直线的两点式和直线的一般式方程.ppt
合集下载
直线的两点式方程与一般式方程PTT课件
章节:第二章 直线与圆的方程
标题:2.2.2直线的两点式
方程
1课时
环节1:教学目标分解
教学目标
1.根据确定直线位置的几何要素,探索并掌握直线方程的
几种形式(点斜式、斜截式、两点式、截距式及一般式).
2.会进行直线方程的五种形式之间的转化.
3.会根据不同的直线位置特征,求直线的方程.
素养目标
数学抽象
(1) 3x 3 y 8 3 6 0 (2) x 2 (3) 4 x y 7 0
(4) 2 x y 6 0 (5) y 2 ;
距,此时直线在轴上的截距是.
方程
+
= 1由直线在两条坐标轴上的截距与确定
我们把方程
+ = 1叫做直线的截距式方程,简称截距式.
课堂例题
例4 已知△ 的三个顶点(−5,0),(3, − 3),(0,2),
求边所在直线的方程,以及这条边上的中线 所在直线的方
-=(-)
斜截式
= +
两点式
截距式
一般式
− ��
−
=
−
−
+ =
+ + =
求直线方程时方程形式的选择技巧
(1)已知一点的坐标,求过该点的直线方程时,通常选用点斜式
方程.
(2)已知直线的斜率,通常选用点斜式或斜截式,再由其他条件
y 1 x 2
;
3 1 0 2
因为 A 0,5 , B 5,0 ,
y 5 x 0
所以直线 AB 的两点式方程:
标题:2.2.2直线的两点式
方程
1课时
环节1:教学目标分解
教学目标
1.根据确定直线位置的几何要素,探索并掌握直线方程的
几种形式(点斜式、斜截式、两点式、截距式及一般式).
2.会进行直线方程的五种形式之间的转化.
3.会根据不同的直线位置特征,求直线的方程.
素养目标
数学抽象
(1) 3x 3 y 8 3 6 0 (2) x 2 (3) 4 x y 7 0
(4) 2 x y 6 0 (5) y 2 ;
距,此时直线在轴上的截距是.
方程
+
= 1由直线在两条坐标轴上的截距与确定
我们把方程
+ = 1叫做直线的截距式方程,简称截距式.
课堂例题
例4 已知△ 的三个顶点(−5,0),(3, − 3),(0,2),
求边所在直线的方程,以及这条边上的中线 所在直线的方
-=(-)
斜截式
= +
两点式
截距式
一般式
− ��
−
=
−
−
+ =
+ + =
求直线方程时方程形式的选择技巧
(1)已知一点的坐标,求过该点的直线方程时,通常选用点斜式
方程.
(2)已知直线的斜率,通常选用点斜式或斜截式,再由其他条件
y 1 x 2
;
3 1 0 2
因为 A 0,5 , B 5,0 ,
y 5 x 0
所以直线 AB 的两点式方程:
直线的两点式方程、直线的一般式方程课件
___ax_+__by_=__1__ 不表示__垂__直__于____坐标轴的直 线及过___原__点_____的直线
[化解疑难]
1.要注意方程yy2--yy11=xx2--xx11和方程(y-y1)·(x2-x1)=(x- x1)(y2-y1)形式不同,适用范围也不同.前者为分式形式方程, 形式对称,但不能表示垂直于坐标轴的直线.后者为整式形式 方程,适用于过任何两点的直线方程.
②当 m≠0 时,l1∥l2,需m2 =m+3 1≠-42. 解得 m=2 或 m=-3.∴m 的值为 2 或-3. 法二:令 2×3=m(m+1),解得 m=-3 或 m=2. 当 m=-3 时,l1:x-y+2=0,l2:3x-3y+2=0, 显然 l1 与 l2 不重合,∴l1∥l2. 同理当 m=2 时,l1:2x+3y+4=0,l2:2x+3y-2=0,l1 与 l2 不重合,l1∥l2, ∴m 的值为 2 或-3.
解得ab11==43, 或ab22==19252,, 所以直线 l 的方程为 3x+4y-12=0 或 15x+8y-36=0.
(2)设直线 l 的方程为ax+by=1(a>0,b>0), 由题意知,ab=12,34a+2b=1, 消去 b,得 a2-6a+8=0, 解得ab11==43, 或ab22= =26, , 所以直线 l 的方程为 3x+4y-12=0 或 3x+y-6=0.
0.
[活学活用] (1)求与直线3x+4y+1=0平行且过点(1,2)的直线l的方程; (2)求经过点A(2,1)且与直线2x+y-10=0垂直的直线l的方程.
解:(1)法一:设直线 l 的斜率为 k, ∵l 与直线 3x+4y+1=0 平行,∴k=-34. 又∵l 经过点(1,2),可得所求直线方程为 y-2=-34(x-1), 即 3x+4y-11=0.
直线的两点式、一般式方程 课件
[例3] 已知直线l经过点A(-5,6)和点B(-4,8),求直线 的一般式方程和截距式方程,并画图.
[解析] 直线过A(-5,6)、B(-4,8)两点, 由两点式得,8y--66=-x+4+55, 整理得2x-y+16=0, ∴2x-y=-16,两边同除以-16得,-x8+1y6=1. 故所求直线的一般式方程为2x-y+16=0,截距式 方程为-x8+1y6=1.图形略.
