2020年中考数学试题分类专题之 相似三角形

合集下载

2020年中考数学压轴题精讲:动点产生的相似三角形问题

2020年中考数学压轴题精讲:动点产生的相似三角形问题

2020年中考数学压轴题精讲:动点产生的相似三角形问题例1:如图1,在平面直角坐标系中,双曲线(k≠0)与直线y=x+2都经过点A(2, m).(1)求k与m的值;(2)此双曲线又经过点B(n, 2),过点B的直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC的面积;(3)在(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与△ACD相似,且相似比不为1,求点E的坐标.图1满分解答(1)将点A(2, m)代入y=x+2,得m=4.所以点A的坐标为(2, 4).将点A(2, 4)代入kyx=,得k=8.(2)将点B(n, 2),代入8yx=,得n=4.所以点B的坐标为(4, 2).设直线BC为y=x+b,代入点B(4, 2),得b=-2.所以点C的坐标为(0,-2).由A(2, 4) 、B(4, 2) 、C (0,-2),可知A、B两点间的水平距离和竖直距离都是2,B、C两点间的水平距离和竖直距离都是4.所以AB=22,BC=42,∠ABC=90°.所以S△ABC=12BA BC⋅=122422⨯⨯=8.(3)由A(2, 4) 、D(0, 2) 、C (0,-2),得AD=22,AC=210.由于∠DAC+∠ACD=45°,∠ACE+∠ACD=45°,所以∠DAC=∠ACE.所以△ACE与△ACD相似,分两种情况:①如图3,当CE ADCA AC=时,CE=AD=22.图2此时△ACD≌△CAE,相似比为1.②如图4,当CE ACCA AD=时,21021022=.解得CE=102.此时C、E两点间的水平距离和竖直距离都是10,所以E(10, 8).图3 图4例2:如图1,Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8 cm,动点P从点B出发,在BA边上以每秒5 cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4 cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)如图2,连接AQ、CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.图1 图2满分解答(1)Rt△ABC中,AC=6,BC=8,所以AB=10.△BPQ与△ABC相似,存在两种情况:①如果BP BABQ BC=,那么510848tt=-.解得t=1.②如果BP BCBQ BA=,那么588410tt=-.解得3241t=.图3 图4(2)作PD ⊥BC ,垂足为D .在Rt △BPD 中,BP =5t ,cos B =45,所以BD =BP cos B =4t ,PD =3t . 当AQ ⊥CP 时,△ACQ ∽△CDP .所以AC CD QC PD =,即68443t t t -=.解得78t =.图5 图6(3)如图4,过PQ 的中点H 作BC 的垂线,垂足为F ,交AB 于E . 由于H 是PQ 的中点,HF //PD ,所以F 是QD 的中点. 又因为BD =CQ =4t ,所以BF =CF . 因此F 是BC 的中点,E 是AB 的中点.所以PQ 的中点H 在△ABC 的中位线EF 上.例3:如图1,已知抛物线211(1)444by x b x =-++(b 是实数且b >2)与x 轴的正半轴分别交于点A 、B (点A 位于点B 是左侧),与y 轴的正半轴交于点C .(1)点B 的坐标为______,点C 的坐标为__________(用含b 的代数式表示); (2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.图1满分解答(1)B 的坐标为(b , 0),点C 的坐标为(0,4b ). (2)如图2,过点P 作PD ⊥x 轴,PE ⊥y 轴,垂足分别为D 、E ,那么△PDB ≌△PEC . 因此PD =PE .设点P 的坐标为(x, x). 如图3,联结OP .所以S 四边形PCOB =S △PCO +S △PBO =1152428b x b x bx ⨯⋅+⨯⋅==2b .解得165x =.所以点P 的坐标为(1616,55).图2 图3(3)由2111(1)(1)()4444b y x b x x x b =-++=--,得A (1, 0),OA =1. ①如图4,以OA 、OC 为邻边构造矩形OAQC ,那么△OQC ≌△QOA . 当BA QA QA OA=,即2QA BA OA =⋅时,△BQA ∽△QOA . 所以2()14bb =-.解得843b =±Q 为(1,23+.②如图5,以OC 为直径的圆与直线x =1交于点Q ,那么∠OQC =90°。

2020年上海中考数学相似三角形专题(含答案)

2020年上海中考数学相似三角形专题(含答案)

相似三角形专题一选择题1.在下列4×4的正方形网格图中,每个小正方形的边长都是1,三角形的顶点都在格点上,那么与图1中△ ABC 相似的三角形所在的网格图( )(A ) (B ) (C ) (D )2.如图,已知△ABC 中,∠ACB =90°,CH 、CM 分别是斜边AB 上的高和中线,则下列结论不正确...的是( ) A .AB 2= AC 2+BC 2; B .CH 2=AH ·HB ; C .CM =12AB ; D .CB =12AB .3.如图所示,给出下列条件:①B ACD ∠=∠; ②ADC ACB ∠=∠;③AC ABCD BC=;④2AC AD AB =.其中单独能够判定ABC ACD △∽△的个数为( ) (A )1 (B )2(C )3(D )44.如图,在Rt △ABC 中,90ACB ∠=︒,CD AB ⊥,垂足为点D ,如果32ADC CDB C C =△△,9AD =,那么BC 的长是( )(A )4; (B )6; (C )213; (D )310.5. 如图,AB ∥CD ∥EF ,则图中相似的三角形有( ) ( A)1对; (B)2对; ( C)3对; ( D)4对.6.如图,已知ABC △和DEF △,点E 在BC 边上,点A 在DE 边上,边EF 和边AC 交于点G .如果AE =EC ,B AEG ∠=∠.那么添加下列一个条件后,仍无法判定DEF △与ABC △一定相似的是( )(A )EF DE BC AB =; (B )GEGFAE AD =; 图1 第4题图A D CB ACD B 第3题第2题(第6题图)AB C DEF O 第5题图第18题E D C BA (C )EF EG AC AG =; (D )EAEGEF ED =.二填空题7.如果两个三角形相似,其中一个三角形的两个内角分别为50°和60°,那么另一个三角形的最大角为 度.8.如果两个相似三角形的相似比是1:2,那么这两个三角形的周长的比是9.在△ABC 中,点D 、E 分别在边BC 、AC 的延长线上,∠E=∠B ,AC=2,BC=3,CE=6,那么CD= .10 .如果两个相似三角形的对应角平分线比为2︰3,两个三角形的周长的和是100cm ,那么较小的三角形的周长为 cm .11.如图,已知⊿ABC 中,P 是AB 上的一点,∠ACP =∠B ,AB=9,AC=6,那么AP= . 12.如图,在△ABC 中,点D 、E 分别在AB 、AC 上, ADE C ∠=∠,如果=2AE ,△ADE 的面积是4,四边形BCED 的面积是5,那么AB 的长是 .13.如图,R t ΔA B C 中,∠A C B =900,C D ⊥A B ,A C =8,B C =6,则AD=__ _ 14.如图,在△ABC 中,D 、E 分别是边AB 、AC 上的点,如果21==EC AE DB AD ,那么△ADE 与△ABC 面积的比是 .15.已知等腰梯形的上、下两底长分别为4cm 和6cm ,将它的两腰分别延长交于一点,这个交点到上、下两底的距离之比为 .16.△ABC 中,AB =8,AC =6,点D 在AC 上,AD =2,在AB 上找一点E ,使 △ADE 与△ABC 相似,则AE 的长为 . 17.如图,在ABC ∆中,AD 平分BAC ∠交边BC 于点D ,AD BD =,3=AB ,2=AC ,那么AD 的长是 _. 18.如图,点E 是矩形ABCD 的边AD 上一点,且AE=4ED ,且BE ⊥CE ,则AB:BC=______________.三解答题19.如图,已知AB ⊥AD ,BD ⊥DC ,且BC AB BD ⋅=2,求证:∠ABD=∠DBC.E D C BA第12题BACD第14题A 第11题 B CP 第13题 第17题20. 已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠. 求证:(1)DA DE DB ⋅=2; (2)DAC DCE ∠=∠.21如图,在梯形ABCD 中,AD //BC ,点E 在边AD 上, CE 与BD 相交于点F , AD =4,AB =5,BC =BD =6,DE =3.(1)求证:△DFE ∽△DAB ; (2)求线段CF 的长.22.如图, 在AH ABC 中,∆是BC 边上的高,矩形DEFG 内接于ABC ∆(即点G F E D 、、、都在ABC ∆的边上),6,18==AH BC ,矩形DEFG 的周长是20. ACDEBBCD AEF求:DEFG S 矩形的值.23.如图,已知△ABC 中,AB=AC=10,BC=16,点P 、D 分别在边BC 、AC 上, BP=12,∠APD=∠B ,求CD 的长.24.如图:在Rt ⊿ABC 中,∠ACB=90°,CD ⊥AB ,E 是斜边AB 延长 线上一点,且∠ECB=∠BCD (1)求证:⊿ECB ∽⊿EAC ;(2)若AC=,AB=5cm ,求BE 的长.EDBCA相似三角形专题 参考答案一、1、B ,2、D ,3、C ,4、C ,5、C ,6、C二、7、70, 8、1:2 9、4 10、40 11、4,12、3 13、6.4 14、1:9 15 、2:3 16、23或38 17、5103 18、2:5. 三、19、证明Rt△DBC ∽△ABD Rt20、(1)证明∽△ADB △BDE ;(2)由DB=DC 可得DC 2=DE*DA ,可证∽△ADC △CDE 21、(1)由AD//BC 可得21==BF DF BC DE ,∴31=BD DF ,得DF=2, ∴BD DEAD DF =再由BDA EDF ∠=∠可证 (2)由1的结论可求EF=2.5,再可得CF=2EF=522、设AH 与DG 相交于M ,由∽△ABC △ADG 可得AHAMBC DG =可算出DE=4,DG=6 S=2423、证∽△PBA △DCP 可得ABCPBP CD =可得CD=4.8 24、1、证A BCD ECB ∠=∠=∠2、由勾股定理可求BC=5 ,由1的结论可得21===AE EC EC BE AC BC ,可得41=AE BE ,得BE=35。

2020年中考数学必考考点压轴题 专题24 相似三角形判定与性质(含答案)

2020年中考数学必考考点压轴题  专题24  相似三角形判定与性质(含答案)

专题24相似三角形判定与性质1.相似三角形:对应角相等,对应边成比例的两个三角形叫做相似三角形。

相似多边形对应边的比叫做相似比。

2.三角形相似的判定方法:(1)定义法:对应角相等,对应边成比例的两个三角形相似。

(2)平行法:平行于三角形一边的直线和其他两边(或两边延长线)相交,构成的三角形与原三角形相似。

(3)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。

(4)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。

(5)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似。

3.直角三角形相似判定定理:①以上各种判定方法均适用②定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

③垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。

4.相似三角形的性质:(1)相似三角形的对应角相等,对应边成比例(2)相似三角形对应高的比、对应中线的比与对应角平分线的比都等于相似比(3)相似三角形周长的比等于相似比(4)相似三角形面积的比等于相似比的平方。

【例题1】(2019•海南省)如图,在Rt△ABC中,∠C=90°,AB=5,BC=4.点P是边AC上一动点,过点P作PQ∥AB交BC于点Q,D为线段PQ的中点,当BD平分∠ABC时,AP的长度为()B.C.D.A.【答案】B.【解析】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.根据勾股定理求出AC,根据角平分线的定义、平行线的性质得到∠QBD=∠BDQ,得到QB=QD,根据相似三角形的性质列出比例式,计算即可.∵∠C=90°,AB=5,BC=4,∴AC==3,∵PQ∥AB,∴∠ABD=∠BDQ,又∠ABD=∠QBD,∴∠QBD=∠BDQ,∴QB=QD,∴QP=2QB,∵PQ∥AB,∴△CPQ∽△CAB,∴==,即==,解得,CP=,∴AP=CA﹣CP=【例题2】(2019•四川省凉山州)在▱ABCD中,E是AD上一点,且点E将AD分为2:3的两部分,连接BE、AC相交于F,则S△AEF:S△CBF是.【答案】4:25或9:25.【解析】本题考查的是相似三角形的判定和性质、平行四边形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.分AE:ED=2:3、AE:ED=3:2两种情况,根据相似三角形的性质计算即可.①当AE:ED=2:3时,∵四边形ABCD是平行四边形,∴AD∥BC,AE:BC=2:5,∴△AEF∽△CBF,:S△CBF=()2=4:25;∴S△AEF②当AE:ED=3:2时,:S△CBF=()2=9:25。

2020年中考数学相似三角形专题 复习(共19张PPT)

2020年中考数学相似三角形专题 复习(共19张PPT)

由(1)得:△ABF∽△BEC,
∴ AF = AB , 即 AF = 8 ,
BC BE
5 45
解得:AF= 2 5
解答题
3.在 Rt△ABC 中,∠ACB=900,点 D 与点 B 在 AC 同侧,∠DAC>∠BAC,且
DA=DC, 过点 B 作 BE∥DA 交 DC 于点 E, M 为 AB 的中点,连接 MD,ME.
(
3)如图
3,当∠ADC=α时,求
ME MD
的值.
(3)如图 3,延长 EM 交 AD 于 F,
∵BE∥DA,
∴∠FAM=∠EBM,
∴EC=BE,
∵AM=BM, ∠AMF=∠BME,
∴AF=CE,
∴△AMF≌△BME,
∴DF=DE,
∴AF=BE, MF=ME ,
∴DM⊥EF, DM 平分∠ADC,
延长 BE 交 AC 于点 N, ∴∠BNC=∠DAC, ∵DA=DC,∴∠DCA=∠DAC, ∵∠ACB=900,
解答题
1.如图,在锐角三角形 ABC 中,点 D 分别在边 AC,AB 上,AG⊥DE 于
点 G,AF⊥DE 于点 F,∠EAF=∠GAC.
(1) 求证:△ADE≌△ABC;
(2)若 AD=3,AB=5,求 AF 的值。
AG
解:(1)∵AG⊥DE,AF⊥DE, ∴∠AFE=∠AGC=900
∵∠EAF=∠GAC, ∴∠AED=∠ACB,
∵∠EAD=∠BAC, ∴△ADE∽△ABC
解答题
1.如图,在锐角三角形 ABC 中,点 D 分别在边 AC,AB 上,AG⊥DE 于
点 G,AF⊥DE 于点 F,∠EAF=∠GAC.
(1) 求证:△ADE≌△ABC; (2)若 AD=3,AB=5,求 AF 的值。

2020年中考数学试题分类汇编之10 相似三角形(试题+详细答案)

2020年中考数学试题分类汇编之10 相似三角形(试题+详细答案)

