2014年新北师大版七年级数学 图形的变换 对称 旋转 练习题 有答案

合集下载

北师大版七年级数学下册同步练习附答案5.1 轴对称现象

北师大版七年级数学下册同步练习附答案5.1  轴对称现象

5.1 轴对称现象一.选择题(共1小题)1.如图,以平面镜AD和DC为两个侧面的一个黑盒子的另一个侧面BC上开有一个小孔P,一位观察者在盒外沿与BC平行方向走过时,则通过小孔能几次看到光源S所发出的光线()(第1题图)A.1次B.2次C.3次D.4次二.填空题(共6小题)2.如图,一束光线从点O射出,照在经过A(1,0)、B(0,1)的镜面上的点D,经AB反射后,反射光线又照到竖立在y轴位置的镜面,经y轴再反射的光线恰好通过点A,则点D的坐标为.(第2题图)3.如图,是4×4正方形网格,其中已有3个小正方形涂成了黑色,现在从剩余的13个白色小正方形中选出一个涂成黑色,使涂成黑色的四个小正方形所构成的图形是轴对称图形,则这样的白色小正方形有个.(第3题图)4.如图,在一个规格为6×12(即6×12个小正方形)的球台上,有两个小球A,B.若击打小球A,经过球台边的反弹后,恰好击中小球B,那么小球A击出时,应瞄准球台边上的点.(P1至P4点)(第4题图)5.如图是跳棋盘,其中格点上的黑色点为棋子,剩余的格点上没有棋子.我们约定跳棋游戏的规则是:把跳棋棋子在棋盘内,沿着棋子对称跳行,跳行一次称为一步.已知点A为己方一枚棋子,欲将棋子A跳进对方区域(阴影部分的格点),则跳行的最少步数为步.(第5题图)6.如图,在3×3的正方形网格中,已有两个小正方形被涂黑,再将图中的一个小正方形涂黑,所得图案是一个轴对称图形,则涂黑的小正方形可以是(填出所有符合要求的小正方形的标号)(第6题图)7.弹子盘为长方形ABCD,四角有洞,弹子从A出发,路线与小正方形的边成45°角,撞到边界即反弹(如图所示).AB=4,AD=3,弹子最后落入B洞.那么,当AB=9,AD=8时,弹子最后落入洞,在落入洞之前,撞击BC边次.(第7题图)三.解答题(共5小题)8.对于特殊四边形,通常从定义、性质、判定、应用等方面进行研究,我们借助于这种研究的过程与方法来研究一种新的四边形﹣﹣﹣﹣﹣筝形.定义:在四边形ABCD中,若AB=AD,BC=CD,我们把这样四边形ABCD称为筝形性质:按下列分类用文字语言填写相应的性质:从对称性看:筝形是一个轴对称图形,它的对称轴是;从边看:筝形有两组邻边分别相等;从角看:;从对角线看:.判定:按要求用文字语言填写相应的判定方法,补全图形,并完成方法2的证明.方法1:从边看:运用筝形的定义;方法2:从对角线看:;如图,四边形ABCD中,.求证:四边形ABCD是筝形应用:如图,探索筝形ABCD的面积公式(直接写出结论).(第8题图)9.已知:如图所示,在四边形ABCD中,AD=BC,∠DAB=∠CBA.(1)试判断AB与CD的位置关系,并说明理由;(2)四边形ABCD是轴对称图形吗?试说明理由.(第9题图)10.如图,在△ABC中,高线CD将∠ACB分成20°和50°的两个小角.请你判断一下△ABC是轴对称图形吗?并说明你的理由.(第10题图)11.△ABC的三边长分别为:AB=2a2﹣a﹣7,BC=10﹣a2,AC=a,(1)求△ABC的周长(请用含有a的代数式来表示);(2)当a=2.5和3时,三角形都存在吗?若存在,求出△ABC的周长;若不存在,请说出理由;(3)若△ABC与△DEF成轴对称图形,其中点A与点D是对称点,点B与点E是对称点,EF=4﹣b2,DF=3﹣b,求a﹣b的值.12.如图,表示把长方形纸片ABCD沿对角线BD进行折叠后的情况,图中有没有轴对称图形?有没有关于某条直线成轴对称的图形.(第12题图)参考答案一.1.D二.2.(,)3.4 4.P25.3 6.2,3,4,5,7 7.D,4三.8.解:性质:从对称性看:筝形是轴对称图形,它的对称轴是其中一条对角线所在直线.从角看:筝形只有一组对角相等;从对角线看:有且只有一条对角线被另一条对角线垂直平分.判定:结合性质定理,可得出:方法二:从对角线看:有且只有一条对角线被另一条对角线垂直平分.结合方法二可知缺少的条件为:AC垂直平分BD于O点,且AO≠CO.证明:按照题意,画出图形1.(第8题答图)∵AC垂直平分BD,∴AB=AD,CB=CD.又∵AB=,BC=,AO≠CO,∴AB≠BC,∴由筝形定义得,四边形ABCD是筝形.应用:筝形面积为对角线乘积的一半;∵S筝形ABCD=S△ABD+S△CBD=BD•AO+BD•CO=BD(AO+CO)=BD•AC,∴筝形面积为对角线乘积的一半.9.解:(1)AB∥CD.理由如下:在△ABD和△BAC中.∴△ABD≌△BAC(SAS).∴∠OAB=∠OBA,BD=AC.∴OA=OB.∴AC﹣OA=BD﹣OB.∴OD=OC.∴∠ODC=∠OCD.∵∠ODC+∠OCD+∠COD=180°,∠OAB+∠OBA+∠AOB=180°,∴2∠ODC+∠COD=180°.2∠OBA+∠AOB=180°.又∠COD=∠AOB,∴∠CDO=∠OBA.∴AB∥CD.(2)四边形ABCD是轴对称图形.理由如下:延长AD、BC交于点P,∵∠DAB=∠CBA,∴AP=BP.∴点P在AB的垂直平分线上.又OA=OB,∴点O在AB的垂直平分线上.∴OP垂直平分线段AB,∴点A与点B关于直线OP对称①.∵AB∥DC,∴∠PDC=∠PAB∠PCD=∠PBA.∴∠PDC=∠PCD.∴DP=CP,∴点P在DC的垂直平分线上.又OD=OC,∴点O在DC的垂直平分线上.∴OP垂直平分线段DC.∴点C与点D关于直线OP对称②.所以,综上①②所述,四边形ABCD是轴对称图形.(第9题答图)10.解:△ABC是轴对称图形.∵∠BCD=20°,∴∠B=90°﹣∠BCD=70°,∴∠ACB=∠B=70°,∴△ABC是等腰三角形,∴△ABC是轴对称图形.11.解:(1)△ABC的周长=AB+BC+AC=2a2﹣a﹣7+10﹣a2+a=a2+3.(2)当a=2.5时,AB=2a2﹣a﹣7=2×6.25﹣2.5﹣7=3,BC=10﹣a2=10﹣6.25=3.75,AC=a=2.5,∵3+2.5>3.75,∴当a=2.5时,三角形存在,周长=a2+3=6.25+3=9.25;当a=3时,AB=2a2﹣a﹣7=2×9﹣3﹣7=8,BC=10﹣a2=10﹣9=1,AC=a=3,∵3+1<8.∴当a=3时,三角形不存在.(3)∵△ABC与△DEF成轴对称图形,点A与点D是对称点,点B与点E是对称点,∴EF=BC,DF=AC,∴10﹣a2=4﹣b2,即a2﹣b2=6;a=3﹣b,即a+b=3、把a+b=3代入a2﹣b2=6,得3(a﹣b)=6∴a﹣b=2.12.解:五边形ABCDE是轴对称图形,△ABE与△CDE,△ABD与△CDB成轴对称.。

图形的平移与旋转单元测试(一)(北师版)(含答案)

图形的平移与旋转单元测试(一)(北师版)(含答案)

图形的平移与旋转单元测试(一)(北师版)一、单选题(共12道,每道8分)1.下列图形中,既是轴对称图形又是中心对称图形的有( )A.4个B.3个C.2个D.1个答案:C解题思路:第一个图形既是轴对称图形又是中心对称图形;第二个图形是轴对称图形,不是中心对称图形;第三个图形是轴对称图形,不是中心对称图形;第四个图形既是轴对称图形又是中心对称图形.故选C.试题难度:三颗星知识点:中心对称图形2.若两个图形关于某点成中心对称,则以下说法:①这两个图形一定全等;②对称点的连线一定经过对称中心;③对称点与旋转中心的连线所成的角都是旋转角;④一定存在某条直线,沿该直线折叠后的两个图形能互相重合.正确的是( )A.①②③B.①③④C.①②④D.①②③④答案:A解题思路:∵关于中心对称的两个图形是全等形,∴①正确;∵关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分,∴②正确;∵如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称,对称点与旋转中心的连线所成的角是一个平角,正好是旋转角,∴③正确;∵关于中心对称的两个图形不一定是关于一条直线对称的轴对称图形,∴④错误;综上,正确的有①②③.故选A.试题难度:三颗星知识点:中心对称图形的性质3.一个图形无论经过平移还是旋转,有以下说法,正确的是( )①对应线段平行;②对应线段相等;③对应角相等;④图形的形状和大小都没有发生改变.A.①②③B.②③④C.①②④D.①②③④答案:B解题思路:∵平移和旋转都是全等变换,∴变换前后图形的形状和大小都没有发生变化,对应线段相等,对应角相等,即②③④正确;旋转前后对应线段不一定平行,即①错误;正确的有②③④.故选B.试题难度:三颗星知识点:旋转的定义4.在如图所示的单位正方形网格中,△ABC经过平移后得到,已知在AC上一点P(2.4,2)平移后的对应点为,点绕点O逆时针旋转180°,得到对应点,则点的坐标为( )A.(-1.6,-1)B.(1.6,1)C.(-1.4,-1)D.(1.4,1)答案:B解题思路:通过图形可以看出来,三角形的平移路径为:向左平移4个单位,向下平移3个单位.点P 的平移路径和三角形一样,故的坐标为(-1.6,-1),点绕点O逆时针旋转180°,得到对应点,即与关于原点中心对称,所以点坐标为(1.6,1).故选B.试题难度:三颗星知识点:坐标系中的平移5.已知平面内A,B,C三点有如下关系:将点A先向右平移2个单位,再向下平移1个单位得到点B;将点A先向左平移1个单位,再向下平移3个单位得到点C.若点B的坐标为(5,-3),则点C的坐标为( )A.(4,-6)B.(6,-7)C.(8,-1)D.(2,-5)答案:D解题思路:根据题意,点B向左平移2个单位,再向上平移1个单位到点A,∵点B的坐标为(5,-3),∴点A的坐标为(3,-2),∵点A先向左平移1个单位,再向下平移3个单位得到点C,∴点C的坐标为(2,-5).故选D.试题难度:三颗星知识点:坐标系中的平移6.如图,将边长为的正方形ABCD沿对角线AC平移,使点A移至线段AC的中点处,得到新正方形,新正方形与原正方形重叠部分(图形阴影部分)的面积为( )A. B.C.1D.答案:B解题思路:试题难度:三颗星知识点:平移的定义7.如图,在Rt△ABC中,∠BAC=90°,AB=3,AC=4,将△ABC沿直线BC向右平移2.5个单位得到△DEF,连接AD,AE,则下列结论不成立的是( )A.AD∥BE,AD=BEB.∠ABE=∠DEFC.ED⊥ACD.△ADE为等边三角形答案:D解题思路:试题难度:三颗星知识点:平移的定义8.如图,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到,则其旋转中心一定是( )A.点EB.点FC.点GD.点H答案:C解题思路:∵旋转中心一定在对应点连线的垂直平分线上,∴线段与垂直平分线的交点即为旋转中心,即:点G是旋转中心.故选C.试题难度:三颗星知识点:垂直平分线判断定理9.如图,将边长为1的等边△ABC沿直线l向右翻动(不滑动),点B从开始到结束,所经过路径的长度为( )A. B.C. D.3答案:C解题思路:如上图,点B路径就是两个半径为1,圆心角为120°的扇形弧长,∴经过路径的长度为:.故选C.试题难度:三颗星知识点:旋转的定义10.如图,OA⊥OB,等腰直角三角形CDE的腰CD在OB上,∠ECD=45°,将△CDE绕点C 逆时针旋转75°,点E的对应点N恰好落在OA上,则的值为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:旋转的定义11.如图,将等腰三角形ABC绕点A逆时针旋转15°后得到,若AC=1,则图中阴影部分的面积为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:旋转的定义12.如图,O是等边△ABC内一点,OA=3,OB=4,OC=5,将线段OB绕点B逆时针旋转60°得到线段,下列结论:①可以由△BOC绕点B逆时针旋转60°得到;②点O与的距离为4;③∠AOB=150°;④,其中正确的结论是( )A.①②③B.①③④C.①②④D.①②③④答案:A解题思路:试题难度:三颗星知识点:旋转的定义。