[解析] ∵点P在l上射影为Q, ∴PQ⊥l,且Q在l上, ∵kPQ=3--1(- -11)=-2,∴kl=12, ∴直线l方程为y-(-1)=12(x-1), 即x-2y-3=0.
三、解答题 7.求过点P(-3,4)且在两坐标轴上的截距之和为12的 直线的方程.
[解析] 设直线方程为ax+by=1,则
[例7] 求斜率为 且与两坐标轴围成的三角形周长为 12的直线方程.
[分析] 已知直线斜率,可选用直线的斜截式方程, 然后根椐题目条件确定b的值.
[解析] 设直线方程为y=34x+b, 令x=0,得y=b;令y=0,得x=-43b. ∴|b|+|-43b|+ b2+(-43b)2=12. ∴|b|+43|b|+53|b|=12,∴b=±3. ∴所求直线方程为y=34x±3.
8.在求直线方程时,点斜式、斜截式、两点式、截距 式各有怎样的局限性?
[答案] 点斜式和斜截式都是适用于直线的斜率存在 即直线不与x轴垂直的情况;两点式和截距式都适用于直线 不与坐标轴垂直且截距式还要求直线不过原点.
9.已知直线Ax+By+C=0.
(1)若直线过原点,则系数A、B、C满足
C=0,A2+B2≠0 .
[答案] B
B.2x+3y=1 D.2x-3y=1
()
2.过点(-3,2),(9,2)的直线方程是
2.1.2 直线方程的两点式和一般式 课件(北师大必修2)
[通一类] 2.求过点P(2,-1),在x轴、y轴上的截距分别为a, b,且满足a=3b的直线的一般式方程. x y 解:若 a=3b≠0,设所求直线的方程为a+b=1,
x y 即 +b=1. 3b 又∵直线过点 P(2,-1), 2 -1 1 ∴ + b =1,解得 b=- . 3b 3
x y 故所求直线方程为 + =1,即x+3y+1=0. 1 -1 - 3 若a=3b=0,则所求直线过原点,可设方程为y=kx. ∵该直线过点P(2,-1), 1 ∴-1=2k,k=- . 2 1 故所求直线方程为y=- x,即x+2y=0. 2 综上所述,所求直线的方程为x+3y+1=0或x+2y=0.
(2)将 l 的方程化为 y=-(a+1)x+a-2. ∴欲使 l 不经过第二象限,
-a+1>0, 当且仅当 a-2≤0, -a+1=0, 或 a-2≤0,
∴a≤-1. 综上可知,a 的取值范围是(-∞,-1].
求经过点A(-3,4),且在两坐标轴上的截距之和等 于12的直线的方程.
[研一题] [例2] 设直线l的方程为(m2-2m-3)x+(2m2+m
-1)y=2m-6,根据下列条件分别确定m的值:
(1)l在x轴上的截距是-3;
(2)l的斜率是-1.
[自主解答] m2-2m-3≠0, (1)由题意可得 2m-6 m2-2m-3=-3, 由①得:m≠-1 且 m≠3, 5 5 由②得:m=3 或 m=- .∴m=- . 3 3 ① ②
解:(1)当直线过原点时,该直线在 x 轴和 y 轴上的截 距都为零,当然相等,此时 a=2,方程为 3x+y=0. 若 a≠2,由 l 在两坐标轴上的截距相等,有 a-2 =a-2,即 a+1=1, a+1 ∴a=0,l 的方程为 x+y+2=0. 综上可知,l 的方程为 3x+y=0 或 x+y+2=0.
高中数学同步教学课件 直线方程的两点式~ 直线方程的一般式
通性通法
直线方程的一般式的求解策略 (1)当 A≠0 时,方程可化为 x+BA y+CA =0,只需求BA ,CA 的值; 当 B≠0,方程可化为AB x+y+CB =0,只需求AB ,CB 的值.因此, 只要给出两个条件,就可以求出直线方程; (2)在求直线方程时,设一般式有时并不简单,常用的还是根据给定 条件选用五种特殊形式之一求方程,然后转化为一般式.
2.直线方程的截距式在结构上的特点 (1)直线方程的截距式为ax +by =1,其中 x 项对应的分母是直线 在 x 轴上的截距,y 项对应的分母是直线在 y 轴上的截距,中间 以“+”相连,等式的另一端是 1,如2x -3y =1 不是直线方程的 截距式;
(2)注意:当直线的斜率不存在或为 0 或直线经过原点时,直线 方程不能用截距式来表示.
跟踪训练
1.已知直线 l 的倾斜角为 60°,在 y 轴上的截距为-4,
则直线 l 方程的点斜式为
;
截距式为
;
斜截式为
;
一般式为
.
跟踪训练
解析:点斜式方程: y+4= 3 (x-0),
截距式方程: x 43
+-y4
=1,
3
斜截式方程: y= 3 x-4,一般式方程: 3 x-y-4=0.
答案:y+4= 3 (x-0) 3 x-y-4=0
2.*直线方程的点法式 (1)直线的法向量:与直线的方向向量 垂直 的向量称为直线的 法向量; (2)设直线 l 经过点 P(x0,y0),且它的一个法向量为 n=(A,B), 则直线 l 方程的点法式为 A(x-x0)+B(y-y0)=0 .