2020年中考数学试题分类汇编之10相似三角形一、选择题1.(2020成都)(3分)如图,直线123////l l l ,直线AC 和DF 被1l ,2l ,3l 所截,5AB =,6BC =,4EF =,则DE 的长为( )A .2B .3C .4D .1032.(2020哈尔滨)(3分)如图,在ABC ∆中,点D 在BC 边上,连接AD ,点E 在AC 边上,过点E 作//EF BC ,交AD 于点F ,过点E 作//EG AB ,交BC 于点G ,则下列式子一定正确的是( )A .AE EFEC CD= B .EF EGCD AB= C .AF BGFD GC= D .CG AFBC AD= 3.(2020河北)在如图所示的网格中,以点O 为位似中心,四边形ABCD 的位似图形是( )A. 四边形NPMQB. 四边形NPMRC. 四边形NHMQD. 四边形NHMR4.(2020四川绵阳)如图,在四边形ABCD 中,AD ∥BC ,∠ABC =90°,AB =2,AD=2,将△ABC 绕点C 顺时针方向旋转后得△A ′B ′C ,当A ′B ′恰好经过点D 时,△B ′CD 为等腰三角形,若BB ′=2,则AA ′=( )A .B .2C .D .5.(2020无锡)如图,等边ABC ∆的边长为3,点D 在边AC 上,12AD =,线段PQ 在边BA 上运动,12PQ =,有下列结论:①CP 与QD 可能相等;②ΔAQD 与BCP ∆可能相似;③四边形PCDQ 面积的最大值为;④四边形PCDQ 周长的最小值为3+.其中,正确结论的序号为( )A. ①④B. ②④C. ①③D. ②③6.(2020重庆A 卷)如图,在平面直角坐标系中,ABC 的顶点坐标分别是(1,2)A ,(1,1)B ,(3,1)C ,以原点为位似中心,在原点的同侧画DEF ,使DEF 与ABC 成位似图形,且相似比为2:1,则线段DF 的长度为( )B. 2C. 4D.7.(2020重庆B 卷)如图,△ABC 与△DEF 位似,点O 为位似中心.已知OA ∶OD=1∶2, 则△ABC 与△DEF 的面积比为( ) A. 1∶2 B. 1∶3 C. 1∶4 D.1∶58.(2020甘肃定西)生活中到处可见黄金分割的美.如图,在设计人体雕像时,使雕像的腰部以下a 与全身b 的高度比值接近0.618,可以增加视觉美感.若图中b 为2米,则a 约为( )A.1.24米B.1.38米C.1.42米D.1.62米9.(2020四川遂宁)(4分)如图,在平行四边形ABCD 中,∠ABC 的平分线交AC 于点E ,交AD 于点F ,交CD 的延长线于点G ,若AF =2FD ,则BE EG的值为( )A .12B .13C .23D .3410.(2020广西南宁)(3分)如图,在△ABC 中,BC =120,高AD =60,正方形EFGH 一边在BC 上,点E ,F 分别在AB ,AC 上,AD 交EF 于点N ,则AN 的长为( )A .15B .20C .25D .3011.(2020广西玉林)(3分)(2020•玉林)一个三角形木架三边长分别是75cm ,100cm ,120cm ,现要再做一个与其相似的三角形木架,而只有长为60cm 和120cm 的两根木条.要求以其中一根为一边,从另一根截下两段作为另两边(允许有余料),则不同的截法有( ) A .一种B .两种C .三种D .四种12.(2020贵州遵义)(4分)如图,△ABO 的顶点A 在函数y =k x(x >0)的图象上,∠ABO =90°,过AO 边的三等分点M 、N 分别作x 轴的平行线交AB 于点P 、Q .若四边形MNQP 的面积为3,则k 的值为( )A .9B .12C .15D .1813.(3分)(2020•荆门)△ABC 中,AB =AC ,∠BAC =120°,BC =2√3,D 为BC 的中点,AE =14AB ,则△EBD 的面积为( )A .3√34B .3√38C .√34D .√3814.(2020山西)(3分)泰勒斯是古希腊时期的思想家,科学家,哲学家,他最早提出了命题的证明.泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度,金字塔的影长,推算出金字塔的高度,这种测量原理,就是我们所学的( )A .图形的平移B .图形的旋转C .图形的轴对称D .图形的相似15.(2020浙江温州)(4分)如图,在Rt △ABC 中,∠ACB =90°,以其三边为边向外作正方形,过点C 作CR ⊥FG 于点R ,再过点C 作PQ ⊥CR 分别交边DE ,BH 于点P ,Q .若QH =2PE ,PQ =15,则CR 的长为( )A .14B .15C .8√3D .6√516.(2020海南)(3分)如图,在矩形ABCD 中,AB =6,BC =10,点E 、F 在AD 边上,BF 和CE 交于点G ,若EF =AD ,则图中阴影部分的面积为( )A .25B .30C .35D .40二、填空题17.(2020广州)如图7,正方形ABCD 中,△ABC 绕点A 逆时针旋转到△AB C '',AB ',AC '分别交对角线BD 于点E ,F ,若4AE =,则EF ED ⋅的值为 * .图7FB'E C'DCBA18.(2020河南)如图,在边长为的正方形ABCD 中,点,E F 分别是边,AB BC 的中点,连接,,EC FD 点,G H 分别是,EC FD 的中点,连接GH ,则GH 的长度为__________.19.(2020苏州).如图,在平面直角坐标系中,点A 、B 的坐标分别为()4,0-、()0,4,点()3,C n 在第一象限内,连接AC 、BC .已知2BCA CAO ∠=∠,则n =_________.20.(2020乐山)把两个含30角的直角三角板按如图所示拼接在一起,点E 为AD 的中点,连结BE 交AC 于点F .则AFAC=_________.21.(2020无锡)如图,在Rt ABC ∆中,90ACB ∠=︒,4AB =,点D ,E 分别在边AB ,AC 上,且2DB AD =,3AE EC =连接BE ,CD ,相交于点O ,则ABO ∆面积最大值为__________.22.(2020上海)(4分)《九章算术》中记载了一种测量井深的方法.如图所示,在井口B 处立一根垂直于井口的木杆BD ,从木杆的顶端D 观察井水水岸C ,视线DC 与井口的直径AB 交于点E ,如果测得AB =1.6米,BD =1米,BE =0.2米,那么井深AC 为 7 米.23.(2020吉林)(3分)如图,AB ∥CD ∥EF .若=,BD =5,则DF = 10 .24.(2020吉林)(3分)如图,在△ABC 中,D ,E 分别是边AB ,AC 的中点.若△ADE的面积为,则四边形DBCE 的面积为.25.(2020黑龙江牡丹江)(3分)如图,在Rt ABC ∆中,90C ∠=︒,点E 在AC 边上.将A ∠沿直线BE 翻折,点A 落在点A '处,连接A B ',交AC 于点F .若A E AE '⊥,4cos 5A =,则A F BF '= 13.26.(2020黑龙江牡丹江)(3分)如图,在Rt ABC ∆中,CA CB =,M 是AB 的中点,点D 在BM 上,AE CD ⊥,BF CD ⊥,垂足分别为E ,F ,连接EM .则下列结论中:①BF CE =; ②AEM DEM ∠=∠;③AE CE -=; ④2222DE DF DM +=;⑤若AE 平分BAC ∠,则:EF BF ; ⑥CF DM BM DE =,正确的有 ①②③④⑤⑥ .(只填序号)27.(2020山西)(3分)如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,CD ⊥AB ,垂足为D ,E 为BC 的中点,AE 与CD 交于点F ,则DF 的长为.解:如图,过点F 作FH ⊥AC 于H .28.(2020四川眉山)(4分)如图,等腰△ABC 中,AB =AC =10,边AC 的垂直平分线交BC 于点D ,交AC 于点E .若△ABD 的周长为26,则DE 的长为.29.(2020浙江温州)(5分)如图,在河对岸有一矩形场地ABCD ,为了估测场地大小,在笔直的河岸l 上依次取点E ,F ,N ,使AE ⊥l ,BF ⊥l ,点N ,A ,B 在同一直线上.在F 点观测A 点后,沿FN 方向走到M 点,观测C 点发现∠1=∠2.测得EF =15米,FM =2米,MN =8米,∠ANE =45°,则场地的边AB 为 15√2 米,BC 为 20√2 米.三、解答题30.(2020杭州)(8分)如图,在△ABC 中,点D ,E ,F 分别在AB ,BC ,AC 边上,DE ∥AC ,EF ∥AB .(1)求证:△BDE ∽△EFC . (2)设AF FC=12,①若BC =12,求线段BE 的长;②若△EFC 的面积是20,求△ABC 的面积.31.(2020安徽)(14分)如图1,已知四边形ABCD是矩形,点E在BA的延长线上,=.EC与BD相交于点G,与AD相交于点F,AF ABAE AD=.⊥;(1)求证:BD EC(2)若1AB=,求AE的长;(3)如图2,连接AG,求证:EG DG-=.32.(2020成都)(4分)如图,在矩形ABCD中,4BC=,E,F分别为AB,AB=,3CD边的中点.动点P从点E出发沿EA向点A运动,同时,动点Q从点F出发沿FC向点C⊥于点H,连接DH.若点P的速度是点Q的速度的2运动,连接PQ,过点B作BH PQ倍,在点P从点E运动至点A的过程中,线段PQ长度的最大值为线段DH长度的最小值为.33.(2020福建)如图,C 为线段AB 外一点.(1)求作四边形ABCD ,使得//CD AB ,且2CD AB =;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的四边形ABCD 中,AC ,BD 相交于点P ,AB ,CD 的中点分别为,M N ,求证:,,M P N 三点在同一条直线上.34.(2020河北)如图1和图2,在ABC ∆中,AB AC =,8BC =,3tan 4C =.点K 在AC 边上,点M ,N 分别在AB ,BC 上,且2AM CN ==.点P 从点M 出发沿折线MB BN -匀速移动,到达点N 时停止;而点Q 在AC 边上随P 移动,且始终保持APQ B ∠=∠.(1)当点P 在BC 上时,求点P 与点A 的最短距离;(2)若点P 在MB 上,且PQ 将ABC ∆面积分成上下4:5两部分时,求MP 的长; (3)设点P 移动的路程为x ,当03x ≤≤及39x ≤≤时,分别求点P 到直线AC 的距离(用含x 的式子表示);(4)在点P 处设计并安装一扫描器,按定角APQ ∠扫描APQ ∆区域(含边界),扫描器随点P 从M 到B 再到N 共用时36秒.若94AK =,请直接..写出点K 被扫描到的总时长.35.(2020江西) 某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积1S ,2S ,3S 之间的关系问题”进行了以下探究:类比探究(1)如图2,在Rt ABC ∆中,BC 为斜边,分别以,,AB AC BC 为斜边向外侧作Rt ABD ∆,Rt ACE ∆,Rt BCF ∆,若123∠=∠=∠,则面积1S ,2S ,3S 之间的关系式为 ;推广验证(2)如图3,在Rt ABC ∆中,BC 为斜边,分别以,,AB AC BC 为边向外侧作任意ABD ∆,ACE ∆,BCF ∆,满足123∠=∠=∠,D E F ∠=∠=∠,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;拓展应用(3)如图4,在五边形ABCDE 中,105A E C ∠=∠=∠=,90ABC ∠=,AB =2DE =,点P 在AE 上,30ABP ∠=,PE =,求五边形ABCDE 的面积.36.(2020苏州).如图,在矩形ABCD 中,E 是BC 的中点,DF AE ⊥,垂足为F .(1)求证:ABE DFA ∆∆∽;(2)若6AB =,4BC =,求DF 的长.37.(2020南京)(9分)如图,在ABC ∆和△A B C '''中,D 、D '分别是AB 、A B ''上一点,AD A D AB A B ''=''.(1)当CD AC AB C D A C A B ==''''''时,求证ABC ∆∽△A B C ''. 证明的途径可以用下面的框图表示,请填写其中的空格.(2)当CD AC BC C D A C B C ==''''''时,判断ABC ∆与△A B C '''是否相似,并说明理由.38(2020湖北武汉).问题背景:如图(1),已知A ABC DE ∽△△,求证:ABD ACE ∽; 尝试应用:如图(2),在ABC 和ADE 中,90BAC DAE ︒∠=∠=,30ABC ADE ︒∠=∠=,AC 与DE 相交于点F .点D 在BC 边上,AD BD =求DF CF的值;拓展创新:如图(3),D 是ABC 内一点,30BAD CBD ︒∠=∠=,90BDC ︒∠=,4AB =,AC =AD 的长.39.(2020宁夏)(6分)在平面直角坐标系中,△ABC 的三个顶点的坐标分别是A (1,3),B (4,1),C (1,1).(1)画出△ABC 关于x 轴成轴对称的△A 1B 1C 1;(2)画出△ABC 以点O 为位似中心,位似比为1:2的△A 2B 2C 2.40.(2020四川眉山)(10分)如图,△ABC和△CDE都是等边三角形,点B、C、E三点在同一直线上,连接BD,AD,BD交AC于点F.(1)若AD2=DF•DB,求证:AD=BF;(2)若∠BAD=90°,BE=6.①求tan∠DBE的值;②求DF的长.41.(2020山东泰安)(12分)小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形,∠ACB与∠ECD恰好为对顶角,∠ABC=∠CDE=90°,连接BD,AB=BD,点F是线段CE上一点.探究发现:(1)当点F为线段CE的中点时,连接DF(如图(2)),小明经过探究,得到结论:BD⊥DF.你认为此结论是否成立?是.(填“是”或“否”)拓展延伸:(2)将(1)中的条件与结论互换,即:BD⊥DF,则点F为线段CE的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.问题解决:(3)若AB=6,CE=9,求AD的长.42.(2020浙江宁波)(12分)【基础巩固】(1)如图1,在△ABC中,D为AB上一点,∠ACD=∠B.求证:AC2=AD•AB.【尝试应用】(2)如图2,在▱ABCD中,E为BC上一点,F为CD延长线上一点,∠BFE=∠A.若BF=4,BE=3,求AD的长.【拓展提高】(3)如图3,在菱形ABCD中,E是AB上一点,F是△ABC内一点,EF∥AC,AC=2EF,∠EDF=12∠BAD,AE=2,DF=5,求菱形ABCD的边长.43.(2020浙江温州)(14分)如图,在四边形ABCD中,∠A=∠C=90°,DE,BF分别平分∠ADC,∠ABC,并交线段AB,CD于点E,F(点E,B不重合).在线段BF 上取点M,N(点M在BN之间),使BM=2FN.当点P从点D匀速运动到点E时,点Q恰好从点M匀速运动到点N.记QN=x,PD=y,已知y=−65x+12,当Q为BF中点时,y=24 5.(1)判断DE与BF的位置关系,并说明理由.(2)求DE,BF的长.(3)若AD=6.①当DP =DF 时,通过计算比较BE 与BQ 的大小关系.②连结PQ ,当PQ 所在直线经过四边形ABCD 的一个顶点时,求所有满足条件的x 的值.2020年中考数学试题分类汇编之10相似三角形四、选择题1.(2020成都)(3分)如图,直线123////l l l ,直线AC 和DF 被1l ,2l ,3l 所截,5AB =,6BC =,4EF =,则DE 的长为( )A .2B .3C .4D .103 解:直线123////l l l ,∴AB DE BC EF=, 5AB =,6BC =,4EF =,∴564DE =, 103DE ∴=, 选:D .2.(2020哈尔滨)(3分)如图,在中,点在边上,连接,点在边上,过点作,交于点,过点作,交于点,则下列式子一定正确的是ABC ∆D BC AD E AC E //EF BC AD F E //EG AB BC G ()A. B . C . D . 解:,, ,, , 故选:.3.(2020河北)在如图所示的网格中,以点O 为位似中心,四边形ABCD 的位似图形是( )A. 四边形NPMQB. 四边形NPMRC. 四边形NHMQD. 四边形NHMR解:如图所示,四边形ABCD 的位似图形是四边形NPMQ .故选:A4.(2020四川绵阳)如图,在四边形ABCD 中,AD ∥BC ,∠ABC =90°,AB =2,AD =2,将△ABC 绕点C 顺时针方向旋转后得△A ′B ′C ,当A ′B ′恰好经过点D 时,△B ′CD 为等腰三角形,若BB ′=2,则AA ′=( )AE EF EC CD =EF EG CD AB =AF BG FD GC =CG AF BC AD =//EF BC ∴AF AE FD EC =//EG AB ∴AE BG EC GC =∴AF BG FD GC=CA.B.2C.D.解:过D作DE⊥BC于E,则∠DEC=∠DEB=90°,∵AD∥BC,∠ABC=90°,∴∠DAB=∠ABC=90°,∴四边形ABED是矩形,∴BE=AD=2,DE=AB=2,∵将△ABC绕点C顺时针方向旋转后得△A′B′C,∴∠DB′C=∠ABC=90°,B′C=BC,A′C=AC,∠A′CA=∠B′CB,∴△A′CA∽△B′CB,∴=,∵△B′CD为等腰三角形,∴△B′CD为等腰直角三角形,∴CD=B′C,设B′C=BC=x,则CD=x,CE=x﹣2,∵CD2=CE2+DE2,∴(x)2=(x﹣2)2+(2)2,∴x=4(负值舍去),∴BC=4,∴AC==2,∴=,∴A′A=,故选:A.5.(2020无锡)如图,等边ABC ∆的边长为3,点D 在边AC 上,12AD =,线段PQ 在边BA 上运动,12PQ =,有下列结论:①CP 与QD 可能相等;②ΔAQD 与BCP ∆可能相似;③四边形PCDQ面积的最大值为16;④四边形PCDQ周长的最小值为32+.其中,正确结论的序号为( ) A. ①④ B. ②④ C. ①③ D. ②③ 解:①∵线段PQ 在边BA 上运动,12PQ =, ∴QD P AP C ≤<,∴CP 与QD 不可能相等,则①错误;②设AQ x =, ∵12PQ =,3AB =, ∴13-=2.52AQ ≤≤0,即 2.5x ≤≤0, 假设ΔAQD 与BCP ∆相似,∵∠A=∠B=60°, ∴AD AQ BP BC =,即121332x x =--, 从而得到22530x x -+=,解得1x =或 1.5x =(经检验是原方程的根),又 2.5x ≤≤0,∴解得的1x =或 1.5x =符合题意,即ΔAQD 与BCP ∆可能相似,则②正确;③如图,过P 作PE ⊥BC 于E ,过F 作DF ⊥AB 于F ,设AQ x =, 由12PQ =,3AB =,得13-=2.52AQ ≤≤0,即 2.5x ≤≤0, ∴132PB x =--,∵∠B=60°,∴132P x E --=⎫⎪⎝⎭,∵12AD =,∠A =60°,∴1224DF =⨯=,则1115332222PBCSBC PE x x ⎫⎫=⨯=⨯--=-⎪⎪⎝⎭⎝⎭,1122DAQSAQ DF x x =⨯=⨯=, ∴四边形PCDQ 面积为:15322ABC PBC DAQSS Sx x x ⎫--=⨯-=⎪⎝⎭, 又∵ 2.5x ≤≤0,∴当 2.5x =时,四边形PCDQ ,即四边形PCDQ , 则③正确;④如图,作点D 关于直线AB 的对称点D 1,连接D D 1,与AB 相交于点Q ,再将D 1Q 沿着AB 向B 端平移PQ 个单位长度,即平移12个单位长度,得到D 2P ,与AB 相交于点P ,连接PC ,∴D 1Q=DQ=D 2P ,11212AD D D AD ===,且∠AD 1D 2=120°,此时四边形PCDQ 的周长为:2CP DQ CD PQ CD CD PQ +++=++,其值最小,∴∠D 1AD 2=30°,∠D 2A D=90°,22AD =,∴根据股股定理可得,22CD =,∴四边形PCDQ 的周长为:2113322CP DQ CD PQ CD CD PQ ⎛⎫+++=++=-+= ⎪⎝⎭则④错误,所以可得②③正确,故选:D .6.(2020重庆A 卷)如图,在平面直角坐标系中,ABC 的顶点坐标分别是(1,2)A ,(1,1)B ,(3,1)C ,以原点为位似中心,在原点的同侧画DEF ,使DEF 与ABC 成位似图形,且相似比为2:1,则线段DF 的长度为( )B. 2C. 4D. 解:∵以原点为位似中心,在原点的同侧画△DEF ,使△DEF 与△ABC 成位似图形,且相似比为2:1,而A (1,2),C (3,1), ∴D (2,4),F (6,2),OFE DCBA∴DF故选:D .7.(2020重庆B 卷)如图,△ABC 与△DEF 位似,点O 为位似中心.已知OA ∶OD=1∶2,则△ABC 与△DEF 的面积比为( ) A. 1∶2 B. 1∶3 C. 1∶4 D.1∶5 .答案C.8.(2020甘肃定西)生活中到处可见黄金分割的美.如图,在设计人体雕像时,使雕像的腰部以下与全身的高度比值接近0.618,可以增加视觉美感.若图中为2米,则约为( )A.1.24米B.1.38米C.1.42米D.1.62米答案:A9.(2020四川遂宁)(4分)如图,在平行四边形ABCD 中,∠ABC 的平分线交AC 于点E ,交AD 于点F ,交CD 的延长线于点G ,若AF =2FD ,则BE EG的值为( )A .12B .13C .23D .34解:由AF =2DF ,可以假设DF =k ,则AF =2k ,AD =3k , ∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB ∥CD ,AB =CD , ∴∠AFB =∠FBC =∠DFG ,∠ABF =∠G , ∵BE 平分∠ABC ,∴∠ABF =∠CBG , ∴∠ABF =∠AFB =∠DFG=∠G ,a b b a∴AB =CD =2k ,DF =DG =k ,∴CG =CD +DG =3k , ∵AB ∥DG ,∴△ABE ∽△CGE , ∴BE EG=AB CG=2k 3k=23,故选:C .10.(2020广西南宁)(3分)如图,在△ABC 中,BC =120,高AD =60,正方形EFGH 一边在BC 上,点E ,F 分别在AB ,AC 上,AD 交EF 于点N ,则AN 的长为( )A .15B .20C .25D .30解:设正方形EFGH 的边长EF =EH =x ,∵四边EFGH 是正方形,∴∠HEF =∠EHG =90°,EF ∥BC , ∴△AEF ∽△ABC ,∵AD 是△ABC 的高,∴∠HDN =90°, ∴四边形EHDN 是矩形,∴DN =EH =x , ∵△AEF ∽△ABC ,∴=(相似三角形对应边上的高的比等于相似比),∵BC =120,AD =60,∴AN =60﹣x , ∴=,解得:x =40,∴AN =60﹣x =60﹣40=20. 故选:B .11.(2020广西玉林)(3分)(2020•玉林)一个三角形木架三边长分别是75cm ,100cm ,120cm ,现要再做一个与其相似的三角形木架,而只有长为60cm 和120cm 的两根木条.要求以其中一根为一边,从另一根截下两段作为另两边(允许有余料),则不同的截法有( ) A .一种B .两种C .三种D .四种解:长120cm 的木条与三角形木架的最长边相等,则长120cm 的木条不能作为一边, 设从120cm 的木条上截下两段长分别为xcm ,ycm (x +y ≤120), 由于长60cm 的木条不能与75cm 的一边对应,否则x 、y 有大于120cm ,当长60cm的木条与100cm的一边对应,则x75=y120=60100,解得:x=45,y=72;当长60cm的木条与120cm的一边对应,则x75=y100=60120,解得:x=37.5,y=50.答:有两种不同的截法:把120cm的木条截成45cm、72cm两段或把120cm的木条截成37.5cm、50cm两段.故选:B.12.(2020贵州遵义)(4分)如图,△ABO的顶点A在函数y=k x(x>0)的图象上,∠ABO=90°,过AO边的三等分点M、N分别作x轴的平行线交AB于点P、Q.若四边形MNQP的面积为3,则k的值为()A.9B.12C.15D.18解:∵NQ∥MP∥OB,∴△ANQ∽△AMP∽△AOB,∵M、N是OA的三等分点,∴ANAM =12,ANAO=13,∴S△ANQS△AMP =14,∵四边形MNQP的面积为3,∴S△ANQ3+S△ANQ =14,∴S△ANQ=1,∵1S△AOB =(ANAO)2=19,∴S△AOB=9,∴k=2S△AOB=18,故选:D.13.(3分)(2020•荆门)△ABC中,AB=AC,∠BAC=120°,BC=2√3,D为BC的中点,AE=14AB,则△EBD的面积为()A .3√34B .3√38C .√34D .√38解:连接AD ,作EF ⊥BC 于F ,∵AB =AC ,∠BAC =120°,D 为BC 的中点, ∴AD ⊥BC ,AD 平分∠BAC ,∠B =∠C =30° 在Rt △ABD 中,BD =12BC =√3,∠B =30°,∴AB =BDcos30°=√3√32=2,∴AD =12AB =1,∵AE =14AB ,∴BE AB=34,∵EF ⊥BC ,AD ⊥BC ,∴EF ∥AD , ∴△BEF ∽△BAD ,∴EF AD=BE AB,∴EF 1=34∴EF =34, ∴S △BDE =12×BD ×EF =12×√3×34=3√38,选:B .14.