,但是a^2 = 4 < 9 = b^2。
#### 二、复合命题判断6. 命题:如果一个三角形是等边三角形,那么它也是锐角三角形。
- 判断:真命题。
- 解释:等边三角形的所有角都是60度,因此都是锐角。
7. 命题:如果一个三角形的两边之和大于第三边,那么这个三角形是锐角三角形。
- 判断:假命题。
- 解释:满足两边之和大于第三边的三角形可以是锐角、直角或钝角三角形。
8. 命题:如果一个数是整数,那么它的平方也是整数。
- 判断:真命题。
- 解释:整数的平方运算结果仍然是整数。
9. 命题:如果一个数的平方大于1,那么这个数一定大于1。
- 判断:假命题。
- 解释:考虑负数,比如(-2)^2 = 4 > 1,但-2 < 1。
10. 命题:如果一个数是无理数,那么它的平方也是无理数。
- 判断:假命题。
- 解释:例如,√2是无理数,但(√2)^2 = 2是整数,整数是有理数。
#### 三、逻辑推理题11. 命题:如果一个数是正数,那么它的对数是正数。
2019绵阳市高三理科数学一诊试卷(有答案)精品教育.doc
绵阳市2019届高三理科数学一诊试卷(有答案)绵阳市2019届高三理科数学一诊试卷(有答案)一、选择题:本大题共10小题,每小题5分,共50分. DBDAC BACDA10题提示:由对xR恒成立,显然a0,b -ax.若a=0,则ab=0.若a0,则aba -a2x.设函数,求导求出f(x)的最小值为 . 设,求导可以求出g(a)的最大值为,即的最大值是,此时 .二、填空题:本大题共5小题,每小题5分,共25分.11. 12.-113.4014.3021 15.①③④15题提示:①容易证明正确.②不正确.反例:在区间[0,6]上.③正确.由定义:得,又所以实数的取值范围是 .④正确.理由如下:由题知 .要证明,即证明:,令,原式等价于 .令,则,所以得证.三、解答题:本大题共6小题,共75分.16.解:(Ⅰ) 2mn-1= . 6分由题意知:,即,解得 .7分(Ⅱ) 由(Ⅰ)知,∵x ,得,又函数y=sinx在[ , ]上是减函数,10分= .12分17.解:(Ⅰ) 由题知解得,即 .3分(Ⅱ) g (x)=x2+2mx-m2= ,此二次函数对称轴为 .4分① 若 2,即m-2时, g (x)在上单调递减,不存在最小值;②若,即时, g (x)在上单调递减,上递增,此时,此时值不存在;③ 1即m-1时, g (x)在上单调递增,此时,解得m=1. 11分综上: . 12分18.解:(Ⅰ) ,,由余弦定理: =52+22-252 =25,. 3分又,所以,由正弦定理:,得 .6分(Ⅱ) 以为邻边作如图所示的平行四边形,如图,则,BE=2BD=7,CE=AB=5,在△BCE中,由余弦定理: .即,解得: . 10分在△ABC中,,即 .12分19.解:(Ⅰ) 由,得:解得: ., . 5分(Ⅱ) 由题知 .若使为单调递减数列,则= 对一切nN*恒成立, 8分即:,又 = ,10分当或时, = ..12分20.(Ⅰ)证明:由,得 .1分由 0,即 0,解得xlna,同理由 0解得x在(-,lna)上是减函数,在(lna,+)上是增函数,于是在取得最小值.又∵ 函数恰有一个零点,则, 4分即 . 5分化简得:,. 6分(Ⅱ)解:由(Ⅰ)知,在取得最小值,由题意得 0,即 0,8分令,则,由可得01.在(0,1)上单调递增,在(1,+)上单调递减,即,当01时,h(a)0,要使得 0对任意xR恒成立,的取值集合为 13分21.解:(Ⅰ)由得 ( ).由已知得,解得m=n.又,即n=2,m=n=2.3分(Ⅱ) 由(Ⅰ)得,令,,当x(0,1)时, ;当x(1,+)时,,又,所以当x(0,1)时, ; 当x(1,+)时,,的单调增区间是(0,1),的单调减区间是(1,+).8分(Ⅲ) 证明:由已知有,,于是对任意,等价于,由(Ⅱ)知,,易得当时,,即单调递增;当时,,即单调递减.所以的最大值为,故 .设,则,因此,当时,单调递增, .故当时,,即 ..对任意, . 14分要多练习,知道自己的不足,对大家的学习有所帮助,以上是查字典数学网为大家总结的2019届高三理科数学一诊试卷,希望大家喜欢。
高中数学练习题 2019-2020学年人教B新版高一(上)模块数学试卷(必修1) -有答案
2019-2020学年人教B新版高一(上)模块数学试卷(必修1)一.选择题(每小题5分,共50分)A .30°B .60°C .120°D .150°1.(5分)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2-b 2=3bc ,sinC =23sinB ,则A 等于( )√√A .99B .66C .144D .2972.(5分)等差数列{a n }中,a 1+a 4+a 7=39,a 3+a 6+a 9=27,则数列{a n }前9项的和S 9等于( )A .30B .25C .20D .153.(5分)某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为( )A .1,2,3B .2,3,1C .2,3,2D .3,2,14.(5分)下列程序运行的结果是( )A .11B .5C .-8D .-115.(5分)设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2等于( )A .k >4?B .k >5?C .k >6?D .k >7?6.(5分)某程序框图如图所示,若输出的S =57,则判断框内为( )二.填空题(每小题5分,共25分)三.解答题(共-75分16题13分,17题13分,18题13分,19题12分,20题12分,21题12分)A .79B .87C .1920D .787.(5分)若两个等差数列{a n }、{b n }的前n 项和分别为A n 、B n ,且满足A nB n =4n +25n −5,则a 5+a 13b 5+b 13的值为( )A .x >3B .0<x <2C .3<x <2D .3<x ≤28.(5分)已知△ABC 中,a 、b 分别是角A 、B 所对的边,且a =x (x >0),b =2,A =60°,若三角形有两解,则x 的取值范围是( )√√√A .49B .29C .23D .139.