想一想
1.平面直角坐标系中的每一条直线都可以用直线方程的点法式 表示吗? 提示:都可以.
直线方程的两点式和一般式 课件
(2)直线方程任一形式都可化为一般式,而直线方程的一般式 在一定条件下才能化为点斜式、斜截式、两点式或截距式.
直线方程的应用
直线 l 的方程为(a-2)y=(3a-1)x-1(a∈R).
(1)求证:直线 l 必过定点;
(2)若直线 l 不过第二象限,求实数 a 的取值范围. [解] (1)证明:直线方程可变为 a(3x-y)-(x-2y+1)=0 的
=-2(x-15)2+54 150(0≤x≤90).②9 分 3
∴当 x=15,y=60-2×15=50 时, 3
Smax=54 150 m2.11 分
因此点 P 距直线 AE 15 m,距直线 BC 50 m 时所开发的面积 最大,最大面积为 54 150 m2.③12 分 [规范与警示] (1)解答本题的 3 个关键步骤如下: 一是根据条件建立适当的坐标系是将几何问题转化成代数问 题的关键,也是失分点.
二是根据直线方程确定 x 和 y 的关系后,在②处要根据实际情 况确定出 x 的范围,否则会在后面的应用中忽略范围而出现错 误解答.
三 是在解 答的③ 处的 结论一 定不能 漏掉, 否则解 题步骤 不完 整,造成没必要的 失分. (2)解决 该类问题应注意以下两点: 一是利用坐标法解 决生活问题时,首先要建立适当的坐 标系, 再借助已知条件寻求 x 和 y 的关系.要求一定准确、恰当,否 则给后面的运算化 简带来麻烦.
(3)分类讨论思想的运用 对于特殊情况的处理,考虑问题要全面,这对于完整的解题 是必需的,如本例中的截距互为相反数这一条件的处理,就 必须分等于零和不等于零两种情况来分类讨论,使问题的解 决做到不重不漏.
已知直线 l:5ax-5y-a+3=0.
(1)求证:不论 a 为何值,直线 l 恒过第一象限;
直线方程的应用
直线 l 的方程为(a-2)y=(3a-1)x-1(a∈R).
(1)求证:直线 l 必过定点;
(2)若直线 l 不过第二象限,求实数 a 的取值范围. [解] (1)证明:直线方程可变为 a(3x-y)-(x-2y+1)=0 的
=-2(x-15)2+54 150(0≤x≤90).②9 分 3
∴当 x=15,y=60-2×15=50 时, 3
Smax=54 150 m2.11 分
因此点 P 距直线 AE 15 m,距直线 BC 50 m 时所开发的面积 最大,最大面积为 54 150 m2.③12 分 [规范与警示] (1)解答本题的 3 个关键步骤如下: 一是根据条件建立适当的坐标系是将几何问题转化成代数问 题的关键,也是失分点.
二是根据直线方程确定 x 和 y 的关系后,在②处要根据实际情 况确定出 x 的范围,否则会在后面的应用中忽略范围而出现错 误解答.
三 是在解 答的③ 处的 结论一 定不能 漏掉, 否则解 题步骤 不完 整,造成没必要的 失分. (2)解决 该类问题应注意以下两点: 一是利用坐标法解 决生活问题时,首先要建立适当的坐 标系, 再借助已知条件寻求 x 和 y 的关系.要求一定准确、恰当,否 则给后面的运算化 简带来麻烦.
(3)分类讨论思想的运用 对于特殊情况的处理,考虑问题要全面,这对于完整的解题 是必需的,如本例中的截距互为相反数这一条件的处理,就 必须分等于零和不等于零两种情况来分类讨论,使问题的解 决做到不重不漏.
已知直线 l:5ax-5y-a+3=0.
(1)求证:不论 a 为何值,直线 l 恒过第一象限;
直线的方程(第2课时直线方程的两点式与一般式)课件-2024-2025学年高二上学期数学选择性必修一
5(x+1)+2(y-3)=0,即5x+2y-1=0.
答案:5x+2y-1=0
.
【思考辨析】
判断下列说法是否正确,正确的在它后面的括号里画“√”,错误的画“×”.
(1)直线方程的一般式可表示任意一条直线.( √ )
(2)直线方程的截距式可表示除过原点外的所有直线.( × )
(3)直线方程的两点式适用于求不过原点,且与两坐标轴不垂直的直线的方
(3)若已知直线在坐标轴上的截距是否可以确定直线方程?
提示:可以.
2.(1)直线方程的两点式:过点A(x1,y1),B(x2,y2)(其中x1≠x2,y1≠y2)的直线方程
-1
-1
的两点式为 - = - ,与 坐标轴 垂直的直线没有两点式方程.
2 1
2 1
(2)直线方程的截距式:经过两点P(a,0),Q(0,b)(其中ab≠0)的直线l方程的截
D.5
+ 3 =0
).
二、直线方程的一般式
【问题思考】
1.(1)当B≠0时,方程Ax+By+C=0表示怎样的直线?B=0(A≠0)呢?
提示:当 B≠0 时,由 Ax+By+C=0,得
y=- x- ,所以该方程表示斜率为- ,在
上截距为- 的直线;
当 B=0,A≠0 时,由 Ax+By+C=0,得
图1-1-4
(1)在上述问题中,解题关键是确定直线AB,那么直线AB的方程确定后,点
A,B能否确定?