(2020山西)(3分)泰勒斯是古希腊时期的思想家,科学家,哲学家,他最早提出了命题的证明.泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度,金字塔的影长,推算出金字塔的高度,这种测量原理,就是我们所学的( )A .图形的平移B .图形的旋转C .图形的轴对称D .图形的相似选:D .15.(2020浙江温州)(4分)如图,在Rt △ABC 中,∠ACB =90°,以其三边为边向外作正方形,过点C 作CR ⊥FG 于点R ,再过点C 作PQ ⊥CR 分别交边DE ,BH 于点P ,Q .若QH =2PE ,PQ =15,则CR 的长为( )A .14B .15C .8√3D .6√5解:如图,连接EC ,CH .设AB 交CR 于J .∵四边形ACDE ,四边形BCJHD 都是正方形, ∴∠ACE =∠BCH =45°, ∵∠ACB =90°,∠BCI =90°,∴∠ACE +∠ACB +∠BCH =180°,∠ACB +∠BCI =90° ∴B ,C ,H 共线,A ,C ,I 共线, ∵DE ∥AI ∥BH ,∴∠CEP =∠CHQ , ∵∠ECP =∠QCH ,∴△ECP ∽△HCQ , ∴PC CQ=CE CH=EP HQ=12,∵PQ =15,∴PC =5,CQ =10, ∵EC :CH =1:2,∴AC :BC =1:2,设AC =a ,BC =2a , ∵PQ ⊥CRCR ⊥AB ,∴CQ ∥AB , ∵AC ∥BQ ,CQ ∥AB ,∴四边形ABQC 是平行四边形,∴AB =CQ =10, ∵AC 2+BC 2=AB 2,∴5a 2=100, ∴a =2√2(负根已经舍弃), ∴AC =2√5,BC =4√5,∵12•AC •BC =12•AB •CJ , ∴CJ =2√5×4√510=4,∵JR =AF =AB =10,∴CR =CJ +JR =14, 故选:A .16.(2020海南)(3分)如图,在矩形ABCD 中,AB =6,BC =10,点E 、F 在AD 边上,BF 和CE 交于点G ,若EF =AD ,则图中阴影部分的面积为( )A .25B .30C .35D .40解:过点G 作GN ⊥AD 于N ,延长NG 交BC 于M , ∵四边形ABCD 是矩形, ∴AD =BC ,AD ∥BC , ∵EF =AD ,∴EF =BC , ∵AD ∥BC ,NG ⊥AD , ∴△EFG ∽△CBG ,GM ⊥BC , ∴GN :GM =EF :BC =1:2, 又∵MN =BC =6, ∴GN =2,GM =4, ∴S △BCG =×10×4=20,∴S △EFG =×5×2=5,S 矩形ABCD =6×10=60, ∴S 阴影=60﹣20﹣5=35. 故选:C .五、填空题17.(2020广州)如图7,正方形ABCD 中,△ABC 绕点A 逆时针旋转到△AB C '',AB ',AC '分别交对角线BD 于点E ,F ,若4AE =,则EF ED ⋅的值为 * .【答案】16. 提示:由△EAF ∽△EDA,得到:EF EAEA ED=,所以:2EA EF ED =,∴EF ED ⋅=1618.(2020河南)如图,在边长为的正方形ABCD 中,点,E F 分别是边,AB BC 的中点,连接,,EC FD 点,G H 分别是,EC FD 的中点,连接GH ,则GH 的长度为__________.【答案】1【详解】过E 作EP DC ⊥,过G 作GQ DC ⊥,过H 作HR BC ⊥,垂足分别为P ,R ,R ,HR 与GQ 相交于I ,如图,∵四边形ABCD 是正方形,∴AB AD DC BC ====图7FB'E C'DCBA90A ADC ∴∠=∠=︒,∴四边形AEPD 是矩形,∴EP AD == ∵点E ,F 分别是AB ,BC 边的中点,∴12PC DC ==12FC BC == EP DC ⊥,GQ DC ⊥,GQ EP ∴//∵点G 是EC 的中点,GQ ∴是EPC ∆的中位线,12GQ EP ∴==,同理可求:HR =,由作图可知四边形HIQP 是矩形, 又HP=12FC ,HI=12HR=12PC , 而FC=PC , ∴ HI HP =,∴四边形HIQP 是正方形,∴2IQ HP ==,∴22GI GQ IQ HI =-=== HIG ∴∆是等腰直角三角形,1GH ∴==故答案为:1.19.(2020苏州).如图,在平面直角坐标系中,点A 、B 的坐标分别为()4,0-、()0,4,点()3,C n 在第一象限内,连接AC 、BC .已知2BCA CAO ∠=∠,则n =_________.【答案】14 5解:如图,过点C作CD⊥y轴,交y轴于点D,则CD∥AO,∴∠DCE=∠CAO,∵∠BCA=2∠CAO,∴∠BCA=2∠DCE,∴∠DCE=∠DCB,∵CD⊥y轴,∴∠CDE=∠CDB=90°,又∵CD=CD,∴△CDE≌△CDB(ASA),∴DE=DB,∵B(0,4),C(3,n),∴CD=3,OD=n,OB=4,∴DE=DB=OB-OD=4-n,∴OE=OD-DE=n-(4-n)=2n-4,∵A(-4,0),∴AO=4,∵CD∥AO,∴AOE∽CDE,∴AO OECD DE=,∴424 34nn-=-,解得:145n=,故答案:145.20.(2020乐山)把两个含30角的直角三角板按如图所示拼接在一起,点E为AD的中点,连结BE 交AC 于点F .则AF AC=_________.解:连接CE ,设CD=2x ,在RtΔACD 和RtΔABC 中,∠BAC=∠CAD=30º,∴∠D=60º,AD=4x ,=, BC=12AC,3=x , ∵点E 为AD 的中点, ∴CE=AE=DE=12AD =2x , ∴ΔCED 为等边三角形,∴∠CED=60º,∵∠BAD=∠BAE+∠CAD=30º+30º=60º,∴∠CED=∠BAD ,∴AB ∥CE ,∴AF BF CF EF=, 在ΔBAE 中,∵∠BAE=∠CAD=30º ∴AF 平分∠BAE ,∴3322AB BF x AE EF x ===, ∴32AF BF CF EF ==, ∴35AF AC =, 故答案为:35.21.(2020无锡)如图,在中,,,点,分别在边,上,且,连接,,相交于点,则面积最大值Rt ABC ∆90ACB ∠=︒4AB =D E AB AC 2DB AD =3AE EC =BE CD O ABO ∆为__________.解:如图1,作DG ∥AC ,交BE 于点G ,∴,∵ , ∴ ∵ ∴∴ ∵AB=4 ∴ ∴若面积最大,则面积最大, 如图2,当点△ABC 为等腰直角三角形时,面积最大,为,∴ 面积最大值为+故答案为:22.(2020上海)(4分)《九章算术》中记载了一种测量井深的方法.如图所示,在井口,BDG BAE ODG OCE △∽△△∽△2,3DG BD AE AB ==∴13CE AE =221DG CE ==ODG OCE △∽△=2DG OD CE OC =23OD CD =23ABO ABC S S =△△ABO ABC ABC 142=42⨯⨯ABO 284=33⨯83B处立一根垂直于井口的木杆BD,从木杆的顶端D观察井水水岸C,视线DC与井口的直径AB交于点E,如果测得AB=1.6米,BD=1米,BE=0.2米,那么井深AC为7米.解:∵BD⊥AB,AC⊥AB,∴BD∥AC,∴△ACE∽△DBE,∴ACBD =AEBE,∴AC1=1.40.2,∴AC=7(米),答:井深AC为7米.23.(2020吉林)(3分)如图,AB∥CD∥EF.若=,BD=5,则DF=10.解:∵AB∥CD∥EF,∴==,∴DF=2BD=2×5=10.故答案为10.24.(2020吉林)(3分)如图,在△ABC中,D,E分别是边AB,AC的中点.若△ADE 的面积为,则四边形DBCE的面积为.解:∵D,E分别是△ABC的边AB,AC的中点,∴DE是△ABC的中位线,∴DE ∥BC ,DE =BC , ∴△ADE ∽△ABC ,∴=()2=()2=,∵△ADE 的面积为, ∴△ABC 的面积为2,∴四边形DBCE 的面积=2﹣=, 故答案为:.25.(2020黑龙江牡丹江)(3分)如图,在Rt ABC ∆中,90C ∠=︒,点E 在AC 边上.将A ∠沿直线BE 翻折,点A 落在点A '处,连接AB ',交AC 于点F .若A E AE '⊥,4cos 5A =,则A F BF '= 13.【解答】解:90C ∠=︒,4cos 5A =, ∴45AC AB =,设4AC x =,5AB x =,则3BC x =, AE AE ⊥',90AEA ∴∠'=︒,//A E BC ',由于折叠,(36090)2135A EB AEB ∴∠'=∠=-÷=︒,且△A EF BCF '∆∽,45BEC ∴∠=︒,即BCE ∆为等腰直角三角形,3EC x ∴=,AE AC EC x A E ∴=-==', ∴133A E A F x BC BF x ''===, 故答案为:13. 26.(2020黑龙江牡丹江)(3分)如图,在Rt ABC ∆中,CA CB =,M 是AB 的中点,点D 在BM 上,AE CD ⊥,BF CD ⊥,垂足分别为E ,F ,连接EM .则下列结论中: ①BF CE =;②AEM DEM ∠=∠;③AE CE -=;④2222DE DF DM +=;⑤若AE 平分BAC ∠,则:EF BF ;⑥CF DM BM DE =,正确的有 ①②③④⑤⑥ .(只填序号)解:90ACB ∠=︒,90BCF ACE ∴∠+∠=︒,90BCF CBF ∠+∠=︒,ACE CBF ∴∠=∠,又90BFD AEC ∠=︒=∠,AC BC =,()BCF CAE AAS ∴∆≅∆,BF CE ∴=,故①正确;由全等可得:AE CF =,BF CE =,AE CE CF CE EF ∴-===,连接FM ,CM ,点M 是AB 中点,12CM AB BM AM ∴===,CM AB ⊥, 在BDF ∆和CDM ∆中,BFD CMD ∠=∠,BDF CDM ∠=∠,DBF DCM ∴∠=∠,又BM CM =,BF CE =,()BFM CEM SAS ∴∆≅∆,FM EM ∴=,BMF CME ∠=∠,90BMC ∠=︒,90EMF ∴∠=︒,即EMF ∆为等腰直角三角形,EF AE CE ∴=-,故③正确,45MEF MFE ∠=∠=︒,90AEC ∠=︒,45MEF AEM ∴∠=∠=︒,故②正确,设AE 与CM 交于点N ,连接DN ,DMF NME ∠=∠,FM EM =,45DFM DEM AEM ∠=∠=∠=︒,()DFM NEM ASA ∴∆≅∆,DF EN ∴=,DM MN =,DMN ∴∆为等腰直角三角形,2DN DM∴=,而90DEA∠=︒,22222DE DF DN DM∴+==,故④正确;AC BC=,90ACB∠=︒,45CAB∴∠=︒,AE平分BAC∠,22.5DAE CAE∴∠=∠=︒,67.5ADE∠=︒,45DEM∠=︒,67.5EMD∴∠=︒,即DE EM=,AE AE=,AED AEC∠=∠,DAE CAE∠=∠,()ADE ACE ASA∴∆≅∆,DE CE∴=,MEF∆为等腰直角三角形,2EF EM∴=,∴22EF EF EF EMBF CE DE====,故⑤正确;CDM ADE∠=∠,90CMD AED∠=∠=︒,CDM ADE∴∆∽,∴CD CM DMAD AE DE==,BM CM=,AE CF=,∴,,故⑥正确;故答案为:①②③④⑤⑥.27.(2020山西)(3分)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,CD⊥AB,垂足为D,E为BC的中点,AE与CD交于点F,则DF的长为.解:如图,过点F作FH⊥AC于H.在Rt△ABC中,∵∠ACB=90°,AC=3,BC=4,∴AB===5,BM DMCF DE=CF DM BM DE∴=∵CD⊥AB,∴S△ABC=•AC•BC=•AB•CD,∴CD=,AD===,∵FH∥EC,∴=,∵EC=EB=2,∴=,设FH=2k,AH=3k,CH=3﹣3k,∵tan∠FCH==,∴=,∴k=,∴FH=,CH=3﹣=,∴CF===,∴DF=﹣=,故答案为.28.(2020四川眉山)(4分)如图,等腰△ABC中,AB=AC=10,边AC的垂直平分线交BC于点D,交AC于点E.若△ABD的周长为26,则DE的长为.解:∵边AC的垂直平分线交BC于点D,交AC于点E,∴∠AED=90°,AE=CE=AC==5,AD=CD,∴∠DAC=∠C,∵△ABD的周长为26,∴AB+BD+AD=AB+BD+CD=AB+BC=26,∵AB=AC=10,∴BC=16,∠B=∠C,∴∠B=∠DAC,∴△ABC∽△DAC,∴=,作AM⊥BC于M,∵AB=AC,∴BM=BC=8,∴AM===6,∴=,∴DE=,29.(2020浙江温州)(5分)如图,在河对岸有一矩形场地ABCD,为了估测场地大小,在笔直的河岸l上依次取点E,F,N,使AE⊥l,BF⊥l,点N,A,B在同一直线上.在F点观测A点后,沿FN方向走到M点,观测C点发现∠1=∠2.测得EF=15米,FM =2米,MN=8米,∠ANE=45°,则场地的边AB为15√2米,BC为20√2米.【解答】解:∵AE⊥l,BF⊥l,∵∠ANE=45°,∴△ANE和△BNF是等腰直角三角形,∴AE=EN,BF=FN,∴EF=15米,FM=2米,MN=8米,∴AE=EN=15+2+8=25(米),BF=FN=2+8=10(米),∴AN=25√2,BN=10√2,∴AB=AN﹣BN=15√2(米);过C作CH⊥l于H,过B作PQ∥l交AE于P,交CH于Q,∴AE∥CH,∴四边形PEHQ和四边形PEFB是矩形,∴PE=BF=QH=10,PB=EF=15,BQ=FH,∵∠1=∠2,∠AEF=∠CHM=90°,∴△AEF ∽△CHM ,∴CH HM =AE EF =2515=53, ∴设MH =3x ,CH =5x ,∴CQ =5x ﹣10,BQ =FH =3x +2,∵∠APB =∠ABC =∠CQB =90°,∴∠ABP +∠PAB =∠ABP +∠CBQ =90°,∴∠PAB =∠CBQ ,∴△APB ∽△BQC ,∴AP BQ =PB CQ , ∴153x+2=155x−10,∴x =6,∴BQ =CQ =20,∴BC =20√2,故答案为:15√2,20√2.六、解答题30.(2020杭州)(8分)如图,在△ABC 中,点D ,E ,F 分别在AB ,BC ,AC 边上,DE ∥AC ,EF ∥AB .(1)求证:△BDE ∽△EFC .(2)设AF FC =12, ①若BC =12,求线段BE 的长;②若△EFC 的面积是20,求△ABC 的面积.【解答】(1)证明:∵DE ∥AC ,∴∠DEB =∠FCE ,∵EF ∥AB ,∴∠DBE =∠FEC ,∴△BDE ∽△EFC ;(2)解:①∵EF ∥AB ,∴BE EC =AF FC =12,∵EC =BC ﹣BE =12﹣BE ,∴BE 12−BE=12,解得:BE =4; ②∵AF FC =12,∴FC AC =23, ∵EF ∥AB ,∴△EFC ∽△BAC ,∴S △EFCS △ABC =(FC AC )2=(23)2=49, ∴S △ABC =94S △EFC =94×20=45. 31.(2020安徽)(14分)如图1,已知四边形是矩形,点在的延长线上,.与相交于点,与相交于点,.(1)求证:;(2)若,求的长;(3)如图2,连接,求证:.(1)证明:四边形是矩形,点在的延长线上,,又,,,,,即,故,(2)解:四边形是矩形,,,,,ABCD E BA AE AD =EC BD G AD F AF AB =BD EC ⊥1AB =AEAG EG DG -=ABCD E BA 90EAF DAB ∴∠=∠=︒AE AD =AF AB =()AEF ADB SAS ∴∆≅∆AEF ADB ∴∠=∠90GEB GBE ADB ABD ∴∠+∠=∠+∠=︒90EGB ∠=︒BD EC ⊥ABCD //AE CD ∴AEF DCF ∴∠=∠EAF CDF ∠=∠AEF DCF ∴∆∆∽, 即,设,则有,化简得,解得(舍去), . (3)如图,在线段上取点,使得,在与中,,,,,,,,为等腰直角三角形,.32.(2020成都)(4分)如图,在矩形中,,,,分别为,边的中点.动点从点出发沿向点运动,同时,动点从点出发沿向点运动,连接,过点作于点,连接.若点的速度是点的速度的2倍,在点从点运动至点的过程中,线段长度的最大值为 ,线段长度的最小值为 .解:连接交于,连接,取的中点,连接,,过点作于.∴AE AF DC DF=AE DF AF DC =(0)AE AD a a ==>(1)1a a -=210a a --=a =AE ∴EG P EP DG =AEP ∆ADG ∆AE AD =AEP ADG ∠=∠EP DG =()AEP ADG SAS ∴∆≅∆AP AG ∴=EAP DAG ∠=∠90PAG PAD DAG PAD EAP DAE ∴∠=∠+∠=∠+∠=∠=︒PAG ∴∆EG DG EG EP PG ∴-=-=ABCD 4AB =3BC =E F AB CD P E EA A Q F FC C PQ B BH PQ ⊥H DH P Q P E A PQ DH EF PQ M BM BM O OH OD O ON CD ⊥N四边形是矩形,,,四边形是矩形,,,,, , ,,,当点与重合时,的值最大,此时,,,,,,,,,,,,,故答案为.33.(2020福建)如图,C为线段AB 外一点.ABCD DF CF =AE EB =∴ADFE 3EF AD ∴==//FQ PE MFQ MEP ∴∆∆∽∴MF FQ ME PE=2PE FQ =2EM MF ∴=2EM ∴=1FM =P A PQ PM ==MQ PQ ∴=////MF ON BC MO OB =1FN CN ∴==3DN DF FN =+=1()22ON FM BC =+=OD ∴==BH PQ ⊥90BHM ∴∠=︒OM OB =1122OH BM ∴==DH OD OH -132DH ∴-DH ∴(1)求作四边形ABCD ,使得//CD AB ,且2CD AB =;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的四边形ABCD 中,AC ,BD 相交于点P ,AB ,CD 的中点分别为,M N ,求证:,,M P N 三点在同一条直线上.解:(1)则四边形ABCD 就是所求作的四边形.(2)∵AB CD ∥,∴ABP CDP ∠=∠,BAP DCP ∠=∠,∴ABP CDP ∆∆∽,∴AB AP CD CP. ∵,M N 分别为AB ,CD 的中点,∴2AB AM =,2CD CN =,∴=AM AP CN CP. 连接MP ,NP ,又∵BAP DCP ∠=∠,∴∽∆∆APM CPN ,∴∠=∠APM CPN ,∵点P 在AC 上∴180∠+∠=︒APM CPM ,∴180∠+∠=︒CPN CPM ,∴,,M P N 三点在同一条直线上.34.(2020河北)如图1和图2,在ABC ∆中,AB AC =,8BC =,3tan 4C =.点K 在AC 边上,点M ,N 分别在AB ,BC 上,且2AM CN ==.点P 从点M 出发沿折线MB BN -匀速移动,到达点N 时停止;而点Q 在AC 边上随P 移动,且始终保持APQ B ∠=∠.(1)当点P 在BC 上时,求点P 与点A 的最短距离;(2)若点P 在MB 上,且PQ 将ABC ∆面积分成上下4:5两部分时,求MP 的长; (3)设点P 移动的路程为x ,当03x ≤≤及39x ≤≤时,分别求点P 到直线AC 的距离(用含x 的式子表示);(4)在点P 处设计并安装一扫描器,按定角APQ ∠扫描APQ ∆区域(含边界),扫描器随点P 从M 到B 再到N 共用时36秒.若94AK =,请直接..写出点K 被扫描到的总时长. (1)当点P 在BC 上时,PA ⊥BC 时PA 最小,∵AB=AC ,△ABC 为等腰三角形,∴PA min =tanC·2BC =34×4=3; (2)过A 点向BC 边作垂线,交BC 于点E ,S 上=S △APQ ,S 下=S 四边形BPQC ,∵APQ B ∠=∠,∴PQ ∥BC ,∴△APQ ∽△ABC , ∴AP AD PQ AB AC BC==,的∴2APQABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭, 当S S 上下=45时,24=9APQ ABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭, ∴23AP AB =, AE=2BC ·tan 3C =, 根据勾股定理可得AB=5, ∴2253AP MP AB +==, 解得MP=43; (3)当0≤x≤3时,P 在BM 上运动,P 到AC 的距离:d=PQ·sinC ,由(2)可知sinC=35, ∴d=35PQ , ∵AP=x+2, ∴25AP x PQ AB BC+==, ∴PQ=285x +⨯, ∴d=23855x +⨯⨯=24482525x +, 当3≤x≤9时,P 在BN 上运动,BP=x-3,CP=8-(x-3)=11-x ,d=CP·sinC=35(11-x )=-35x+335, 综上()()24480325253333955x x d x x ⎧+≤≤⎪⎪=⎨⎪-+≤≤⎪⎩;(4)AM=2<AQ=94, 移动的速度=936=14, ①从Q 平移到K ,耗时:92414-=1秒, ②P 在BC 上时,K 与Q 重合时 CQ=CK=5-94=114, ∵∠APQ+∠QPC=∠B+∠BAP ,APQ B ∠=∠∴∠QPC=∠BAP ,又∵∠B=∠C ,∴△ABP ∽△PCQ ,设BP=y ,CP=8-y ,AB BP PC CQ =,即51184y y =-, 整理得y 2-8y=554-, (y-4)2=94, 解得y 1=52,y 2=112, 52÷14=10秒, 112÷14=22秒, ∴点K 被扫描到的总时长36-(22-10)-1=23秒.35.(2020江西) 某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积,,之间的关系问题”进行了以下探究: 1S 2S 3S类比探究(1)如图2,在中,为斜边,分别以为斜边向外侧作,,,若,则面积,,之间的关系式为 ;推广验证(2)如图3,在中,为斜边,分别以为边向外侧作任意,,,满足,,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;拓展应用(3)如图4,在五边形中,,,,点在上,,,求五边形的面积.【解析】(1) (2)成立;∵∠1=∠2=∠3,∠D=∠E=∠F ,∴△ABD ∽△CAE ∽△BCF. ∴∴∵△ABC 为直角三角形 ∴.∴,∴,∴成立. Rt ABC ∆BC ,,AB AC BC Rt ABD ∆Rt ACE ∆Rt BCF ∆123∠=∠=∠1S 2S 3S Rt ABC ∆BC ,,AB AC BC ABD ∆ACE ∆BCF ∆123∠=∠=∠D E F ∠=∠=∠ABCDE 105A E C ∠=∠=∠=90ABC ∠=AB =2DE =P AE 30ABP ∠=PE =ABCDE 123;S S S +=22122233,.S S AB AC S BC S BC ==221223.S S AB AC S BC ++=222AB AC BC +=1231S S S +=123S S S +=(3)过点A 作⊥BP 于点H.∵∠ABH=30°,AB=∴.∵∠BAP=105°,∴∠HAP=45°.∴∴,BP=BH+PH=∴.连接PD.∵,∴. ∴又∵∠E=∠BAP=105°,△ABP∽△EDP.∴∠EPD=∠APB=45°,.∴∠BPD=90°,∴连接BD.∴.∵tan ∠PBD=,∴∠PBD=30°.∵∠ABC=90°,∠ABC=30°,∴∠DBC=30°∵∠C=105°,∴△ABP ∽△EDP ∽△CBD.∴S △BCD =S △ABP +S△EDP =.∴S 五边形ABCDE =S △ABP +S △EDP +S △BCD +S △BPD36.(2020苏州).如图,在矩形ABCD中,E 是BC 的中点,DFAE ⊥,垂足为F.AH 3,60AH BH BAH ==∠=︒AP =3(33222ABP BP AH S ∆⋅+===2PE ED ==PE ED AP AB ====.PEEDAP AB =BDPEBP AP ==1PD =213BPD ABP S S ∆∆=⋅==32BPD PB PDS ∆⋅===PD BP =31222+=2)3)7++=(1)求证:ABE DFA ∆∆∽;(2)若6AB =,4BC =,求DF 的长.证明:(1)∵四边形ABCD 是矩形,∴90B ∠=︒,AD BC ∥.∴AEB DAF ∠=∠,∵DF AE ⊥,∴90DFA ∠=︒.∴B DFA ∠=∠,∴ABE DFA ∆∆∽.解:(2)∵ABE DFA ∆∆∽, ∴AB AE DF AD=. ∵4BC =,E 是BC 的中点, ∴114222BE BC ==⨯=. ∴在Rt ABE ∆中,AE == 又∵4AD BC ==,∴6DF =∴DF =37.(2020南京)(9分)如图,在和△中,、分别是、上一点,.ABC ∆A B C '''D D 'AB A B ''AD A D AB A B ''=''。