北师大版数学七年级下册生活中的轴对称单元试题及答案(3套)

北师大版数学七年级下册生活中的轴对称单元试题及答案(3套)

北师大版数学七年级下册生活中的轴对称单元试题及答案(3套)北师大版数学七年级下册生活中的轴对称单元试题及答案(1)一、选择题1.在等边三角形ABC 中,CD 是∠ACB 的平分线,过D 作DE ∥BC 交AC 于E ,若△ABC 的边长为a ,则△ADE 的周长为 ( )A .2aB .C .1.5aD .a2.下列推理中,错误的是 ( ) A .∵∠A =∠B =∠C ,∴△ABC 是等边三角形 B .∵AB =AC ,且∠B =∠C ,∴△ABC 是等边三角形 C .∵∠A =60°,∠B =60°,∴△ABC 是等边三角形 D .∵AB =AC ,∠B =60°,∴△ABC 是等边三角形 3.下列说法中,不正确的是 ( ) A .等腰三角形底边上的中线就是它的顶角平分线 B .等腰三角形底边上的高就是底边的垂直平分线的一部分 C .一条线段可看作以它的垂直平分线为对称轴的轴对称图形 D .两个三角形能够重合,它们一定是轴对称的4.等腰三角形两边的长分别为2cm 和5cm ,则这个三角形的周长是 ( ) A .9cm B .12cmC .9cm 和12cmD .在9cm 与12cm 之间 5.观察图中的汽车商标,其中是轴对称图形的个数为 ()A.2B.3C.4D.56.对于下列命题:(1)关于某一直线成轴对称的两个三角形全等;(2)等腰三角形的对称轴是顶角的平分线;(3)一条线段的两个端点一定是关于经过该线段中点的直线的对称点;(4)如果两个三角形全等,那么它们关于某直线成轴对称.其中真命题的个数为a 34( )A .0B .1C .2D .37.△ABC 中,AB =AC ,点D 与顶点A 在直线BC 同侧,且BD =AD .则BD 与CD 的大小关系为 ( )A .BD >CDB .BD =CDC .BD <CDD .BD 与CD 大小关系无法确定8.下列图形中,不是轴对称图形的是 ( ) A .互相垂直的两条直线构成的图形 B .一条直线和直线外一点构成的图形C .有一个内角为30°,另一个内角为120°的三角形D .有一个内角为60°的三角形9.在等腰△ABC 中,AB =AC ,O 为不同于A 的一点,且OB =OC ,则直线AO 与底边BC 的关系为 ( )A .平行B .垂直且平分C .斜交D .垂直不平分10.三角形的三个顶点的外角平分线所在的直线两两相交,所围成的三角形一定是 ( )A .锐角三角形B .钝角三角形C .等腰三角形D .直角三角形二、填空题1.正五角星形共有_______条对称轴. 2.黑板上写着在正对着黑板的镜子里的像是__________.3.已知等腰三角形的腰长是底边长的34,一边长为11cm ,则它的周长为________. 4.(1)等腰三角形,(2)正方形,(3)正七边形,(4)平行四边形,(5)梯形,(6)菱形中,一定是轴对称图形的是_____________.5.如果一个图形沿某一条直线折叠后,直线两旁的部分能够_______,那么这个图形叫做轴对称图形,这条直线叫做___________.6.如图,在△ACD 中,AD =BD =BC ,若∠C =25°,则∠ADB =________.7.已知:如图,△ABC中,AB=AC,BE∥AC,∠BDE=100°,∠BAD=70°,则∠E=_____________.8.如图,在Rt△ABC中,B为直角,DE是AC的垂直平分线,E在BC上,∠BAE:∠BAC=1:5,则∠C=_________.9.如图,∠BAC=30°,AM是∠BAC的平分线,过M作ME∥BA交AC于E,作MD⊥BA,垂足为D,ME=10cm,则MD=_________.10.如图,OE是∠AOB的平分线,BD⊥OA于D,AC⊥BO于C,则关于直线OE对称的三角形有________对.三、解答题1.如图,∠XOY内有一点P,在射线OX上找出一点M,在射线OY上找出一点N,使PM+MN+NP最短.2.如图,图中的图形是轴对称图形吗?如果是轴对称图形,请作出它们的对称轴.3.已知∠AOB=30°,点P在OA上,且OP=2,点P关于直线OB的对称点是Q,求PQ之长.4.如图,在△ABC中,C为直角,∠A=30°,CD⊥AB于D,若BD=1,求AB之长.5.如图,在△ABC中,C为直角,AB上的高CD及中线CE恰好把∠ACB三等分,若AB =20,求△ABC的两锐角及AD、DE、EB各为多少?6.如图,AD、BE分别是等边△ABC中BC、AC上的高.M、N分别在AD、BE的延长线上,∠CBM=∠ACN.求证:AM=BN.7.如图,点G 在CA 的延长线上,AF =AG ,∠ADC =∠GEC .求证:AD 平分∠BAC .8.已知:如图,等腰直角三角形ABC 中,∠A =90°,D 为BC 中点,E 、F 分别为AB 、AC 上的点,且满足EA =CF .求证:DE =DF .参考答案一、1. C 2.B 3.D 4.B 5.C 6.C 7.D 8.D 9.B 10.A二、1.5 2. 3.cm 3121或cm 41214.等腰三角形,正方形,正七边形,菱形5.互相重合,对称轴 6.80° 7.50° 8.40° 9.5cm 10.4 三、1.分别以直线Ox ,Oy 为对称轴,作P 点的对应点P '和P '',连结P P '''交Ox 于M ,交Oy 于N 则PM +MN +NP 最短.如图所示.2.略 3.2 4.45.∠A=60°,∠B=30°,AD=5cm,DE=5cm,EB=10cm 6.先证△ENC≌△DMB(ASA),∴ DM=EN.再加上AD=BE即可.7.∵ AF=AG,∴∠G=∠AFG.又∵∠ADC=∠GEC,∴ AD∥GE.∴∠G=∠CAD.∴∠AFG=∠BAD.∴∠CAD=∠BAD.∴ AD平分∠BAC.8.连结AD.在△ADF和△BDE中,可证得:BD=AD,BE=AF,∠B=∠DAF.∴△ADF≌△BDE.∴ DE=DF.北师大版数学七年级下册生活中的轴对称单元试题及答案(2)一、选择题(每小题3分,共30分)1. 观察图形…并判断照此规律从左到右第四个图形是( )A .B .C .D .2. 如图的方格纸中,左边图形到右边图形的变换是( ) A.向右平移7格B.以AB 的垂直平分线为对称轴作轴对称变换,再以AB 为对称轴作轴对称变换C.绕AB 的中点旋转180°,再以AB 为对称轴作轴对称变换D.以AB 为对称轴作轴对称变换,再向右平移7格3. 如图所示,△与△关于直线对称,则∠等于( )A. B. C.D.4. 下列说法正确的是( )第2题图第3题图A.如果图形甲和图形乙关于直线MN 对称,则图形甲是轴对称图形B.任何一个图形都有对称轴,有的图形不止一条对称轴C.平面上两个大小、形状完全一样的图形一定关于某直线对称D.如果△ABC 和△EFG 成轴对称,那么它们的面积一定相等 5. 如图所示,在2×2的方格纸中有一个以格点为顶点的△ABC ,则与△ABC 成轴对称且以格点为顶点的三角形共有( ) A.3个 B.4个 C.5个 D.6个6.以下各命题中,正确的命题是()(1)等腰三角形的一边长为 4 cm ,一边长为9 cm ,则它的周长为17 cm 或22 cm ; (2)三角形的一个外角等于两个内角的和;(3)有两边和一角对应相等的两个三角形全等; (4)等边三角形是轴对称图形;(5)三角形的一个外角平分线平行于三角形的一边,那么这个三角形是等腰三角形. A .(1)(2)(3) B .(1)(3)(5) C .(2)(4)(5) D .(4)(5) 7. 将一张正方形纸片如图所示折叠两次,并在上面剪下一个菱形小洞,纸片展开后是( )A .B .C .D .8. 下列说法正确的是( ) A.轴对称图形是两个图形组成的B.等边三角形有三条对称轴第5题图第7题图C.两个全等的三角形组成一个轴对称图形D.直角三角形一定是轴对称图形9. 如图所示,在3×3正方形网格中,已有三个小正方形被涂黑,将剩余的白色小正方形再任意涂黑一个,则所得黑色图案是轴对称图形的情况有( ) A.6种 B.5种 C.4种 D.2种10. 如图所示,在△中,,∠,的垂直平分线交于,交于,下列结论错误的是( )A.平分∠B.△的周长等于C.D.点是线段的中点二、填空题(每小题3分,共24分)11. 一位交警在执勤过程中,从汽车的后视镜中看见某车牌照的后5位号码是,该车牌的后5位号码实际是 .12. 光线以如图所示的角度照射到平面镜上,然后在平面镜Ⅰ、Ⅱ间来回反射,已知=60°,β=50°,则= .第9题图第10题图第12题图13. 如图,在△ABC 中,AB=5 cm ,AC=3 cm ,BC 的垂直平分线分别交AB 、BC 于D 、E ,则△ACD 的周长为 cm .14. 如图,已知△ABC 是等边三角形,点B 、C 、D 、E 在同一直线上,且CG =CD ,DF =DE ,则∠E = 度.15. 如图所示,在边长为2的正三角形ABC 中,E 、F 、G 分别为AB 、AC 、BC 的中点,点P 为线段EF 上一个动点,连接BP 、GP ,则△BPG 的周长的最小值是 . 16. 如图,在Rt △ABC 中,∠ACB =90°,∠BAC 的平分线AD 交BC 于点D ,DE ∥AC ,DE 交AB 于点E ,M 为BE 的中点,连结DM . 在不添加任何辅助线和字母的情况下,图中的等腰三角形是 .(写出一个即可)17. 如图所示,P 是等边三角形ABC 内一点,将△ABP 绕点B 顺时针方向旋转60°,得到△CBP ′.若PB =3,则PP ′= .第15题图第17题图ABDCO E第18题第13题B第14题图第16题图18. 