提示:能确定.
(2)根据图1-1-4,以O为原点,OA所在直线为x轴,OB所在直线为y轴,建立平面
2.2.2直线的两点式方程+2.2.3直线的一般式方程课件(人教版)
C.
y
1 2
x
1 2
D.
y
1 2
x
1 2
解析:由光的反射定律可得,点
A
1 2
,
0
关于
y
轴的对称点
M
1 2
,
0
在反射
光线所在的直线上.再由点 B(0,1) 也在反射光线所在的直线上,用两点式可求得
反射光线所在直线的方程为
y0 1 0
x 0
1
2 1
,即
y
2x
1
.故选
B.
2
6.已知点 A(3, 2) , B(1, 4) ,则经过点C(2,5) 且经过线段 AB 的中点的
A 4.过点 1, 2 ,且与直线 x 2y 2 0 垂直的直线方程为( )
A. 2x y 0
B. x 2y 3 0
C. 2x y 4 0
D. x 2y 5 0
解析:因为直线 x 2y 2 0 的斜率为 1 ,所以过点1, 2 ,且与直线 x 2y 2 0
这就是边 BC 上中线 AM 所在直线的方程.
关于 x,y 的二元一次方程 Ax By C 0 (其中 A,B 不同时为 0)叫做 直线的一般式方程,简称一般式.
例3
已知直线经过点
A(6,
4)
,斜率为
4 3
,求直线的点斜式和
一般式方程.
解:经过点
A(6,
4)
,斜率为
4 3
的直线的点斜式方程是
整理得 5x 3y 6 0 . 这就是边 BC 所在直线的方程.
边 BC 上的中线是顶点 A 与边 BC 中点 M 所连线段,
由中点坐标公式,可得点
直线的方程_PPT课件
(1)l1: x y 0,
l2:3x 3y 10 0 ; 相交
(2)l1:3x y 4 0, l2:6x 2y 1 0; 平行
(3)l1:3x 4y 5 0, l2:6x 8y 10 0.重合
知识探究
1、方程 m(3x 4 y 2) n(2 x y 2) 0 (m,n不同时为0)表示什么图形?
A1 A2
B1 B2
l1与l2相交
8、两条直线的位置关系
已知 : 直线 l1 :A1x+B1y+C1= 0 直线 l2 : A2x+B2y+C2= 0
A1B2 A2 B1且 A1C 2 A2C1 l1、 l2平 行 A1 A2 B1B2 0 l1 l2 A1B2 A2 B1 l1、 l2相 交
知识回顾
判断直线与直线的位置关系
(1)直线2x+y-1=0与直线2x+y+1=0 (2)直线3x+4y-2=0与直线2x+y+2=0
知识探究
怎样确定直线l1:3x+4y-2=0与 直线l2:2x+y+2=0的交点坐标?
y P
o
x
l1
l2
知识探究
一般地,若直线l1:A1x+B1y+C1=0和 l2:A2x+B2y+C2=0相交,如何求其交 点坐标?
知识探究
2、方程 3x 4 y 2 (2 x y 2) 0 表示的直线包括过交点 M(-2,2) 的所有直线吗?
知识探究
一般地,经过两相交直线 l1:A1x+B1y+C1=0和l2:A2x+B2y+C2=0的 交点的直线系方程可怎样表示?
【精品课件】高中数学必修2 直线的方程(两点式、一般式)
x C A
所以任意一个关于x,y的二元一次方程Ax+By+C=0(A,B不同 时为零)都表示一条直线.
问题探究
结论一: 平面直角坐标系中的每一条直线都可以用
一个关于x,y的二元一次方程Ax+By+C=0 (其 中A,B不同时为0)表示.
结论二: 任意一个关于x,y的二元一次方程
Ax+By+C=0 (其中A,B不同时为0)都表示一条直 线.
y 4 x. 5
x y 1,
把P(-5,4)代入上式得 a 1. a a
直线方程为 x y 1,
即 x y 1 0. 综上:直线方程为 y 或54 x
截距为零不 容忽视
x y 1 0.
练习:
1.根据下列条件写出直线方程,并画出简图。
(1)在x轴上的截距是2,在y轴上的截距是3;
⑤过原点
C=0
课堂练习
4.设直线L的方程为(m2-2m-3)x+(2m2+m-1)y=2m-6 根据下列条件确定m的值
(1)L在x轴上的截距为-3;(2)L的斜率为1.
小结
1.本节课都学了哪些知识点?