(5分)如图所示,在两个圆盘中,指针在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是( )A .-2B .0C .1D .210.(5分)若实数x ,y 满足不等式组V Y Y W Y Y X x −2≤0y −1≤0x +2y −a ≥0,目标函数t =x -2y 的最大值为2,则实数a 的值是( )11.(5分)从五件正品,一件次品中随机取出两件,则取出的两件产品中恰好是一件正品,一件次品的概率是 .12.(5分)已知a ,b 为正数,且满足2<a +2b <4,那么3a -b 的取值范围是 .13.(5分)函数y =x 2+3x 2+2的最小值是.设x 、y ∈R +且1x +9y =1,则x +y 的最小值为 .√14.(5分)设x ,y 满足约束条件V Y Y W Y Y X 3x −y −6≤0x −y +2≥0x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的值是最大值为12,则2a +3b 的最小值为 .15.(5分)等差数列{a n }中,a 11a 10<-1,且其前n 项和S n 有最小值,以下命题正确的是 .①公差d >0; ②{a n }为递减数列; ③S 1,S 2…S 19都小于零,S 20,S 21…都大于零;④n =19时,S n 最小;⑤n =10时,S n 最小.16.(13分)已知等差数列{a n}满足a3=7,a5+a7=26.{a n}的前n项和为S n.(1)求a n及S n;(2)令b n=-1a n2−1(n∈N*),求数列{b n}的前n项和T n.17.(13分)已知a∈R,解不等式xx−1>a+1.18.(13分)现有8名奥运会志愿者,其中志愿者A1,A2,A3通晓日语,B1,B2,B3通晓俄语,C1,C2通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(Ⅰ)求A1被选中的概率;(Ⅱ)求B1和C1不全被选中的概率.19.(12分)经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y(千辆/小时)与汽车的平均速度υ(千米/小时)之间的函数关系为:y=920υυ2+3υ+1600(υ>0).(1)在该时段内,当汽车的平均速度υ为多少时,车流量最大?最大车流量为多少?(保留分数形式)(2)若要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应在什么范围内?20.(12分)数列{a n}的首项a1=1,前n项和S n与a n之间满足a n=2S2n2S n−1(n≥2).(1)求证:数列{1S n}是等差数列;(2)设存在正数k,使(1+S1)(1+S2)…(1+S n)≥k2n+1对一切n∈N*都成立,求k的最大值.√21.(12分)已知a1=2,点(a n,a n+1)在函数f(x)=x2+2x的图象上,其中n=1,2,3,…(1)证明数列{lg(1+a n)}是等比数列;(2)设T n=(1+a1)(1+a2)…(1+a n),求T n及数列{a n}的通项;(3)记b n=1a n+1a n+2,求数列{b n}的前n项S n,并证明S n+23T n−1=1.22.已知数列{a n}中,a1=1,na n+1=2(a1+a2+…+a n)(n∈N*).(1)求a2,a3,a4;(2)求数列{a n}的通项a n;(3)设数列{b n}满足b1=12,b n+1=1a kb n2+b n,求证:b n<1(n≤k).。
数列与离散型随机变量相结合问题-高考数学大题精做之解答题题型全覆盖高端精品
高考数学大题精做之解答题题型全覆盖高端精品第四篇概率与统计专题09数列与离散型随机变量相结合问题类型对应典例数列递推公式与离散型随机变量的分布列和数学期望典例1数列通项公式与离散型随机变量的分布列和数学期望典例2等比数列的证明与离散型随机变量的分布列和数学期望典例3等比数列求和与离散型随机变量的分布列和数学期望典例4数列的综合问题与离散型随机变量的分布列和数学期望典例5【典例1】某游戏棋盘上标有第0、1、2、 、100站,棋子开始位于第0站,选手抛掷均匀硬币进行游戏,若掷出正面,棋子向前跳出一站;若掷出反面,棋子向前跳出两站,直到跳到第99站或第100站时,游戏结束.设游戏过程中棋子出现在第n 站的概率为nP .(1)当游戏开始时,若抛掷均匀硬币3次后,求棋子所走站数之和X 的分布列与数学期望;(2)证明:()()1111982n n n n P P P P n +--=--≤≤;(3)若最终棋子落在第99站,则记选手落败,若最终棋子落在第100站,则记选手获胜.请分析这个游戏是否公平.【思路引导】(1)由题意得出随机变量X 的可能取值有3、4、5、6,求出相应的概率,由此可得出随机变量X 的分布列,并计算出随机变量X 的数学期望;(2)棋子要到第()1n +站,分两种情况讨论:一是由第n 站跳1站得到,二是由第()1n -站跳2站得到,可得出111122n n n P P P +-=+,变形后可得出结论;(3)根据(2)中的{}n P 的递推公式得出100P 和99P 的大小关系,从而得出结论.【典例2】11月,2019全国美丽乡村篮球大赛在中国农村改革的发源地-安徽凤阳举办,其间甲、乙两人轮流进行篮球定点投篮比赛(每人各投一次为一轮),在相同的条件下,每轮甲乙两人在同一位置,甲先投,每人投一次球,两人有1人命中,命中者得1分,未命中者得-1分;两人都命中或都未命中,两人均得0分,设甲每次投球命中的概率为12,乙每次投球命中的概率为23,且各次投球互不影响.(1)经过1轮投球,记甲的得分为X ,求X 的分布列;(2)若经过n 轮投球,用i p 表示经过第i 轮投球,累计得分,甲的得分高于乙的得分的概率.①求,,p p p 123;②规定00p =,经过计算机计算可估计得11(1)i i i i p ap bp cp b +-=++≠,请根据①中,,p p p 123的值分别写出a ,c 关于b 的表达式,并由此求出数列{}n p 的通项公式.