如图所示,是∠的平分线,于点,于,则关于直线对称的三角形共有_______对.三、解答题(共46分)19.(6分)如图所示,在等边△中,分别平分∠和△的外角∠,∥交于点,求证:.20. (6分)如图所示,∥∠的平分线与∠的平分线交于点,过点的直线垂直于,垂足为,交于点.试问:点是线段的中点吗?为什么?21. (6分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A ,C 的坐标分别为(-4,5),(-1,3).(1)请在如图所示的网格平面内作出平面直角坐标系; (2)请作出△ABC 关于轴对称的△A ′B ′C ′; (3)写出点B ′的坐标.第21题图ABCDP第20题图22. (6分)公园内有一块三角形空地(如图所示),现要将它分割成三块,种植三种不同的花卉,为了美观,要求每块都要是轴对称图形,请你在图中画出分割线,保留必要的画图痕迹.23. (6分)以直线为对称轴画出图的另一半.24. (8分)已知:如图所示,等边三角形ABC 中,D 为AC 边的中点,E 为BC 延长线上一点,CE =CD ,DM ⊥BC 于M ,求证:M 是BE 的中点. 25. (8分)如图所示,∠内有一点,在射线上找出一点,在射线上找出一点,使最短.第24题图第22题图第25题第23题图参考答案1. D 解析:观察图形可知:单独涂黑的角顺时针旋转,只有D 符合.故选D .2. D 解析:观察可得:要使左边图形变化到右边图形,首先以AB 为对称轴作轴对称变换,再向右平移7格.故选D .3. D 解析:因为 △与△关于直线对称, 所以所以.4. D 解析:A.如果图形甲和图形乙关于直线MN 对称,则图形甲不一定是轴对称图形, 错误;B.有的图形没有对称轴,错误;C.平面上两个大小、形状完全一样的图形不一定关于某直线对称,与摆放位置有关,错误;D.如果△ABC 和△EFG 成轴对称,那么它们全等,故其面积一定相等,正确.故选D . 5. C 解析:与△ABC 成轴对称且以格点为顶点的三角形有 △ABG 、△CDF 、△AEF 、△DBH ,△BCG 共5个,故选C .6. D 解析:(1)等腰三角形的一边长为 4 cm ,一边长为9 cm ,则三边长为9 cm ,9 cm ,4 cm ,或 4 cm ,4 cm ,9 cm ,因为4+4<9,则它的周长只能是22 cm ,故此命题错误;(2)三角形的一个外角等于与它不相邻的两个内角的和,故此命题错误; (3)有两边和一角对应相等的两个三角形全等错误,必须是夹角; (4)等边三角形是轴对称图形,此命题正确; (5)三角形的一个外角平分线平行于三角形的一边,那么这个三角形是等腰三角形,正确. 如图所示:∵ AD ∥BC ,∴ ∠1=∠B ,∠2=∠C . ∵ AD 是角平分线,∴ ∠1=∠2,第5题答第6题答∴∠B =∠C,∴AB =AC.即△ABC是等腰三角形.故选D.7. C 解析:当正方形纸片两次沿对角线对折成为一直角三角形时,在垂直于斜边的位置上剪菱形,则直角顶点处完好,即原正方形中间无损,且菱形关于对角线对称.故选C.8. B 解析:A.轴对称图形是指1个图形,故错误;B.等边三角形有三条对称轴,即三条中线所在直线,故正确;C.两个全等的三角形不一定组成一个轴对称图形,故错误;D.直角三角形不一定是轴对称图形,只有等腰直角三角形是轴对称图形,故错误.故选B.9. C 解析:根据题意,涂黑每一个格都会出现一种等可能情况,共出现6种等可能情况,而当涂黑左上角和右下角的小正方形时,不会是轴对称图形,其余的4种情况均可以. 故选C.10. D 解析:因为在△中,,∠,所以∠∠.因为的垂直平分线是,所以,所以∠∠,所以∠∠∠∠,所以平分∠,故正确.所以△的周长为,故正确. 因为∠,∠,所以∠∠∠,所以∠∠,所以,所以,故正确.因为,所以,所以点不是线段的中点,故错误.故选.11. BA629 解析:关于镜面对称,也可以看成是关于某条直线对称,关于某条直线对称的数字依次是BA629.12. 40° 解析:=180°-[60°+(180°-100°)]=40°. 13. 8 14. 1515. 3 解析:要使△PBG 的周长最小,而BG =1一定,只要使BP +PG 最短即可.连接AG 交EF 于M .∵ △ABC 是等边三角形,E 、F 、G 分别为AB 、AC 、BC 的中点, ∴ AG ⊥BC ,EF ∥BC , ∴ AG ⊥EF ,AM =MG , ∴ A 、G 关于EF 对称,∴ P 点与点E 重合时,BP +PG 最小, 即△PBG 的周长最小,最小值是:PB +PG +BG =AE +BE +BG =AB +BG =2+1=3.16. △MBD 或△MDE 或△EAD 解析:由∠ACB =90°,DE ∥AC ,得∠EDC=90°,又M 为BE 的中点,得MB=MD=ME,∴△MBD 和△MDE 是等腰三角形,∵∠BAC 的平分线AD 交BC 于点D ,DE ∥AC ,∴∠EDA =∠EAD =∠DAC , ∴△EAD 是等腰三角形.17. 3 解析:∵ △ABP 绕点B 顺时针方向旋转60°得到△CBP ′, ∴ ∠PBP ′=60°,BP =BP ′,第15题答图∴△BPP′为等边三角形,∴PP′=BP=3.18.解析:△和△,△和△△和△△和△共4对.19. 证明:因为分别平分∠和∠,所以∠∠,∠∠.因为∥,所以∠∠,∠∠.所以∠∠,∠∠.所以.所以.20. 解:点是线段的中点.理由如下:过点作于点因为∥所以.又因为∠的平分线,是∠的平分线,所以所以所以点是线段的中点.21. 分析:(1)易得y轴在C的右边一个单位,轴在C的下方3个单位;(2)作出A,B,C三点关于y轴对称的三点,顺次连接即可;(3)根据所在象限及与坐标轴的距离可得相应坐标.解:(1)(2)如图所示;(3)点B′的坐标为(2,1).22. 解:如图,分别作AB 、BC 的垂直平分线,相交于点P , 沿PA 、PB 、PC 进行分割,得到的△PAB 、△PBC 、△PAC 都是等腰三角形,都是轴对称图形. 23. 分析:作图形的对称图形首先作出各顶点的对称点,然后连接各对称点即为原图形的对称图形.解:作对称图形得:作圆弧的对称图形时以原来圆弧的圆心为圆心,原半径为半径作出圆弧的对称图形.对于矩形的对称图形和外框图形的对称图形首先作出各顶点关于的对称点,连接对称点即为原图形的对称图形.24. 分析:欲证M 是BE 的中点,已知DM ⊥BC ,因此只需证DB =DE ,即证∠DBE =∠E ,根据BD 是等边△ABC 的中线可知∠DBC =30°,因此只需证∠E =30°. 证明:连结BD ,∵ △ABC 是等边三角形,∴ ∠ABC =∠ACB =60°.第21题答图第23题答图第22题答图∵ CD =CE ,∴ ∠CDE =∠E =30°.∵ BD 是AC 边上的中线,∴ BD 平分∠ABC ,即∠DBC =30°, ∴ ∠DBE =∠E .∴ DB =DE.又∵ DM ⊥BE , ∴ DM 是BE 边上的中线,即M 是BE 的中点.25. 解:如图所示,分别以直线、为对称轴,作点的对应点和,连接,交于,交于,则最短.第24题答OP MN第25题答图YX北师大版数学七年级下册生活中的轴对称单元试题及答案(3)一、填空题(每题3分,共30分)1、△ABC中,AD⊥BC于D,且BD=CD,若AB=3,则AC=_____.2、等腰三角形的一个角为100°,则它的两底角为_____.3、等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边长为_______.4、底角等于顶角一半的等腰三角形是_____三角形,画出此三角形斜边上的高,这时图中有_____个等腰三角形.5、等腰三角形的周长为22 cm,其中一边的长是8 cm,则其余两边长分别为_______________.6、26个大写英文字母中,有些字母可以看成轴对称图形,例如_ _(至少写出4个).7、图1中三角形1与____成轴对称图形,整个图形中共有____条对称轴.图1 图2 图38、如图2,如果点M在的∠ACB平分线上且AM=6厘米,则BM=______厘米,你的理由是_____________________________________________.9、如图3,OC平分∠AOB,D为OC上任一点,DE⊥OB于E,若DE=4 cm,则D 到OA的距离为_____.10、请在下面这一组图形符号中找出它们所蕴含的内在规律,然后在横线上的空白处填上恰当的图形.二、选择题(每题3分,共15分)11、下列图形中,不是轴对称图形的是( )A.角B.等边三角形C.线段D.不等边三角形12、下列说法中错误的是( )A.两个对称的图形对应点连线的垂直平分线就是它们的对称轴B.关于某直线对称的两个图形全等C.面积相等的两个三角形对称D.轴对称指的是两个图形沿着某一直线对折后重合13、如图,下列图案是我国几家银行的标志,其中不是轴对称图形的有( )14、线段AB 和CD 互相垂直平分于O 点,且OC =21AB , 顺次连结A 、D 、B 、C ,那么图中的等腰直角三角形共有( ) A.4个B.6个C.8个D.10个15、将正方形纸片两次对折,并剪出一个菱形小洞后铺平,得到的图形是( )三、简答题(本题8分)16、指出下列图形中的轴对称图形,并画出它们的对称轴.ABCD四、解答题17、如图,已知:△ABC中,BC<AC,AB边上的垂直平分线DE交AB于D,交AC于E,AC=9 cm,△BCE的周长为15 cm,求BC的长. (7分)18、如图,△ABC中,AB=AC,点M、N分别在BC所在直线上,且AM=AN。

北师大版七年级下册数学第五章 生活中的轴对称含答案(全国通用)