①二元一次方程与直线的一一对应关系; ②直线的一般式方程的概念; ③ 直线方程的一般式Ax+By+C=0系数A、B、C的几何意义; ④直线方程的各种特殊形式和一般式之间在一定条件下可以互 相转化。
直线的方程 ①过点P1(x1, y1),垂直于x轴的直线的方程:
x= x1 ②过点P1(x1, y1),垂直于y轴的直线的方程:
y= y1 ③x轴: y= 0
④y轴: x= 0
问题探究
问题一: 平面直角坐标系中的每一条直线都可以用
教学课件:第2课时-直线方程的两点式和一般式
直线方程的应用
通过直线方程,可以解决 与直线相关的实际问题, 如求直线上的点、判断两 直线是否平行等。
下节课预告
直线的倾斜角和斜率
直线方程的应用
介绍直线的倾斜角和斜率的概念,以 及它们之间的关系。
通过直线的倾斜角和斜率,可以解决 与直线相关的实际问题,如求直线的 长度、判断两直线是否垂直等。
直线的点斜式和截距式
两点式直线方程的应用
确定直线的斜率和截距
通过给定的两点,可以确定直线的斜 率和截距,进而确定直线的方程。
解决与直线相关的问题
利用两点式直线方程,可以解决与直 线相关的问题,如求直线上某一点的 坐标、判断三点共线等。
03 直线方程的一般式
一般式直线方程的定义
总结词
一般式直线方程是数学中描述直线的一种方式,它包含了直线的斜率和截距信息。
要点二
基础练习题2
已知直线经过点$(2,3)$和斜率为$2$,求直线的两点式方程。
进阶练习题
进阶练习题1
已知直线的一般式方程为$3x + 4y - 12 = 0$,求该直线的斜率。
VS
进阶练习题2
已知直线的一般式方程为$2x - y + 5 = 0$, 求该直线经过的点。
综合练习题
综合练习题1
已知直线经过点$(2,3)$,斜率为$2$,且与 $x$轴交于点$(4,0)$,求该直线的方程。
04 两点式与一般式的比较
形式上的比较
两点式方程
(y - y_1 = m (x - x_1))
一般式方程
(ax + by + c = 0)
使用场景的比较
01
两点式方程适用于已知两点坐标 的情况,可以快速求出直线方程 。
高一数学人必修二课件第三章直线的两点式方程直线的一般式方程
03
直线上任意两点的中点坐标满
足该直线的方程。
04
两条平行直线的斜率相等,即
$k_1 = k_2$。
05
两条垂直直线的斜率互为相反
数的倒数,即 $k_1 cdot k_2
= -1$。
06
02
两点式方程
两点式方程推导
通过已知两点坐标 $(x_1, y_1)$ 和 $(x_2, y_2)$,推导直 线方程。
一般式方程与截距关系
截距定义
直线与坐标轴的交点到原点的距离称为该直线的截距。
一般式方程与截距的关系
直线的一般式方程可以直接反映出该直线在坐标轴上的截距。通过一般式方程 可以求出直线在x轴和y轴上的截距。
04
直线方程求解方法
代入法求解直线方程
已知直线上一点$P(x_0, y_0)$和斜率$k$,则直线方程可表示为$y - y_0 = k(x x_0)$。
直线在坐标轴上的截距可以通 过直线方程求出。
一般式方程形式
综合斜率和截距公式,可以得 到直线的一般式方程。
一般式方程应用
求解直线交点
求解点到直线的距离
两条直线的交点坐标可以通过联立两 条直线的一般式方程求解。
利用点到直线距离公式和直线的一般 式方程,可以求出点到直线的距离。
判断点与直线的位置关系
通过代入点的坐标到直线的一般式方 程中,可以判断点是否在直线上或者 直线的哪一侧。
两点式
已知直线上两点 $(x_1, y_1)$ 和 $(x_2, y_2)$,则直 线可表示 $frac{y y_1}{y_2 - y_1} = frac{x - x_1}{x_2 x_1}$。
截距式
$frac{x}{a} + frac{y}{b} = 1$,其 中 $a$ 是直线在 $x$ 轴上的截距, $b$ 是直线在 $y$ 轴上的截距。
直线方程的两点式和一般式PPT课件
奠定基础。
学习目标
掌握直线方程的两点 式和一般式的推导过 程。
能够运用直线方程的 两点式和一般式解决 实际问题。
理解直线方程的两点 式和一般式的几何意 义。
02 两点式直线方程
定义
总结词
两点式直线方程是描述直线方程的一种方式,基于直线上两点的坐标来定义。
详细描述
两点式直线方程,也称为两点式或线式方程,是基于直线上两个已知点的坐标来定 义的。假设两点为$P_1(x_1, y_1)$和$P_2(x_2, y_2)$,则两点式直线方程可以表示 为:$frac{y - y_1}{x - x_1} = frac{y_2 - y_1}{x_2 - x_1}$。
解决实际问题
在实际问题中,已知直线上两点 的坐标,可以通过两点式方程求 出直线的斜率和截距,再通过转 换得到一般式方程,从而解决实
际问题。
数学建模
在数学建模中,通过将实际问题 转化为数学模型,利用两点式与 一般式的转换关系,可以方便地
求解直线方程。
科学实验
在科学实验中,有时需要利用已 知的两点坐标来计算直线的斜率 和截距,进而通过转换得到一般 式方程,用于描述实验数据的变
应用场景
总结词
一般式直线方程在几何、代数、解析几何等领域都有广 泛的应用。
详细描述
在几何中,一般式直线方程可以用来描述平面上的任意 一条直线,并且可以用来计算直线的斜率和截距。在代 数中,一般式直线方程可以用来解决线性方程组的问题 ,通过代入法或者消元法可以得到解。在解析几何中, 一般式直线方程可以用来研究直线的性质和特点,例如 直线的平行、垂直、相交等关系。
$Ax + By + C = 0$,其中$A$、$B$ 不同时为零。