【思路引导】(1)经过1轮投球,甲的得分X 的取值为1,0,1-,记一轮投球,甲投中为事件A ,乙投中为事件B ,,A B 相互独立,计算概率后可得分布列;(2)由(1)得1p ,由两轮的得分可计算出2p ,计算3p 时可先计算出经过2轮后甲的得分Y 的分布列(Y的取值为2,1,0,1,2--),然后结合X 的分布列和Y 的分布可计算3p ,由00p =,代入11(1)i i i i p ap bp cp b +-=++≠,得两个方程,解得,a c ,从而得到数列{}n p 的递推式,变形后得1{}n n p p --是等比数列,由等比数列通项公式得1n n p p --,然后用累加法可求得n p .【典例3】某产品自生产并投入市场以来,生产企业为确保产品质量,决定邀请第三方检测机构对产品进行质量检测,并依据质量指标Z 来衡量产品的质量.当8Z ≥时,产品为优等品;当68Z ≤<时,产品为一等品;当26Z ≤<时,产品为二等品.第三方检测机构在该产品中随机抽取500件,绘制了这500件产品的质量指标Z 的条形图.用随机抽取的500件产品作为样本,估计该企业生产该产品的质量情况,并用频率估计概率.(1)从该企业生产的所有产品中随机抽取1件,求该产品为优等品的概率;(2)现某人决定购买80件该产品.已知每件成本1000元,购买前,邀请第三方检测机构对要购买的80件产品进行抽样检测.买家、企业及第三方检测机构就检测方案达成以下协议:从80件产品中随机抽出4件产品进行检测,若检测出3件或4件为优等品,则按每件1600元购买,否则按每件1500元购买,每件产品的检测费用250元由企业承担.记企业的收益为X 元,求X 的分布列与数学期望;(3)商场为推广此款产品,现面向意向客户推出“玩游戏,送大奖”活动.客户可根据抛硬币的结果,操控机器人在方格上行进,已知硬币出现正、反面的概率都是12,方格图上标有第0格、第1格、第2格、……、第50格.机器人开始在第0格,客户每掷一次硬币,机器人向前移动一次,若掷出正面,机器人向前移动一格(从k 到1k +),若掷出反面,机器人向前移动两格(从k 到2k +),直到机器人移到第49格(胜利大本营)或第50格(失败大本营)时,游戏结束,若机器人停在“胜利大本营”,则可获得优惠券.设机器人移到第n 格的概率为()*050,N n P n n ≤≤∈,试证明{}()*1149,N nn P P n n --≤≤∈是等比数列,并解释此方案能否吸引顾客购买该款产品.【思路引导】(1)根据条形图,可得优等品的频率为1218742500++,进而可得其概率;(2)计算出X 的值可以为47000,39000,计算出其分别对应的概率,得到分布列,进而可得期望;(3)首先易得01P =,112P =,根据题意可得121122n n n P P P --=+,化简即可得()11212n n n n P P P P ----=--,即{}1n n P P --为等比数列,利用累加法可得()12110,1,,4932n n P n +⎡⎤⎛⎫=--=⋅⋅⋅⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,再分别计算出获胜和失败的概率,比较大小即可得结果.【典例4】抚州不仅有着深厚的历史积淀与丰富的民俗文化,更有着许多旅游景点.每年来抚州参观旅游的人数不胜数.其中,名人园与梦岛被称为抚州的两张名片,为合理配置旅游资源,现对已游览名人园景点的游客进行随机问卷调查.若不去梦岛记1分,若继续去梦岛记2分.每位游客去梦岛的概率均为23,且游客之间的选择意愿相互独立.(1)从游客中随机抽取3人,记总得分为随机变量X ,求X 的分布列与数学期望;(2)若从游客中随机抽取m 人,记总分恰为m 分的概率为m A ,求数列{}m A 的前6项和;(3)在对所有游客进行随机问卷调查的过程中,记已调查过的累计得分恰为n 分的概率为n B ,探讨n B 与1n B -之间的关系,并求数列{}n B 的通项公式.【思路引导】(1)根据n 次独立重复试验模型可求解(2)总分恰为m 的概率13mm A ⎛⎫= ⎪⎝⎭,求前6项和即可(3)已调查过的累计得分恰为n 分的概率为n B ,得不到n 分的情况只有先得1n -分,再得2分,概率为123n B -,可得递推关系1213n n B B -=-+,构造等比数列求解即可.【典例5】为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i = 表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i = ,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i = 为等比数列;(ii)求4p ,并根据4p 的值解释这种试验方案的合理性.【思路引导】(1)首先确定X 所有可能的取值,再来计算出每个取值对应的概率,从而可得分布列;(2)(i )求解出,,a b c 的取值,可得()110.40.50.11,2,,7i i i i p p p p i -+=++=⋅⋅⋅,从而整理出符合等比数列定义的形式,问题得证;(ii )列出证得的等比数列的通项公式,采用累加的方式,结合8p 和0p 的值可求得1p ;再次利用累加法可求出4p .1.棋盘上标有第0、1、2、 、100站,棋子开始位于第0站,棋手抛掷均匀硬币走跳棋游戏,若掷出正面,棋子向前跳出一站;若掷出反面,棋子向前跳出两站,直到调到第99站或第100站时,游戏结束.设棋子位于第n 站的概率为nP .(1)当游戏开始时,若抛掷均匀硬币3次后,求棋手所走步数之和X 的分布列与数学期望;(2)证明:()()1111982n n n n P P P P n +--=--≤≤;(3)求99P 、100P的值.2.随着科学技术的飞速发展,网络也已经逐渐融入了人们的日常生活,网购作为一种新的消费方式,因其具有快捷、商品种类齐全、性价比高等优势而深受广大消费者认可.某网购公司统计了近五年在本公司网购的人数,得到如下的相关数据(其中“x =1”表示2015年,“x =2”表示2016年,依次类推;y 表示人数):x 12345y (万人)2050100150180(1)试根据表中的数据,求出y 关于x 的线性回归方程,并预测到哪一年该公司的网购人数能超过300万人;(2)该公司为了吸引网购者,特别推出“玩网络游戏,送免费购物券”活动,网购者可根据抛掷骰子的结果,操控微型遥控车在方格图上行进.若遥控车最终停在“胜利大本营”,则网购者可获得免费购物券500元;若遥控车最终停在“失败大本营”,则网购者可获得免费购物券200元.已知骰子出现奇数与偶数的概率都是12,方格图上标有第0格、第1格、第2格、…、第20格。