北师大版七年级下册数学第五章 生活中的轴对称含答案(全国通用)

北师大版七年级下册数学第五章生活中的轴对称含答案一、单选题(共15题,共计45分)1、如图是一个等边三角形木框,甲虫P在边框AC上爬行(A,C端点除外),设甲虫P到另外两边的距离之和为d,等边三角形ABC的高为h,则d与h的大小关系是()A.d>hB.d<hC.d=hD.无法确定2、如图,在中,,以顶点为圆心,适当长为半径画弧,分别交于点,再分别以点为圆心,大于的长为半径面弧,两弧交于点,作射线交边于点,若,则的面积是()A. B. C. D.3、如图,在△ABC中,∠A=80°,边AB,AC的垂直平分线交于点O,则∠BCO 的度数为()A.10°B.20°C.30°D.40°4、如图,AB是⊙O的直径,弦CD垂直平分OB,则∠BDC=()A.15°B.20°C.30°D.45°5、如图,P是∠AOB的平分线上的一点,PC⊥OA,PD⊥OB,垂足分别为C,D.下列结论不一定成立的是()A.∠AOP=∠BOPB.PC=PDC.∠OPC=∠OPDD.OP=PC+PD6、如图,等边三角形的边长为4,点是△ 的中心,.绕点旋转,分别交线段于D、E两点,连接,给出下列四个结论:① ;② ;③四边形的面积始终等于;④△ 周长的最小值为6,上述结论中正确的个数是( )A.1B.2C.3D.47、将两个等腰Rt△ADE、Rt△ABC如图放置在一起,其中∠DAE=∠ABC=90°.点E在AB上,AC与DE交于点H,连接BH、CE,且∠BCE=15°,下列结论:①AC垂直平分DE;②△CDE为等边三角形;③tan∠BCD=;④;正确的个数是()A.1B.2C.3D.48、等腰三角形腰长为13,底边长为10,则它底边上的高为()A.5B.7C.10D.129、如图,在中,是的角平分线,于点,,,,则长是()A.1B.C.D.210、如图,由4个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点,在田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含△ABC本身)共有( )A.1个B.3个C.2个D.4个11、如图,已知AB=AC,∠A=36°,AB的垂直平分线MD交AC于点D,AB于M,以下结论:①△BCD是等腰三角形;②射线BD是△ACB的角平分线;③△BCD =AC+BC;④△ADM≌BCD.正确有()的周长C△BCDA.①②③B.①②C.①③D.③④12、如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF折叠,点D恰好落在BE上M点处,延长BC、EF交于点N.有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S△BEF =3S△DEF.其中,将正确结论的序号全部选对的是()A.①②③B.①②④C.②③④D.①②③④13、如图,在ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长为() cm.A.13B.15C.17D.1914、如图,已知AD平分∠BAC,∠C=90°,DE⊥AB,BC=8cm,BD=5cm,则DE的长为()A.3cmB.4cmC.5cmD.6cm15、如图,在等腰三角形中,,则等于()A. B. C. D.二、填空题(共10题,共计30分)16、有一等腰直角三角形纸片,以它的对称轴为折痕,将三角形对折,得到的三角形还是等腰直角三角形(如图).依照上述方法将原等腰直角三角形折叠四次,所得小等腰直角三角形的周长是原等腰直角三角形周长的________倍.17、如图,等腰△ABC中,AB=AC,BC=8.已知重心G到点A的距离为6,则G 到点B的距离是________.18、如图,在△ABC中,∠C=90°,∠CAB=60°,按以下步骤作图:①分别以A,B为圆心,以大于AB的长为半径做弧,两弧相交于点P和Q.②作直线PQ交AB于 D,交BC于点E,连接AE.若CE=4,则AE=________.19、如图,在矩形ABCD中,AB=5,BC=3,点E为射线BC上一动点,将△ABE沿AE折叠,得到. 若B'恰好落在射线CD上,则BE的长为________20、如图,△ABC中,AB=AC,∠A=36°,AB的中垂线DE交AC于D,交AB于E,下述结论:①BD平分∠ABC;②AD=BD=BC;③△BDC的周长等于AB+BC;④D 是AC中点.其中正确的命题序号是________.21、已知:如图,在△ABC中,AB=AC且tanA= ,P为BC上一点,且BP:PC=3:5,E、F分别为AB、AC上的点,且∠EPF=2∠B,若△EPF的面积为6,则EF=________.22、如图,△ABC中,BC=7,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G.则△AEG的周长为________.23、如图,AD是三角形ABC的对称轴,点E、F是AD上的两点,若BD=2,AD=3,则图中阴影部分的面积是________。

初一数学图形的对称平移与旋转试题

初一数学图形的对称平移与旋转试题

初一数学图形的对称平移与旋转试题1.如图,可以看作是一个基础图形绕着中心旋转7次而生成的,则每次旋转的度数是__________.【答案】45°.【解析】∵一个周角是360度,等腰直角三角形的一个锐角是45度,∴如图,是由一个等腰直角三角形每次旋转45度,且旋转8次形成的.∴每次旋转的度数是45°.故答案是45°.【考点】旋转的性质.2.在线段,角、圆、直角三角形、等边三角形、正方形、正五边形、正六边形八个图形中,一定是轴对称图形的个数有个.【答案】7.【解析】根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,进而得出答案.试题解析:在线段,角、圆、直角三角形、等边三角形、正方形、正五边形、正六边形八个图形中,一定是轴对称图形的有线段,角、圆、等边三角形、正方形、正五边形、正六边形,有7个.【考点】轴对称图形.3.如图是一个图案的一半,其中虚线是这个图案的对称轴,请你画出这个图案的另一半.【答案】作图见解析.【解析】利用轴对称图形的性质得出对应点位置,进而得出答案.试题解析:如图所示:【考点】利用轴对称设计图案.4.现要把方格纸上的小船沿图中箭头方向平移8个单位,请你在方格纸上画出小船平移后的图形。

(4分)【答案】作图见解析.【解析】将小船的各点沿箭头方向平移8格,得到对应点,顺次连接成新图即可.所作图形如下:【考点】作图-平移变换.5.下列图形中,既是中心对称图形又是轴对称图形的是()【答案】D【解析】A、是中心对称图形,不是轴对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、不是中心对称图形,是轴对称图形,故本选项错误;D、既是中心对称图形又是轴对称图形,故本选项正确.故选D.【考点】1.中心对称图形;2.轴对称图形.6.△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC关于点C成中心对称的△A1B1C1;(2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2;(3)在x轴上求作一点P,使PA1+PC2的值最小,点P的坐标为______.【答案】(1)作图见解析;(2)作图见解析;(3)(,0).【解析】(1)延长AC到A1,使得AC=A1C1,延长BC到B1,使得BC=B1C1,即可得出图象;(2)根据△A1B1C1将各顶点向右平移4个单位,得出△A2B2C2;(3)作出A1关于x轴的对称点A′,连接A′C2,交x轴于点P,再利用相似三角形的性质求出P点坐标即可.试题解析:(1)如图所示:(2)如图所示:(3)如图所示:作出A1关于x轴的对称点A′,连接A′C2,交x轴于点P,可得P点坐标为:(,0).【考点】1.作图-旋转变换;2.轴对称-最短路线问题;3.作图-平移变换.7.如图梯形ABCD中,AD∥BC,AD=6cm,BC=10cm,高为7cm,若将梯形ABCD向右平移4cm得到梯形A′B′C′D′,则平移前后两梯形重叠部分的面积为cm2.【答案】28【解析】由平移的性质可得线段AA′=BB′=4,则A′D=2,B′C=6,根据梯形的面积公式即可求出两梯形重叠部分即梯形A′B′CD的面积.解:∵将梯形ABCD向右平移4cm得到梯形A′B′C′D′,∴AA′=BB′=4,∵AD=6,BC=10,∴A′D=2,B′C=6,∴梯形A′B′CD的面积=(2+6)×7=28,即平移前后两梯形重叠部分的面积为28cm2.故答案为28.点评:本题综合考查了平移的性质和梯形的面积公式,根据平移的性质可得线段AA′=BB′=4是解题的关键.8.如图中的剪纸作品有几条对称轴?A.1条B.2条C.3条D.4条【答案】D【解析】轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线就叫这个图形的对称轴.由图可得图中的剪纸作品有4条对称轴,故选D.【考点】轴对称图形的定义点评:本题属于基础应用题,只需学生熟练掌握轴对称图形的定义,即可完成.9.观察下图中各组图形,其中成轴对称的为(只写序号)【答案】①②④【解析】轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.由图可得成轴对称的为①②④.【考点】轴对称图形的定义点评:本题属于基础应用题,只需学生熟练掌握轴对称图形的定义,即可完成.10.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A, C的坐标分别为( -4,5),(-1,3).⑴请在如图所示的网格平面内作出平面直角坐标系;⑵请作出△ABC关于轴对称的△A′B′C′;⑶写出点B′的坐标.【答案】【解析】(1)依题意知,C的坐标(-1,3),故以C点起始向右移动一个单位,向下移动3个单位可得原点O。

