北师大版数学必修二课件:习题课2
北师大版高中数学必修二 习题1-4 课件
12、只要不放弃努力和追求,小草也有点缀春天的价值。 11、人若有志,万事可为。 18.没有斗争就没有功绩,没有功绩就没有奖赏,而没有行动就没有生活 4. 即使赚得了全世界,却失去了自己,又有什么意义呢?
A
6
C
0
和 余弦A 1 值B 的为夹角1
2
.
例2 .如图,正方体 A B C D -A B C D 中, 正方体的棱长为2.求下列异面直线的夹 角的余弦值.
(2)A 1 C 和 A D 1 .
例2 .如图,正方体 A B C D -A B C D 中, 正方体的棱长为2.求下列异面直线的夹 角的余弦值.
(2)A 1 C 和 A D 1 .
法一:
例2 .如图,正方体 A B C D -A B C D 中, 正方体的棱长为2.求下列异面直线的夹 角的余弦值.
(2)A 1 C 和 A D 1 .
法二:
例2 .如图,正方体 A B C D -A B C D 中,
正方体的棱长为2.求下列异面直线的夹角 的余弦值.
(1)A 1 B 和 A C ;
解:连接 A 1 C 1 和 C 1 B ,因为 AA1∥BB1 ,
BB1∥CC1 ,所以 A C ∥A 1 C 1 ,
所以 A 1 B
和
A1C
的夹角
1
即为 A C 和 A 1 B 的夹角.
因为 AB 1BC 1A 1C 1,
单位圆与任意角的三角函数课件-高一下学期数学北师大版(2019)必修第二册
分析:如图设角的终边与单位圆交于点,则点
, ,且 = 1。点 , 在角的终边上,
则 = 2 + 2 ,分别过点, 作轴的垂线, ,
垂足为, ,易知△ ∽△ ,所以
点 , ,那么:
三角函数
的正弦函
数
的余弦函
数
定义
记法
符号表示
点的纵坐标
=
点的横坐标
=
概念剖析:
(1)是一个任意角,也就是实数(弧度数)所以,设是一个任意角实际上就
是说明它是一个任意的实数
(2)终边与单位圆的交点 , ,实际上给出了两对对应关系
2 11
,
3
6
上的最值。
例7、比较函数值的大小
(1)下列结论正确的是( )
A、400 > 50
B、220 < 590
C、130 > 500
D、 −40 < 310
(2)比较下列各组数的大小
6
6
①3, 4
② ,
对 点 练 习
1、在单位圆中, = − :(1)画出角;(2)求角的正弦函数值和余弦函数
4
值。
2、若角的终边过点
1 3
,
2 2
,求,。
3、已知角的顶点为坐标原点,始边为轴的非负半轴,若 4, 是角终边上一
点,且 =
2 5
− ,求的值。
5
3、常见的特殊角的三角函数值
实数对应点的纵坐标,实数对应点的横坐标。
由于对于任意一个角,它的终边是唯一确定的,所以交点 , 唯一确定,也
北师大版高中数学必修第二册课件二
北师大版高中数学必修第二册课件二新北师大版数学必修第二册PPT课件整套这是一套根据新北师大版必修第二册数学最新课本目录设计的PPT课件,整套课堂教学PPT课件包含必修第二册第一章三角函数至第六章立体几何初步所有单元课文(含直线与平面平行PPT课件,诱导公式和对称PPT课件,第5章 PPT课件等),PPT图文并茂,内容丰富,PPT设计精美,含动画,PPT按课时制作,参考省市获奖PPT设计,可用作公开课或优质课教学参考,是老师课堂教学的必备资料,欢迎一键打包整套下载。
北师大版必修第二册高一数学同步精美课件本专辑根据最新考纲编写,知识点详细,例题典型,练习题有针对性,重难点标注清晰,帮助老师轻松备课上课,帮助学生快速解决重难点。
北师大版高中数学必修第二册课件PPT+练习+单元测试卷全册这是一套根据新北师大版必修第二册数学最新课本目录设计的PPT课件和同步练习,整套备课PPT课件包含必修第二册第一章三角函数至第六章立体几何初步所有单元课文(含本章综合与测试PPT课件,1 建筑物高度的测量PPT课件,5 正弦函数、余弦函数的图象与性质再认识PPT课件等),PPT图文并茂,内容丰富,PPT设计精美,PPT按课时制作,参考省市获奖PPT设计,可用作公开课或优质课教学参考,是老师备课的必备资料,欢迎一键打包全册下载。
北师大版数学必修第二册课件PPT+练习整册这是一套根据北师大版必修第二册数学最新课本目录设计的PPT课件,整套教课PPT课件包含必修第二册第一章三角函数至第六章立体几何初步所有单元课文(含平面向量的应用PPT课件,位移、速度、力与向量的概念PPT课件,棱柱、棱锥和棱台PPT课件等),PPT图文并茂,内容丰富,PPT设计精美,含动画,PPT按课时制作,参考省市获奖PPT设计,可用作公开课或优质课教学参考,是老师教课的必备资料,欢迎一键打包整册下载。
高中数学北师大版必修第二册精品课件+教案+学案本资料是依据最新版本创作,内含“精品同步课件+教案+学案”,本资料的教案设计过程流畅、方式多样;课件内容丰富、重点突出、呈现详尽、效果生动;试题难度适中,题型多样、题量适合教学要求。
北师大版()高中数学必修第二册课件ppt(22份)
课堂篇探究学习
探究一
探究二
探究三
探究四
当堂检测
反思感悟 利用正切函数图象解决不等式的解决方法
解决此类问题,一般根据函数的图象利用数形结合直接写出自变量
的取值范围,但要注意是否包含端点值,切记正切函数的最小正周
期为π.