2019高中数学各章节高考占比附解题思路精品教育.doc
高中数学各章节高考占比附解题思路一.高考各章节占比情况1.集合(必修1)与简易逻辑,复数(选修)。
分值在10分左右(一两道选择题,有时达到三道),考查的重点是计算能力,集合多考察交并补运算,简易逻辑多为考查“充分与必要条件”及命题真伪的判别,复数一般考察模及分式运算。
2.函数(必修1指数函数、对数函数)与导数(选修),一般在高考中,至少三个小题一个大压轴题,分值在30分左右。
以指数函数、对数函数、及扩展函数函数为载体结合图象的变换(平移、伸缩、对称变换)、四性问题(单调性、奇偶性、周期性、对称性)以选择题、填空题考查的主要内容,其中函数的单调性和奇偶性有向抽象函数发展的趋势。
压轴题,文科以三次函数为主,理科以含有ex ,lnx的复杂函数为主,以切线问题、极值最值问题、单调性问题、恒成立零点为设置条件,求解范围或证明结论为主。
3立体几何(必修2):分值在22分左右(两小一大),两小题以基本位置关系的判定与体积,内外截球,三视图计算为主,一大题以证明空间线面的位置关系和夹角计算为主,试题的命制载体可能趋向于不规则几何体,但仍以“方便建系”为原则。
4.解析几何(必修2+选修):必修2直线与圆的方程、选修圆锥曲线统称为解析几何,高考对解析几何的考查一般是三个小题一个大题,所占分值约30分。
其规律是线性规划、直线与圆各一个小题,涉及圆锥曲线的图形、定义或简单几何性质的问题一个小题,直线与圆锥曲线的综合问题一个大题。
圆锥曲线核心:运算,超越课本结论。
5.算法程序框图(必修3):一道选择题,主要以循环结构为主。
6.概率统计(必修3),排列、组合、二项式定理、(选修):分值在22分左右(两小一大),排列组合与二项式定理一般一个小题,大题理科以概率统计、文科以求概率的应用题为主理科考查重点为随机变量的分布列及数学期望,概率计算;文科以等可能事件、互斥事件、相互独立事件的概率求法为主。
特别要引起注意是以“正态分布”相关内容为题材,文科卷以“抽样”相关内容为题材设计试题。
高一数学命题练习题归纳
高一数学命题练习题归纳前言高一数学是高中数学的一门重要的课程,也是继初中数学后的数学学习的继续。
高中数学的学习需要我们具备良好的数学理论基础和数学分析能力。
同时高中数学的命题练习也是非常重要的一部分。
本文将围绕高一数学的命题练习,系统地归纳整理出高一数学命题练习的类型和规律,希望能对高一学生的数学提高和命题练习提供一定的参考。
命题练习题类型1. 知识点综合运用题目这是高一数学中比较常见的一种命题练习形式。
这类试题要求学生整合所掌握的各个知识点,在解题过程中综合运用。
如下面一道题目:已知 f(x)=ax^2+b, g(x)=cx+d,且 f(x) 和 g(x) 的解析式的图像均有横轴x=1为对称轴,且f(0)=g(0)=1,f(1)=g(1),则下列结论正确的是()A. a=c, b=dB.a=c, b≠dC.a≠c, b=dD.a≠c, b≠d这道题目就要求我们整合多个知识点,如函数的对称轴、函数基本形式、函数零点等等,才能解决这个问题。
2. 等式分析题目等式是数学中常见的表达式形式,有些等式进一步可以用来做题目的分析。
如下面一道题目:已知等式 5x-4y+3=0,解得y=f(x),则 f(1)+f(2)+f(3)=()A. 5B. 6C. 7D. 9通过等式的解法,我们可以得到y=f(x)的解析式,再把x带入函数中,求出函数值,即可得到答案。
3. 图形绘制题目图形绘制题目要求学生通过所学知识画出试题中所给图形,常见的有平面图形和空间图形。
如下面这道题目:已知点A(0,5),B(2,7),C(4,7),D(5,5),矩形ABCD的周长为 2a , 面积为 S ,则a / S =A. 1 / 4B. 2 / 3C. 3 / 2D. 4 / 3通过图形绘制可以得到矩形的边长和各种信息,从而求得答案。
命题练习规律1. 更多的知识点综合考察在高一数学命题练习中,更多的知识点之间相互关联,需要我们将它们进行综合运用,而不是单独地运用每个知识点。
2019届中考数学综合题型专题复习卷:方程(组)专题(含精品解析)
方程(组)专题一、单选题1.若x=4是分式方程的根,则a的值为A.6B.-6C.4D.-4【答案】A2.一商店以每件150元的价格卖出两件不同的商品,其中一件盈利25%,另一件亏损25%,则商店卖这两件商品总的盈亏情况是()A.亏损20元B.盈利30元C.亏损50元D.不盈不亏【答案】A3.为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A.4种B.3种C.2种D.1种【答案】B4.已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3B.m≤3且m≠2C.m<3 D.m<3且m≠2【答案】D5.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.B.C.D.【答案】C6.2017﹣2018赛季中国男子篮球职业联赛,采用双循环制(每两队之间都进行两场比赛),比赛总场数为380场,若设参赛队伍有x支,则可列方程为()A.B.C.D.【答案】B7.若2-是方程x2-4x+c=0的一个根,则c的值是()A.1 B.3-C.1+D.2+【答案】A8.已知x1,x2是关于x的方程x2+bx﹣3=0的两根,且满足x1+x2﹣3x1x2=5,那么b的值为()A.4 B.﹣4 C.3 D.﹣3【答案】A9.若关于x的分式方程有增根,则m的值为()A.﹣1或﹣2 B.﹣1或2 C.1或2 D.0或﹣2【答案】D10.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为万千克,根据题意,列方程为A.B.C.D.【答案】A11.若关于x的一元二次方程x2﹣2x﹣k+1=0有两个相等的实数根,则k的值是()A.﹣1 B.0 C.1 D.2【答案】B12.某抗战纪念馆馆长找到大学生团干部小张,联系青年志愿者在周日参与活动,活动累计56个小时的工作时间,需要每名男生工作5个小时,每名女生工作4个小时,小张可以安排学生参加活动的方案共有( ) A.1种B.2种C.3种D.4种【答案】B13.