学习目标
掌握直线方程的两点 式和一般式的推导过 程。
能够运用直线方程的 两点式和一般式解决 实际问题。
理解直线方程的两点 式和一般式的几何意 义。
02 两点式直线方程
定义
总结词
两点式直线方程是描述直线方程的一种方式,基于直线上两点的坐标来定义。
详细描述
两点式直线方程,也称为两点式或线式方程,是基于直线上两个已知点的坐标来定 义的。假设两点为$P_1(x_1, y_1)$和$P_2(x_2, y_2)$,则两点式直线方程可以表示 为:$frac{y - y_1}{x - x_1} = frac{y_2 - y_1}{x_2 - x_1}$。
解决实际问题
在实际问题中,已知直线上两点 的坐标,可以通过两点式方程求 出直线的斜率和截距,再通过转 换得到一般式方程,从而解决实
际问题。
数学建模
在数学建模中,通过将实际问题 转化为数学模型,利用两点式与 一般式的转换关系,可以方便地
求解直线方程。
科学实验
在科学实验中,有时需要利用已 知的两点坐标来计算直线的斜率 和截距,进而通过转换得到一般 式方程,用于描述实验数据的变
应用场景
总结词
一般式直线方程在几何、代数、解析几何等领域都有广 泛的应用。
详细描述
在几何中,一般式直线方程可以用来描述平面上的任意 一条直线,并且可以用来计算直线的斜率和截距。在代 数中,一般式直线方程可以用来解决线性方程组的问题 ,通过代入法或者消元法可以得到解。在解析几何中, 一般式直线方程可以用来研究直线的性质和特点,例如 直线的平行、垂直、相交等关系。
$Ax + By + C = 0$,其中$A$、$B$ 不同时为零。
直线的两点式方程 、直线的一般式方程 课件
法二 由题意可知,直线 l 的斜率存在且不为 0,设其斜 率为 k,则可得直线的方程为 y+2=k(x-3).
令 x=0,得 y=-2-3k. 令 y=0,得 x=2k+3. 由题意-2-3k=2k+3,解得 k=-1 或 k=-23. 所以直线 l 的方程为 y+2=-(x-3)或 y+2=-23(x-3), 即 x+y-1=0 或 2x+3y=0.
直线的两点式方程 三角形的三个顶点是 A(-1,0),B(3,-1),
C(1,3),求三角形三边所在直线的方程. 【思路探究】 由两点式直接求出三角形三边所在的直
线的方程.
【自主解答】 由两点式,直线 AB 所在直线方程为: y0----11=-x-1-33,即 x+4y+1=0. 同理,直线 BC 所在直线方程为: -y-1-33=3x--11,即 2x+y-5=0. 直线 AC 所在直线方程为: 0y--33=-x-1-11,即 3x-2y+3=0.
2.关于 x,y 的二元一次方程 Ax+By+C=0(A,B 不同 时为 0)一定表示直线吗?
【提示】 一定.
直线的一般式方程 (1)定义:关于 x,y 的二元一次方程 Ax+By+C=0 (其 中 A,B 不同时为 0)叫做直线的一般式方程,简称一般式. (2)斜率:直线 Ax+By+C=0(A,B 不同时为 0),当 B≠0 时,其斜率是-AB ,在 y 轴上的截距是-CB .当 B=0 时,这 条直线垂直于 x 轴,不存在斜率.
直线的两点式方程 直线的一般式方程
直线方程的两点式和截距式 【问题导思】
1.利用点斜式解答如下问题: (1)已知直线 l 经过两点 P1(1,2),P2(3,5),求直线 l 的方程; (2)已知两点 P1(x1,y1),P2(x2,y2),其中 x1≠x2,y1≠y2, 求通过这两点的直线方程. 【提示】 (1)y-2=32(x-1). (2)y-y1=yx22- -yx11(x-x1). 2.过点(3,0)和(0,6)的直线能用3x+6y=1 表示吗? 【提示】 能.
直线的两点式和截距式的方程及一般式方程PPT课件
参数法求解
参数法是一种将变量用参数表示 出来的方法,适用于已知一个点
坐标和斜率的情况。
步骤:首先根据已知条件设定参 数方程,然后根据参数方程解出
变量的值。
例如,已知点A(1,2)和斜率m=1, 代入参数方程得:{x=t*cosα,
y=t*sinα},将点A的坐标代入得: {t*cosα=1, t*sinα=2},解得:
力的合成与分解
在分析力的作用时,直线 方程可以用来表示力的方 向和大小。
电路分析
在电路分析中,直线方程 可以用来描述电流、电压 和电阻之间的关系。
实际生活问题
交通规划
在城市交通规划中,直线 方程可以用来描述道路的 走向和长度。
建筑结构设计
在建筑设计时,直线方程 可以用来确定建筑物的位 置、高度和方向。
直线的两点式和截距式的方程及一 般式方程ppt课件
contents
目录
• 直线的两点式方程 • 直线的截距式方程 • 直线的一般式方程 • 直线方程的求解方法 • 直线方程在实际问题中的应用
01 直线的两点式方程
定义
两点式方程
给定直线上的两个点$(x_1, y_1)$ 和$(x_2, y_2)$,通过这两点可以 确定一条直线的方程。
经济数据分析
在经济数据分析中,直线 方程可以用来描述经济增 长、消费和收入之间的关 系。
THANKS FOR WATCHING
感谢您的观看
推导过程
通过两点确定一条直线的原理,设直线上的两点为 (P_1(x_1, y_1)) 和 (P_2(x_2, y_2)),斜率 (m = frac{y_2 - y_1}{x_2 - x_1}),截距 (b = y_1 - m cdot x_1)。
直线的一般式方程.ppt课件
综上可知,当a=1或a=-1时,直线l1⊥l2.