2020年中考数学专题 相似三角形综合练习(含答案)

2020年中考数学专题 相似三角形综合练习(含答案)

2020年中考数学专题 相似三角形综合(含答案)一、单选题(共有10道小题)1.如图,在△ABC 中,∠ACB= 90,CD ⊥AB ,垂足为D ,点E 是AB 的中点,CD=DE=a ,则AB 的长为( )A .2aB .a 22C .3aD . 2.根据下列条件,△ABC 和△111C B A 不相似的是()A.∠A=68°,∠B=40°,∠A 1=68°,∠B 1=72°B.∠B=∠B 1,BC=2,BC:A 1 B 1= A B: B 1C 1C.AB=1,BC=2, CA=1.5,A 1 B 1=4, B 1 C 1 =8,D.AB=12,BC=15,CA=24,A 1 B 1=24,A 1 B 1=20,B 1 C 1 =25,A 1 C 1=32 3.用作位似图形的方法,可以将一个图形放大或缩小,位似中心( ) A.只能选在原图形的外部B.只能选在原图形的内部C.只能选在原形的边上D.可以选择任意位置4.如图,AB ,CD 都是BD 的垂线,AB=4,CD=6,BD=14。

P 是BD 上一点,连接AP ,CP ,所得两个三角形相似,则BP 的长是( )A.2B.5.6C.12D.上述都有可能5.如图,是一束平行的光线从教室窗户射入教室的示意图,测得光线与地面所成的角∠AMC=30°,窗户的高在教室地面上的影长MN=32m ,窗户的下沿到教室地面的距离BC=1m (点M ,N ,CC 在同一直线上),则窗户的高CAA B CD a 3346.如图,在□ABCD 中,EF ∥AB 交AD 于点E ,交BD 于点F ,DE:EA=3:4,EF=3,则CD 的长为( )A.4B.7C.3D.127.如图1,已知在△ABC 中,点D 、E 、F 分别是边AB 、AC 、BC 上的点,DE ∥BC ,EF ∥AB ,且AD:DB = 3:5,那么CF ∶CB 等于( ) A. 5:8 B. 3:8 C. 3:5 D.8.如图,如果点C 是线段AB 的黄金分割点(AC>BC ),则下列比例式正确的是( )A.AB ACAC BC= B.AB BC BC AC = C. AC BC BC AB = D. AC ABAB BC=9.如图,P 为平行四边形ABCD 的边AD 上的一点,E 、F 分别为PB ,PC 的中点,△PEF ,△PDC ,△PAB 的面积分别为12,,S S S ,若3S =,则12S S +的值为()A.24B.12C.6D.3 10.如图,在□ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,则EF:FC 等于( ) A.3:2 B.3:1 C.1:1 D.1:2 二、填空题(共有8道小题)11.如图,梯形ABCD 的对角线相交于O ,G 是BD 的中点.若AD = 3,BC = 9,则GOBG=A B C DE F A B C P A BCDE F E F A B CD12.如图,平行四边形中,是边上的点,交于点,如果, 那么 .13.如图,正五边形ABCDE 与五边形A ’B ’C ’D ’E ’是位似图形,且相似比为21。

2020年中考数学压轴题专题3 相似三角形的存在性问题学案(原版+解析)

2020年中考数学压轴题专题3 相似三角形的存在性问题学案(原版+解析)

专题三 相似三角形的存在性问题【考题研究】相似三角形的存在性问题是近几年中考数学的热点问题.解相似三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根。

难点在于寻找分类标准,分类标准寻找的恰当,可以使得解的个数不重复不遗漏,也可以使得列方程和解方程又好又快.【解题攻略】相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验。

应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等. 应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组).【解题类型及其思路】相似三角形存在性问题需要注意的问题:1、若题目中问题为△ABC ∽△DEF ,则对应线段已经确定。

2、若题目中为△ABC 与 △DEF 相似,则没有确定对应线段,此时有三种情况:①△ABC ∽△DEF ,②△ABC ∽△FDE 、 ③△ABC ∽△EFD 、3、若题目中为△ABC 与 △DEF 并且有 ∠A 、 ∠D (或为90°),则确定了一条对应的线段,此时有二种情况:①、△ABC ∽△DEF ,②、△ABC ∽△DFE 需要分类讨论上述的各种情况。

【典例指引】类型一 【确定符合相似三角形的点的坐标】典例指引1.(2019·贵州中考真题)如图,抛物线212y x bx c =++与直线132y x =+分别相交于A ,B 两点,且此抛物线与x 轴的一个交点为C ,连接AC ,BC .已知(0,3)A ,(3,0)C -.(1)求抛物线的解析式;(2)在抛物线对称轴l上找一点M,使MB MC-的值最大,并求出这个最大值;(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQ PA⊥交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与ABC∆相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.【举一反三】(2019·海南模拟)抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线335y x=+相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连结PC、PD,如图1,在点P运动过程中,∥PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB,过点C作CQ∥PM,垂足为点Q,如图2,是否存在点P,使得∥CNQ与∥PBM 相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.类型二 【确定符合相似三角形的动点的运动时间或路程等】典例指引2.(2019年广东模拟)如图,在矩形OABC 中,AO =10,AB =8,沿直线CD 折叠矩形OABC 的一边BC ,使点B 落在OA 边上的点E 处,分别以OC ,OA 所在的直线为x 轴,y 轴建立平面直角坐标系,抛物线2y ax bx c =++经过O ,D ,C 三点. (1)求AD 的长及抛物线的解析式;(2)一动点P 从点E 出发,沿EC 以每秒2个单位长的速度向点C 运动,同时动点Q 从点C 出发,沿CO 以每秒1个单位长的速度向点O 运动,当点P 运动到点C 时,两点同时停止运动,设运动时间为t 秒,当t 为何值时,以P ,Q ,C 为顶点的三角形与△ADE 相似?(3)点N 在抛物线对称轴上,点M 在抛物线上,是否存在这样的点M 与点N ,使以M ,N ,C ,E 为顶点的四边形是平行四边形?若存在,请直接写出点M 与点N 的坐标(不写求解过程);若不存在,请说明理由.【举一反三】(2019·湖南模拟)如图,已知直线y =-x +3与x 轴、y 轴分别交于A ,B 两点,抛物线y =-x 2+bx +c 经过A ,B 两点,点P 在线段OA 上,从点O 出发,向点A 以1个单位/秒的速度匀速运动;同时,点Q 在线段AB 上,从点A 出发,向点B 以2个单位/秒的速度匀速运动,连接PQ ,设运动时间为t 秒.(1)求抛物线的解析式;(2)问:当t 为何值时,∥APQ 为直角三角形;(3)过点P 作PE ∥y 轴,交AB 于点E ,过点Q 作QF ∥y 轴,交抛物线于点F ,连接EF ,当EF ∥PQ 时,求点F 的坐标;(4)设抛物线顶点为M ,连接BP ,BM ,MQ ,问:是否存在t 的值,使以B ,Q ,M 为顶点的三角形与以O ,B ,P 为顶点的三角形相似?若存在,请求出t 的值;若不存在,请说明理由.类型三 【确定符合相似三角形的函数解析式或字母参数的值】典例指引3.(2019·江苏中考真题)如图,二次函数245y x x =-++图象的顶点为D ,对称轴是直线l ,一次函数215y x =+的图象与x 轴交于点A ,且与直线DA 关于l 的对称直线交于点B .(1)点D 的坐标是 ______;(2)直线l 与直线AB 交于点C ,N 是线段DC 上一点(不与点D 、C 重合),点N 的纵坐标为n .过点N 作直线与线段DA 、DB 分别交于点P ,Q ,使得DPQ ∆与DAB ∆相似. ①当275n =时,求DP 的长; ②若对于每一个确定的n 的值,有且只有一个DPQ ∆与DAB ∆相似,请直接写出n 的取值范围 ______.【举一反三】(2018武汉中考)抛物线L :y =﹣x 2+bx +c 经过点A (0,1),与它的对称轴直线x =1交于点B .(1)直接写出抛物线L 的解析式;(2)如图1,过定点的直线y =kx ﹣k +4(k <0)与抛物线L 交于点M 、N .若△BMN 的面积等于1,求k 的值;(3)如图2,将抛物线L 向上平移m (m >0)个单位长度得到抛物线L 1,抛物线L 1与y 轴交于点C ,过点C 作y 轴的垂线交抛物线L 1于另一点D .F 为抛物线L 1的对称轴与x 轴的交点,P 为线段OC 上一点.若△PCD 与△POF 相似,并且符合条件的点P 恰有2个,求m 的值及相应点P 的坐标.【新题训练】1.(2019·长沙市开福区青竹湖湘一外国语学校初三月考)如图1,已知抛物线;C 1:y =﹣1m(x +2)(x ﹣m )(m >0)与x 轴交于点B 、C (点B 在点C 的左侧),与y 轴交于点E .(1)求点B 、点C 的坐标;(2)当△BCE 的面积为6时,若点G 的坐标为(0,b ),在抛物线C 1的对称轴上是否存在点H ,使得△BGH 的周长最小,若存在,则求点H 的坐标(用含b 的式子表示);若不存在,则请说明理由;(3)在第四象限内,抛物线C 1上是否存在点F ,使得以点B 、C 、F 为顶点的三角形与△BCE 相似?若存在,求m 的值;若不存在,请说明理由.2.(2020·浙江初三期末)边长为2的正方形OABC 在平面直角坐标系中的位置如图所示,点D 是边OA 的中点,连接CD ,点E 在第一象限,且DE DC ⊥,DE DC =.以直线AB 为对称轴的抛物线过C ,E 两点.(1)求抛物线的解析式;(2)点P 从点C 出发,沿射线CB 每秒1个单位长度的速度运动,运动时间为t 秒.过点P 作PF CD ⊥于点F ,当t 为何值时,以点P ,F ,D 为顶点的三角形与COD ∆相似? (3)点M 为直线AB 上一动点,点N 为抛物线上一动点,是否存在点M ,N ,使得以点M ,N ,D ,E 为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.3.(2020·长沙市长郡双语实验中学初三开学考试)如图,抛物线y =ax 2﹣2ax +c 的图象经过点C (0,﹣2),顶点D 的坐标为(1,﹣83),与x 轴交于A 、B 两点.(1)求抛物线的解析式.(2)连接AC ,E 为直线AC 上一点,当△AOC ∽△AEB 时,求点E 的坐标和AEAB的值. (3)点C 关于x 轴的对称点为H 5FC +BF 取最小值时,在抛物线的对称轴上是否存在点Q ,使△QHF 是直角三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由. 4.(2019·贵州初三)如图,已知抛物线y =13x 2+bx +c 经过△ABC 的三个顶点,其中点A (0,1),点B (﹣9,10),AC ∥x 轴,点P 是直线AC 下方抛物线上的动点. (1)求抛物线的解析式;(2)过点P 且与y 轴平行的直线l 与直线AB 、AC 分别交于点E 、F ,当四边形AECP 的面积最大时,求点P 的坐标;(3)当点P 为抛物线的顶点时,在直线AC 上是否存在点Q ,使得以C 、P 、Q 为顶点的三角形与△ABC 相似,若存在,求出点Q 的坐标,若不存在,请说明理由.5.(2020·河南初三)如图,在平面直角坐标系中,抛物线243y x bx c =-++与x 轴交于A 、D 两点,与y 轴交于点B ,四边形OBCD 是矩形,点A 的坐标为(1,0),点B 的坐标为(0,4),已知点E (m ,0)是线段DO 上的动点,过点E 作PE ⊥x 轴交抛物线于点P ,交BC 于点G ,交BD 于点H . (1)求该抛物线的解析式;(2)当点P 在直线BC 上方时,请用含m 的代数式表示PG 的长度;(3)在(2)的条件下,是否存在这样的点P ,使得以P 、B 、G 为顶点的三角形与△DEH 相似?若存在,求出此时m 的值;若不存在,请说明理由.6.(2020·浙江初三期末)如图①,在平面直角坐标系中,抛物线2y x =的对称轴为直线l ,将直线l 绕着点()0,2P 顺时针旋转α∠的度数后与该抛物线交于AB 两点(点A 在点B 的左侧),点Q 是该抛物线上一点(1)若45α∠=︒,求直线AB 的函数表达式 (2)若点p 将线段分成2:3的两部分,求点A 的坐标(3)如图②,在(1)的条件下,若点Q 在y 轴左侧,过点p 作直线//l x 轴,点M 是直线l 上一点,且位于y 轴左侧,当以P ,B ,Q 为顶点的三角形与PAM ∆相似时,求M 的坐标7.(2020·上海初三)如图,在平面直角坐标系xOy 中,抛物线y =13x 2+mx +n 经过点B (6,1),C (5,0),且与y 轴交于点A . (1)求抛物线的表达式及点A 的坐标;(2)点P 是y 轴右侧抛物线上的一点,过点P 作PQ ⊥OA ,交线段OA 的延长线于点Q ,如果∠PAB =45°.求证:△PQA ∽△ACB ;(3)若点F 是线段AB (不包含端点)上的一点,且点F 关于AC 的对称点F ′恰好在上述抛物线上,求FF ′的长.8.(2019·江苏初三期末)如图,抛物线y =ax 2+5ax +c (a <0)与x 轴负半轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于C 点,D 是抛物线的顶点,过D 作DH ⊥x 轴于点H ,延长DH 交AC 于点E ,且S △ABD :S △ACB =9:16,(1)求A 、B 两点的坐标;(2)若△DBH 与△BEH 相似,试求抛物线的解析式.9.(2019·湖南中考模拟)如图,顶点坐标为(2,﹣1)的抛物线y =ax 2+bx +c (a ≠0)与y 轴交于点C (0,3),与x 轴交于A 、B 两点. (1)求抛物线的表达式;(2)设抛物线的对称轴与直线BC 交于点D ,连接AC 、AD ,求△ACD 的面积;(3)点E 为直线BC 上一动点,过点E 作y 轴的平行线EF ,与抛物线交于点F .问是否存在点E ,使得以D 、E 、F 为顶点的三角形与△BCO 相似?若存在,求点E 的坐标;若不存在,请说明理由.10.(2019·西安市铁一中学中考模拟)如图,抛物线2(0)y ax bx c a =++≠的顶点坐标为(2,1)-,并且与y 轴交于点(0,3)C ,与x 轴交于A 、B 两点.(1)求抛物线的表达式.(2)如图1,设抛物线的对称轴与直线BC 交于点D ,点E 为直线BC 上一动点,过点E 作y 轴的平行线EF ,与抛物线交于点F ,问是否存在点E ,使得以D 、E 、F 为顶点的三角形与BCO V 相似.若存在,求出点E 的坐标;若不存在,请说明理由.11.(2019·广东中考模拟)如图,在平面直角坐标系xoy 中,直线122y x =+与x 轴交于点A ,与y 轴交于点C .抛物线y =ax 2+bx +c 的对称轴是32x =-且经过A 、C 两点,与x 轴的另一交点为点B .(1)①直接写出点B 的坐标;②求抛物线解析式.(2)若点P 为直线AC 上方的抛物线上的一点,连接PA ,PC .求△PAC 的面积的最大值,并求出此时点P 的坐标.(3)抛物线上是否存在点M ,过点M 作MN 垂直x 轴于点N ,使得以点A 、M 、N 为顶点的三角形与△ABC 相似?若存在,直接写出点M 的坐标;若不存在,请说明理由.12.(2019·江苏泗洪姜堰实验学校中考模拟)如图,抛物线2481293y x x =--与x 轴交于A 、C 两点,与y 轴交于B 点. (1)求△AOB 的外接圆的面积;(2)若动点P 从点A 出发,以每秒2个单位沿射线AC 方向运动;同时,点Q 从点B 出发,以每秒1个单位沿射线BA 方向运动,当点P 到达点C 处时,两点同时停止运动.问当t 为何值时,以A 、P 、Q 为顶点的三角形与△OAB 相似?(3)若M 为线段AB 上一个动点,过点M 作MN 平行于y 轴交抛物线于点N . ①是否存在这样的点M ,使得四边形OMNB 恰为平行四边形?若存在,求出点M 的坐标;若不存在,请说明理由.②当点M 运动到何处时,四边形CBNA 的面积最大?求出此时点M 的坐标及四边形CBAN 面积的最大值.13.(2019·陕西中考真题)在平面直角坐标系中,已知抛物线L :()2y ax c a x c =+-+经过点A (-3,0)和点B (0,-6),L 关于原点O 对称的抛物线为L '. (1)求抛物线L 的表达式;(2)点P 在抛物线L '上,且位于第一象限,过点P 作PD ⊥y 轴,垂足为D .若△POD 与△AOB 相似,求符合条件的点P 的坐标.14.(2019·湖南中考真题)如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点C ,且过点(2,3)D -.点P 、Q 是抛物线2y ax bx c =++上的动点.(1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求POD ∆面积的最大值.(3)直线OQ 与线段BC 相交于点E ,当OBE ∆与ABC ∆相似时,求点Q 的坐标.15.(2018·四川中考真题)如图,抛物线y =12x 2+bx +c 与直线y =12x +3交于A ,B 两点,交x 轴于C 、D 两点,连接AC 、BC ,已知A (0,3),C (﹣3,0). (1)求抛物线的解析式;(2)在抛物线对称轴l 上找一点M ,使|MB ﹣MD |的值最大,并求出这个最大值; (3)点P 为y 轴右侧抛物线上一动点,连接PA ,过点P 作PQ ⊥PA 交y 轴于点Q ,问:是否存在点P 使得以A ,P ,Q 为顶点的三角形与△ABC 相似?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.16.(2019·湖南中考真题)如图1,△AOB 的三个顶点A 、O 、B 分别落在抛物线F 1:21733y x x =+的图象上,点A 的横坐标为﹣4,点B 的纵坐标为﹣2.(点A 在点B 的左侧) (1)求点A 、B 的坐标;(2)将△AOB 绕点O 逆时针旋转90°得到△A 'OB ',抛物线F 2:24y ax bx =++经过A '、B '两点,已知点M 为抛物线F 2的对称轴上一定点,且点A '恰好在以OM 为直径的圆上,连接OM 、A 'M ,求△OA 'M 的面积;(3)如图2,延长OB '交抛物线F 2于点C ,连接A 'C ,在坐标轴上是否存在点D ,使得以A 、O 、D 为顶点的三角形与△OA 'C 相似.若存在,请求出点D 的坐标;若不存在,请说明理由.专题三相似三角形的存在性问题【考题研究】相似三角形的存在性问题是近几年中考数学的热点问题.解相似三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根。