某商店将巧克力包装成方形、圆形礼盒出售,且每盒方形礼盒的价钱相同,每盒圆形礼盒的价钱相同.阿郁原先想购买3盒方形礼盒和7盒圆形礼盒,但他身上的钱会不足240元,如果改成购买7盒方形礼盒和3盒形礼盒,他身上的钱会剩下240元.若阿郁最后购买10盒方形礼盒,则他身上的钱会剩下多少元?()A.360 B.480 C.600 D.720【答案】C14.已知关于x的一元二次方程x2-2x+k-1=0有两个不相等的实数根,则实数的取值范围是A.k≤2B.k≤0C.k<2D.k<0【答案】C15.已知关于x的一元二次方程mx2﹣(m+2)x+=0有两个不相等的实数根x1,x2.若+=4m,则m 的值是()A.2 B.﹣1 C.2或﹣1 D.不存在【答案】A16.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.B.C.D.【答案】A17.阅读理解:,,,是实数,我们把符号称为阶行列式,并且规定:,例如:.二元一次方程组的解可以利用阶行列式表示为:;其中,,.问题:对于用上面的方法解二元一次方程组时,下面说法错误的是()A.B.C.D.方程组的解为【答案】C二、填空题18.若关于x的一元二次方程有两个相等的实数根,则的值为__.【答案】19.已知x1,x2是一元二次方程x2-2x-1=0的两实数根,则的值是__.【答案】620.爸爸沿街匀速行走,发现每隔7分钟从背后驶过一辆103路公交车,每隔5分钟从迎面驶来一辆103路公交车,假设每辆103路公交车行驶速度相同,而且103路公交车总站每隔固定时间发一辆车,那么103路公交车行驶速度是爸爸行走速度的__倍.【答案】621.若关于x的方程无解,则m的值为__.【答案】-1或5或22.已知实数m,n满足,,且,则= .【答案】.23.为实现营养套餐的合理搭配,某电商推出两款适合不同人群的甲、乙两种袋装的混合粗粮.甲种袋装粗粮每袋含有3千克A粗粮,1千克B粗粮,1千克C粗粮;乙种袋装粗粮每袋含有1千克A粗粮,2千克B粗粮,2千克C粗粮.甲、乙两种袋装粗粮每袋成本分别等于袋中的A、B、C三种粗粮成本之和.已知每袋甲种粗粮的成本是每千克A种粗粮成本的7.5倍,每袋乙种粗粮售价比每袋甲种粗粮售价高20%,乙种袋装粗粮的销售利润率是20%.当销售这两款袋装粗粮的销售利润率为24%时,该电商销售甲、乙两种袋装粗粮的袋数之比是_____(商品的销售利润率=×100%)【答案】24.已知是关于x,y的二元一次方程组的一组解,则a+b=_____.【答案】525.已知关于的方程有两个相等的实根,则的值是__________.【答案】26.若关于x、y的二元一次方程组的解是,则关于a、b的二元一次方程组的解是_______.【答案】27.若是一元二次方程的两个实数根,则=__________.【答案】-3三、解答题28.小明购买A,B两种商品,每次购买同一种商品的单价相同,具体信息如下表:购买数量(件购买总费用(元根据以上信息解答下列问题:(1)求A,B两种商品的单价;(2)若第三次购买这两种商品共12件,且A种商品的数量不少于B种商品数量的2倍,请设计出最省钱的购买方案,并说明理由.【答案】(1)A种商品的单价为20元,B种商品的单价为15元;(2) 当a=8时所花钱数最少,即购买A商品8件,B商品4件.29.如图是学习分式方程应用时,老师板书的问题和两名同学所列的方程.根据以上信息,解答下列问题.(1)冰冰同学所列方程中的x表示什么,庆庆同学所列方程中的y表示什么;(2)两个方程中任选一个,并写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题.【答案】(1)甲队每天修路的长度;甲队修路400米所需时间;(2)冰冰用的等量关系是:甲队修路400米所用时间=乙队修路600米所用时间;(3)甲队每天修路的长度为40米.30.某公司购买了一批、型芯片,其中型芯片的单价比型芯片的单价少9元,已知该公司用3120元购买型芯片的条数与用4200元购买型芯片的条数相等.(1)求该公司购买的、型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条型芯片?【答案】(1)A型芯片的单价为26元/条,B型芯片的单价为35元/条;(2)80.31.阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.(1)问题:方程x3+x2-2x=0的解是x1=0,x2= ,x3= ;(2)拓展:用“转化”思想求方程的解;(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.【答案】(1)-2,1;(2)x=3;(3)4m.32.小明同学三次到某超市购买A、B两种商品,其中仅有一次是有折扣的,购买数量及消费金额如下表:解答下列问题:(1)第次购买有折扣;(2)求A、B两种商品的原价;(3)若购买A、B两种商品的折扣数相同,求折扣数;(4)小明同学再次购买A、B两种商品共10件,在(3)中折扣数的前提下,消费金额不超过200元,求至少购买A商品多少件.【答案】(1)三(2)A:30元/件,B:40元/件(3)6 (4)7件33.收发微信红包已成为各类人群进行交流联系,增强感情的一部分,下面是甜甜和她的双胞胎妹妹在六一儿童节期间的对话.请问:(1)2015年到2017年甜甜和她妹妹在六一收到红包的年增长率是多少?(2)2017年六一甜甜和她妹妹各收到了多少钱的微信红包?【答案】(1)10%;(2)甜甜在2017年六一收到微信红包为150元,则她妹妹收到微信红包为334元.34.某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同;该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.【答案】(1) 50千克(2) 12.535.已知关于x的一元二次方程x2﹣(2m﹣2)x+(m2﹣2m)=0.(1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为x1,x2,且x12+x22=10,求m的值.