法二:由直线l1⊥l2, 所以(a+2)(a-1)+(1-a)(2a+3)=0, 解得a=±1. 将a=±1代入方程,均满足题意. 故当a=1或a=-1时,直线l1⊥l2.
补充 : 设直线l1、l2的方程分别为 l1:A1x B1y C1 0, l2:A2x B2y C2 0, 在什么条件下有 1 l1 / /l2 ; 2 l1 l2
法二:设与直线3x+4y+1=0平行的直线l的方程为3x +4y+m=0. ∵l经过点(1,2), ∴3×1+4×2+m=0,解得m=-11. ∴所求直线方程为3x+4y-11=0. (2)法一:设直线l的斜率为k. ∵直线l与直线2x+y-10=0垂直, ∴k·(-2)=-1, ∴k=12. 又∵l经过点A(2,1), ∴所求直线l的方程为y-1=12(x-2),即x-2y=0.
1 l1 / /l2 A1B2 A2B1 0且B1C2 B2C1 0
2 l1 l2 A1A2 B1B2 0
2.与直线 Ax+By+C=0 平行的直线方程可设为 Ax +By+m=0,(m≠C),与直线 Ax+By+C=0 垂直的直 线方程可设为 Bx-Ay+m=0.
例3:已知直线l的方程为3x+4y-12=0, 求满足下列条件的直线l′的方程: (1)过点(-1,3),且与l平行; (2)过点(-1,3),且与l垂直.
在方程Ax+By+C=0中,A,B,C为何值时,
方程表示的直线:
(1)平行于x轴;(2)平行于y轴;(3)与x轴重合;
(4)与y轴重合; (5)过原点;
y l
(5) C=0,A、B不同时为0
o
x
在方程Ax+By+C=0中,A,B,C为何值时, 方程表示的直线为:
教学课件第2课时直线方程的两点式和一般式
适用范围
不垂直坐标轴 不垂直坐标轴且不经 过原点
A,B不同时为0
不相信自己的意志,永远干不成大事.
平面直角坐标系中的任意一条直线都可以表示成
Ax By C 0( A,B 不同时为 0)的形式.
直线方程的一般式
关于 x, y 的二元一次方程 Ax By C 0( A,B 不同时为 0)
表示的是一条直线,我们把它叫作直线方程的一般式.
在无特殊说明的 条件下,直线方 程写成一般式.
思考1: “A,B不同时为零”指的是什么? 提示:“A,B不同时为零”指的是A,B中至少有一 个不为零,它包括三种情况:①A≠0且B≠0, ②A≠0且B=0,③A=0且B≠0.
(3)错误.求直线的一般式方程,表面上需求A,
B,C三个系数,由于A,B不同时为零,若A≠0,
则方程化为 x B y 只C 需 0确,定 的值B,;C 若B≠0,则方程A化为AA x y C只需0,确A定A
B
B
A,的C 值.因此,只要给出两个条件,就可以求出
BB
直线方程.
例 3.已知三角形三个顶点分别是 A(3,0),B(2,2),C(0,1) ,
答案:(1)× (2)√ (3)×
提示:(1)错误. (2)正确.因为在平面直角坐标系中,每一条直线 都有倾斜角α,当α≠90°时,直线的斜率存在, 其方程可写成y=kx+b,它可变形为kx-y+b=0, 与Ax+By+C=0比较,A=k,B=-1,C=b;当 α=90°时,直线斜率不存在,其方程可写成x=x1, 与Ax+By+C=0比较,A=1,B=0,C=-x1,显然A, B不同时为0,所以此说法是正确的.
求这个三角形三边各自所在直线的方程. 解:因为直线 AB 过 A(3,0),B(2,2) 两点,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[再练一题] 1.(1)若直线 l 经过点 A(2,-1),B(2,7),则直线 l 的方程为________; (2)若点 P(3,m)在过点 A(2,-1),B(-3,4)的直线上,则 m=________. 【解析】 (1)由于点 A 与点 B 的横坐标相等,所以直线 l 没有两点式方程, 所求的直线方程为 x=2. (2)由两点式方程得,过 A,B 两点的直线方程为4y----11=-x-3-22,即 x+y -1=0.又点 P(3,m)在直线 AB 上,所以 3+m-1=0,得 m=-2.
【答案】 (1)x=2 (2)-2
直线的截距式方程
求过点(4,-3)且在两坐标轴上截距的绝对值相等的直线 l 的方程.
【精彩点拨】 解此题可以利用两种方法,第一是利用截距式,分三种情 况,截距相等不为零,截距互为相反数不为零,截距均为零,第二,利用点斜 式,然后利用截距的绝对值相等求斜率.