课堂篇探究学习
探究一
探究二
探究三
探究四
当堂检测
变式训练 2(1)求满足- 3<tan x≤1 的 x 的集合;
7.3
正切函数的图象与性质
-1-
课标阐释
1.能够正确画出正切函数的图象.(数学抽象)
2.会通过正切函数的图象研究其性质.(逻辑推理)
3.能运用正切函数图象与性质解决问题.(数学运算)
思维脉络
课前篇自主预习
激趣诱思
知识点拨
正切函数在实际测量中的应用是十分广泛的,例如,测量山的高度、
测量池塘的宽度都需要利用正切函数进行解决.同学们,你能够类
2
是全体实数.
2.正切函数 y=tan x 的最小正周期是 π.一般地,函数
π
y=Atan(ωx+φ)(A>0,ω>0)的最小正周期是 T= .若不知 ω 正负,则该
π
函数的最小正周期为 T= .
||
3.正切函数无单调递减区间,在每一个单调区间内都是单调递增的,
并且每个单调区间均为开区间,不能写成闭区间.
1
tan
答案-5
(- )
=- tan α+
1
tan
=-5.
.
2π
=-tan 5 ,
3π
>tan -
12π
5
北师大版()高中数学必修第二册课件ppt(22份)
y=-2sin 2- +1 的图象.
6
课堂篇探究学习
探究一
探究二
探究三
当堂检测
反思感悟 正、余弦函数图象的变换方法
1.对函数y=Asin(ωx+φ)+b(A>0,ω>0,φ≠0,b≠0),其图象的基本变换有
四种.(1)振幅变换(纵向伸缩变换):是由A的变化引起的.当A>1时其
函数图象上每个点的纵坐标伸长;当A<1时其函数图象上每个点的
得到y=Asin(ωx+φ)(A>0,ω>0,x∈R)的图象.
名师点析由y=sin x变换得到y=Asin(ωx+φ)(A>0,ω>0)的方法
(1)先平移后伸缩:
课前篇自主预习
激趣诱思
知识点拨
(2)先伸缩后平移:
课前篇自主预习
由 y=sin x 的图象得到函数 y=3sin 2x-3 的图象?
2.会用“五点法”作函数y=Asin(ωx+φ)(A>0,ω>0)的图象,明确A,ω,φ
的物理意义.(数学抽象)
3.掌握研究函数y=Asin(ωx+φ)(A>0,ω>0)的性质的基本方法,会研
究其性质.(数学运算)
思维脉络
课前篇自主预习
激趣诱思
知识点拨
电流强度 I(A)随时间 t(s)变化的关系式是 I=Asin(ωt+φ) A>0,
列表如下:
课前篇自主预习
激趣诱思
知识点拨
这五个点为
π-2
2
P1 - ,0 ,P2
, ,P3
π-
,0 ,P4
北师大版()高中数学必修第二册课件ppt(22份)
解在平面内任取一点 O,作向量=a,=b,则向量 a-b=,再作向
量=c,则向量=a-b-c.
课堂篇探究学习
探究一
探究二
探究三
探究四
探究五
当堂检测
向量的减法运算
例2化简下列各式:
(1)( + )+(- − );
(2) − − .