【答案】(1)见解析;(2)m=﹣1或m=3.36.已知关于x的一元二次方程有实数根.求m的取值范围;当时,方程的两根分别是矩形的长和宽,求该矩形外接圆的直径.【答案】;该矩形外接圆的直径是37.某市创建“绿色发展模范城市”,针对境内长江段两种主要污染源:生活污水和沿江工厂污染物排放,分别用“生活污水集中处理”(下称甲方案)和“沿江工厂转型升级”(下称乙方案)进行治理,若江水污染指数记为Q,沿江工厂用乙方案进行一次性治理(当年完工),从当年开始,所治理的每家工厂一年降低的Q值都以平均值n计算.第一年有40家工厂用乙方案治理,共使Q值降低了12.经过三年治理,境内长江水质明显改善.(1)求n的值;(2)从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m,三年来用乙方案治理的工厂数量共190家,求m的值,并计算第二年用乙方案新治理的工厂数量;(3)该市生活污水用甲方案治理,从第二年起,每年因此降低的Q值比上一年都增加个相同的数值a.在(2)的情况下,第二年,用乙方案所治理的工厂合计降低的Q值与当年因甲方案治理降低的Q值相等,第三年,用甲方案使Q值降低了39.5.求第一年用甲方案治理降低的Q值及a的值.【答案】(1)0.3;(2)60家;(3)Q=20.5;a=9.5.38.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?【答案】(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里。
2019上海中考数学卷25题思路解析精品教育.doc
2019上海中考数学卷25题思路解析如图,在⊙O 中AB 是直径,AB=2,点C ,点D 是圆上的两点,连结BD ,AC 交于E ,OD ⊥AC 垂足为F.(1)如图11,若AC=DB ,求弦AC 的长.(2)如图12,E 是DB 的中点,求∠ABD 的余切.(3)连结CB ,DC ,DA 若CB 是⊙O 内接正n 边形的一边,DC 是是⊙O 内接正(n+4)边形的一边,求三角形ADC 的面积.(1)∵AC=DB ,∴弧ADC=弧BCD ,∴弧AD=弧BC ,则∠A=∠B ;又∵∠AOD=2∠B∴∠AOD=2∠A ,则∠AOD+∠A=3∠A ;又∵OD ⊥AC∴∠AFO=900,∴∠AOD+∠A=900,∴3∠A=900,∠A=300;在Rt △AFO 中,AO=1,AF=AO ×cos ∠A=1×cos300=23; 又∵OD ⊥AC∴AC=2 AF =3(2)连结CB ,OE ,∵AB 为直径,∴3∠C=900,又∵∠DFE=900;易证得△BCE ≌△DFE ,∴BC=DF ;又∵是△ABC 的中位线,∴BC=2OF ,则DO=3OF ,又∵DO=1∴OF=31,DF=32 由垂径定理推论,OE ⊥BD∴在Rt △DEO 中,易证得Rt △DFE ∽Rt △EFO ,∴EF 2=OF ×DF=92,则EF=32; 又∵∠ABD=∠D ,cot ∠ABD=cot ∠D=EF DF =2 (3)为了方便研究问题,我们省略线段BD ,标注了α,β,21α 在Rt △AFO 中,21α+∠AOF=900;∠AOF=1800-α-β∴β+21α=900连结OC ,根据⊙O 内接正n 边形的中心角公式,α=n 0360 ,β=43600+n ; ∴4360+n +21·n 360=90解得,n=4 ,n=-2(舍去);此时得α=900 ,β=450 ,∴∠AOF=450 ,为解题方便最好重新画图如下,用割补法,S △ADC = S 四AOCD -S △AOC易证得△AOD ≌△COD ,∴S 四AOCD =2S △ODC ,S △ODC =21OD ·FC ,而FC=OC ·sin450=22,∴S △ODC =21·1·22=42,则S 四AOCD =2S △ODC 22∵S △AOC =21·1·1=2112∴S△ADC = S四AOCD-S△AOC=2。
2019年高中数学第二章2.2对数函数2.2.1第1课时对数优化练习新人教A版必修1
精品2.2.1 第1课时 对 数[课时作业][A 组 基础巩固]1.已知log x 8=3,则x 的值为( )A.12B .2C .3D .4解析:∵log x 8=3,∴x 3=8,∴x =2.答案:B 2.⎝ ⎛⎭⎪⎫13-2=9写成对数式,正确的是( ) A .log 913=-2 B.log 139=-2 C .log 13 (-2)=9D .log 9(-2)=13解析:a x =N ⇔x =log a N .答案:B3.有以下四个结论:①lg(lg 10)=0,②ln(ln e)=0,③若lg x =10,则x =100,④若ln x =e ,则x =e 2.其中正确的是( )A .①③B.②④ C .①② D .③④解析:①lg(lg 10)=0,正确.②ln(ln e)=0,正确.若lg x =10,则x =1010,③不正确.若ln x =e ,则x =e e ,故④不正确.所以选C.答案:C4.若对数log (x -1)(4x -5)有意义,则x 的取值范围( )A.54≤x <2 B.54<x <2 C.54<x <2或x >2 D .x >54解析:由log (x -1)(4x -5)有意义得 ⎩⎪⎨⎪⎧x -1>0,x -1≠1,4x -5>0,⇒⎩⎪⎨⎪⎧ x >54,x ≠2. 答案:C 5.如果f (10x )=x ,则f (3)=( )A .log 310B.lg 3精品 C .103 D .310解析:设10x =3,则x =lg 3,∴f (3)=f (10lg 3)=lg 3.答案:B6.lg 1 000=________,ln 1=________.解析:∵103=1 000,∴lg 1 000=3;e 0=1,∴ln 1=0.答案:3 07.方程log 2(5-x )=2,则x =________.解析:5-x =22=4,∴x =1.答案:18.已知log 2[log 3(log 5x )]=0,则x =________.解析:令log 3(log 5x )=t 1,则t 1=20=1.令log 5x =t 2,则t 2=31=3.∴log 5x =3,∴x =53=125.答案:1259.求下列各式x 的取值范围.(1)log (x -1)(x +2);(2)log (x +3)(x +3).