【自主解答】 法一 设直线在 x 轴、y 轴上的截距分别为 a,b. ①当 a≠0,b≠0 时,设 l 的方程为ax+by=1. ∵点(4,-3)在直线上,∴4a+-b3=1, 若 a=b,则 a=b=1,直线方程为 x+y=1. 若 a=-b,则 a=7,b=-7,此时直线的方程为 x-y=7. ②当 a=b=0 时,直线过原点,且过点(4,-3), ∴直线的方程为 3x+4y=0. 综上知,所求直线方程为 x+y-1=0 或 x-y-7=0 或 3x+4y=0.
练习
直线 3x-2y=4 的截距式方程是( )
A.34x-2y=1 C.34x--y2=1
B.x1-y1=4
32
D.x4+-y2=1
3
【解析】 将 3x-2y=4 化为x4+-y2=1 即得.
3
【答案】 D
直线的两点式方程
[小组合作型]
在△ABC 中,A(-3,2),B(5,-4),C(0,-2), (1)求 BC 所在直线的方程; (2)求 BC 边上的中线所在直线的方程.
y0=-4+2 -2=-3. ∴M52,-3, 又 BC 边上的中线经过点 A(-3,2). ∴由两点式得-y-3-22=52x----33, 即 10x+11y+8=0. 故 BC 边上的中线所在直线的方程为 10x+11y+8=0.
小结
1.由两点式求直线方程的步骤 (1)设出直线所经过点的坐标. (2)根据题中的条件,找到有关方程,解出点的坐标. (3)由直线的两点式方程写出直线的方程. 2.求直线的两点式方程的策略以及注意点 当已知两点坐标,求过这两点的直线方程时,首先要判断是否满足两点式 方程的适用条件:两点的连线不平行于坐标轴,若满足,则考虑用两点式求方 程.
阶
阶
段
段
一
三
直线的两点式方程
直线的一般式方程
学
阶 段 二
ห้องสมุดไป่ตู้
业 分 层 测
评
三维目标
1.会根据条件写出直线的两点式方程和截距式方程.(重点) 2.了解二元一次方程与直线的对应关系,掌握直线的一般形式.(重点、难 点) 3.根据确定直线位置的几何要素,探索并掌握直线方程几种形式之间的关 系.(易错、易混点)
__ax_+__by_=__1_
斜率存在且 不为 0,不过 原点
练习 一条直线不与坐标轴平行或重合,则它的方程( ) A.可以写成两点式或截距式 B.可以写成两点式或斜截式或点斜式 C.可以写成点斜式或截距式 D.可以写成两点式或截距式或斜截式或点斜式
【解析】 由于直线不与坐标轴平行或重合,所以直线的斜率存在,且直 线上任意两点的横坐标及纵坐标都不相同,所以直线能写成两点式或斜截式或 点斜式.由于直线在坐标轴上的截距有可能为 0,所以直线不一定能写成截距式, 故选 B.
【解析】
设 B(x,y),则12+ +22 xy= =23, ,
∴yx==43 ,即 B(3,4).
【答案】 (3,4)
教材整理 3 直线的一般式方程 阅读教材 P97“练习”以下至 P99“练习”以上部分,完成下列问题. 1.定义:关于 x,y 的二元一次方程_A_x_+__B_y_+__C_=__0_ (其中 A,B 不同时为 0) 叫做直线的一般式方程,简称一般式. 2.斜率:直线 Ax+By+C=0(A,B 不同时为 0),当 B≠0 时,其斜率是 _-__AB_,在 y 轴上的截距是-__CB_.当 B=0 时,这条直线垂直于 x 轴,不存在斜率.
【精彩点拨】 (1)由两点式直接求 BC 所在直线的方程; (2)先求出 BC 的中点,再由两点式求直线方程.
【自主解答】 (1)∵BC 边过两点 B(5,-4),C(0,-2),∴由两点式得 -y-2---44=0x--55,
即 2x+5y+10=0. 故 BC 所在直线的方程为 2x+5y+10=0. (2)设 BC 的中点为 M(x0,y0), 则 x0=5+2 0=52,
法二 设直线 l 的方程为 y+3=k(x-4), 令 x=0,得 y=-4k-3;令 y=0,得 x=4k+k 3. 又∵直线在两坐标轴上的截距的绝对值相等, ∴|-4k-3|=4k+k 3, 解得 k=1 或 k=-1 或 k=-34. ∴所求的直线方程为 x-y-7=0 或 x+y-1=0 或 3x+4y=0.
【答案】 B
教材整理 2 线段的中点坐标公式 阅读教材 P96“例 4”至 P97“练习”以上部分,完成下列问题. 若点 P1,P2 的坐标分别为(x1,y1),(x2,y2),设 P(x,y)是线段 P1P2 的中点, 则 x=x1+2 x2,
y=y1+2 y2.
练习 已知 A(1,2)及 AB 的中点(2,3),则 B 点的坐标是________.
[基础·初探] 教材整理 1 直线方程的两点式和截距式 阅读教材 P95~P96“例 4”以上部分,完成下列问题.
名称
已知条件
示意图
两点式
P1(x1,y1),P2(x2, y2),其中 x1≠x2, y1≠y2
截距式
在 x,y 轴上的 截距分别为 a,b 且 a≠0,b≠0
方程
使用范围
_yy_2--__yy_11_=__xx_2--__xx_11_ 斜 率 存 在 且 不为 0