解(1)原式= + + + =( + )+( + )= +
起点相同时,可以考虑用减法.
事实上任意一个非零向量一定可以表示为两个不共线向量的和,即
= + 以及 = − (M,N 是同一平面内任意一点).
课堂篇探究学习
探究一Biblioteka 探究二探究三探究四
探究五
当堂检测
变式训练4如图,解答下列各题:
(1)用 a,d,e 表示;
(2)用 b,c 表示;
课堂篇探究学习
探究一
探究二
探究三
探究四
探究五
当堂检测
变式训练 3 已知△ABC 的三个顶点 A,B,C 及平面内一点 P 满足 +
= ,则下列结论正确的是(
A.点P在△ABC的内部
B.点P在△ABC的边AB上
C.点P在AB边所在直线上
D.点P在△ABC的外部
)
解析由 + = ,可得 = − = ,
(1)两个相等向量之差等于0.(
)
(2)两个相反向量之差等于0.(
)
(3)两个向量的差仍是一个向量.(
)
(4)向量的减法实质上是向量的加法的逆运算.(
答案(1)√ (2)× (3)√ (4)√
北师大版()高中数学必修第二册课件(22份)
所以方向为北偏东 35°+45°=80°.
从而飞机飞行的路程是 1 600 km,
两次飞行的位移和的大小为 800 2 km,方向为北偏东 80°.
课堂篇探究学习
探究一
探究二
探究三
探究四
当堂检测
反思感悟 向量加法应用的关键及技巧
(1)三个关键:一是搞清构成平面图形的向量间的相互关系;二是熟
.
解析 + + =( + )+ = + =0.
答案0
(
)
变式训练2在平行四边形ABCD中,下列结论错误的是(
A. =
)
B. + =
C. + = D. + =0
解析在平行四边形 ABCD 中,应有 + = ,故 C 项错误.
答案C
课堂篇探究学习
探究一
探究二
探究三
探究四
当堂检测
向量的加法运算律及应用
行 800 km,从 B 地按南偏东 55°的方向飞行 800 km.
飞机飞行的路程指的是||+||,两次飞行的位移的和指的是
+ = .依题意,有||+| |=800+800=1 600(km).又
α=35°,β=55°,∠ABC=35°+55°=90°.
所以||= ||2 + | |2 = 8002 + 8002
例3化简下列各式:
(1) + + ;
(2) + + + .
解(1) + + =( + )+=0+ = .
北师大版()高中数学必修第二册ppt(22份)
3.在利用图象研究方程根的个数时,作图要精确,特别注意图象所经
过的某些关键点是否包含.
课堂篇探究学习
探究一
探究二
探究三
探究四
探究五
探究六
当堂检测
1
变式训练 3 判断方程 sin x=-2,x∈[0,2π]根的个数.
1
解画出 y=sin x 和 y=-2在区间[0,2π]上的图象,如图所示.由图象可知
(1)列表:
x
0
y=sin x
y=Asin x+b
0
b
2
1
A+b
0
b
(2)描点:在平面直角坐标系中描出(0,b),
3π
2
3
2
π
-1
-A+b
π
2
, + ,(π,b),
,- + ,(2π,b)五个点.
(3)连线:用光滑的曲线将描出的五个点顺次连接起来.
2π
0
b
课堂篇探究学习
探究一
探究二
3
(1)y=
1-2sin
;
(2)y= 2sin + 1.
1
解(1)要使函数式有意义,需 1-2sin x≠0,即 sin x≠2,而在[0,2π]上有
π
1
5π
1
sin 6 = 2,sin 6 = 2,故该函数的定义域为
π
5π
x x≠6 +2kπ,且 x≠ +2kπ,k∈Z .
6
1
π 3π
2
2
(2)由题意知 2sin x+1≥0,sin x≥- .因为在一个周期 - ,
最新北师大版高一数学必修2全册课件【完整版】
0002页 0068页 0111页 0120页 0181页 0247页 0302页 0355页 0412页 0438页 0509页 0556页 0600页 0616页 0640页 0688页 0710页
第一章 立体几何初步 1.1简单旋转体 习题1—1 习题1—2 3.1简单组合体的三视图 习题1—3 4.1空间图形基本关系的认识 习题1—4 5.2平行关系的性质 6.垂直关系 6.2垂直关系的性质 7.简单几何体的面积和体积 7.2棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积 习题1—7 课题学习 正方体截面的形状 复习题一 1.直线与直线的方程
第一章 立体几何初步
最新北师大版高一数学必修2全册 课件【完整版】
1.简单几何体
最新北师大版高一数学必修2全册 课件【完整版】
1.1简单旋转体
最新北师大版高一数学必修2全册 课件【完整版】
1.2简单多面体
最新北师大版高一数学必修2全册 ห้องสมุดไป่ตู้件【完整版】
习题1—1
最新北师大版高一数学必修2全册 课件【完整版】
北师大版()高中数学必修第二册课件ppt(22份)
1
DM=2MC,BN=2BC,则 ·=
.