解析:(1)由题意知⎩⎪⎨⎪⎧x +2>0,x -1>0,x -1≠1.解得x >1且x ≠2,故x 的取值范围是(1,2)∪(2,+∞).(2)由题意知⎩⎪⎨⎪⎧ x +x +3≠1,解得x >-3且x ≠-2.故x 的取值范围是(-3,-2)∪(-2,+∞).10.若log 12x =m ,log 14y =m +2,求x 2y 的值.解析:log 12x =m ,∴⎝ ⎛⎭⎪⎫12m =x ,x 2=⎝ ⎛⎭⎪⎫122m . log 14y =m +2,∴⎝ ⎛⎭⎪⎫14m +2=y,y =⎝ ⎛⎭⎪⎫122m +4.∴x 2y =⎝ ⎛⎭⎪⎫122m ⎝ ⎛⎭⎪⎫122m +4=⎝ ⎛⎭⎪⎫122m -(2m +4)=⎝ ⎛⎭⎪⎫12-4=16. [B 组 能力提升]1.若a >0,a 23=49,则log 23a 等于( )A .2B .3C .4D .5解析:∵a 23=49,a >0,∴a =⎝ ⎛⎭⎪⎫4932=⎝ ⎛⎭⎪⎫233,设log 23a =x ,∴(23)x=a .∴x =3.答案:B2.已知log x y =2,则y -x 的最小值为( )A .0 B.14 C .-14 D .1解析:∵log x y =2,∴y =x 2(x >0且x ≠1),∴y -x =x 2-x =(x -12)2-14,∴x =12时,y -x 有最小值-14.答案:C3.若f (2x +1)=log 213x +4,则f (17)=________.解析:f (17)=f (24+1)=log 213×4+4=log 2116=-8.答案:-84.方程4x -6×2x -7=0的解是________.解析:原方程可化为(2x )2-6×2x -7=0.设t =2x (t >0),则原方程可化为:t 2-6t -7=0.解得:t =7或t =-1(舍),∴2x =7,∴x =log 27,∴原方程的解为: x =log 27.答案:x =log 27 5.计算下列各式:(1)10lg 3-10log 41+2log 26;(2)22+log 23+32-log 39.解析:(1)10lg 3-10log 41+2log 26=3-0+6=9.(2)22+log 23+32-log 39=22×2log 23+323log 39=4×3+99=12+1=13.6.已知二次函数f (x )=(lg a )x 2+2x +4lg a 的最大值为3,求a 的值. 解析:原函数式可化为f (x )=lg a (x +1lg a )2-1lg a +4lg a .∵f (x )有最大值3,∴lg a <0,且-1lg a +4lg a =3,整理得4(lg a )2-3lg a -1=0,解之得lg a =1或lg a =-14.又∵l g a <0,∴lg a =-14.∴a =1014 .。
2019年高中数学 必修2 直线过定点 练习题34题(含答案)
2019年高中数学必修2 直线过定点练习题34题(含答案)1.直线kx-y+1-3k=0,当k变动时,所有直线都通过定点是(C)(3,1)。
2.当a取不同实数时,直线(a-1)x-y+2a+1=0恒过一定点,则这个定点是(D)(-2,0)。
3.已知定点P(-2,0)和直线l:(1+3λ)x+(1+2λ)y=2+5λ(λ∈R),则点P到直线l的距离的最大值为(B)2.4.不管m怎样变化,直线(m+2)x-(2m-1)y-(3m-4)=0恒过的定点是(A)(1,2)。
5.已知实数a,b满足a+2b=1,则直线ax+3y+b=0必过定点,这个定点的坐标为(B)(-2/3,2)。
6.直线mx+2y+m+4=0经过一定点,则,该点坐标是(D)(2,1)。
7.直线mx-y+2m+1=0经过一定点,则该点的坐标是(C)(1,-2)。
8.方程ax-y+2a+3=0所表示的直线恒过定点(C)(-2,3)。
9.直线(2k-1)x-(k+3)y-(k-11)=0(k∈R)所经过的定点是(A)(5,2)。
10.不论a为何值,直线ax+(2-a)y+1=0恒过定点为(B)(0,1)。
11.直线kx-y+1=3k,当k变动时,所有直线都通过定点(C)(3,1)。
12.直线(2m+1)x+(m+1)y-7m-4=0过定点(D)(2,3)。
13.若直线l1:y=k(x-4)与直线l2关于点(2,1)对称,则直线l2恒过定点(A)(0,4)。
14.当k变化时,直线kx+y-2=3k过定点(B)(0,1)。
18.答案为:(1,-2)19.答案为:(-1,2)20.答案为:(1,1)21.答案为:(-1,2)22.答案为:(0,1)23.答案为:(0,-1)24.答案为:(1,-2)25.答案为:(0,0)26.答案为:(1,2)27.答案为:(-1,-1)28.答案为:(-1,-2)29.答案为:(-1,-2)30.答案为:(0,2)31.答案为:(-2,1)32.答案为:(-1,-2)33.答案为:(1,-1)34.答案为:(1,-2)18.答案为 (9,-4)。
2019【人教A版】高中数学:必修4课本例题习题改编(含答案)
人教版高中数学必修精品教学资料人教A 版必修4课本例题习题改编1.原题(必修4第十页A 组第五题)改编1 下列说法中正确的是( ) A .第一象限角一定不是负角 B .-831°是第四象限角C .钝角一定是第二象限角D .终边与始边均相同的角一定相等 解:选C. -330°=-360°+30°,所以-330°是第一象限角,所以A 错误;-831°=(-3)×360°+249°,所以-831°是第三象限角,所以B 错误;0°角,360°角终边与始边均相同,但它们不相等,所以D 错误. 改编2 已知θ为第二象限角,那么3θ是( ) A. 第一或第二象限角 B. 第一或四象限角 C. 第二或四象限角 D. 第一、二或第四象限角解:选D.36090360180,,1203012060,3k k k z k k k z θθ+〈〈∙+∈∴∙+〈〈∙+∈(1)当()3,36030360180,,3k n n z n n n z θ=∈∙+〈〈∙+∈时此时3θ为第一象限角;(2)当()31,360150360180,,3k n n z n n n z θ=+∈∙+〈〈∙+∈时此时3θ为第二象限角;(3)当()32,360270360300,3k n n z n n θ=+∈∙+〈〈∙+时此时3θ为第四象限角。