天津市2020版中考数学专题练习相似三角形50题 含答案

天津市2020版中考数学专题练习相似三角形50题 含答案

相似三角形50题、选择题:一1.如图,DE∥BC,在下列比例式中,不能成立的是()= D.= B.== C.A.2.如图,点D、E分别为△ABC的边AB、AC上的中点,则△ADE的面积与四边形BCED的面积的比为()1:.1:.1:3 C.14 D2 BA.1:( )4.5cm,那么它们的相似比为3.两个相似多边形一组对应边分别为3cm,,则BE:EC=()BDF4.如图,是平行四边形ABCD对角线上的点,BF:FD=1:3( )相似的是15.如图,小正方形的边长均为,则图中三角形(阴影部分)与△ABCA. D C B...6.下列各组数中,成比例的是()A.-7,-5,14,5B.-6,-8,3,4C.3,5,9,12D.2,3,6,127.如图,铁路道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m时,长臂端点升高(杆的宽度忽略不计)()A.4mB.6mC.8mD.12m8.下列四组图形中,一定相似的是( )A.正方形与矩形B.正方形与菱形C.菱形与菱形D.正五边形与正五边形9.如图所示,在?ABCD中,BE交AC,CD于G,F,交AD的延长线于E,则图中的相似三角形有()对对 C.5 D.6对 A.3对 B.4)的长为(AB于点E,则DE 垂直平分,中,∠10.如图,在△ABCACB=90°,AC=8AB=10,DEAC交3..A.6 B5 C.4 D的长等于(,则,已知:是位似图形,位似比为与△如图,△11.ABCDEF23AB=4DE )A.6B.5C.9D.12.如图,正方形ABCD的边长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B →C和A→D20(y与xy(单位:cm),则)→C的路径向点C运动,设运动时间为x(单位:s,四边形PBDQ的面积为( ))之间函数关系可以用图象表示为x≤8≤C. B.A.D.13.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是( ). CA.. B D.14.如图,△ABC与△DEA是两个全等的等腰直角三角形,∠BAC=∠D=90°,BC分别与AD、AE相交于点F、G.图中共有n对三角形相似(相似比不等于1),则n的值是()A.2B.3C.4D.5ACBD,xABCD15.如图,正方形的两边BC,AB分别在平面直角坐标系的轴,y轴的////与正方形正方形正半轴上//////ABCD与正方形DCB,的中点是以ABCDACO为中心的位似图形已知AC=3A则正方形(1,2),的坐标为A若点,( )的相似比是 D. C. B. A.16.如图,三个正六边形全等,其中成位似图形关系的有()A.4对B.1对C.2对D.3对的重心,那么的值为() AMN都是等边三角形,点M是△ABC17.如图,△ABC和△C.A.D. B.18.将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°,在Rt△EDF中,∠EDF=90°,∠E=45°)如图摆放,点D为AB的中点,DE交AC于点P,DF经过点C,将△EDF绕点D顺时针方向旋转α(0°<α<60°),DE′交AC,则的值为()BCDF′交于点N 于点M,D. A. C. B.19.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=1.P是AB边上一动点,PD⊥AC于点D,点E在P 的右侧,且PE=1,连结CE.P从点A出发,沿AB方向运动,当E到达点B时,P停止运动.在整个运动过程中,阴影部分面积S+S )的大小变化情况是(21.A.一直不变B.一直减小C.一直增大D.先减小后增大20.如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是弧AD的中点,弦CE⊥AB于点E,过点D 的切线交EC的延长线于点G,连接AD,分别交CE、CB于点P、Q,连接AC.给出下列结论:①∠DAC=∠ABC;②AD=CB;③2=AE?AB;⑤CB∥GD,其中正确的结论是()点P是△ACQ的外心;④ACA.①③⑤B.②④⑤C.①②⑤D.①③④、填空题:二21.若△ABC与△ABC的相似比为2:3,△ABC与△ABC的相似比为2:3,那么△ABC与△ABC的相似比221212111212为22.如图,(1)若AE:AB=________,则△ABC∽△AEF;(2)若∠E=_______,则△ABC∽△AEF.□的值为________.于点Q. 则交相交于点,BDO,P是BC边中点,APBD23.如图,在中,对角线ABCDAC,则C中,已知A∽△B=6,若△ABCABBABC=5AB=3ABC24.在△中,已知,。

2020中考数学 相似三角形专项精练(含答案)

2020中考数学 相似三角形专项精练(含答案)

2020中考数学相似三角形专项精练(含答案)基础题一、选择题1.如图,已知直线a∥b∥c,直线m,n与a,b,c分别交于点A,C,E,B,D,F,若AC=4,CE=6,BD=3,则DF的值是( )A.4B.4.5C.5D.5.52.在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为( )A. B.C. D.3.如图,下列条件不能判定△ADB∽△ABC的是( )A.∠ABD=∠ACBB.∠ADB=∠ABCC.AB2=AD·ACD.=4.如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B.如果△ABD的面积为15,那么△ACD 的面积为( )A.15B.10C.D.55.如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,∠BAC,∠ACB的平分线相交于点E,过点E作EF∥BC交AC于点F,则EF的长为( )A. B. C. D.6.如图,AD是△ABC的角平分线,则AB∶AC等于( )A.BD∶CDB.AD∶CDC.BC∶ADD.BC∶AC二、填空题7.如图,把△ABC沿AB边平移到△A'B'C'的位置,它们的重叠部分(即图中阴影部分)的面积是△ABC面积的一半,若AB=,则此三角形移动的距离AA'是.三、解答题8.如图,四边形ABCD中,AB=AC=AD,AC平分∠BAD,点P是AC延长线上一点,且PD⊥AD.(1)证明:∠BDC=∠PDC;(2)若AC与BD相交于点E,AB=1,CE∶CP=2∶3,求AE的长.提升题一、选择题1.如图,在△ABC中,中线BE,CD相交于点O,连接DE,下列结论:①=;②△=;△③=;=.④△△其中,正确的有( )A.1个B.2个C.3个D.4个2.如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转,若∠BOA的两边分别与函数y=-、y=的图象交于B、A两点,则∠OAB的大小的变化趋势为( )A.逐渐变小B.逐渐变大C.时大时小D.保持不变二、填空题3.如图,矩形EFGH内接于△ABC,且边FG落在BC上.若BC=3,AD=2,EF=EH,那么EH的长为.三、解答题4.如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B.(1)求证:AC·CD=CP·BP;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.答案基础题一、选择题1.B2.C3.D A.∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B.∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C.∵AB2=AD·AC,∴=,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D.=不能判定△ADB∽△ABC,故此选项符合题意.故选D.4.D ∵∠DAC=∠B,∠C=∠C,∴△ACD∽△BCA.∵AB=4,AD=2,∴△ACD的面积∶△ABC的面积为1∶4,∴△ACD的面积∶△ABD的面积为1∶3.∵△ABD的面积为15,∴△ACD的面积为5.故选D.5.C 延长FE交AB于点D,作EG⊥BC,EH⊥AC,则ED=EG=EH=-=-=2.设EF=FC=x.∵△ADF∽△ABC,∴=,∴=-.即x=.故选C.6.A 如图,过点B作BE∥AC交AD延长线于点E, ∵BE∥AC,∴∠DBE=∠C,∠E=∠CAD,∴△BDE∽△CDA,∴=,又∵AD是角平分线,∴∠E=∠DAC=∠BAD,∴BE=AB,∴=,∴AB∶AC=BD∶CD.二、填空题7.答案-1解析设BC与A'C'交于点E,由平移的性质知,AC∥A'C',∴△BEA'∽△BCA,∴S△BEA'∶S△BCA=A'B2∶AB2=1∶2.∴A'B=1,∴AA'=AB-A'B=-1.三、解答题8.解析(1)证明:∵AB=AD,AC平分∠BAD,∴AC⊥BD,∴∠ACD+∠BDC=90°.∵AC=AD,∴∠ACD=∠ADC.∵∠ADC+∠PDC=90°,∴∠BDC=∠PDC.(2)过点C作CM⊥PD于点M.∵∠BDC=∠PDC,∴CE=CM.∵∠CMP=∠ADP=90°,∠P=∠P,∴△CPM∽△APD,∴=.设CM=CE=x.∵CE∶CP=2∶3,∴PC=x.∵AB=AD=AC=1,∴=,解得x=,故AE=1-=.B组提升题组1.B ∵CD,BE是△ABC的中线,即D,E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE=BC,DE∥BC,∴=,∴△DOE∽△COB,则△△===,===,故①正确,②错误,③正确. 设△ABC的BC边上的高为AF,则S△ABC=BC·AF,S△ACD=S△ABC=BC·AF.∵在△ODE中,DE=BC,DE边上的高是×AF=AF,∴S△ODE=×BC×AF=BC·AF,∴△△=··=,故④错误.2.D 如图,分别过点A、B作AN⊥x轴、BM⊥x轴.∵∠AOB=90°,∴∠BOM+∠AON=∠AON+∠OAN=90°,∴∠BOM=∠OAN,∵∠BMO=∠ANO=90°,∴△BOM∽△OAN,∴=.设B-,,A,,则BM=,AN=,OM=m,ON=n,∴mn=,mn=.∵∠AOB=90°,∴tan∠OAB=①.∵△BOM∽△OAN,∴===②,由①②知tan∠OAB=为定值,∴∠OAB的大小不变.二、填空题3.答案解析∵四边形EFGH是矩形,∴EH∥BC,∴△AEH∽△ABC,设AD与EH交于点M, ∵AM⊥EH,AD⊥BC,∴=,设EH=3x,则有EF=2x,AM=AD-EF=2-2x, ∴-=,解得x=,则EH=.三、解答题4.解析(1)证明:∵AB=AC,∴∠B=∠C.∵∠APD=∠B,∴∠APD=∠B=∠C.∵∠APC=∠BAP+∠B,∠APC=∠APD+∠DPC,∴∠BAP=∠DPC,∴△ABP∽△PCD,∴=,即AB·CD=CP·BP.又∵AB=AC,∴AC·CD=CP·BP.(2)∵PD∥AB,∴∠APD=∠BAP.∵∠APD=∠C,∴∠BAP=∠C.又∵∠B=∠B,∴△BAP∽△BCA,∴=.∵AB=10,BC=12,∴=,∴BP=.。

2020年全国中考数学试题分类(14)——图形的相似(含答案)

2020年全国中考数学试题分类(14)——图形的相似(含答案)