解析以 A 为原点,AB,AD 所在直线分别为 x 轴、y 轴建立平面直角坐
标系(图略),则 A(0,0),M(1,2),N(3,1),所以=(1,2),=(3,1),所以
·=1×3+2×1=5.
答案5
课堂篇探究学习
探究一
探究二
探究三
)
课堂篇探究学习
探究一
探究二
探究三
利用坐标运算解决模的问题
例3已知向量a=(1,2),b=(3,-1).
(1)求|a-2b|;
(2)求与a垂直的单位向量;
(3)求与b平行的单位向量.
当堂检测
课堂篇探究学习
探究一
探究二
探究三
当堂检测
解(1)因为 a=(1,2),b=(3,-1),
所以 a-2b=(-5,4),
|a|= 2 + 2 .
2.与已知向量垂直或平行的单位向量
(1)与向量(x0,y0)平行的单位向量是±
(2)与向量(x0,y0)垂直的单位向量是±
1
02 +02
1
02 +02
·
(x0,y0);
·
(-y0,x0).
课堂篇探究学习
探究一
探究二
探究三
当堂检测
变式训练 2 若向量 a=(2x-1,3-x),b=(1-x,2x-1),则|a+b|的最小值为
|c+td|= (2 + 4)2 + (-3)2 = √5 2 + 10 + 25,
5+5
√2
因此可得 =
,解得
2
新教材2023版高中数北师大版选择性必修第二册学习题课:数列求和课件
−
2n−1 2n+1
=12+1-2n1−1
−
2n−1 2n+1
∴Sn=3-2n1−2 − 2n2−n 1=3-2n2+n 3.
题型探究·课堂解透
题型一 分组求和法 例1 已知数列{an}构成一个新数列:a1,(a2-a1),…,(an-an- 1),…此数列是首项为1,公比为13的等比数列. (1)求数列{an}的通项公式; (2)求数列{an}的前n项和Sn.
解析:(1)an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)
=1+13 +
1 3
2
+…+
1 3
n−1=32
1−
1 3
n
.
(2)Sn=a1+a2+a3+…+an
=3 1 − 1 + 3 1 − 1 2 +…+3 1 − 1 n
2
32
3
2
3
=32n-34
1−
1 3
n
=34(2n-1)+14
习题课 数列求和
新知初探·课前预习
题型探究·课堂解透
新知初探·课前预习
[教材要点]
要点一 分组求和法
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适
当拆开,可分为几个等差、等比或常见的数列.所以求此类数列的前
n项和,即先分别求和,然后再合并,形如:
(1){an+bn},其中{an}是等差数列,{bn}是等比数列;
要点三 裂项相消求和法
把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,
从而求得其和.
裂项相消求和经常用到下列拆项公式:
11
(1)n
1 n+1
北师大版()高中数学必修第二册ppt(22份)
(π,-1).
2.要得到 y=cos x 的图象,只需把 y=sin x 的图象向左平移 2 个单位长
度即可,这是利用诱导公式 cos x=sin x+2 得出.
课前篇自主预习
激趣诱思
知识点拨
微判断
判断(正确的打“√”,错误的打“×”).
(1)函数 y=cos x 的图象与 y 轴只有一个交点.
解(1)列表:
x
0
y=cos x
y=2cos x+3
1
5
π
2
0 -1
3 1
3
2
0
3
ห้องสมุดไป่ตู้
2π
1
5
(2)描点:
在平面直角坐标系中描出(0,5),
π
2
,3 ,(π,1),
3π
2
,3 ,(2π,5)五个点.
课堂篇探究学习
探究一
探究二
探究三
探究四
探究五
探究六
(3)连线:
用光滑的曲线将描出的五个点顺次连接起来,如图所示.
π
3
+ 2π ≤ <
5π
6
+ 2π,∈Z
探究五
探究六
当堂检测
课堂篇探究学习
探究一
探究二
探究三
探究四
与余弦函数有关的奇偶性、对称性问题
例5判断下列函数的奇偶性:
(1)f(x)=xcos x;
(2)f(x)=sin2 cos2 ;
(3)f(x)=
cos
1-sin
.