初一数学图形的对称平移与旋转试题答案及解析

初一数学图形的对称平移与旋转试题答案及解析

初一数学图形的对称平移与旋转试题答案及解析1.下列命题中,属于真命题的是 ( )A.如果a>b,那么a-2<b-2.B.任何数的零次幂都等于1.C.两条直线被第三条直线所截,同旁内角互补.D.平移不改变图形的形状和大小.【答案】D【解析】根据不等式的性质可知A是假命题;由底数不为0可知B是假命题;如果两条不平行的直线被第三条直线所截,同旁内角不互补,所是C是假命题;只有D是真命题.【考点】命题2.下列说法不正确的是()A.平移或旋转后的图形的形状大小不变B.平移过程中对应线段平行(或在同一条直线上)且相等C.旋转过程中,图形中的每一点都旋转了相同的路程D.旋转过程中,对应点到旋转中心的距离相等【答案】C【解析】A、平移或旋转后的图形的形状大小不变,所以A选项的说法正确;B、平移过程中对应线段平行(或在同一条直线上)且相等,所以B选项的说法正确;C、旋转过程中,图形中的每一点所旋转的路程等于以旋转中心为圆心、每个点到旋转中心的距离为半径、圆心角为旋转角的弧长,所以C选项的说法不正确;D、旋转过程中,对应点到旋转中心的距离相等,所以D选项的说法正确.故选C.【考点】1、旋转的性质;2、平移的性质3.按下列要求正确画出图形:(1)已知和直线MN,画出关于直线MN对称的;(2)已知ABCD和点O,画出ABCD关于点O成中心对称的四边形.【解析】(1)过点A作AA′⊥MN且使MN垂直平分AA′,过点B作BB′⊥MN且使MN垂直平分BB′,过点C作CC′⊥MN且使MN垂直平分CC′,然后顺次连接即可;(2)连接AO并延长至A′,使A′O=AO,连接BO并延长至B′,使B′O=BO,连接CO并延长至C′,使C′O=CO,连接DO并延长至D′,使D′O=DO,然后顺次连接即可.试题解析:(1)△A′B′C′如图所示;(2)四边形A′B′C′D′如图所示.【考点】1、旋转变换;2、轴对称变换4.如图,长方形ABCD中,AB=6,第1次平移将长方形ABCD沿AB的方向向右平移5个单位,得到长方形A1B1C1D1,第2次平移将长方形A1B1C1D1沿A1B1的方向向右平移5个单位,得到长方形A2B2C2D2…,第n次平移将长方形沿的方向平移5个单位,得到长方形(n>2),则长为_______________.【答案】5n+6.【解析】每次平移5个单位,n次平移5n个单位,加上AB的长即为ABn的长.试题解析:每次平移5个单位,n次平移5n个单位,即BN的长为5n,加上AB的长即为ABn的长.ABn=5n+AB=5n+6,故答案为:5n+6.【考点】平移的性质.5..如图所示,把直角梯形ABCD沿DA方向平移到梯形EFGH,HG="24" cm,WG="8" cm,WC="6" cm,求阴影部分的面积为__ _.【答案】168cm2.【解析】根据平移图形的面积相等,梯形ABCD与梯形EFGH的面积相等,都减去公共部分梯形EFWD的面积,得阴影部分的面积等于梯形DWGH的面积,从而求得阴影部分的面积为168cm2.【考点】1平移的性质;2等式性质;3梯形面积计算.6.把两块全等的直角三角形和叠放在一起,使三角板的锐角顶点与三角板的斜边中点重合,其中,,,把三角板固定不动,让三角板绕点旋转,设射线与射线相交于点,射线与线段相交于点.(1)如图1,当射线经过点,即点与点重合时,易证.此时,;将三角板由图1所示的位置绕点沿逆时针方向旋转,设旋转角为.其中,问的值是否改变?答:(填“会”或“不会”);若改变,的值为(不必说明理由);(2)在(1)的条件下,设,两块三角板重叠面积为,求与的函数关系式.(图2,图3供解题用)【答案】(1)8,不会;(2)当时,当时,.【解析】(1)根据旋转的性质及相似三角形的性质求解即可;(2)情形1:当时,,即,此时两三角板重叠部分为四边形,过作于,于,根据三角形的面积公式求解即可;情形2:当时,时,即,此时两三角板重叠部分为,由于,,易证:,根据相似三角形的性质求解即可.(1)由题意得8;将三角板旋转后的值不会改变;(2)情形1:当时,,即,此时两三角板重叠部分为四边形,过作于,于,由(2)知:得于是情形2:当时,时,即,此时两三角板重叠部分为,由于,,易证:,即,解得于是综上所述,当时,当时,.本题涉及了旋转问题的综合题,此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.7.如图,每个小正方形的边长为1,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.(1)补全△A′B′C′根据下列条件,利用网格点和三角板画图:(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)△A′B′C′的面积为。

轴对称与旋转变换(二)(北师版)(含答案)

轴对称与旋转变换(二)(北师版)(含答案)

轴对称与旋转变换(二)(北师版)试卷简介:本套试卷主要考查在动态的背景下学生对于直角三角形性质的应用,学生需要根据题目中的关键信息整合条件,灵活选取合适的性质解题.一、单选题(共10道,每道10分)1.如图,将长方形纸片ABCD折叠,使点C与点B重合,折痕为EF,AE=4cm,CE=8cm,则折痕EF的长是( )cm.A.4B.8C. D.答案:B解题思路:如图,由折叠,得∠1=∠2,BE=CE=8.在Rt△ABE中,∵AE=4,BE=8,∴∠ABE=30°,∴∠AEB=60°,∴∠1=∠2=60°.在长方形ABCD中,BD∥AC,∴∠3=∠1=60°,∴△BEF为等边三角形,∴EF=BE=8.故选B.试题难度:三颗星知识点:折叠问题2.如图,在△ABC中,AD是BC边的中线,∠ADC=30°,将△ADC沿AD折叠,使C点落在的位置,若BC=4,则的长为( )A. B.C.4D.3答案:A解题思路:如图,过点D作DE⊥于点E由折叠,得=CD,=∠ADC=30°,∴.又∵BD=CD,∴BD=CD==2,∴,BE=.在Rt△BDE中,,BD=2,∴,∴.故选A.试题难度:三颗星知识点:含30°角的直角三角形3.如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=1,FD=2,则BC的长为( )A. B.C. D.答案:B解题思路:1.思路分析本题主要考查折叠背景下勾股定理的使用,解决此类问题需要:①读题标注,明确目标,梳理信息.本题求线段BC的长,已知CF长,只需求出BF长,即可使用勾股定理计算BC的长.②熟悉折叠性质,合理转化条件.要清楚折叠是全等变换,折叠前后对应边、对应角相等.可据此得出BG=BA,结合点E是AD中点,可证得DF=GF,进而实现条件转移,结合勾股定理求解.2.解题过程如图,连接EF.∵CF=1,DF=2,∴AB=CD=3.∵点E是AD中点,∴AE=ED.由折叠可知,BG=BA=3,EG=AE,∠A=∠EGB=90°,∴EG=ED.在Rt△EGF和Rt△EDF中,EG=ED,EF=EF,∴△EGF≌△EDF(HL),∴GF=DF=2,∴BF=BG+GF=5.在Rt△BCF中,由勾股定理得:BC2=BF2-CF2∴.故选B.3.易错点没有通过中点及折叠的性质,找出DF=FG这一条件,导致条件不够,无法计算.试题难度:三颗星知识点:折叠问题4.如图,先把矩形ABCD对折,折痕为MN,展开后再折叠,使点B落在MN上,此时折痕为AE,点B 在MN上的对应点为,则=( )A.15°B.30°C.45°D.60°答案:B解题思路:如图,过点作⊥AD于点F由第一次折叠,得,由第二次折叠,得,,∴.又∵,∴,∴,∴.故选B.试题难度:三颗星知识点:折叠问题5.如图,正方形ABCD边长为12,E为CD上一点,沿AE将△ADE折叠得△AEF,延长EF交BC于G,连接AG,CF,BG=6,下列说法正确的有( )①ABG≌△AFG;②DE=4;③AG∥CF;④S△FGC=.A.1个B.2个C.3个D.4个答案:D解题思路:因为AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴△ABG≌△AFG(HL),①正确.由折叠,得EF=DE,设DE=FE=x,则EC=12-x.∵BG=6∴CG=6,FG=6在Rt△ECG中,由勾股定理,得(12-x)2+36=(x+6)2解得x=4∴DE=4,EC=8,②正确.∵CG=BG=GF∴△FGC是等腰三角形,∠GFC=∠GCF∴∠BGF=2∠GCF又∵∠BGF=2∠BGA∴∠GCF=∠BGA∴AG∥CF;③正确.S△FGC:S△EGC=FG:EG=3:5∵∴,④正确.综上可得,①②③④都正确,共4个.故选D.试题难度:三颗星知识点:全等三角形的性质与判定6.如图,圆柱形玻璃杯,高为6cm,底面周长为16cm,在杯内离杯底2cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为( )cm.A. B.C. D.10答案:D解题思路:如图,将圆柱展成平面图形(长方形),找到点A和点C.作点A作关于MN的对称点,连接,则线段的长即为所求.过点C作CB⊥AM于点B.在Rt△中,,BC=8,由勾股定理得.故选D.试题难度:三颗星知识点:轴对称—最短路线问题7.如图,把△ABC绕B点逆时针旋转26°得到,若正好经过A点,则∠BAC=( )A.52°B.64°C.77°D.82°答案:C解题思路:分析旋转三要素可知,和都是旋转角,故.∵旋转是全等变换,∴,,∵,∴∠BAC=77°.故选C.试题难度:三颗星知识点:旋转的性质8.如图,两块相同的直角三角形完全重合在一起,∠A=30°,AC=10,把上面一块绕直角顶点B逆时针旋转到的位置,若点在AC上,与AB相交于点D,则=( )A. B.2C. D.答案:A解题思路:∵旋转是全等变换,∴,,在Rt△ABC中,∠A=30°,∴,∠C=60°,∴为等边三角形,∴,,∴,∴,∴.故选A.试题难度:三颗星知识点:含30°的直角三角形9.如图,将△ABC绕顶点A顺时针旋转60°后得到,若为BC的中点,则=( )A.1:2B.1:C.1:D.1:3答案:D解题思路:分析旋转三要素可知,.∵旋转是全等变换,∴,∴为等边三角形.∴.又∵为BC的中点,∴,∴∠BAC=90°,∴.又∵,∴,∴.又,∴,∴,即.故选D.试题难度:三颗星知识点:含30°的直角三角形10.如图,凸四边形ABCD满足条件:AB=AD,∠BAD=60°,∠BCD=120°,则AC与BC+CD的数量关系为( )A. B.C. D.不确定答案:C解题思路:1.思路分析本题主要考查在特殊条件下如何使用旋转思想解决问题.解决此类问题需要清楚:①旋转是全等变换,旋转前后对应边、对应角相等;②满足旋转三要素的情形下(如有等边、等腰直角),可以考虑旋转思想.本题中有AB=AD,∠BAD=60°,∠BCD=120°,可考虑将△ACD顺时针旋转,使得AD与AB 重合,此时可证为等边三角形,进而可知AC=BC+CD.2.解题过程如图,延长CB至点,使,连接,则.∵∠BAD=60°,∠BCD=120°,∴∠ABC+∠D=180°,又∵∠ABC+=180°,∴∠D=.在和△ADC中,∴≌△ADC,∴,.∵∠BAD=60°,∴,∴为等边三角形,∴,∴AC=BC+CD.故选C.3.易错点看到AB=AD的条件,没有使用旋转解决问题的意识,对旋转思想使用的前提条件不清楚.错误使用三角形两边之和大于第三边,猜测结论.试题难度:三颗星知识点:作图—旋转变换。

轴对称与旋转变换(一)(北师版)(含答案)

轴对称与旋转变换(一)(北师版)(含答案)

轴对称与旋转变换(一)(北师版)试卷简介:本套试卷主要考查在动态的背景下学生对于直角三角形性质的应用,学生需要根据题目中的关键信息整合条件,灵活选取合适的性质解题。

