材料现代分析方法试题及答案1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、简答题(每题 5 分,共25 分)
1. 扫描电镜的分辨率和哪些因素有关?为什么?
和所用的信号种类和束斑尺寸有关,因为不同信号的扩展效应不同,例如二次电子产生的区域比背散射电子小。
束斑尺寸越小,产生信号的区域也小,分辨率就高。
2.原子力显微镜的利用的是哪两种力,又是如何探测形貌的?
范德华力和毛细力。
以上两种力可以作用在探针上,致使悬臂偏转,当针尖在样品上方扫描时,探测器可实时地检测悬臂的状态,并将其对应的表面形貌像显示纪录下来。
3.在核磁共振谱图中出现多重峰的原因是什么?
多重峰的出现是由于分子中相邻氢核自旋互相偶合造成的。
在外磁场中,氢核有两种取向,与外磁场同向的起增强外场的作用,与外磁场反向的起减弱外场的作用。
根据自选偶合的组合不同,核磁共振谱图中出现多重峰的数目也有不同,满足“n+1”规律
4.什么是化学位移,在哪些分析手段中利用了化学位移?同种原子处于不同化学环境而引起的电子结合能的变化,在谱线上造成的位移称为化学位移。
在XPS、俄歇电子能谱、核磁共振等分析手段中均利用化学位移。
5。
拉曼光谱的峰位是由什么因素决定的, 试述拉曼散射的过程。
拉曼光谱的峰位是由分子基态和激发态的能级差决定的。
在拉曼散射中,若光子把一部分能量给样品分子,使一部分处于基态的分子跃迁到激发态,则散射光能量减少,在垂直方向测量到的散射光中,可以检测到频率为(ν0 - Δν)的谱线,称为斯托克斯线。
相反,若光子从样品激发态分子中获得能量,样品分子从激发态回到基态,则在大于入射光频率处可测得频率为(ν0 + Δν)的散射光线,称为反斯托克斯线
四、问答题(10 分)
说明阿贝成像原理及其在透射电镜中的具体应用方式。
答:阿贝成像原理(5 分):平行入射波受到有周期性特征物体的散射作用在物镜的后焦面上形成衍射谱,各级衍射波通过干涉重新在像平面上形成反映物的特征的像。
在透射电镜中的具体应用方式(5 分)。
利用阿贝成像原理,样品对电子束起散射作用,在物镜的后焦面上可以获得晶体的衍射谱,在物镜的像面上形成反映样品特征的形貌像。
当中间镜的物面取在物镜后焦面时, 则将衍射谱放大,则在荧光屏上得到一幅电子衍射花样;当中间镜物面取在物镜的像面上时,则将图像进一步放大,这就是电子显微镜中的成像操作。
五、计算题(10 分)
用Cu KαX 射线(λ=0.15405nm)的作为入射光时,某种氧化铝的样品的XRD 图谱如下,谱线上标注的是2θ的
角度值,根据谱图和PDF 卡片判断该氧化铝的类型,并写出XRD 物相分析的一般步骤。
答:确定氧化铝的类型(5 分)
根据布拉格方程2dsinθ=nλ,d=λ/(2sinθ)
对三强峰进行计算:0.2090nm,0.1604nm,0.2588nm,与卡片10-0173 α-Al2O3
符合,进一步比对其他衍射峰的结果可以确定是α-Al2O3。
XRD 物相分析的一般步骤。
(5 分)
测定衍射线的峰位及相对强度I/I1:
再根据2dsinθ=nλ求出对应的面间距 d 值。
(1) 以试样衍射谱中三强线面间距d 值为依据查Hanawalt 索引。
(2) 按索引给出的卡片号找出几张可能的卡片,并与衍射谱数据对照。
(3) 如果试样谱线与卡片完全符合,则定性完成。
六、简答题(每题5 分,共15 分)
1.透射电镜中如何获得明场像、暗场像和中心暗场像?