探究五
探究六
当堂检测
当x∈[2kπ,(2k+1)π](k∈Z)时,函数单调递减
北师大版()高中数学必修第二册课件ppt(22份)
π
6
2
函数 f(x)的对称中心的横坐标满足 2x+ =kπ(k∈Z),解得 x=- +
3
∈Z).故选 A.
答案A
(k
课堂篇探究学习
探究一
探究二
探究三
探究四
探究五
当堂检测
正、余弦函数的单调性
例 4 求函数 y=sin
解 y=sin
π
π
3
-2x 的单调递减区间.
π
π
π
π
π
-2x =-sin 2x-3 ,故由 2kπ-2 ≤2x-3 ≤2kπ+2 ,解得 kπ3
φ=- +kπ(k∈Z).
6
2π
课堂篇探究学习
探究一
探究二
探究三
探究四
探究五
当堂检测
反思感悟 正、余弦函数图象的对称轴和对称中心的求解方法
求正、余弦函数图象的对称轴及对称中心,须先把所给正、余弦函
数式化为y=Asin(ωx+φ)或y=Acos(ωx+φ)的形式,再把(ωx+φ)整体看
成一个变量.若求f(x)=Asin(ωx+φ)(ω≠0)图象的对称轴,则只需令
π
ωx+φ= +kπ(k∈Z),求x.若求f(x)=Asin(ωx+φ)(ω≠0)图象的对称中
2
心的横坐标,则只需令ωx+φ=kπ(k∈Z),求x.
课堂篇探究学习
探究一
探究二
探究三
探究四
探究五
当堂检测
π
变式训练 3 已知函数 f(x)=sin ωx+ 3 (ω>0)的最小正周期为 π,则该
北师大版数学必修二课件:习题课2
(组)求得各系数,进而求出圆的方程.
探究一
探究二
探究三
探究四
探究五
一题多解
变式训练1 已知圆C与y轴相切,圆心C在直线l1:x-3y=0上,且圆C在
直线l2:x-y=0上截得的弦长为 2 7, 求圆C的方程.
解:因为圆心C在直线l1:x-3y=0上,
(8)圆的常用几何性质.
①圆心在圆的任一条弦的垂直平分线上.
②圆上异于直径端点的点与直径的两端点连线垂直.
③过切点且垂直于该切线的直线必过圆心.
做一做1 已知x2+y2-2x+y+k=0是圆的方程,则实数k的取值范围是
(
)
A.(-∞,5)
C. -∞,
3
2
B. -∞,
D.
3
2
5
4
,+∞
解析:令D2+E2-4F=(-2)2+12-4k>0,得k <5.
即 x2+y2+2(1+λ)x+(λ-4)y+1+4λ=0.
∵此圆过原点,
1
∴1+4λ=0,λ=-4.
3
17
∴所求的圆的方程为 x2+y2+2x- 4 y=0.
①
(2)依题意可知当圆心在直线 2x+y+4=0 上时,所求的圆的面积
最小.
由(1)易得圆心坐标为 -(1 + ),-4
将其代入直线方程得-2(1+λ)-
x2+y2+Dx+Ey+F+λ(Ax+By+C)=0表示过直线l与圆C的两个交点的
高一下学期数学北师大版必修第二册2.6.1正弦定理习题课课件
63
则 b=________.
Acos C+cos Asin C=65,由
asin B 21
正弦定理得 b= sin A =13
单边
值
边
组合
最值或范
围
单边
求边的组合
2π
1.在△ABC 中,A= 3 ,a
b
= 3c,则 c=
b sin B
=
c sin C
求边的组合
2π
1.在△ABC 中,A= 3 ,a
2
23
1-25= 5 .
求三角函数值
3.在平面四边形 ABCD
中,∠ADC=90°,A=45°,
(1)如图,过点 B 作 BE⊥AD,
垂足为 E,BF⊥CD,垂足为
F. 在 Rt△AEB 中,因为 A
AB=2,BD=5.
(1)求 cos∠ADB;
=45°,AB=2,所以 AE=BE
= 2.
在 Rt△BED 中,
sin A sin B
(
)
1
A.5
5
C. 3
5
B.9
D.1
1
5×3
bsin A
5
sin B= a = 3 =9.