一、单选题(共6道,每道10分)1.如图,正方形纸片ABCD的边长为3,点E,F分别在边BC,CD上,将AB,AD分别沿AE,AF折叠,点B,D恰好都落在点G处,已知BE=1,则EF的长为( )A. B.C. D.3答案:B解题思路:∵正方形纸片ABCD的边长为3∴∠C=90°,BC=CD=3根据折叠的性质得:EG=BE=1,GF=DF设DF=x则EF=EG+GF=1+x,FC=DC-DF=3-x,EC=BC-BE=3-1=2在Rt△EFC中,即解得:∴故选B试题难度:三颗星知识点:折叠问题2.如图,已知边长为5的等边三角形ABC纸片,点E在AC边上,点F在AB边上,沿着EF折叠,使点A落在BC边上的点D的位置,且ED⊥BC,则CE的长是( )A. B.C. D.答案:D解题思路:由折叠可知:AE=ED在Rt△EDC中,∠C=60°,ED⊥BC∴∴∴故选D试题难度:三颗星知识点:含30°角的直角三角形3.如图,在Rt△ABC中,∠ACB=90°,A=30°,BC=2,将△ABC绕点C按顺时针方向旋转n度后得到△EDC,此时点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为( )A.30,2B.60,2C.60,D.60,答案:C解题思路:∵∠ACB=90°,A=30°∴∠B=60°由旋转的性质可知:BC=CD∴△BCD是等边三角形∴∠BCD=60°,即:n=60∴∠DCF=30°∵∠FDC=∠B=60°∴∠DFC=90°在Rt△DFC中,∠DCF=30°,CD=BC=2∴DF=1,∴故选C试题难度:三颗星知识点:含30°角的直角三角形4.如图,在Rt△ABC中,∠ABC=90°,∠C=60°,AC=10,将BC向BA方向翻折过去,使点C落在BA上的点C′处,折痕为BE,则EC的长为( )A. B.C. D.答案:B解题思路:在Rt△ABC中,∠ABC=90°,∠A=30°∴∠C=60°∵AC=10∴BC=5,∵△C′EB由△CEB翻折得到∴C′B=BC=5,∠BC′E=∠C=60°∵∠BC′E=∠A+∠AEC′∴∠AEC′=30°∴AC′=C′E∴故选B试题难度:三颗星知识点:含30°角的直角三角形5.如图,在Rt△ABC中,AB=AC,D,E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①△AEF≌△AED;②∠AED=45°;③BE+DC=DE;④,其中正确的是( )A.②④B.①④C.②③D.①③答案:B解题思路:1.思路分析本题主要考查旋转的性质及勾股定理的使用,解决此类问题需要清楚:①旋转是全等变换,旋转前后对应边、对应角相等;②几何问题处理注意读题标注,多条件进行整合.2.解题过程在Rt△ABC中,AB=AC∴∠ABC=∠ACB=45°由旋转可知,△ACD≌△ABF∴CD=BF,AD=AF,∠ACB=∠ABF,∠CAD=∠BAF∴∠EBF=90°,∠FAD=90°∵∠DAE=45°∴∠FAE=∠DAE在△DAE和△FAE中∴△DAE≌△FAE,①正确;∵△BEF是直角三角形∴,④正确.∵∠DAE=45°若∠AED=45°,则∠ADE=90°,与题干不符,故②错误;在Rt△BEF中,BE+BF>EF,即BE+CD>DE,故③错误.故选B.3.易错点没有对旋转导致全等的条件进行合理转化,转移边、角不到位,导致没有思路解题.试题难度:三颗星知识点:旋转的性质6.如图,在正方形纸片ABCD中,E,F分别是AD,BC的中点,沿过点B的直线折叠,使点C落在EF 上,落点为N,折痕交CD边于点M,BM与EF交于点P,再展开.则下列结论:①CM=DM;②∠ABN=30°;③;④△PMN是等边三角形.其中正确的有( )A.1个B.2个C.3个D.4个答案:C解题思路:1.思路分析本题主要考查折叠的性质以及含30°角的直角三角形三边关系,解决此类问题需要:①读题标注,梳理信息;本题是正方形背景下的折叠问题,注意折叠是全等变换,折叠前后对应边、对应角相等.据此对相等的边、角进行标注,整理.②整合条件,合理转化;结合正方形的条件及对应边相等,在直角三角形中根据三边关系可知特殊角度,进而按照选项条件一一验证.2.解题过程∵四边形ABCD是正方形∴BC=CD∵E,F分别是AD,BC的中点∴,EF⊥BC由折叠可知,BN=BC,∠NBM=∠CBM∴∴∠BNF=30°,∠NBF=60°∴∠NBM=∠CBM=30°∴,∴∴,故①错误;∴,故③正确;∵EF//AB∴∠ABN=∠BNF=30°,故②正确.∵∠BNM=∠C=90°,∠BNF=30°,∠NBM =30°∴∠PNM=∠NPM=60°∴△PNM是等边三角形,故④正确.故选C3.易错点不能通过边之间的比例关系,找出对应的角度关系.试题难度:三颗星知识点:含30°角的直角三角形二、填空题(共4道,每道10分)7.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC绕点A顺时针旋转90°得到(点B′与点B是对应点,点C′与点C是对应点),连接CC′,则∠CC′B′是____度.答案:15解题思路:由旋转的性质可知,AC=AC′∵∠CAC′=90°∴△CAC′为等腰直角三角形∴∠C′CA=45°∵∠CC′B′+∠ACC′=∠AB′C′=∠B=60°∴∠CC′B′=15°试题难度:知识点:旋转的性质8.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′等于____度.答案:40解题思路:∵CC′∥AB,∠CAB=70°∴∠C′CA=∠CAB=70°∵C,C′为对应点,点A为旋转中心∴AC=AC′,即△ACC′为等腰三角形∴∠CAC′=180°-2∠C′CA=40°∴∠BAB′=∠CAC′=40°试题难度:知识点:旋转角9.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于点P.若四边形ABCD 的面积是16,则DP的长为____.答案:4解题思路:如图,过点D作BC的垂线,交BC的延长线于点F,∵∠ADC=∠ABC=90°,∠CDF+∠PDC=90°∴∠ADP=∠CDF在△ADP与△CDF中∴△ADP≌△CDF(AAS)∴DP=DF∴∴DP=4试题难度:知识点:旋转的性质10.如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PBC绕点A逆时针旋转后,得到△P′AB,则点P与点P′之间的距离为____,∠APB等于____度.答案:8, 150解题思路:如图,连接PP′,由旋转知AP′=PC,P′B=PB,∠P′BA=∠PBC ∵△ABC为正三角形∴∠P′BP=∠ABC=60°∴△P′BP为正三角形∵PB=8∴PP′=BP=8,∠P′PB=60°∵在△P′AP中,PP′=8,AP′= PC=10,PA=6 ∴∴△P′AP为直角三角形且∠P′PA=90°∴∠APB=150°试题难度:一颗星知识点:旋转的性质。

新北师大版七年级数学下轴对称图形练习及答案

新北师大版七年级数学下轴对称图形练习及答案

新北师大版七年级数学下轴对称图形练习及答案轴对称图形轴对称与轴对称图形[趣题导学]同学们,剪纸是我们中华民族的一门古老的民间艺术,利用可以剪成许多美丽的图案。

如图,是利用剪纸剪成的4幅图案,观察下列图案,认真想一想,再动手折一折,你能发现这些图案有什么共同的特点?你还能举出你身边具有相同特点的例子来吗?解答:通过观察、折叠容易发现,这些图形都有一个共同的特征:把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合。

在我们生活中具有这样特征的图形还有很多,如图所示的路标、我国的几家银行的标志图案等。

图[双基锤炼]一、选择题1、图中的图形中是常见的安全标记,其中是轴对称图形的是( )图2、如图,下列轴对称图形中,只有两条对称轴的图形是()A.B.C.D.图图3、如图,以下四个图形中,对称轴条数最多的一个图形是()图4、如图,下列图案是我国几家银行的标志,其中是轴对称图形的有()图A、1个B、2个C、3个D、4个5、如图,下列图案是几种名车的标志,请你指出,在这几个图案中是轴对称图形的共有()A、1个B、2个C、 3个D、4个6、下列的说法:①轴对称和轴对称图形意义相同;②轴对称图形必轴对称;③轴对称和轴对称图形的对称轴都是一直线;④轴对称图形的对称点一定在对称轴的两旁,其中正确的有()A、1个B、2个C、3个D、4个二、填空题7、右图是从镜中看到的一串数字,这串数字应为.8、计算器的显示器上数字0,1,2,3,4,5,6,7,8,9,这十个数字中是轴对称图形的数字是_________________.9、如图,下面的一些虚线,哪些是图形的对称轴,哪些不是?雪佛兰三菱雪铁龙丰田图8题)图是对称轴的是;不是对称轴的是(填写序号).三、解答题10、如图,下列图形是不是轴对称图形?如果是轴对称图形的,说出对称轴的条数.图(以下空4行)11、指出下图中的轴对称图形,并在各个轴对称图形上画出它所有的对称轴。

(1)(2)(3)(4)(5)图(以下空4行)[能力提升]一、综合渗透1、如图把一个正方形三次对折后沿虚线剪下,则所得图形大致是()2、下列说法不正确的是()A.两个关于某直线对称的图形一定全等B.对称图形的对称点一定在对称轴的两侧图C.两个轴对称的图形对应点的连线的垂直平分线是它们的对称轴D.平面上两个全等的图形不一定关于某直线对称3、将一张长方形的纸对折,如图所示,可得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到 _____条折痕,如果对折n 次,可以得到条折痕.图4、数的运算中有一些有趣的对称式,如12×231=132×21,请你仿照这个等式填空:__________×462=__________×__________. 二、应用创新 1、2、小新是一位不错的足球运动员,他衣服上的号码在镜子里如图,他是号运动员。