2020年全国中考数学试题分类(14)——图形的相似一.黄金分割(共1小题) 1.(2020•泸州)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G 将一线段MN 分为两线段MG ,GN ,使得其中较长的一段MG 是全长MN 与较短的一段GN 的比例中项,即满足MM MM=MM MM=√5−12,后人把√5−12这个数称为“黄金分割”数,把点G 称为线段MN 的“黄金分割”点.如图,在△ABC 中,已知AB =AC =3,BC =4,若D ,E 是边BC 的两个“黄金分割”点,则△ADE 的面积为( )A .10﹣4√5B .3√5−5C .5−2√52D .20﹣8√5 二.平行线分线段成比例(共4小题)2.(2020•营口)如图,在△ABC 中,DE ∥AB ,且MM MM=32,则MM MM的值为( )A .35B .23C .45D .323.(2020•成都)如图,直线l 1∥l 2∥l 3,直线AC 和DF 被l 1,l 2,l 3所截,AB =5,BC =6,EF =4,则DE的长为( )A .2B .3C .4D .1034.(2020•宜宾)在Rt △ABC 中,∠ACB =90°,D 是AB 的中点,BE 平分∠ABC 交AC 于点E ,连结CD 交BE 于点O .若AC =8,BC =6,则OE 的长是 .5.(2020•无锡)如图,在Rt △ABC 中,∠ACB =90°,AB =4,点D ,E 分别在边AB ,AC 上,且DB =2AD ,AE =3EC ,连接BE ,CD ,相交于点O ,则△ABO 面积最大值为 .三.相似三角形的判定(共3小题)6.(2020•昆明)在正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形.如图,△ABC是格点三角形,在图中的6×6正方形网格中作出格点三角形△ADE(不含△ABC),使得△ADE∽△ABC(同一位置的格点三角形△ADE只算一个),这样的格点三角形一共有()A.4个B.5个C.6个D.7个7.(2020•攀枝花)如图,在边长为4的正方形ABCD中,点E、F分别是BC、CD的中点,DE、AF交于点G,AF的中点为H,连接BG、DH.给出下列结论:①AF⊥DE;②DG=85;③HD∥BG;④△ABG∽△DHF.其中正确的结论有.(请填上所有正确结论的序号)8.(2020•南京)如图,在△ABC和△A'B'C'中,D、D'分别是AB、A'B'上一点,MMMM=M′M′M′M′.(1)当MMM′M′=MMM′M′=MMM′M′时,求证△ABC∽△A'B'C'.证明的途径可以用下面的框图表示,请填写其中的空格.(2)当MMM′M′=MM M′M′=MMM′M′时,判断△ABC 与△A 'B 'C ′是否相似,并说明理由.四.相似三角形的判定与性质(共29小题) 9.(2020•贵港)如图,在△ABC 中,点D 在AB 边上,若BC =3,BD =2,且∠BCD =∠A ,则线段AD 的长为( )A .2B .52C .3D .9210.(2020•海南)如图,在▱ABCD 中,AB =10,AD =15,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE 于点G ,若BG =8,则△CEF 的周长为( )A .16B .17C .24D .25 11.(2020•牡丹江)如图,在矩形ABCD 中,AB =3,BC =10,点E 在BC 边上,DF ⊥AE ,垂足为F .若DF =6,则线段EF 的长为( )A .2B .3C .4D .5 12.(2020•遂宁)如图,在正方形ABCD 中,点E 是边BC 的中点,连接AE 、DE ,分别交BD 、AC 于点P 、Q ,过点P 作PF ⊥AE 交CB 的延长线于F ,下列结论: ①∠AED +∠EAC +∠EDB =90°, ②AP =FP , ③AE =√102AO ,④若四边形OPEQ 的面积为4,则该正方形ABCD 的面积为36, ⑤CE •EF =EQ •DE .其中正确的结论有( )A .5个B .4个C .3个D .2个13.(2020•遵义)如图,△ABO的顶点A在函数y=MM(x>0)的图象上,∠ABO=90°,过AO边的三等分点M、N分别作x轴的平行线交AB于点P、Q.若四边形MNQP的面积为3,则k的值为()A.9 B.12 C.15 D.1814.(2020•眉山)如图,正方形ABCD中,点F是BC边上一点,连接AF,以AF为对角线作正方形AEFG,边FG与正方形ABCD的对角线AC相交于点H,连接DG.以下四个结论:①∠EAB=∠GAD;②△AFC∽△AGD;③2AE2=AH•AC;④DG⊥AC.其中正确的个数为()A.1个B.2个C.3个D.4个15.(2020•海南)如图,在矩形ABCD中,AB=6,BC=10,点E、F在AD边上,BF和CE交于点G,若EF=12AD,则图中阴影部分的面积为()A.25 B.30 C.35 D.4016.(2020•益阳)如图,在矩形ABCD中,E是DC上的一点,△ABE是等边三角形,AC交BE于点F,则下列结论不成立的是()A .∠DAE =30°B .∠BAC =45° C .MM MM=12D .MM MM=√3217.(2020•云南)如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,E 是CD 的中点.则△DEO 与△BCD 的面积的比等于( )A .12B .14C .16D .1818.(2020•潍坊)如图,点E 是▱ABCD 的边AD 上的一点,且MM MM=12,连接BE 并延长交CD 的延长线于点F ,若DE =3,DF =4,则▱ABCD 的周长为( )A .21B .28C .34D .42 19.(2020•哈尔滨)如图,在△ABC 中,点D 在BC 边上,连接AD ,点E 在AC 边上,过点E 作EF ∥BC ,交AD 于点F ,过点E 作EG ∥AB ,交BC 于点G ,则下列式子一定正确的是( )A .MM MM=MM MMB .MM MM=MM MMC .MM MM=MM MMD .MM MM=MM MM20.(2020•柳州)如图,在矩形纸片ABCD 中,AB =6,BC =10,点E 在CD 上,将△BCE 沿BE 折叠,点C 恰好落在边AD 上的点F 处,点G 在AF 上,将△ABG 沿BG 折叠,点A 恰好落在线段BF 上的H 处,有下列结论:①∠EBG =45°;②2S △BFG =5S △FGH ;③△DEF ∽△ABG ;④4CE =5ED .其中正确的是 .(填写所有正确结论的序号)21.(2020•锦州)如图,在△ABC 中,D 是AB 中点,DE ∥BC ,若△ADE 的周长为6,则△ABC 的周长为 .22.(2020•鞍山)如图,在菱形ABCD 中,∠ADC =60°,点E ,F 分别在AD ,CD 上,且AE =DF ,AF 与CE 相交于点G ,BG 与AC 相交于点H .下列结论:①△ACF ≌△CDE ;②CG 2=GH •BG ;③若DF =2CF ,则CE=7GF;④S四边形ABCG=√34BG2.其中正确的结论有.(只填序号即可)23.(2020•东营)如图,P为平行四边形ABCD边BC上一点,E、F分别为P A、PD上的点,且P A=3PE,PD=3PF,△PEF、△PDC、△P AB的面积分别记为S、S1、S2.若S=2,则S1+S2=.24.(2020•随州)如图,已知矩形ABCD中,AB=3,BC=4,点M,N分别在边AD,BC上,沿着MN折叠矩形ABCD,使点A,B分别落在E,F处,且点F在线段CD上(不与两端点重合),过点M作MH⊥BC于点H,连接BF,给出下列判断:①△MHN∽△BCF;②折痕MN的长度的取值范围为3<MN<15 4;③当四边形CDMH为正方形时,N为HC的中点;④若DF=13DC,则折叠后重叠部分的面积为5512.其中正确的是.(写出所有正确判断的序号)25.(2020•牡丹江)如图,在Rt△ABC中,CA=CB,M是AB的中点,点D在BM上,AE⊥CD,BF⊥CD,垂足分别为E,F,连接EM.则下列结论中:①BF=CE;②∠AEM=∠DEM;③AE﹣CE=√2ME;④DE2+DF2=2DM2;⑤若AE平分∠BAC,则EF:BF=√2:1;⑥CF•DM=BM•DE,正确的有.(只填序号)26.(2020•黑龙江)如图,直线AM 的解析式为y =x +1与x 轴交于点M ,与y 轴交于点A ,以OA 为边作正方形ABCO ,点B 坐标为(1,1).过点B 作EO 1⊥MA 交MA 于点E ,交x 轴于点O 1,过点O 1作x 轴的垂线交MA 于点A 1,以O 1A 1为边作正方形O 1A 1B 1C 1,点B 1的坐标为(5,3).过点B 1作E 1O 2⊥MA 交MA 于E 1,交x 轴于点O 2,过点O 2作x 轴的垂线交MA 于点A 2.以O 2A 2为边作正方形O 2A 2B 2C 2.….则点B 2020的坐标 .27.(2020•长沙)如图,点P 在以MN 为直径的半圆上运动(点P 不与M ,N 重合),PQ ⊥MN ,NE 平分∠MNP ,交PM 于点E ,交PQ 于点F . (1)MM MM+MM MM= .(2)若PN 2=PM •MN ,则MM MM= .28.(2020•临沂)如图,在△ABC 中,D 、E 为边AB 的三等分点,EF ∥DG ∥AC ,H 为AF 与DG 的交点.若AC =6,则DH = .29.(2020•咸宁)如图,四边形ABCD 是边长为2的正方形,点E 是边BC 上一动点(不与点B ,C 重合),∠AEF =90°,且EF 交正方形外角的平分线CF 于点F ,交CD 于点G ,连接AF ,有下列结论: ①△ABE ∽△ECG ; ②AE =EF ;③∠DAF =∠CFE ;④△CEF 的面积的最大值为1. 其中正确结论的序号是 .(把正确结论的序号都填上)30.(2020•泸州)如图,在矩形ABCD中,E,F分别为边AB,AD的中点,BF与EC、ED分别交于点M,N.已知AB=4,BC=6,则MN的长为.31.(2020•黑龙江)如图,直线AM的解析式为y=x+1与x轴交于点M,与y轴交于点A,以OA为边作正方形ABCO,点B坐标为(1,1).过B点作直线EO1⊥MA交MA于点E,交x轴于点O1,过点O1作x 轴的垂线交MA于点A1.以O1A1为边作正方形O1A1B1C1,点B1的坐标为(5,3).过点B1作直线E1O2⊥MA交MA于E1,交x轴于点O2,过点O2作x轴的垂线交MA于点A2.以O2A2为边作正方形O2A2B2C2,…,则点B2020的坐标.32.(2020•兰州)如图,在正方形ABCD中,对角线AC与BD相交于点O,AB=2,点E在AB的延长线上,且AE=AC,EF⊥AC于点F,连接BF并延长交CD于点G,则DG=.33.(2020•西宁)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC和DE.(1)求证:四边形ABFC是菱形;(2)若CD=1,BE=2,求⊙O的半径.34.(2020•朝阳)如图,以AB为直径的⊙O经过△ABC的顶点C,过点O作OD∥BC交⊙O于点D,交AC于点F,连接BD交AC于点G,连接CD,在OD的延长线上取一点E,连接CE,使∠DEC=∠BDC.(1)求证:EC 是⊙O 的切线;(2)若⊙O 的半径是3,DG •DB =9,求CE 的长.35.(2020•黄冈)已知:如图,AB 是⊙O 的直径,点E 为⊙O 上一点,点D 是MM̂上一点,连接AE 并延长至点C ,使∠CBE =∠BDE ,BD 与AE 交于点F . (1)求证:BC 是⊙O 的切线;(2)若BD 平分∠ABE ,求证:AD 2=DF •DB .36.(2020•杭州)如图,在△ABC 中,点D ,E ,F 分别在AB ,BC ,AC 边上,DE ∥AC ,EF ∥AB . (1)求证:△BDE ∽△EFC . (2)设MM MM=12,①若BC =12,求线段BE 的长;②若△EFC 的面积是20,求△ABC 的面积.37.(2020•杭州)如图,在正方形ABCD 中,点E 在BC 边上,连接AE ,∠DAE 的平分线AG 与CD 边交于点G ,与BC 的延长线交于点F .设MM MM=λ(λ>0).(1)若AB =2,λ=1,求线段CF 的长. (2)连接EG ,若EG ⊥AF , ①求证:点G 为CD 边的中点. ②求λ的值.五.相似三角形的应用(共4小题) 38.(2020•玉林)一个三角形木架三边长分别是75cm ,100cm ,120cm ,现要再做一个与其相似的三角形木架,而只有长为60cm 和120cm 的两根木条.要求以其中一根为一边,从另一根截下两段作为另两边(允许有余料),则不同的截法有()A.一种B.两种C.三种D.四种39.(2020•山西)泰勒斯是古希腊时期的思想家,科学家,哲学家,他最早提出了命题的证明.泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度,金字塔的影长,推算出金字塔的高度,这种测量原理,就是我们所学的()A.图形的平移B.图形的旋转C.图形的轴对称D.图形的相似40.(2020•绍兴)如图,三角板在灯光照射下形成投影,三角板与其投影的相似比为2:5,且三角板的一边长为8cm.则投影三角板的对应边长为()A.20cm B.10cm C.8cm D.3.2cm41.(2020•温州)如图,在河对岸有一矩形场地ABCD,为了估测场地大小,在笔直的河岸l上依次取点E,F,N,使AE⊥l,BF⊥l,点N,A,B在同一直线上.在F点观测A点后,沿FN方向走到M点,观测C 点发现∠1=∠2.测得EF=15米,FM=2米,MN=8米,∠ANE=45°,则场地的边AB为米,BC为米.六.作图-相似变换(共1小题)42.(2020•济宁)如图,在△ABC中,AB=AC,点P在BC上.(1)求作:△PCD,使点D在AC上,且△PCD∽△ABP;(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若∠APC=2∠ABC.求证:PD∥AB.七.位似变换(共4小题)43.(2020•重庆)如图,△ABC与△DEF位似,点O为位似中心.已知OA:OD=1:2,则△ABC与△DEF的面积比为()A .1:2B .1:3C .1:4D .1:544.(2020•重庆)如图,在平面直角坐标系中,△ABC 的顶点坐标分别是A (1,2),B (1,1),C (3,1),以原点为位似中心,在原点的同侧画△DEF ,使△DEF 与△ABC 成位似图形,且相似比为2:1,则线段DF 的长度为( )A .√5B .2C .4D .2√545.(2020•兰州)如图,四边形ABCD 与四边形A ′B ′C ′D ′位似,位似中心为点O ,OC =6,CC ′=4,AB =3,则A ′B ′= .46.(2020•盘锦)如图,△AOB 三个顶点的坐标分别为A (5,0),O (0,0),B (3,6),以点O 为位似中心,相似比为23,将△AOB 缩小,则点B 的对应点B '的坐标是 . 八.作图-位似变换(共2小题)47.(2020•朝阳)如图所示的平面直角坐标系中,△ABC 的三个顶点坐标分别为A (﹣3,2),B (﹣1,3),C (﹣1,1),请按如下要求画图:(1)以坐标原点O 为旋转中心,将△ABC 顺时针旋转90°,得到△A 1B 1C 1,请画出△A 1B 1C 1;(2)以坐标原点O 为位似中心,在x 轴下方,画出△ABC 的位似图形△A 2B 2C 2,使它与△ABC 的位似比为2:1.48.(2020•宁夏)在平面直角坐标系中,△ABC 的三个顶点的坐标分别是A (1,3),B (4,1),C (1,1).(1)画出△ABC 关于x 轴成轴对称的△A 1B 1C 1;(2)画出△ABC 以点O 为位似中心,位似比为1:2的△A 2B 2C 2.九.相似形综合题(共2小题)49.(2020•荆州)如图,在矩形ABCD 中,AB =20,点E 是BC 边上的一点,将△ABE 沿着AE 折叠,点B 刚好落在CD 边上点G 处;点F 在DG 上,将△ADF 沿着AF 折叠,点D 刚好落在AG 上点H 处,此时S △GFH :S △AFH =2:3,(1)求证:△EGC ∽△GFH ;(2)求AD 的长;(3)求tan ∠GFH 的值.50.(2020•福建)如图,△ADE 由△ABC 绕点A 按逆时针方向旋转90°得到,且点B 的对应点D 恰好落在BC 的延长线上,AD ,EC 相交于点P .(1)求∠BDE 的度数;(2)F 是EC 延长线上的点,且∠CDF =∠DAC .①判断DF 和PF 的数量关系,并证明;②求证:MM MM =MM MM .2020年全国中考数学试题分类(14)——图形的相似参考答案与试题解析一.黄金分割(共1小题)1.【解答】解:作AH ⊥BC 于H ,如图,∵AB =AC ,∴BH =CH =12BC =2,在Rt △ABH 中,AH =√32−22=√5,∵D ,E 是边BC 的两个“黄金分割”点,∴BE =√5−12BC =2(√5−1)=2√5−2,∴HE =BE ﹣BH =2√5−2﹣2=2√5−4,∴DE =2HE =4√5−8∴S △ADE =12×(4√5−8)×√5=10﹣4√5.故选:A .二.平行线分线段成比例(共4小题)2.【解答】解:∵DE ∥AB ,∴MM MM =MM MM =32, ∴MM MM 的值为35,故选:A .3.【解答】解:∵直线l 1∥l 2∥l 3,∴MM MM=MM MM , ∵AB =5,BC =6,EF =4, ∴56=MM 4,∴DE =103, 故选:D .4.【解答】解:在Rt △ACB 中,∠ACB =90°,AC =8,BC =6,由勾股定理得:AB =10, 过A 作AF ∥BC ,交BE 延长线于F ,∵AF ∥BC ,∴∠F =∠CBE ,∵BE 平分∠ABC ,∴∠ABE =∠CBE ,∴∠F =∠ABE ,∴AB =AF =10,∵AF ∥BC ,∴△AEF ∽△CEB ,∴MM MM =MM MM , ∴106=MM 8−MM,解得:AE =5,CE =8﹣5=3,在Rt △ECB 中,由勾股定理得:BE =√62+32=3√5,过D 作DM ∥AC ,交BC 于M ,交BE 于N ,∵D 为AB 的中点,DM ∥AC ,∴M 为BC 的中点,N 为BE 的中点,∴DN =12AE =12×5=2.5,BN =NE =12BE =3√52,∵DM ∥AC ,∴△DNO ∽△CEO ,∴MM MM =MM MM , ∴2.53=3√52−MM MM , 解得:OE =9√511, 故答案为:9√511.5.【解答】解:如图,过点D 作DF ∥AE , 则MM MM =MM MM =23, ∵MM MM =13,∴DF =2EC ,∴DO =2OC ,∴DO =23DC ,∴S △ADO =23S △ADC ,S △BDO =23S △BDC ,∴S △ABO =23S △ABC , ∵∠ACB =90°,∴C 在以AB 为直径的圆上,设圆心为G ,当CG ⊥AB 时,△ABC 的面积最大为:12×4×2=4,此时△ABO 的面积最大为:23×4=83.故答案为:83.三.相似三角形的判定(共3小题)6.【解答】解:如图,所以使得△ADE ∽△ABC 的格点三角形一共有6个.故选:C .7.【解答】解:∵四边形ABCD 为正方形,∴∠ADC =∠BCD =90°,AD =CD ,∵E 和F 分别为BC 和CD 中点,∴DF =EC =2,∴△ADF ≌△DCE (SAS ),∴∠AFD =∠DEC ,∠F AD =∠EDC ,∵∠EDC +∠DEC =90°,∴∠EDC +∠AFD =90°,∴∠DGF =90°,即DE ⊥AF ,故①正确;∵AD =4,DF =12CD =2,∴AF =√42+22=2√5,∴DG =AD ×DF ÷AF =4√55,故②错误;∵H 为AF 中点,∴HD =HF =12AF =√5, ∴∠HDF =∠HFD ,∵AB ∥DC ,∴∠HDF =∠HFD =∠BAG ,∵AG =√MM 2−MM 2=8√55,AB =4, ∴MM MM =MM MM =4√55=MM MM ,∴△ABG ~△DHF ,故④正确;∴∠ABG =∠DHF ,而AB ≠AG ,则∠ABG 和∠AGB 不相等,故∠AGB ≠∠DHF ,故HD 与BG 不平行,故③错误;故答案为:①④.8.【解答】(1)证明:∵MM MM =M′M′M′M′, ∴MM M′M′=MM M′M′, ∵MM M′M′=MM M′M′=MM M′M′, ∴MM M′M′=MM M′M′=MM M′M′, ∴△ADC ∽△A ′D ′C ', ∴∠A =∠A ′, ∵MM M′M′=MM M′M′,∴△ABC ∽△A ′B ′C ′. 故答案为:MM M′M′=MM M′M′=MM M′M′,∠A =∠A ′.(2)如图,过点D ,D ′分别作DE ∥BC ,D ′E ′∥B ′C ′,DE 交AC 于E ,D ′E ′交A ′C ′于E ′.∵DE ∥BC ,∴△ADE ∽△ABC ,∴MM MM =MM MM =MM MM , 同理,M′M′M′M′=M′M′M′M′=M′M′M′M′, ∵MM MM =M′M′M′M′, ∴MM MM =M′M′M′M′,∴MM M′M′=MM M′M′, 同理,MM MM =M′M′M′M′, ∴MM −MM MM =M′M′−M′M′M′M′,即MM MM =M′M′M′M′, ∴MM M′M′=MM M′M′, ∵MM M′M′=MM M′M′=MM M′M′, ∴MM M′M′=MM M′M′=MM M′M′,∴△DCE ∽△D ′C ′E ′,∴∠CED =∠C ′E ′D ′,∴∠CED +∠ACB =180°,同理,∠C ′E ′D ′+∠A ′C ′B ′=180°,∴∠ACB =∠A ′C ′B ′,∵MM M′M′=MM M′M′, ∴△ABC ∽△A ′B ′C ′.四.相似三角形的判定与性质(共29小题)9.【解答】解:∵∠BCD =∠A ,∠B =∠B ,∴△BCD ∽△BAC ,∴MM MM=MM MM , ∵BC =3,BD =2, ∴3MM =23, ∴BA =92, ∴AD =BA ﹣BD =92−2=52.故选:B .10.【解答】解:∵在▱ABCD 中,CD =AB =10,BC =AD =15,∠BAD 的平分线交BC 于点E , ∴AB ∥DC ,∠BAF =∠DAF ,∴∠BAF =∠F ,∴∠DAF =∠F ,∴DF =AD =15,同理BE =AB =10,∴CF =DF ﹣CD =15﹣10=5;∴在△ABG 中,BG ⊥AE ,AB =10,BG =8,在Rt △ABG 中,AG =√MM 2−MM 2=√102−82=6,∴AE =2AG =12,∴△ABE 的周长等于10+10+12=32,∵四边形ABCD 是平行四边形,∴AB ∥CF ,∴△CEF ∽△BEA ,相似比为5:10=1:2,∴△CEF 的周长为16.故选:A .11.【解答】解:∵四边形ABCD 为矩形,∴AB =CD =3,BC =AD =10,AD ∥BC ,∴∠AEB =∠DAF ,∴△AFD ∽△EBA ,∴MM MM =MM MM =MM MM ,∵DF =6,∴AF =√MM 2−MM 2=√102−62=8,∴8MM =10MM =63,∴EF =AF ﹣AE =8﹣5=3.故选:B .12.【解答】解:如图,连接OE .∵四边形ABCD 是正方形,∴AC ⊥BD ,OA =OC =OB =OD ,∴∠BOC =90°,∵BE =EC ,∴∠EOB =∠EOC =45°,∵∠EOB =∠EDB +∠OED ,∠EOC =∠EAC +∠AEO ,∴∠AED +∠EAC +∠EDO =∠EAC +∠AEO +∠OED +∠EDB =90°,故①正确, 连接AF .∵PF ⊥AE ,∴∠APF =∠ABF =90°,∴A ,P ,B ,F 四点共圆,∴∠AFP =∠ABP =45°,∴∠P AF =∠PF A =45°,∴P A =PF ,故②正确,设BE =EC =a ,则AE =√5a ,OA =OC =OB =OD =√2a ,∴MM MM =√5M √2M =√102,即AE =√102AO ,故③正确, 根据对称性可知,△OPE ≌△OQE ,∴S △OEQ =12S 四边形OPEQ =2,∵OB =OD ,BE =EC ,∴CD =2OE ,OE ∥CD ,∴MMMM =MMMM =12,△OEQ ∽△CDQ , ∴S △ODQ =4,S △CDQ =8,∴S △CDO =12,∴S 正方形ABCD =48,故④错误,∵∠EPF =∠DCE =90°,∠PEF =∠DEC ,∴△EPF ∽△ECD ,∴MMMM =MMMM ,∵EQ =PE ,∴CE •EF =EQ •DE ,故⑤正确,故选:B .13.【解答】解:∵NQ ∥MP ∥OB ,∴△ANQ ∽△AMP ∽△AOB ,∵M 、N 是OA 的三等分点,∴MM MM =12,MM MM =13, ∴M △MMMM △MMM =14,∵四边形MNQP 的面积为3, ∴M △MMM3+M △MMM=14, ∴S △ANQ =1, ∵1M △MMM =(MM MM )2=19,∴S △AOB =9,∴k =2S △AOB =18,故选:D .14.【解答】解:∵四边形ABCD ,四边形AEFG 都是正方形,∴∠EAG =∠BAD =90°,∠F AG =∠AFG =∠DAC =∠ACB =45°,AF =√2AG ,AC =√2AD , ∴∠EAG ﹣∠BAG =∠BAD ﹣∠BAG ,∴∠EAB =∠DAG ,故①正确;∵AF =√2AG ,AC =√2AD ,∴MM MM =√2=MM MM , ∵∠F AG =∠CAD =45°,∴∠F AC =∠DAG ,∴△F AC ∽△DAG ,故②正确,∴∠ADG =∠ACB =45°,延长DG 交AC 于N ,∵∠CAD =45°,∠ADG =45°,∴∠AND =90°,∴DG ⊥AC ,故④正确,∵∠F AC =∠F AH ,∠AFG =∠ACF =45°,∴△AFH ∽△ACF ,∴MM MM =MM MM ,∴AF 2=AH •AC ,∴2AE 2=AH •AC ,故③正确,故选:D .15.【解答】解:过点G 作GN ⊥AD 于N ,延长NG 交BC 于M ,∵四边形ABCD 是矩形,∴AD =BC ,AD ∥BC ,∵EF =12AD , ∴EF =12BC ,∵AD ∥BC ,NG ⊥AD ,∴△EFG ∽△CBG ,GM ⊥BC ,∴GN :GM =EF :BC =1:2,又∵MN =AB =6,∴GN =2,GM =4,∴S △BCG =12×10×4=20,∴S △EFG =12×5×2=5,S 矩形ABCD =6×10=60,∴S 阴影=60﹣20﹣5=35.故选:C .16.