答:如果让透射束进入物镜光阑,而将衍射束挡掉,在成像模式下,就得到明场象。
如果把物镜光阑孔套住一个衍射斑,而把透射束挡掉,就得到暗场像,将入射束倾斜,让某一衍射束与透射电镜的中心轴平行,且通过物镜光阑就得到中心暗场像。
2.简述能谱仪和波谱仪的工作原理。
答:能量色散谱仪主要由Si(Li)半导体探测器、在电子束照射下,样品发射所含元素的荧光标识X 射线,这些X 射线被Si(Li)半导体探测器吸收,进入探测器中被吸收的每一个X 射线光子都使硅电离成许多电子—空穴对,构成一个电流脉冲,经放大器转换成电压脉冲,脉冲高度与被吸收的光子能量成正比。
最后得到以能量为横坐标、强度为纵坐标的X 射线能量色散谱。
在波谱仪中,在电子束照射下,样品发出所含元素的特征x 射线。
若在样品上方水平放置一块具有适当晶面间距 d 的晶体,入射X 射线的波长、入射角和晶面间距三者符合布拉格方程时,这个特征波长的X 射线就会发生强烈衍射。
波谱仪利用晶体衍射把不同波长的X 射线分开,即不同波长的X 射线将在各自满足布拉格方程的2θ方向上被检测器接收,最后得到以波长为横坐标、强度为纵坐标的X射线能量色散谱。
3.电子束与试样物质作用产生那些信号?说明其用途。
(1)二次电子。
当入射电子和样品中原子的价电子发生非弹性散射作用时会损失其部分能量(约30~50 电子伏特),这部分能量激发核外电子脱离原子,能量大于材料逸出功的价电子可从样品表面逸出,变成真空中的自由电子,即二次电子。
二次电子对试样表面状态非常敏感,能有效地显示试样表面的微观形貌。
(2)背散射电子。
背散射电子是指被固体样品原子反射回来的一部分入射电子。
既包括与样品中原子核作用而形成的弹性背散射电子,又包括与样品中核外电子作用而形成的非弹性散射电子。
利用背反射电子作为成像信号不仅能分析形貌特征,也可以用来显示原子序数衬度,进行定性成分分析。
(3)X 射线。
当入射电子和原子中内层电子发生非弹性散射作用时也会损失其部分能量(约几百电子伏特),这部分能量将激发内层电子发生电离,失掉内层电子的原子处于不稳定的
较高能量状态,它们将依据一定的选择定则向能量较低的量子态跃迁,跃迁的过程中将可能发射具有特征能量的x 射线光子。
由于x 射线光子反映样品中元素的组成情况,因此可以用于分析材料的成分。
七、问答题
1.根据光电方程说明X 射线光电子能谱(XPS)的工作原理。
(5 分)
以Mg Kα射线(能量为1253.8 eV)为激发源,由谱仪(功函数4eV)测某元素电子动能为981.5eV,求此元素的电子结合能。
(5 分)
答:在入射X光子的作用下,核外电子克服原子核和样品的束缚,逸出样品变成光电子。
入射光子的能量hυ被分成了三部分:(1)电子结合能EB;(2)逸出功(功函数)ФS和(3)自由电子动能Ek。
hυ= EB + EK +ФS
因此,如果知道了样品的功函数,则可以得到电子的结合能。
X 射线光电子能谱的工资原理为,用一束单色的X 射线激发样品,得到具有一定动能的光电子。
光电子进入能量分析器,利用分析器的色散作用,可测得起按能量高低的数量分布。
由分析器出来的光电子经倍增器进行信号的放大,在以适当的方式显示、记录,得到XPS 谱图,根据以上光电方程,求出电子的结合能,进而判断元素成分和化学环境。
此元素的结合能EB = hυ-EK -ФS=1253.8-981.5-4=268.3eV
2.面心立方结构的结构因子和消光规律是什么?(8 分)如果电子束沿面心立方的【100】晶带轴入射,可能的衍射花样是什么,并对每个衍射斑点予以标注?(7 分)
透射电镜中如何获得明场像、暗场像和中心暗场像?
答:如果让透射束进入物镜光阑,而将衍射束挡掉,在成像模式下,就得到明场象。
如果把物镜光阑孔套住一个衍射斑,而把透射束挡掉,就得到暗场像,将入射束倾斜,让某一衍射束与透射电镜的中心轴平行,且通过物镜光阑就得到中心暗场像。
试述X射线衍射单物相定性分析的基本步骤?