求三角函数值
2.△ABC 的内角 A,B,
1
(1)由题设得 2 acsin B=
a2
1
a
C 的对边分别为 a,b,c.已 3sin A,即2csin B=3sin A.由
a2
知△ABC 的面积为3sin A.
角
值
三角函数
角
最值或范围
角
求三角函数值
1.在△ABC 中,a=3,
北师大版()高中数学必修第二册课件ppt(22份)
1
,2 + .
2
课堂篇探究学习
探究一
探究二
探究三
当堂检测
解(1)因为 a=(1,2),b=(3,-4),c=(-2,6),
所以 a+3b=(1,2)+3(3,-4)=(1,2)+(9,-12)=(10,-10),
a-2b=(2,3)-2(-1,2)=(4,-1).
又因为ma+4b与a-2b共线,所以有(2m-4)×(-1)-4×(3m+8)=0,解得
m=-2.故选D.
答案D
4.已知a=(1,2),b=(1,0),c=(3,4),则当(a+λb)∥c时,λ=
.
1
解析 a+λb=(1+λ,2),由(a+λb)∥c,得(1+λ)×4=3×2,解得 λ=2.
D.(-6,-10)
)
解析 = + = − =(-2,-4),故选 A.
答案A
课堂篇探究学习
探究一
探究二
探究三
当堂检测
3.已知向量a=(2,3),b=(-1,2),若ma+4b与a-2b共线,则m的值为(
1
A.2
B.2
1
C.-2
D.-2
解析由已知得ma+4b=m(2,3)+4(-1,2)=(2m-4,3m+8),
(2)解ka+b=k(1,2)+(-3,2)=(k-3,2k+2),
a-3b=(1,2)-3(-3,2)=(10,-4).
因为(ka+b)∥(a-3b),
北师大版()高中数学必修第二册课件ppt(22份)
于点 P,求.
课堂篇探究学习
探究一
探究二
探究三
当堂检测
2
2
1
2
解 = + = + 3 = + 3 ( − )=3a+3b.
因为与共线,
2
3
3
故可设=t = a+ b.
课堂篇探究学习
探究一
探究二
探究三
当堂检测
延伸探究将本例中“M是AB上靠近B的一个三等分点”改为“M是AB
上靠近A的一个三等分点”,“点N是OA上靠近A的一个四分点”改为
“N为OA的中点”,求BP∶PN的值.
课堂篇探究学习
探究一
探究二
探究三
当堂检测
1
解 = − = a-b,
2
1
1
2
3
又 与 共线,可设=s , = +s = +s( −
4
3
)=4(1-s)a+sb,
3
所以
4
9
(1-) = ,
3
2
= 3 ,
3
3
解得
所以 = 10a+5b.
= 10 ,
3
= 5.
课堂篇探究学习
探究一
探究二
探究三
当堂检测
反思感悟 用一组基表示向量的注意事项
1
3
3
1
A.4a-4b
B.4a-4b
C. a+ b
D. a+ b
3
1
4
4
高一下学期数学北师大版必修第二册2.5.1向量的数量积习题课课件
与终点,则a·b
的最大值为()
分析
1.本题没有两向量
夹角,影响到数量
积公式的套用
2.在不建系(下一
节坐标法)求解的
情况下,用【几何
意义法】也叫【投
影法】
平面向量数量积
6.如图,网格纸
中小正方形的边
长均为1,向量a
如图所一示,若
从A,B,C,D
中任选两个点作
为向量b的起点
与终点,则a·b
运算时,一般有两套方案:
用夹角和不用夹角(已知
数量积)。
2.本题借助正三角
形找出向量夹角,
代入公式即可
投影
9.已知△ABC是边长为2的
正三角形,则向量AB在
方向上的投影数量是()
A.-1 B.1 . − 3. 3
投影
10.已知平面向量a,b满足
|a|=2,|b|=3,且a·b=4,
则向量a在b方向上的投影
(1)向量的数量积a·
b,不能表示为a×b或ab.
(2)两个向量的数量积的结果是一个实数,而不是向量;
向量的数乘的结果是一个向量,其长度是原向量长度的
倍数.
(3)两个向量的数量积所得的数值为两个向量的模与两
个向量的夹角θ的余弦的乘积,由于|a|,|b|均为正数,故其
符号由夹角来决定.
平面向量数量积概念理解
都给了,可以选择
任一种解法。注意
谁在谁方向的投影。
投影
,∣
3
8.向量a与b的夹角为
∣= 1,|b|=2,则a在b方向
上()的投影数量为
A.2
3
. C.1
2
1
.
2