【解答】解:∵四边形ABCD 是矩形,△ABE 是等边三角形,∴AB =AE =BE ,∠EAB =∠EBA =60°,AD =BC ,∠DAB =∠CBA =90°,AB ∥CD ,AB =CD , ∴∠DAE =∠CBE =30°,故选项A 不合题意,∴cos ∠DAE =√32=MM MM =MM MM ,故选项D 不合题意,在△ADE 和△BCE 中,{MM =MM MMMM =MMMM MM =MM ,∴△ADE ≌△BCE (SAS ),∴DE =CE =12CD =12AB ,∵AB ∥CD ,∴△ABF ∽△CEF ,∴MM MM =MM MM =12,故选项C 不合题意, 故选:B .17.【解答】解:∵平行四边形ABCD 的对角线AC ,BD 相交于点O ,∴点O 为线段BD 的中点.又∵点E 是CD 的中点,∴线段OE 为△DBC 的中位线,∴OE ∥BC ,OE =12BC , ∴△DOE ∽△DBC ,∴M △MMMM △MMM =(MM MM )2=14. 故选:B .18.【解答】解:∵四边形ABCD 是平行四边形,∴AB ∥CF ,AB =CD ,∴△ABE ∽△DFE ,∴MM MM =MM MM =12,∵DE =3,DF =4,∴AE =6,AB =8,∴AD =AE +DE =6+3=9,∴平行四边形ABCD 的周长为:(8+9)×2=34.故选:C .19.【解答】解:∵EF ∥BC ,∴MM MM=MM MM , ∵EG ∥AB , ∴MM MM =MM MM , ∴MM MM =MM MM ,故选:C .20.【解答】解:①由折叠的性质可知:∠CBE =∠FBE ,∠ABG =∠FBG , ∵四边形ABCD 是矩形,∴∠ABC =90°,∴∠EBG =∠GBH +∠EBF =12∠CBF +12∠ABF =12∠ABC =45°. 故①正确;②由折叠的性质可知:BF =BC =10,BH =AB =6,∴HF =BF ﹣BH =4,∴M △MMMM △MMM =MM MM =104=52, ∴2S △BFG =5S △FGH ;故②正确;③∵四边形ABCD 是矩形,∴∠A =∠D =90°,在Rt △ABF 中,AF =√MM 2−MM 2=8,设GF =x ,即HG =AG =8﹣x ,在Rt △HGF 中,HG 2+HF 2=GF 2,即(8﹣x )2+42=x 2,解得x =5,∴AG =3,∴FD =2;同理可得ED =83,∴MM MM =63=2, MM MM =832=43, ∴MM MM ≠MM MM , ∴△ABG 与△DEF 不相似,故③错误;④∵CD =AB =6,ED =83,∴CE =CD ﹣ED =103,∴MM MM =54,∴4CE =5ED .故④正确.综上所述,正确的结论的序号为①②④.21.【解答】解:∵DE ∥BC ,∴△ADE ∽△ABC ,∵D 是AB 的中点,∴MM MM =12, ∴△MMM 的周长△MMM 的周长=12 ∵△ADE 的周长为6,∴△ABC 的周长为12,故答案为:12.22.【解答】解:∵ABCD 为菱形,∴AD =CD ,∵AE =DF ,∴DE =CF ,∵∠ADC =60°,∴△ACD 为等边三角形,∴∠D =∠ACD =60°,AC =CD ,∴△ACF ≌△CDE (SAS ),故①正确;过点F 作FP ∥AD ,交CE 于P 点.∵DF =2CF ,∴FP :DE =CF :CD =1:3,∵DE =CF ,AD =CD ,∴AE =2DE ,∴FP :AE =1:6=FG :AG ,∴AG =6FG ,∴CE =AF =7GF ,故③正确;过点B 作BM ⊥AG 于M ,BN ⊥GC 于N ,∵∠AGE =∠ACG +∠CAF =∠ACG +∠GCF =60°=∠ABC , 即∠AGC +∠ABC =180°,∴点A 、B 、C 、G 四点共圆,∴∠AGB =∠ACB =60°,∠CGB =∠CAB =60°,∴∠AGB =∠CGB =60°,∴BM =BN ,又AB =BC ,∴△ABM ≌△CBN (HL ),∴S 四边形ABCG =S 四边形BMGN ,∵∠BGM =60°,∴GM =12BG ,BM =√32BG ,∴S 四边形BMGN =2S △BMG =2×12×12MM ×√32MM =√34BG 2,故④正确; ∵∠CGB =∠ACB =60°,∠CBG =∠HBC ,∴△BCH ∽△BGC ,∴MM MM =MM MM =MM MM ,则BG •BH =BC 2,则BG •(BG ﹣GH )=BC 2,则BG 2﹣BG •GH =BC 2,则GH •BG =BG 2﹣BC 2,当∠BCG =90°时,BG 2﹣BC 2=CG 2,此时GH •BG =CG 2, 而题中∠BCG 未必等于90°,故②不成立,故正确的结论有①③④,故答案为:①③④.23.【解答】解:∵P A =3PE ,PD =3PF ,∴MM MM =MM MM =13, ∴EF ∥AD ,∴△PEF ∽△P AD ,∴M △MMMM △MMM =(13)2, ∵S △PEF =2,∴S △P AD =18,∵四边形ABCD是平行四边形, ∴S △P AD =12S 平行四边形ABCD ,∴S 1+S 2=S △P AD =18,故答案为18.24.【解答】解:①如图1,由折叠可知BF ⊥MN ,∴∠BOM =90°,∵MH ⊥BC ,∴∠BHP =90°=∠BOM ,∵∠BPH =∠OPM ,∴∠CBF =∠NMH ,∵∠MHN =∠C =90°,∴△MHN ∽△BCF ,故①正确;②当F 与C 重合时,MN =3,此时MN 最小,当F 与D 重合时,如图2,此时MN 最大,由勾股定理得:BD =5,∵OB =OD =52,∵tan ∠DBC =MM MM =MM MM ,即MM 52=34, ∴ON =158, ∵AD ∥BC ,∴∠MDO =∠OBN ,在△MOD 和△NOB 中,∵{∠MMM =∠MMMMM =MM MMMM =MMMM,∴△DOM ≌△BON (ASA ),∴OM =ON ,∴MN =2ON =154,∵点F 在线段CD 上(不与两端点重合),∴折痕MN 的长度的取值范围为3<MN <154; 故②正确;③如图3,连接BM ,FM ,当四边形CDMH 为正方形时,MH =CH =CD =DM =3,∵AD =BC =4,∴AM =BH =1,由勾股定理得:BM =√32+12=√10,∴FM =√10,∴DF =√MM 2−MM 2=√(√10)2−32=1,∴CF =3﹣1=2,设HN =x ,则BN =FN =x +1,在Rt △CNF 中,CN 2+CF 2=FN 2,∴(3﹣x )2+22=(x +1)2,解得:x =32,∴HN =32,∵CH =3,∴CN =HN =32,∴N 为HC 的中点;故③正确;④如图4,连接FM ,∵DF =13DC ,CD =3,∴DF =1,CF =2, ∴BF =√22+42=2√5,∴OF =√5,设FN =a ,则BN =a ,CN =4﹣a ,由勾股定理得:FN 2=CN 2+CF 2,∴a 2=(4﹣a )2+22,∴a =52,∴BN =FN =52,CN =32,∵∠NFE =∠CFN +∠DFQ =90°,∠CFN +∠CNF =90°,∴∠DFQ =∠CNF ,∵∠D =∠C =90°,∴△QDF ∽△FCN ,∴MM MM =MM MM ,即MM 2=132,∴QD =43,∵tan ∠HMN =tan ∠CBF =MM MM =MM MM ,∴MM 3=24,∴HN =32,∴MN =√32+(32)2=3√52,∵CH =MD =HN +CN =32+32=3,∴MQ =3−43=53,∴折叠后重叠部分的面积为:S△MNF+S△MQF=12⋅MM⋅MM+12⋅MM⋅MM=12×3√52×√5+12×53×1=5512;法二:折叠后重叠部分的面积为:S△MNF+S△MQF=S正方形CDMH﹣S△QDF﹣S△NFC﹣S△MNH=3×3−12×43×1−12×32×2−12×32×3=5512;故④正确;所以本题正确的结论有:①②③④;故答案为:①②③④.25.【解答】解:∵∠ACB=90°,∴∠BCF+∠ACE=90°,∵∠BCF+∠CBF=90°,∴∠ACE=∠CBF,又∵∠BFD=90°=∠AEC,AC=BC,∴△BCF≌△CAE(AAS),∴BF=CE,故①正确;由全等可得:AE=CF,BF=CE,∴AE﹣CE=CF﹣CE=EF,连接FM,CM,∵点M是AB中点,∴CM=12AB=BM=AM,CM⊥AB,在△BDF和△CDM中,∠BFD=∠CMD,∠BDF=∠CDM,∴∠DBF=∠DCM,又BM=CM,BF=CE,∴△BFM≌△CEM(SAS),∴FM=EM,∠BMF=∠CME,∵∠BMC=90°,∴∠EMF=90°,即△EMF为等腰直角三角形,∴EF=√2EM=AE﹣CE,故③正确,∠MEF=∠MFE=45°,∵∠AEC=90°,∴∠MEF=∠AEM=45°,故②正确,设AE与CM交于点N,连接DN,∵∠DMF=∠NME,FM=EM,∠DFM=∠DEM=∠AEM=45°,∴△DFM≌△NEM(ASA),∴DF=EN,DM=MN,∴△DMN为等腰直角三角形,∴DN=√2DM,而∠DEA=90°,∴DE2+DF2=DN2=2DM2,故④正确;∵AC=BC,∠ACB=90°,∴∠CAB=45°,∵AE平分∠BAC,∴∠DAE=∠CAE=22.5°,∠ADE=67.5°,∵∠DEM=45°,∴∠EMD=67.5°,即DE=EM,∵AE=AE,∠AED=∠AEC,∠DAE=∠CAE,∴△ADE≌△ACE(ASA),∴DE=CE,∵△MEF 为等腰直角三角形,∴EF =√2EM ,∴MM MM=MM MM =MM MM =√2MM MM =√2,故⑤正确; ∵∠CDM =∠ADE ,∠CMD =∠AED =90°, ∴△CDM ∽△ADE , ∴MM MM=MM MM =MM MM , ∵BM =CM ,AE =CF , ∴MM MM =MM MM ,∴CF •DM =BM •DE ,故⑥正确;故答案为:①②③④⑤⑥.26.【解答】解:∵点B 坐标为(1,1),∴OA =AB =BC =CO =CO 1=1,∵A 1(2,3),∴A 1O 1=A 1B 1=B 1C 1=C 1O 2=3,∴B 1(5,3),∴A 2(8,9),∴A 2O 2=A 2B 2=B 2C 2=C 2O 3=9,∴B 2(17,9),同理可得B 3(53,27),B 4(161,81),…由上可知,B n (2×3n ﹣1,3n ),∴当n =2020时,B n (2×32020﹣1,32020).故答案为:(2×32020﹣1,32020).27.【解答】解:(1)∵MN 为⊙O 的直径,∴∠MPN =90°,∵PQ ⊥MN ,∴∠PQN =∠MPN =90°,∵NE 平分∠PNM ,∴∠MNE =∠PNE ,∴△PEN ∽△QFN ,∴MM MM =MM MM ,即MM MM =MM MM ①,∵∠PNQ +∠NPQ =∠PNQ +∠PMQ =90°,∴∠NPQ =∠PMQ ,∵∠PQN =∠PQM =90°,∴△NPQ ∽△PMQ ,∴MM MM =MM MM ②, ∴①×②得MM MM =MM MM , ∵QF =PQ ﹣PF , ∴MM MM =MM MM =1−MM MM , ∴MM MM +MM MM =1,故答案为:1;(2)∵∠PNQ =∠MNP ,∠NQP =∠NPM ,∴△NPQ ∽△NMP ,∴MM MM =MM MM ,∴PN 2=QN •MN ,∵PN 2=PM •MN ,∴PM =QN ,∴MM MM =MM MM , ∵cos ∠M =MM MM =MM MM , ∴MM MM =MM MM , ∴MM MM=MM MM +MM , ∴NQ 2=MQ 2+MQ •NQ ,即1=MM 2MM 2+MM MM , 设MM MM=M ,则x 2+x ﹣1=0, 解得,x =√5−12,或x =−√5+12<0(舍去), ∴MM MM =√5−12, 故答案为:√5−12.28.【解答】解:∵D 、E 为边AB 的三等分点,EF ∥DG ∥AC , ∴BE =DE =AD ,BF =GF =CG ,AH =HF ,∴AB =3BE ,DH 是△AEF 的中位线,∴DH =12EF ,∵EF ∥AC , ∴△BEF ∽△BAC , ∴MM MM =MM MM ,即MM 6=MM 3MM ,解得:EF =2, ∴DH =12EF =12×2=1,故答案为:1.29.【解答】解:①∵四边形ABCD 是正方形,∴∠B =∠ECG =90°,∵∠AEF =90°,∴∠AEB +∠CEG =∠AEB +∠BAE ,∴∠BAE =∠CEG ,∴△ABE ∽△ECG ,故①正确;②在BA 上截取BM =BE ,如图1,∵四边形ABCD 为正方形,∴∠B =90°,BA =BC ,∴△BEM 为等腰直角三角形,∴∠BME =45°,∴∠AME =135°,∵BA ﹣BM =BC ﹣BE ,∴AM =CE ,∵CF 为正方形外角平分线,∴∠DCF =45°,∴∠ECF =135°,∵∠AEF =90°,∴∠AEB +∠FEC =90°,而∠AEB +∠BAE =90°,∴∠BAE =∠FEC ,在△AME 和△ECF 中{∠MMM =∠MMM MM =MM MMMM =MMMM,∴△AME ≌△ECF (ASA ),∴AE =EF ,故②正确;③∵AE =EF ,∠AEF =90°,∴∠EAF =45°,∴∠BAE +∠DAF =45°,∵∠BAE +∠CFE =∠CEF +∠CFE =45°, ∴∠DAF =∠CFE ,故③正确;④设BE =x ,则BM =x ,AM =AB ﹣BM =2﹣x , S △ECF =S △AME =12•x •(2﹣x )=−12(x ﹣1)2+12, 当x =1时,S △ECF 有最大值12,故④错误.故答案为:①②③. 30.【解答】解:延长CE 、DA 交于Q ,如图1, ∵四边形ABCD 是矩形,BC =6,∴∠BAD =90°,AD =BC =6,AD ∥BC , ∵F 为AD 中点,∴AF =DF =3,在Rt △BAF 中,由勾股定理得:BF =√MM 2+MM 2=√42+32=5,∵AD ∥BC ,∴∠Q =∠ECB ,∵E 为AB 的中点,AB =4,∴AE =BE =2,在△QAE 和△CBE 中{∠MMM =∠MMM MM =MMMMMM =MM∴△QAE ≌△CBE (AAS ),∴AQ =BC =6,即QF =6+3=9,∵AD ∥BC ,∴△QMF ∽△CMB ,∴MM MM =MM MM =96, ∵BF =5,∴BM =2,FM =3,延长BF 和CD ,交于W ,如图2,同理AB =DW =4,CW =8,BF =FW =5,∵AB ∥CD ,∴△BNE ∽△WND ,∴MM MM =MM MM , ∴MM 5−MM +5=24, 解得:BN =103, ∴MN =BN ﹣BM =103−2=43, 故答案为:43.31.【解答】解:∵点B 坐标为(1,1),∴OA =AB =BC =CO =CO 1=1,∵A 1(2,3),∴A 1O 1=A 1B 1=B 1C 1=C 1O 2=3,∴B 1(5,3),∴A 2(8,9),∴A 2O 2=A 2B 2=B 2C 2=C 2O 3=9,∴B 2(17,9),同理可得B 3(53,27),B 4(161,81),…由上可知,M M (2×3M −1,3M ),∴当n =2020时,M M (2×32020−1,32020).故答案为:(2×32020﹣1,32020).32.【解答】解:∵四边形ABCD 是正方形,∴AB =BC =CD =AD =2,∠BDC =∠EAF =45°,AC ⊥BD ,BD =AC =2√2,∵AE =AC =2√2,∠EF A =∠CBA ,∠EAF =∠BAC =45°,∴△AEF ≌△ACB (AAS ),∴∠E =∠ACB =45°,EF =BC =2,AF =AB =2,∴∠E =∠BDG ,∵EF ⊥AC ,AC ⊥BD ,∴EF ∥BD ,∴∠EFB =∠DBG ,∴△EBF ∽△DGB ,∴MM MM =MM MM , ∴2√2−2MM =2√2, ∴DG =4﹣2√2,故答案为:4﹣2√2,33.【解答】(1)证明:∵AB 为⊙O 的直径,∴∠AEB =90°(直径所对的圆周角是直角),∴AF ⊥BC .∵在△ABC 中 AB =AC ∴CE =BE (等腰三角形三线合一),∵AE =EF .∴四边形ABFC 是平行四边形(对角线互相平分的四边形是平行四边形).又∵AF ⊥BC ,∴▱ABFC 是菱形(对角线互相垂直的平行四边形是菱形).(2)解:∵圆内接四边形ABED ,∴∠ADE +∠ABC =180°(圆内接四边形的对角互补).∵∠ADE +∠CDE =180°,∴∠ABC =∠CDE .∵∠ACB =∠ECD (公共角).∴△ECD ∽△ACB (两角分别对应相等的两个三角形相似).∴MM MM =MMMM (相似三角形的对应边成比例).∵四边形ABFC 是菱形,∴MM =MM =12MM =2.∴CE =2BC =4.∴2MM =14. ∴AC =8.∴AB =AC =8.∴⊙O 的半径为4.34.【解答】解:(1)证明:如图,连接OC ,∵AB 是直径,∴∠ACB =90°,∵OD ∥BC ,∴∠CFE =∠ACB =90°,∴∠DEC +∠FCE =90°,∵∠DEC =∠BDC ,∠BDC =∠A ,∴∠DEC =∠A ,∵OA =OC ,∴∠OCA =∠A ,∴∠OCA =∠DEC ,∵∠DEC +∠FCE =90°,∴∠OCA +∠FCE =90°,即∠OCE =90°,∴OC ⊥CE ,又∵OC 是⊙O 的半径,∴CE 是⊙O 切线.(2)由(1)得∠CFE =90°,∴OF ⊥AC ,∵OA =OC ,∴∠COF =∠AOF ,∴MM̂=MM ̂, ∴∠ACD =∠DBC ,又∵∠BDC =∠BDC ,∴△DCG ∽△DBC ,∴MM MM =MM MM ,∴DC 2=DG •DB =9,∴DC =3,∵OC =OD =3,∴△OCD 是等边三角形,∴∠DOC =60°,在Rt △OCE 中MMM60°=MM MM, ∴√3=MM 3, ∴MM =3√3.35.【解答】证明:(1)∵AB 是⊙O 的直径,∴∠AEB =90°,∴∠EAB +∠EBA =90°,∵∠CBE =∠BDE ,∠BDE =∠EAB ,∴∠EAB =∠CBE ,∴∠EBA +∠CBE =90°,即∠ABC =90°,∴CB ⊥AB ,∵AB 是⊙O 的直径,∴BC 是⊙O 的切线;(2)证明:∵BD 平分∠ABE ,∴∠ABD =∠DBE ,∵∠DAF =∠DBE ,∴∠DAF =∠ABD ,∵∠ADB =∠ADF ,∴△ADF ∽△BDA ,∴MM MM =MM MM ,∴AD 2=DF •DB .36.【解答】(1)证明:∵DE ∥AC ,∴∠DEB =∠FCE ,∵EF ∥AB ,∴∠DBE =∠FEC ,∴△BDE ∽△EFC ;(2)解:①∵EF ∥AB ,∴MM MM =MM MM =12, ∵EC =BC ﹣BE =12﹣BE , ∴MM12−MM=12, 解得:BE =4; ②∵MM MM =12, ∴MM MM =23,∵EF ∥AB ,∴△EFC ∽△BAC ,∴M △MMMM △MMM =(MM MM )2=(23)2=49, ∴S △ABC =94S △EFC =94×20=45. 37.【解答】解:(1)∵在正方形ABCD 中,AD ∥BC ,∴∠DAG =∠F ,又∵AG 平分∠DAE ,∴∠DAG =∠EAG ,∴∠EAG =∠F ,∴EA =EF ,∵AB =2,∠B =90°,点E 为BC 的中点,∴BE =EC =1,∴AE =√MM 2+MM 2=√5,∴EF =√5,∴CF =EF ﹣EC =√5−1;(2)①证明:∵EA =EF ,EG ⊥AF ,∴AG =FG ,在△ADG 和△FCG 中{∠M =∠MMM MMMM =MMMM MM =MM,∴△ADG ≌△FCG (AAS ),∴DG =CG ,即点G 为CD 的中点;②设CD =2a ,则CG =a ,由①知,CF =DA =2a ,∵EG ⊥AF ,∠GCF =90°,∴∠EGC +∠CGF =90°,∠F +∠CGF =90°,∠ECG =∠GCF =90°,∴∠EGC =∠F ,∴△EGC ∽△GFC ,∴MM MM=MM MM , ∵GC =a ,FC =2a , ∴MM MM =12, ∴MM MM =12, ∴EC =12a ,BE =BC ﹣EC =2a −12a =32a ,∴λ=MM MM =12M 32M=13.五.相似三角形的应用(共4小题)38.【解答】解:长120cm 的木条与三角形木架的最长边相等,要满足两边之和大于第三边,则长120cm 的木条不能作为一边,设从120cm 的木条上截下两段长分别为xcm ,ycm (x +y ≤120),由于长60cm 的木条不能与75cm 的一边对应,否则x +y >120cm ,当长60cm 的木条与100cm 的一边对应,则M 75=M 120=60100, 解得:x =45,y =72; 当长60cm 的木条与120cm 的一边对应,则M 75=M 100=60120,解得:x =37.5,y =50.∴有两种不同的截法:把120cm 的木条截成45cm 、72cm 两段或把120cm 的木条截成37.5cm 、50cm 两段.故选:B .39.【解答】解:泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度,金字塔的影长,推算出金字塔的高度,这种测量原理,就是我们所学的图形的相似,故选:D .40.【解答】解:设投影三角尺的对应边长为xcm ,∵三角尺与投影三角尺相似,∴8:x =2:5,解得x =20.故选:A .41.【解答】解:∵AE ⊥l ,BF ⊥l ,∵∠ANE =45°,∴△ANE 和△BNF 是等腰直角三角形,∴AE =EN ,BF =FN ,∴EF =15米,FM =2米,MN =8米,∴AE =EN =15+2+8=25(米),BF =FN =2+8=10(米),∴AN =25√2(米),BN =10√2(米),∴AB =AN ﹣BN =15√2(米);过C 作CH ⊥l 于H ,过B 作PQ ∥l 交AE 于P ,交CH 于Q ,∴AE ∥CH ,∴四边形PEHQ 和四边形PEFB 是矩形,∴PE =BF =QH =10,PB =EF =15,BQ =FH ,∵∠1=∠2,∠AEF =∠CHM =90°,∴△AEF ∽△CHM ,∴MM MM =MM MM =2515=53, ∴设MH =3x ,CH =5x ,∵CQ =5x ﹣10,BQ =FH =3x +2,∵∠APB =∠ABC =∠CQB =90°,∴∠ABP +∠P AB =∠ABP +∠CBQ =90°,∴∠P AB =∠CBQ ,∴△APB ∽△BQC ,∴MM MM =MM MM ,∴153M +2=155M −10,∴x =6,∴BQ =CQ =20,∴BC =20√2(米),方法二:∵∠ANE =45°,∴∠ABP =45°,∴∠CBQ =45°,∴CQ =BQ ,∵CQ =5x ﹣10,BQ =FH =3x +2,∴5x ﹣10=3x +2,∴x =6,∴BQ =CQ =20,∴BC =20√2(米),故答案为:15√2,20√2.六.作图-相似变换(共1小题)42.【解答】解:(1)如图:作出∠APD=∠ABP,即可得到△PCD∽△ABP;(2)证明:如图,∵∠APC=2∠ABC,∠APD=∠ABC,∴∠DPC=∠ABC∴PD∥AB.七.位似变换(共4小题)43.【解答】解:∵△ABC与△DEF是位似图形,OA:OD=1:2,∴△ABC与△DEF的位似比是1:2.∴△ABC与△DEF的相似比为1:2,∴△ABC与△DEF的面积比为1:4,故选:C.44.【解答】解:∵以原点为位似中心,在原点的同侧画△DEF,使△DEF与△ABC成位似图形,且相似比为2:1,而A(1,2),C(3,1),∴D(2,4),F(6,2),∴DF=√(2−6)2+(4−2)2=2√5.故选:D.45.【解答】解:∵四边形ABCD与四边形A′B′C′D′位似,其位似中心为点O,OC=6,CC′=4,∴MMMM′=610=35,∴MMM′M′=35,∵AB=3,∴A′B′=5.故答案为:5.46.【解答】解:如图,∵△OAB∽△OA′B′,相似比为3:2,B(3.6),∴B′(2,4),根据对称性可知,△OA″B″在第三象限时,B″(﹣2,﹣4),∴满足条件的点B′的坐标为(2,4)或(﹣2,﹣4).故答案为(2,4)或(﹣2,﹣4).八.作图-位似变换(共2小题)47.【解答】解:(1)如图,△A1B1C1即为所求.(2)如图,△A2B2C2即为所求.48.【解答】解:(1)由题意知:△ABC的三个顶点的坐标分别是A(1,3),B(4,1),C(1,1),则△ABC关于x轴成轴对称的△A1B1C1的坐标为A1(1,﹣3),B1(4,﹣1),C1(1,﹣1),连接A1C1,A1B1,B1C1得到△A1B1C1.如图所示△A1B1C1为所求;(2)由题意知:位似中心是原点,则分两种情况:第一种,△A2B2C2和△ABC在同一侧则A2(2,6),B2(8,2),C2(2,2),连接各点,得△A2B2C2.第二种,△A2B2C2在△ABC的对侧A2(﹣2,﹣6),B2(﹣8,﹣2),C2(﹣2,﹣2),连接各点,得△A2B2C2.因为在网格中作图,图中网格是有范围的,只能在网格中作图,所以位似放大只能画一个.综上所述:如图所示△A2B2C2为所求.九.相似形综合题(共2小题)49.【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=∠D=∠C=90°,由折叠对称知:∠AGE=∠B=90°,∠AHF=∠D=90°,∴∠GHF=∠C=90°,∠EGC+∠HGF=90°,∠GFH+∠HGF=90°,∴∠EGC=∠GFH,∴△EGC∽△GFH.(2)解:∵S△GFH:S△AFH=2:3,且△GFH和△AFH等高,∴GH:AH=2:3,∵将△ABE沿着AE折叠,点B刚好落在CD边上点G处,∴AG=AB=GH+AH=20,∴GH=8,AH=12,∴AD=AH=12.(3)解:在Rt△ADG中,DG=√MM2−MM2=√202−122=16,由折叠的对称性可设DF=FH=x,则GF=16﹣x,∵GH2+HF2=GF2,∴82+x2=(16﹣x)2,解得:x=6,∴HF=6,在Rt△GFH中,tan∠GFH=MMMM=86=43.50.【解答】解:(1)∵△ADE由△ABC绕点A按逆时针方向旋转90°得到,∴AB=AD,∠BAD=90°,△ABC≌△ADE,在Rt△ABD中,∠B=∠ADB=45°,∴∠ADE=∠B=45°,∴∠BDE=∠ADB+∠ADE=90°.(2)①DF=PF.证明:由旋转的性质可知,AC=AE,∠CAE=90°,在Rt△ACE中,∠ACE=∠AEC=45°,∵∠CDF=∠CAD,∠ACE=∠ADB=45°,∴∠ADB+∠CDF=∠ACE+∠CAD,即∠FPD=∠FDP,∴DF=PF.②证明:过点P作PH∥ED交DF于点H,。