初一数学图形的对称平移与旋转试题答案及解析

初一数学图形的对称平移与旋转试题答案及解析

初一数学图形的对称平移与旋转试题答案及解析1.下列交通标志中,不是轴对称图形的是【答案】C【解析】A、是轴对称图形,不符合题意;B、是轴对称图形,不符合题意;C、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.符合题意;D、是轴对称图形,不符合题意.【考点】轴对称图形2.如图,一张长为12cm,宽为6cm的长方形白纸中阴影部分的面积(阴影部分间距均匀)是 cm2.【答案】12.【解析】如图,平移后得一个矩形,一边长为2,另一边长为6,所以面积是12.【考点】生活中的平移现象.3.下列图形中,既是中心对称图形又是轴对称图形的是()【答案】D【解析】A、是中心对称图形,不是轴对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、不是中心对称图形,是轴对称图形,故本选项错误;D、既是中心对称图形又是轴对称图形,故本选项正确.故选D.【考点】1.中心对称图形;2.轴对称图形.4.如图,A、B是直线l上的两个点,C是l外的一点,△ABC的周长为32cm,A、B间的距离为10cm.(1)补充图形画出△ABC关于直线l对称的△A′B′C′.(2)一只蚂蚁从点A出发沿着A→C→B→C′的方向以每分钟10cm的速度返回A地,至少需要分钟.【答案】(1)如图(2)4.4【解析】(1)找出点C关于直线l的对称点C′的位置,A、A′,B、B′重合,然后顺次连接即可;(2)先求出AC+BC的长度,再根据轴对称的性质求出蚂蚁行走的路程,然后根据时间=路程÷速度列式计算即可得解.解:(1)△A′B′C′如图所示;(2)∵△ABC的周长为32cm,A、B间的距离为10cm,∴AC+BC=32﹣10=22cm,∴蚂蚁行走的路程=22+22=44cm,∵蚂蚁的速度是每分钟10cm,∴时间=44÷10=4.4分钟.故答案为:4.4.点评:本题考查了利用轴对称变换作图,熟练掌握轴对称的性质,找出对应点的位置是解题的关键.5.如图,正方形ABCD的边CD在正方形ECGF的边CE上,B、C、G三点在一条直线上,且边长分别为2和3,在BG上截取GP=2,连结AP、PF.(1)观察猜想AP与PF之间的大小关系,并说明理由;(2)图中是否存在通过旋转、平移、反射等变换能够互相重合的两个三角形?若存在,请说明变换过程;若不存在,请说明理由;(3)若把这个图形沿着PA、PF剪成三块,请你把它们拼成一个大正方形,在原图上画出示意图,并请求出这个大正方形的面积.【答案】(1)PA=PF ;(2)存在;(3)如下图,13【解析】(1)根据正方形的性质可得AB=BC=2,CG=FG=3,∠B=∠G=90°,再结合BP=FG ,AB=PG 即可证得△ABP ≌△PGF ,从而可以证得结论;(2)根据旋转、平移、反射等变换的特征结合图形特征即可作出判断;(3)根据大正方形的面积是由原来的正方形的面积分割而成的即可求得结果. (1)猜想PA=PF ;理由:∵正方形ABCD 、正方形ECGF , ∴AB=BC=2,CG=FG=3,∠B=∠G=90°, ∵PG=2,∴BP=2+3-2=3=FG ,AB=PG , ∴△ABP ≌△PGF , ∴PA=PF .(2)存在,是△ABP 和△PGF ,变换过程:把△ABP 先向右平移5个单位,使AB 在GF 边上,B 与G 重合, 再绕G 点逆时针旋转90度,就可与△PGF 重合.(答案不唯一)(3)如图:S 大正方形=S 正方形ABCD +S 正方形ECGF =4+9=13. 【考点】旋转问题的综合题点评:此类问题难度较大,在中考中比较常见,一般在压轴题中出现,需特别注意.6. 如图,是小华在镜中看到身后墙上的钟表,你认为实际时间是_____________.【答案】7:45(或19:45,写出一个即可)【解析】根据镜面对称性质:如图:7:45【考点】镜面对称点评:此题考查了镜面对称,这是一道开放性试题,解决此类题注意技巧;注意镜面反射的原理与性质。

北师大版七年级数学简单的轴对称及利用轴对称进行设计(基础)—巩固练习(含答案)

北师大版七年级数学简单的轴对称及利用轴对称进行设计(基础)—巩固练习(含答案)

【巩固练习】一.选择题1. 下列说法中,正确的是( )A .关于某直线对称的两个三角形是全等三角形B .全等三角形是关于某直线对称的C .两个图形关于某条直线对称,这两个图形一定分别位于这条直线的两侧D .若点A 、B 关于直线MN 对称,则AB 垂直平分MN2.如图,点D 是线段AB 与线段BC 的垂直平分线的交点,∠B=40°,则∠ADC 等于( )A.50° B .60° C .70° D .80°3. 如图,△ABC 与△111A B C 关于直线MN 对称,P 为MN 上任一点,下列结论中错误的是( )A .△1AA P 是等腰三角形B .MN 垂直平分1AA ,1CCC .△ABC 与△111A B C 面积相等D .直线AB 、11A B 的交点不一定在MN 上4. (2015•随州)如图,△ABC 中,AB=5,AC=6,BC=4,边AB 的垂直平分线交AC 于点D ,则△BDC 的周长是( )A .8B .9C .10D .115. 如图,D 是AB 边上的中点,将ABC ∆沿过D 的直线折叠,使点A 落在BC 上F 处,若50B ∠=︒,则BDF ∠度数是( )A .60° B.70° C.80° D.不确定6. 如图,六边形ABCDEF是轴对称图形,CF所在的直线是它的对称轴,若∠AFC+∠BCF=150°,则∠AFE+∠BCD的大小是()A.150°B.300°C.210°D.330°二.填空题'''关于MN对称,并且AB=5,BC=3,则A C''的取值范围是7. 已知△ABC和△A B C_________.8.如图,在Rt△ABC中,∠C=90°,∠A=33°,DE是线段AB的垂直平分线,交AB于D,交AC于E,则∠EBC=.9. 如图,△ABC是等腰直角三角形,∠C=90°,BD平分∠CBA交AC于点D,DE⊥AB于E.若△ADE的周长为8cm,则AB =_________cm.10. 连续进行轴对称变换,当对称轴平行时,第二次变换得到的图形可以看成由原图形______得到的.11. 如图,这是小龙制作的风筝,为了平衡做成轴对称图形,已知OC所在的直线为对称轴,且∠A=32°,∠ACO=24°,则∠BOC=________.12. (2015秋•阳新县期末)如图,在△ABC中,AD平分∠BAC,AD⊥BD于点D,DE∥AC 交AB于点E,若AB=8,则DE=.三.解答题4 正方形网格中,阴影部分是由5个小正方形组成的一个图形,请你用两13. 如图,在3种方法分别在下图方格内...添涂2个小正方形,使这7个小正方形组成的图形是轴对称图形.14.如图,点M在锐角∠AOB内部,在OB边上求作一点P,使点P到点M的距离与点P到OA边的距离之和最小15. (2016春•启东市月考)如图,已知在△ABC中,AB=AC,∠BAC=120°,AC的垂直平分线EF交AC于点E,交BC于点F.试探索BF与CF的数量关系,写出你的结论并证明.【答案与解析】一.选择题1. 【答案】A ;【解析】C 项这两个图形有可能相交,D 项是MN 垂直平分AB.2. 【答案】D ;【解析】连接BD 、AC .设∠1=x .根据线段垂直平分线的性质,得AD=BD ,BD=CD .根据等边对等角,得∠1=∠2=x ,∠4=∠ABD=40°+x .根据三角形的内角和定理,得∠ADB=180°﹣2∠4=100°﹣2x ,∠BDC=180°﹣2x ,进而求得∠ADC .3. 【答案】D ;【解析】对应线段所在直线的交点一定在对称轴上或平行于对称轴.4.【答案】C.【解析】∵ED 是AB 的垂直平分线,∴AD=BD ,∵△BDC 的周长=DB+BC+CD ,∴△BDC 的周长=AD+BC+CD=AC+BC=6+4=10.故选C .5. 【答案】C ;【解析】AD =DF =BD ,∠B =∠BFD =50°,BDF =180°-50°-50°=80°.6. 【答案】B ;【解析】对称轴两边的图形全等,∠AFE +∠BCD =2(∠AFC +∠BCF )=300°.二.填空题7. 【答案】2<''A C <8;【解析】△ABC 和△'''A B C 关于MN 对称,∴△ABC ≌△'''A B C ,''A C 大于两边之差,小于两边之和.8. 【答案】24°;【解析】根据相等垂直平分线性质得出AE=BE ,求出∠A=∠ABE=33°,根据三角形的内角和定理求出∠ABC ,相减即可求出答案.9. 【答案】8;【解析】DE =DC ,AC =BC =BE ,△ADE 的周长=AD +DE +AE =AC +AE =AB =8.10.【答案】平移.11.【答案】124°;【解析】成轴对称的图形全等,∠BOC =180°-32°-24°=124°.12.【答案】4.【解析】∵AD 是∠BAC 的平分线,∴∠CAD=∠BAD ,∵DE ∥AC ,∴∠CAD=∠ADE ,∴∠ADE=∠BAD ,∴AE=DE ,∵BD ⊥AD ,∴∠ADE+∠BDE=∠BAD+∠ABD=90°,∴∠ABD=∠BDE,∴DE=BE,∴DE=AB,∵AB=8,∴DE=×8=4.故答案为:4.三.解答题13.【解析】答案不唯一,参见下图.14.【解析】作法如下:作M点关于OB的对称点M',过M'作MH'⊥于OA于H,交OB于P,点P为所求.15.【解析】解:BF=2CF.证明:连接AF,∵AB=AC,∠BAC=120°∴∠B=∠C=30°,∵EF垂直平分AC,∴AF=CF,∴∠CAF=∠C=30,∴∠AFB=∠CAF+∠C=60°,∴∠BAF=180°﹣∠B﹣∠AFB=90°,∴BF=2AF,∴BF=2CF.。

七年级数学轴对称现象(北师版)(基础)(含答案)

七年级数学轴对称现象(北师版)(基础)(含答案)