改编3 设α角属于第二象限,且2cos2cosαα-=,则2α角属于( )A .第一象限B .第二象限C .第三象限D .第四象限 解:22,(),,(),2422k k k Z k k k Z ππαππαππππ+<<+∈+<<+∈当2,()k n n Z =∈时,2α在第一象限;当21,()k n n Z =+∈时,2α在第三象限;而coscoscos0222ααα=-⇒≤,2α∴在第三象限;答案:C2.原题(必修4第十页B 组第二题)改编 时钟的分针在1点到3点20分这段时间里转过的弧度数为( ) A.143 π B .-143 π C.718 π D .-718 π解:选B. 显然分针在1点到3点20分这段时间里,顺时针转过了两周又一周的13,用弧度制表示就是-4π-13×2π=-143π.故选B.3.原题(必修4第十九页例6)改编 (1)已知sin α 13=,且α为第二象限角,求tan α;(2)已知sin α= m (0,1)m m ≠≠±,求tan α。
高中命题题型讲解教案模板
课时:1课时年级:高中学科:数学教学目标:1. 知识与技能:使学生掌握高中数学常见命题题型,包括选择题、填空题、解答题等,并能熟练运用。
2. 过程与方法:通过讲解、练习、讨论等方式,培养学生分析问题、解决问题的能力。
3. 情感态度与价值观:激发学生学习数学的兴趣,提高学生学习的自信心。
教学重难点:1. 重点:掌握高中数学常见命题题型及其解题方法。
2. 难点:灵活运用解题方法,提高解题速度和准确率。
教学准备:1. 教学课件2. 练习题3. 教学板书教学过程:一、导入1. 复习上节课所学内容,引导学生回顾高中数学常见命题题型。
2. 提问:同学们在学习过程中,是否遇到过一些难以解决的题目?今天,我们就来一起探讨这些命题题型的解题方法。
二、讲解1. 选择题:(1)分析题目特点,明确解题思路。
(2)运用排除法、代入法等技巧进行解题。
(3)讲解典型例题,强调解题方法。
2. 填空题:(1)注意题目中的关键词,明确题目要求。
(2)运用所学知识,逐步推导出答案。
(3)讲解典型例题,强调解题步骤。
3. 解答题:(1)分析题目条件,明确解题思路。
(2)运用综合法、分析法等解题方法。
(3)讲解典型例题,强调解题步骤。
三、练习1. 学生独立完成练习题,教师巡视指导。
2. 学生展示解题过程,教师点评并纠正错误。
四、讨论1. 学生分组讨论,交流解题心得。
2. 各组代表分享讨论成果,教师点评并总结。
五、总结1. 回顾本节课所学内容,强调重点、难点。
2. 鼓励学生在课后继续练习,提高解题能力。
教学反思:1. 本节课通过讲解、练习、讨论等方式,使学生掌握了高中数学常见命题题型的解题方法。
2. 在讲解过程中,注重培养学生的分析问题、解决问题的能力。
3. 在讨论环节,鼓励学生积极参与,提高课堂氛围。
4. 课后,教师应关注学生的学习情况,及时给予指导和帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学命题练习题
课前准备
1、“凡直角均相等“的否命题是()
(A)凡不是直角均不相等。
(B)凡相等的两角均为直角。
(C)不都是直角的角不相等。
(D)不相等的角不是直角。
2、已知P:|2x-3|1;q: ;则﹁p是﹁q的()条件
(A) 充分不必要条件(B) 必要不充分条件
(C) 充分必要条件 (D) 既非充分条件又非必要条件
3、“ ”是“ 或”的()
(A) 充分不必要条件 (B) 必要不充分条件 (C) 充要条件
(D) 既不充分也不必要条件
4、命题甲:x+y3,命题乙:x1且y2.则甲是乙的条件.
5、有下列四个命题:
① 命题“若,则,互为倒数”的逆命题;
② 命题“面积相等的三角形全等”的否命题;
③ 命题“若 1,则有实根”的逆否命题;
④ 命题“若 = ,则”的逆否命题。
其中是真命题的是(填上你认为正确的命题的序号). 6、写出命题“若 xy= 0 则 x = 0或y = 0”的逆命题、否命题、逆否命题
课后作业
一、选择:
1、()
A充分而不必要条件 B必要而不充分条件
C充分必要条件 D即不充分也不必要条件
2、给出如下的命题:①对角线互相垂直且相等的四边形是正方形;②00=1;③如果x+y是整数,那么x,y都是整数;
④ 3或 3.其中真命题的个数是……( )
(A)3 (B)2 (C)1 (D)0 .
3、已知是的充分不必要条件,是的必要条件,是的必要条件.那么是成立的:()条件
(A)充分不必要(B)必要不充分(C)充要(D)既不充分也不必要
4、设集合,,那么“ ”是“ ”的()
A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件
二、填空:
5、写出“a,b均不为零”的
(1)充分非必要条件是(2)必要非充分条件是:__(3)充要条件是(4)非充分非必要条件是
6、在以下空格内填入“充分非必要”,“必要非充分”,“充要”,“非充分非必要”
(1)“a>0且b>0”是“a+b>0且ab>0”的条件(2)“a>2且b>2”是“a+b>4且ab>4”的条件
(3) 的______________条件
7、的一个充分不必要条件是 _______________
8、指出下列各题中甲是乙的什么条件?
(1)甲:a、b、c成等比数列;乙:b2=ac________________. (2)甲: ______________________
(3)甲:直线l1∥l2,乙:直线l1与l2的斜率相等
_______________________
三、解答
9、已知命题P:方程x2+mx+1=0有两个不相等的负根;Q:方程4x2+4(m-2)x+1=0无实根.若P或Q为真,P且Q为假,求m的取值范围.
10、试写出一元二次方程,①有两个正根②两个小于的根
③一个正根一个负根的一个充要条件。
11、a1、b1、c1、a2、b2、c2均为非零实数,不等式a1x2+b1x+c10和a2x2+b2x+c20的解集分别为集合M和N,试判断“ ”是“M=N”的什么条件,并说明理由。
12、已知均为上的单调增函数。
命题1:为上的单调增函数;命题2:为上的单调增函数
判断两个命题的正确性,并说明理由;不正确的话给出附加
条件,使之成为真命题。