2020年中考数学 相似专题(含答案)

2020年中考数学 相似专题(含答案)

中考专题复习相似1.在的交通旅游图上,南京玄武湖隧道长,则它的实际长度是()A. B. C. D.2.在中,,,是的角平分线,下列结论:①,都是等腰三角形;②;③;④是的黄金分割点其中正确的是()A.个B.个C.个D.个3.有一个多边形的边长分别是 4 cm、5 cm、6 cm、4 cm、5 cm,和它相似的一个多边形最长边为8 cm,那么这个多边形的周长是( )A. 12 cm B. 18 cm C. 32 cm D. 48 cm4.如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA∶OA′=2∶3,则四边形ABCD与四边形A′B′C′D′的面积比为( )A.4∶9 B.2∶5 C.2∶3 D.∶5.如图,把△ABC绕点A旋转得到△ADE,当点D刚好落在BC上时,连接CE,设AC、DE相交于点F,则图中相似三角形的对数是( )A. 3 B. 4 C. 5 D. 66.若△ABC∽△A′B′C′,相似比为1∶3,则△ABC与△A′B′C′周长的比为( )A.1∶3B.3∶1C.1∶9D.9∶17.已知△ABC∽△A′B′C′,且=,则S△ABC∶S△A′B′C′为( )A.1∶2B.2∶1C.1∶4D.4∶18.如图,在△ABC中,点D,E分别是AB,AC的中点,则下列结论不正确的是( )A.BC=2DEB.△ADE∽△ABCC.=D.S△ABC=3S△ADE9.如图,矩形ABCD∽矩形ADFE,AE=1,AB=4,则AD等于( )A. 2 B. 2.4 C. 2.5 D. 310.如图,圆内接四边形ABCD的BA,CD的延长线交于P,AC,BD交于E,则图中相似三角形有( )A. 2对 B. 3对 C. 4对 D. 5对11.如图,矩形OABC与矩形ODEF是位似图形,点O为位似中心,相似比为1∶1.2,点B的坐标为(-3,2),则点E的坐标是( )A. (3.6,2.4) B. (-3,2.4) C. (-3.6,2) D. (-3.6,2.4) 12.如图,中,,,,,则等于()A. B. C. D.13.如图,,交,,于,,,交,,于,,,以下结论的错误的为()A. B.C. D.14.如图,在中,,,,,则的长为()A. B. C. D.15.如图,在中,是斜边上的高,若,,则的长为()A. B. C. D.16.如图,点是的边的上一点,且;如果,那么________.17.如图,已知,,写出对应边的比例式________.18.如图,中,厘米,厘米,点从出发,以每秒厘米的速度向运动,点从同时出发,以每秒厘米的速度向运动,其中一个动点到端点时,另一个动点也相应停止运动,那么,当以、、为顶点的三角形与相似时,运动时间为________.19.在阳光下,身高的小林在地面上的影长为,在同一时刻,测得学校的旗杆在地面上的影长为,则旗杆的高度为________.20.如图,,分别在的边,的延长线上,且,若,则的值为________.21.如图,中,,,的垂直平分线交于点,交于点,设的面积为,四边形的面积为,则的值等于________.22.如图,小强和小华共同站在路灯下,小强的身高EF=1.8 m,小华的身高MN=1.5 m,他们的影子恰巧等于自己的身高,即BF=1.8 m,CN=1.5 m,且两人相距4.7 m,则路灯AD 的高度是____________.23.如图,正方形ABCD中,BE=EF=FC,CG=2GD,BG分别交AE,AF于M,N.下列结论:①AF⊥BG;②BN=NF;③=;④S四边形CGNF=S四边形ANGD.其中正确的结论的序号是____________.24.如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值________.25.如图,△ABC与△DOE是位似图形,A(0,3),B(-2,0),C(1,0),E(6,0),△ABC与△DOE 的位似中心为M.(1)写出D点的坐标;(2)在图中画出M点,并求M点的坐标.26.如图:矩形ABCD的长AB=30,宽BC=20.(1)如图(1)若沿矩形ABCD四周有宽为1的环形区域,图中所形成的两个矩形ABCD与A′B′C′D′相似吗?请说明理由;(2)如图(2),x为多少时,图中的两个矩形ABCD与A′B′C′D′相似?27.如图,已知和是位似图形,,垂直平分,且.求的度数;求的长度.28.如图,已知中于,于,求证:;若时,求与面积之比.29.如图,,,与相交于点,,试说明:;26.如图若,请直接回答中结论是否成立;在中找出、和之间的数量关系,并说明理由.参考答案1-5 BDCAB 6-10 ACDAC 11-15 DCCBB16.或17.,18.或秒19.20.21.22.4 m23.①③24.-425.解(1)过点D作DH⊥OE于点H,∵△ABC与△DOE是位似图形,A(0,3),B(-2,0),C(1,0),E(6,0),∴BC=3,OE=6,△AOB∽△DHO,∴位似比为3∶6=1∶2,∴OH=2OB=4,DH=2OA=6,∴D点的坐标为(4,6);(2)连接DA并延长,交x轴于点M,则点M即为△ABC与△DOE的位似中心;则MO∶MH=1∶2,设MO=x,则MH=x+4,∴x∶(x+4)=1∶2,解得x=4,∴M点的坐标为(-4,0 ).26.解(1)不相似,AB=30,A′B′=28,BC=20,B′C′=18,而≠;(2)矩形ABCD与A′B′C′D′相似,则=,则=,解得x=1.5,或=.解得x=9.27.解:∵垂直平分,∴,∵和是位似图形,∴,∴;证明:∵,∴,∴.或用锐角三角函数求解:(简解如下)由,得到,∴.28.证明:∵,∴∴∴∴解:∵∴29.证明:∵,,∴,∴,∴,同理,∴,即,∴;成立.证明:∵,∴,∵∴,∴,∴;关系式为:.证明如下:分别过作于,过作于,过作交的延长线于由题设可得:,∴,即,又∵,,∴,∴.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答案:A
7.(2020四川遂宁)(4分)如图,在平行四边形ABCD中,∠ABC的平分线交AC于点E,交AD于点F,交CD的延长线于点G,若AF=2FD,则 的值为( )
A. B. C. D.
解:由AF=2DF,可以假设DF=k,则AF=2k,AD=3k,
∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,
2020年中考数学试题分类
相似三角形
1、选择题
9.(2020成都)(3分)如图,直线 ,直线 和 被 , , 所截, , , ,则 的长为
A.2B.3C.4D.
解: 直线 , ,
, , , ,

选: .
10.(2020哈尔滨)(3分)如图,在 中,点 在 边上,连接 ,点 在 边上,过点 作 ,交 于点 ,过点 作 ,交 于点 ,则下列式子一定正确的是
A. B. C. D.
解: , ,
, ,

故选: .
8.(2020河北)在如图所示的网格中,以点 为位似中心,四边形 的位似图形是()
A.四边形 B.四边形
C.四边形 D.四边形
解:如图所示,四边形 的位似图形是四边形 .
故选:A
12.(2020四川绵阳)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB= ,AD=2,将△ABC绕点C顺时针方向旋转后得 ,当 恰好过点D时, 为等腰三角形,若 =2,则 =( )
∴D1Q=DQ=D2P, ,且∠AD1D2=120°,
此时四边形 的周长为: ,其值最小,
∴∠D1AD2=30°,∠D2A D=90°, ,
∴根据股股定理可得, ,
∴四边形 的周长为: ,
则④错误,所以可得②③正确,故选:D.
8.(2020重庆A卷)如图,在平面直角坐标系中, 的顶点坐标分别是 , , ,以原点为位似中心,在原点的同侧画 ,使 与 成位似图形,且相似比为2:1,则线段DF的长度为()
∴∠AFB=∠FBC=∠DFG,∠ABF=∠G,
∵BE平分∠ABC,∴∠ABF=∠CBG,
∴∠ABF=∠AFB=∠DFG=∠G,
∴AB=CD=2k,DF=DG=k,∴CG=CD+DG=3k,
∵AB∥DG,∴△ABE∽△CGE,
∴ ,
故选:C.
9.(2020广西南宁)(3分)如图,在△ABC中,BC=120,高AD=60,正方形EFGH一边在BC上,点E,F分别在AB,AC上,AD交EF于点N,则AN的长为( )
∴ ∽
∴ ,即:
∴ .故选A.
10.(2020无锡)如图,等边 的边长为3,点 在边 上, ,线段 在边 上运动, ,有下列结论:
① 与 可能相等;② 与 可能相似;③四边形 面积的最大值为 ;④四边形 周长的最小值为 .其中,正确结论的序号为()
A. ①④B. ②④C. ①③D. ②③
解:①∵线段 在边 上运动, ,
∴ ,
∴ 与 不可能相等,则①错误;
②设 ,
∵ , ,
∴ ,即 ,
假设 与 相似,
∵∠A=∠B=60°,
∴ ,即 ,
从而得到 ,解得 或 (经检验是原方程的根),
又 ,
∴解得的 或 符合题意,
即 与 可能相似,则②正确;
③如图,过P作PE⊥BC于E,过F作DF⊥AB于F,
设 ,
由 , ,得 ,即 ,
A. B. C. D.
【解析】A.
解:过点D作DE⊥BC于点E.则BE=AD=2,DE=AB= ,
设BC= C= ,CE= -2.
∵ 为等腰三角形,
∴ C=BD= ,∠D C=90°
∴DC=
在RT△DCE中,由勾股定理得: ,
即: ,解得: , (舍去)。
∴在RT△ABC中,AC= = =
由旋转得:BC= C,AC= ,
解得:x=45,y=72;
当长60cm的木条与120cm的一边对应,则 ,
解得:x=37.5,y=50.
答:有两种不同的截法:把120cm的木条截成45cm、72cm两段或把120cm的木条截成37.5cm、50cm两段.
A.一种B.两种C.三种D.四种
解:长120cm的木条与三角形木架的最长边相等,则长120cm的木条不能作为一边,
设从120cm的木条上截下两段长分别为xcm,ycm(x+y≤120),
由于长60cm的木条不能与75cm的一边对应,否则x、y有大于120cm,
当长60cm的木条与100cm的一边对应,则 ,
∴ ,
∵∠B=60°,∴ ,
∵ ,∠A =60°,∴ ,
则 ,

∴四边形 面积为: ,
又∵ ,
∴当 时,四边形 面积最大,最大值为: ,
即四边形 面积最大值为 ,
则③正确;
④如图,作点D关于直线 的对称点D1,连接D D1,与 相交于点Q,再将D1Q沿着 向B端平移 个单位长度,即平移 个单位长度,得到D2P,与 相交于点P,连接PC,
A. B.2C.4D.
解:∵以原点为位似中心,在原点的同侧画△DEF,使△DEF与△ABC成位似图形,且相似比为2:1,
而A(1,2),C(3,1),
∴D(2,4),F(6,2),
∴DF= = ,
故选:D.
6.(2020重庆B卷)如图,△ABC与△DEF位似,点O为位似中心.已知OA∶OD=1∶2,
则△ABC与△DEF的面积比为()
A.1∶2B.1∶3C.1∶4D.1∶5
.答案C.
6.(2020甘肃定西ቤተ መጻሕፍቲ ባይዱ生活中到处可见黄金分割的美.如图,在设计人体雕像时,使雕像的腰部以下 与全身 的高度比值接近0.618,可以增加视觉美感.若图中 为2米,则 约为()
A.1.24米B.1.38米C.1.42米D.1.62米
A.15B.20C.25D.30
解:设正方形EFGH的边长EF=EH=x,
∵四边EFGH是正方形,∴∠HEF=∠EHG=90°,EF∥BC,
∴△AEF∽△ABC,
∵AD是△ABC的高,∴∠HDN=90°,
∴四边形EHDN是矩形,∴DN=EH=x,
∵△AEF∽△ABC,∴ = (相似三角形对应边上的高的比等于相似比),
∵BC=120,AD=60,∴AN=60﹣x,
∴ = ,解得:x=40,
∴AN=60﹣x=60﹣40=20.故选:B.
11.(2020广西玉林)(3分)(2020•玉林)一个三角形木架三边长分别是75cm,100cm,120cm,现要再做一个与其相似的三角形木架,而只有长为60cm和120cm的两根木条.要求以其中一根为一边,从另一根截下两段作为另两边(允许有余料),则不同的截法有( )
相关文档
最新文档