数学归纳法证明及其使用技巧
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
步骤
第一数学归纳法
一般地,证明一个与自然数n有关的命题P(n),有如下步骤:
(1)证明当n取第一个值n0时命题成立。n0对于一般数列取值为0或1,但
也有特殊情况;
(2)假设当n=k(k≥n0,k为自然数)时命题成立,证明当n=k+1时命题也成立。
综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。
第二数学归纳法
对于某个与自然数有关的命题P(n),
(1)验证n=n0,n=n1时P(n)成立;
(2)假设n≤k时命题成立,并在此基础上,推出n=k+1命题也成立。
综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。
倒推归纳法
又名反向归纳法
(1)验证对于无穷多个自然数n命题P(n)成立(无穷多个自然数可以就是一
个无穷数列中的数,如对于算术几何不等式的证明,可以就是2^k,k≥1);
(2)假设P(k+1)(k≥n0)成立,并在此基础上,推出P(k)成立,
综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立;
螺旋式归纳法
对两个与自然数有关的命题P(n),Q(n),
(1)验证n=n0时P(n)成立;
(2)假设P(k)(k>n0)成立,能推出Q(k)成立,假设 Q(k)成立,能推出 P(k+1)
成立;
综合(1)(2),对一切自然数n(≥n0),P(n),Q(n)都成立。
应用
1确定一个表达式在所有自然数范围内就是成立的或者用于确定一个其她的形式在一个无穷序列就是成立的。
2数理逻辑与计算机科学广义的形式的观点指出能被求出值的表达式就是等价表达式。
3证明数列前n项与与通项公式的成立。
4证明与自然数有关的不等式。
变体
在应用,数学归纳法常常需要采取一些变化来适应实际的需求。下面介绍一些常见的数学归纳法变体。
从0以外的数字开始
如果我们想证明的命题并不就是针对全部自然数,而只就是针对所有大于等于某个数字b的自然数,那么证明的步骤需要做如下修改:
第一步,证明当n=b时命题成立。第二步,证明如果n=m(m≥b)成立,那么可以推导出n=m+1也成立。
用这个方法可以证明诸如“当n≥3时,n^2>2n”这一类命题。
针对偶数或奇数
如果我们想证明的命题并不就是针对全部自然数,而只就是针对所有奇数或偶数,那么证明的步骤需要做如下修改:
奇数方面:
第一步,证明当n=1时命题成立。第二步,证明如果n=m成立,那么可以推导出n=m+2也成立。
偶数方面:
第一步,证明当n=0或2时命题成立。第二步,证明如果n=m成立,那么可以推导出n=m+2也成立。
递降归纳法
数学归纳法并不就是只能应用于形如“对任意的n”这样的命题。对于形如“对任意的n=0,1,2,、、、,m”这样的命题,如果对一般的n比较复杂,而n=m 比较容易验证,并且我们可以实现从k到k-1的递推,k=1,、、、,m的话,我们就能应用归纳法得到对于任意的n=0,1,2,、、、,m,原命题均成立。如果命题P(n)在n=1,2,3,、、、、、、,t时成立,并且对于任意自然数k,由
P(k),P(k+1),P(k+2),、、、、、、,P(k+t-1)成立,其中t就是一个常量,那么P(n)对于一切自然数都成立、
跳跃归纳法
设P(n)表示一个与自然数n有关的命题,若(1)P(1),P(2),…,P(l)成立;(2)假设P(k)成立,可以推出P (k+l)成立,则P(n)对一切自然数n都成立、[1]
合理性
数学归纳法的原理,通常被规定作为自然数公理(参见皮亚诺公理)。但就是在另一些公理的基础上,它可以用一些逻辑方法证明。数学归纳法原理可以由下面的良序性质(最小自然数原理)公理可以推出:
自然数集就是良序的。(每个非空的正整数集合都有一个最小的元素)
比如{1, 2, 3 , 4, 5}这个正整数集合中有最小的数——1、
下面我们将通过这个性质来证明数学归纳法:
对于一个已经完成上述两步证明的数学命题,我们假设它并不就是对于所有的正整数都成立。
对于那些不成立的数所构成的集合S,其中必定有一个最小的元素k。(1就是不属于集合S的,所以k>1)
k已经就是集合S中的最小元素了,所以k-1就是不属于S,这意味着k-1对于命题而言就是成立的——既然对于k-1成立,那么也对k也应该成立,这与我们完成的第二步骤矛盾。所以这个完成两个步骤的命题能够对所有n都成立。[2]注意到有些其它的公理确实就是数学归纳法原理的可选的公理化形式。更确切地说,两者就是等价的。
解题要点
数学归纳法对解题的形式要求严格,数学归纳法解题过程中,
第一步:验证n取第一个自然数时成立
第二步:假设n=k时成立,然后以验证的条件与假设的条件作为论证的依据进行推导,在接下来的推导过程中不能直接将n=k+1代入假设的原式中去。
最后一步总结表述。
需要强调就是数学归纳法的两步都很重要,缺一不可,否则可能得到下面的荒谬证明:
证明1:所有的马都就是一种颜色
首先,第一步,这个命题对n=1时成立,即,只有1匹马时,马的颜色只有一种。
第二步,假设这个命题对n成立,即假设任何n匹马都就是一种颜色。那么当我们有n+1匹马时,不妨把它们编好号:
1, 2, 3……n, n+1
对其中(1、2……n)这些马,由我们的假设可以得到,它们都就是同一种颜色;
对(2、3……n、n+1)这些马,我们也可以得到它们就是一种颜色;
由于这两组中都有(2、3、……n)这些马,所以可以得到,这n+1种马都就是同一种颜色。