答:上,即中间镜的物平面与物镜的像平面重合单相物质定性分析的基本步骤是:
(1)计算或查找出衍射图谱上每根峰的d值与I值;
(2)利用I值最大的三根强线的对应d值查找索引,找出基本符合的物相名称及卡片号;(3)将实测的d、I值与卡片上的数据一一对照,若基本符合,就可定为该物相。
试简单说明电子束入射固体样品表面激发的主要信号、主要特点和用途。
答:主要有六种:
1)背散射电子:能量高;来自样品表面几百nm深度范围;其产额随原子序数增大而增多.用作形貌分析、成分分析以及结构分析。
2)二次电子:能量较低;来自表层5—10nm深度范围;对样品表面化状态十分敏感。
不能进行成分分析.主要用于分析样品表面形貌。
3)吸收电子:其衬度恰好和SE或BE信号调制图像衬度相反;与背散射电子的衬度互补。
吸收电子能产生原子序数衬度,即可用来进行定性的微区成分分析.
4)透射电子:透射电子信号由微区的厚度、成分和晶体结构决定.可进行微区成分分析。
5)特征X射线: 用特征值进行成分分析,来自样品较深的区域
6)俄歇电子:各元素的俄歇电子能量值很低;来自样品表面1—2nm范围。
它适合做表面分析。
布拉格方程2dsinθ=λ中的d、θ、λ分别表示什么?布拉格方程式有何用途?
答:dHKL表示HKL晶面的面网间距,θ角表示掠过角或布拉格角,即入射X射线或衍射线与面网间的夹角,λ表示入射X射线的波长。
该公式有二个方面用途:
(1)已知晶体的d值。
通过测量θ,求特征X射线的λ,并通过λ判断产生特征X射线的元素。
这主要应用于X射线荧光光谱仪和电子探针中。
(2)已知入射X射线的波长,通过测量θ,求晶面间距。
并通过晶面间距,测定晶体结构或进行物相分析。
何为晶带定理和零层倒易截面? 说明同一晶带中各晶面及
其倒易矢量与晶带轴之间的关系。
答:晶体中,与某一晶向[uvw]平行的所有晶面(HKL)属于同一晶带,称为[uvw]晶带,该晶向[uvw]称为此晶带的晶带轴,它们之间存在这样的关系:
取某点O*为倒易原点,则该晶带所有晶面对应的倒易矢(倒易点)将处于同一倒易平面中,这个倒易平面与Z垂直。
由正、倒空间的对应关系,与Z垂直的倒易面为(uvw)*,即[uvw]⊥(uvw)*,因此,由同晶带的晶面构成的倒易面就可以用(uvw)*表示,且因为过原点O*,则称为0层倒易截面(uvw)*。
试述获取x射线衍射花样的三种基本方法及其用途?
答:获取衍射花样的三种基本方法是劳埃法、旋转晶体法和粉末法。
劳埃法主要用于分析晶体的对称性和进行晶体定向;旋转晶体法主要用于研究晶体结构;粉末法主要用于物相分析。
简要说明多晶(纳米晶体)、单晶及非晶衍射花样的特征及
形成原理。
答:单晶花样是一个零层二维倒易截面,其倒易点规则排列,具有明显对称性,且处于二维网络的格点上。
因此表达花样对称性的基本单元为平行四边形。
单晶电子衍射花样就是(uvw)*0零层倒易截面的放大像。
多晶面的衍射花样为:各衍射圆锥与垂直入射束方向的荧光屏或照相底片的相交线,为一系列同心圆环。
每一族衍射晶面对应的倒易点分布集合而成一半径为1/d的倒易球面,与Ewald 球的相惯线为园环,因此,样品各晶粒{hkl}晶面族晶面的衍射线轨迹形成以入射电子束为轴、2q为半锥角的衍射圆锥,不同晶面族衍射圆锥2q不同,但各衍射圆锥共顶、共轴。
非晶的衍射花样为一个圆斑。