轴对称现象(北师版)(基础)一、单选题(共10道,每道10分)1.下列图形中,不是轴对称图形的是( )A. B.C. D.答案:A解题思路:如果一个平面图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,根据定义只有选项B,C,D中图形是轴对称图形.故选A.试题难度:三颗星知识点:轴对称图形2.下列图形中,是轴对称图形的是( )A. B.C. D.答案:B解题思路:如果一个平面图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,根据定义只有选项B中图形是轴对称图形.故选B.试题难度:三颗星知识点:轴对称图形3.下列几何图形不一定是轴对称图形的是( )A.等边三角形B.平行四边形C.角D.圆答案:B解题思路:选项A、C、D中的几何图形是轴对称图形,选项B中的平行四边形不一定是轴对称图形. 故选B.试题难度:三颗星知识点:轴对称图形4.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A. B.C. D.答案:A解题思路:选项A中的汉字是轴对称图形.故选A.试题难度:三颗星知识点:轴对称图形5.在汉字“生活中的日常用品”中,成轴对称的汉字有( )A.2个B.3个C.4个D.5个答案:B解题思路:在汉字“生活中的日常用品”中,成轴对称的有“中、日、品”3个.故选B.试题难度:三颗星知识点:轴对称图形6.下列不是轴对称图形的是( )A.有两个角相等的三角形B.有一个角为45°的直角三角形C.有一个角为30°,另一个角为120°的三角形D.有一个角为30°的直角三角形答案:D解题思路:轴对称图形的定义:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.有两个角相等的三角形一定有两条边相等,等腰三角形是轴对称图形,A选项说法正确;有一个角为45°的直角三角形,由直角三角形两锐角互余,可知另一个锐角也是45°,所以该三角形也是等腰三角形,因此是轴对称图形,B选项说法也正确;有一个角为30°,另一个角为120°的三角形,由三角形内角和是180°,可知另一个锐角也是30°,所以该三角形也是等腰三角形,因此是轴对称图形,C选项说法也正确;有一个角为30°的直角三角形,另一个锐角是60°,不是轴对称图形,D选项说法错误.故选D.试题难度:三颗星知识点:轴对称图形7.下列语句:①角的对称轴是角的平分线;②一个轴对称图形不一定只有一条对称轴;③两个能全等的图形一定能关于某条直线对称;④等腰三角形是以底边高线为对称轴的轴对称图形,其中正确的有( )个.A.1B.2C.3D.4答案:A解题思路:①角的对称轴是角的平分线所在直线,①错误;②一个轴对称图形不一定只有一条对称轴,②正确;③两个能全等的图形不一定能关于某条直线对称,③错误;④等腰三角形是以底边高线所在直线为对称轴的轴对称图形,④错误.故选A.试题难度:三颗星知识点:轴对称图形8.下列图形中,对称轴最多的图形是( )A. B.C. D.答案:A解题思路:A.圆有无数条对称轴;B.正方形有4条对称轴;C.该图形有3条对称轴;D.长方形有2条对称轴.故选A.试题难度:三颗星知识点:轴对称图形9.下列图形中,对称轴有6条的图形是( )A. B.C. D.答案:D解题思路:选项D中图形有6条对称轴.故选D.试题难度:三颗星知识点:轴对称图形10.如图是一个图形的一半,其中的虚线是这个图案的对称轴,则这个图案的另一半是( )A. B.C. D.答案:A解题思路:如果一个平面图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.由题可知,图中的虚线是对称轴,所以这个图案的另一半与已知图形沿对称轴对折后是相互重合的,选项A正确.故选A.试题难度:三颗星知识点:轴对称图形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ABE C 'DC22.5图12014年新北师大版七年级数学 图形的变换 对称 旋转 练习题一、选一选,牛刀初试露锋芒!(每小题3分,共30分) 1.下列图形中,轴对称图形的个数是( )A .4个B .3个C .2个D .1个2.下列分子结构模型平面图中,有一条对称轴的是( )3.如图1,将长方形ABCD 纸片沿对角线BD 折叠,使点C 落在C '处,BC '交AD 于E ,若22.5DBC ∠=°,则在不添加任何辅助线的情况下, 则图中45︒的角(虚线也视为角的边)的个数是( ) A .5个B .4个C .3个D .2个4.下列说法中错误的是( )A .两个关于某直线对称的图形一定能够完全重合B .对称图形的对称点一定在对称轴的两侧C .成轴对称的两个图形,其对应点的连线的垂直平分线是它们的对称轴D .平面上两个能够完全重合的图形不一定关于某直线对称图 2图 3图45.如图2,△AOD 关于直线l 进行轴对称变换后得到△BOC ,下列说法中不正确的是( ).A .∠DAO=∠CBO ,∠ADO=∠BCOB .直线l 垂直平分AB 、CDC .△AOD 和△BOC 均是等腰三角形 D .AD=BC ,OD=OC 6.将一个正方形纸片依次按图a ,图b 的方式对折,然后沿图c 中的虚线裁剪,最后将图d 的纸再展开铺平,所看到的图案是( ).a b c d7.如图3,有一张直角三角形纸片,两直角边AC=5cm ,BC=10cm , △ABC 折叠,使点B 与点A 重合,折痕为DE ,则△ACD 的周长 为( )A .10 cmB .12cmC .15cmD .20cm8.图4是小明在平面镜里看到的电子钟示数,这时的实际时间是( )A .12:01B .10:51C .10:21D .15:10 9.把两个都有一个锐角为30°的一样大小的直角三角形拼成如图5所示 的图形,两条直角边在同一直线上.则图中等腰三角形有( )个. A .1个B .2个C .3个D .4ABCD图 5图7图6个10.如图6,AB AC =,120BAC ∠=︒,AB 的垂直平分线交BC 于点D ,那么DAC ∠ 的度数为( ).A .90︒B .80︒C .70︒D .60︒二、填一填,狭路相逢勇者胜!(每小题3分,共30分)11.在一些缩写符号:① SOS ,② CCTV ,③ BBC ,④ WWW ,⑤ TNT 中,成轴对称图形的是 (填写序号)12.已知等腰三角形的顶角是底角的4倍,则顶角的度数为 . 13.如图7,公路BC 所在的直线恰为AD 的垂直平分线,则下列说法中:①小明从家到书店与小颖从家到书店一样远;②小明从家到书店与从家到学校一样远;③小颖从家到书店与从家到学校一样远;④小明从家到学校与小颖从家到学校一样远. 正确的是 .(填写序号)14.汉字是世界上最古老的文字之一,字形结构体现人类追求均衡对称、和谐稳定的天性.如“王、中、田”,请你再举出三个可以看成是轴对称图形的汉字 .(笔画的粗细和书写的字体可忽略不记).15.如图8(下页),AD 是三角形ABC 的对称轴,点E 、F 是AD 上的两点,若BD=2,AD=3,则图中阴影部分的面积是 . 16.从汽车的后视镜中看见某车车牌的后5位号码是,则该车的后5位号码实际是 .17.下午2时,一轮船从A 处出发,以每小时40海里的速度向正南方向行驶,下午4时,到达B 处,在A 处测得灯塔C 在东南方向,在B 处测得灯塔C 在正东方向,则B 、C 之间的距离是 .18.如图9,在ABC ∆中,ABC ACB ∠=∠,AB=25cm ,AB 的垂直平分线交AB 于点D ,交AC 于点E ,若BCE ∆的周长为43cm ,则底边BC 的长为 .19.如图10,把宽为2cm 的纸条ABCD 沿EF GH ,同时折叠,B 、C 两点恰好落在AD 边的P 点处,若△PFH 的周长为10cm ,则长方形ABCD 的面积为 .20.在△ABC 中,已知AB =AC ,∠A =36°,AB 的垂直平分线MN 交AC 于D . 在下列结论中:①∠C =72°;②BD 是∠ABC 的平分线;③∠BDC=100°;④△ABD 是等腰三角形;⑤AD=BD=BC. 上述结论中,正确的有 .(填写序号)A E PD GHFBA CD 图10图8图9图11图12三、想一想,百尺竿头再进步!(共60分)21.(7分)如图11,在ABC △中,90C =∠,AD 平分BAC ∠,DE AB ⊥,如果5cm DE =,32CAD =∠,求CD 的长度及B ∠的度数.22.(7分)如图12,已知AB ⊥CD ,△ABD 、△BCE 都是等腰三角形,如果CD =8cm ,BE =3cm. 求AE 的长.23.(8分)如图13,校园有两条路OA 、OB ,在交叉口附近有两块宣传牌C 、D ,学校准备在这里安装一盏路灯,要求灯柱的位置P 离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置点P ,并说明理由.图1324.(8分)如图14,在正方形网格上有一个△ABC.(1)画△ABC关于直线MN的对称图形(不写画法);(2)若网格上的每个小正方形的边长为1,求△ABC的面积.图1425.(10分)(1)观察图15①~④中阴影部分构成的图案,请写出这四个图案都具有的两个共同特征;(2)借助图15⑤的网格,请设计一个新的图案,使该图案同时具有你在解答(1)中所写出的两个共同特征.(注意:新图案与图14①~④的图案不能重合).图1526.(10分)如图16,在△ABC中,已知AB=AC,∠BAC和∠ACB的平分线相交于点D,∠ADC=125°. 求∠ACB和∠BAC的度数.27.(10分)如图17,在等腰△ABC中,AB=AC,AD是BC边上的高,点E、F分别是边AB、AC上的中点,且EF∥BC.(1)试说明△AEF是等腰三角形;图17 (2)试比较DE与DF的大小关系,并说明理由.答 案一、选一选,牛刀初试露锋芒!1.B .点拨:可利用轴对称图形的定义判断.2.A .点拨:选项A 有1条对称轴,选项B 、C 各有2条对称轴,选项D 有6条对称轴. 3.A .点拨:图中45︒的角分别是:,,,,CBC ABE AEB C ED C DE '''∠∠∠∠∠. 4.B .点拨:对称图形的对称点也可能在对称轴上. 5.C .点拨:△AO D 和△BOC 的形状不确定. 6.D .点拨:可动手操作,或空间想象.7.C .点拨:由题意得,AD=BD. 故△ACD 的周长=AC+CD+AD=AC+BC=15cm 8.B .点拨:镜子中看到的时刻的读数与实际时刻的读数关于镜子成轴对称.9.C .点拨:等边三角形是特殊的等腰三角形,故等腰三角形有△EPQ 、△BPR 、△PAD. 10.A .点拨:可求得30B BAD ∠=∠=︒. 二、填一填,狭路相逢勇者胜! 11.③,④.12.120°. 点拨:设底角的度数为x ,则顶角的度数为4x ,则有x +x +4x =180. 13.②、③. 点拨:利用线段的垂直平分线的性质. 14.本,幸,苦. 点拨:答案不惟一,只要是轴对称图形即可.15.3. 点拨:利用转化思想,阴影部分的面积即为直角三角形ABD 的面积. 16.BA629. 点拨:这5位号码在镜子中所成的像关于镜面成轴对称. 17.80海里. 点拨:画出示意图可知,△ABC 是等腰直角三角形.18.18cm . 点拨:由BE+CE=AC=AB=25,可得BC=43-25=18(cm ). 19.220cm . 点拨:根据轴对称的性质得,BC 的长即为△PFH 的周长.答图220.①②④⑤. 点拨:∠ABC =∠C=∠BDC =72°;∠CBD=∠ABD=∠A=36°. 三、想一想,百尺竿头再进步!21.因为AD 平分BA C ∠,DE AB ⊥,DC AC ⊥,所以5CD DE cm ==.又因为AD 平分BA C ∠,所以223264CAB CAD ==⨯︒=︒∠∠, 所以906426B =︒-︒=︒∠.22.因为△ABD 、△BCE 都是等腰三角形,所以AB=BD ,BC=BE.又因为BD=CD -BC ,所以AB= CD -BC=CD -BE=8cm -3cm=5cm , 所以AE=AB -BE=2cm.23.如答图1所示. 到∠AOB 两边距离相等的点在这个角的平分线上,而到宣传牌C 、D 的距离相等的点则在线段CD 的垂直平分线上,故交点P 即为所求.24.(1)如答图2所示. 点拨:利用图中格点,可以直接确定出△ABC 中各顶点的对称点的位置,从而得到△ABC 关于直线MN 的对称图形△A B C '''. (2)ABC S ∆9=. 点拨:利用和差法.答图125.(1)都是轴对称图形;它们的面积相等(都是4).(2)答案不惟一,如答图3所示.答图326.因为AB=AC,AE平分∠BAC,所以AE⊥BC(等腰三角形的“三线合一”)因为∠ADC=125°,所以∠CDE=55°,所以∠DCE=90°-∠CDE =35°,又因为CD平分∠ACB,所以∠ACB=2∠DCE=70°.又因为AB=AC,所以∠B=∠ACB=70°,所以∠BAC=180-(∠B+∠ACB)=40°.27.(1)因为EF∥BC,所以∠AEF=∠B,∠AFE=∠C .又因为AB=AC,所以∠B=∠C,所以∠AEF=∠AFE,所以AE=AF,即△AEF是等腰三角形.(2)DE=DF.理由如下:方法一:因为AD是等腰三角形ABC的底边上的高,所以AD也是∠BAC的平分线.又因为△AEF是等腰三角形,所以A G是底边EF上的高和中线,所以AD⊥EF,G E=G F,所以AD是线段EF的垂直平分线,所以DE=DF.方法二:因为AD是高,所以BD=CD(三线和一);又因为点E、F分别是边AB、AC上的中点,所以BE=CF,又因为∠B=∠C,所以△BDE≌△CDF (SAS),所以DE=DF.。

相关文档
最新文档