必修四简单的三角恒等变换(附答案)
数学人教A版必修4: 3.2简单的三角恒等变换 含解析 精
备课资料一、三角函数的综合问题三角函数是中学学习的重要的基本初等函数之一,近年来,高考每年都要考查三角函数的图象和性质的基础知识.在综合题中,也常常会涉及三角函数的基础知识的应用.因此,对本单元的学习要落实在基础知识、基本技能和基本方法的前提下,还应注意与其他部分知识的综合运用.三角函数同其他函数一样,具有奇偶性、单调性、最值等问题,我们还要研究三角函数的周期性、图象及图象的变化,有关三角函数的求值、化简、证明等问题.应熟知三角函数的基本性质,并能以此为依据,研究解析式为三角式的函数的性质,掌握判断周期性,确定单调区间的方法,能准确认识三角函数的图象,会做简图、对图象进行变化.二、备用习题 1.20cos 10cos 20sin 10sin ++的值是( ) A.tan10°+tan20° B.33 C.tan5° D.2-3 2.若α-β=4π,则sinαsinβ的最大值是( ) A.422- B.422+ C.43 D.1 3.已知sinα+sinβ+sinγ=0,cosα+cosβ+cosγ=0,则cos(β-γ)的值是( )A.1B.-1C.21 D.21- 4.若cosαsinx=21,则函数y=sinαcosx 的值域是( ) A.[23-,21] B.[21-,21] C.[21-,23] D.[-1,1]5.log 2(1+tan19°)+log 2(1+tan26°)=______________.6.已知函数f(x)=cos2xcos(3π-2x),求f(x)的单调递减区间、最小正周期及最大值. 7.已知sinA=53-,cosB=419-,A ∈(23π,2π),B ∈(π,23π),求sin(2A-2B )的值,并判定2A-2B 所在的象限.8.已知f(0)=a,f(2π)=b,解函数方程:f(x+y)+f(x-y)=2f(x)·cosy. 参考答案:1.D2.B3.D4.B5.16.f(x)=21[cos 3π+cos(4x-3π)]=21cos(4x-3π)+41,由2kπ≤4x -3π≤2kπ+π(k ∈Z ),得原函数的单调递减区间是[2πk +12π,2πk +3π](k ∈Z ),T=2π,最大值是43.7.cosA=54,sin2A=2524-,cos2A=1-2sin 2A=257,∵B ∈(π,23π),∴2B ∈(2π,43π). ∴sin 2B =415,cos 2B =414-. ∴sin(2A-2B )=sin2 A cos 2B -cos2Asin 2B =10254161. 又cos(2A-2B )=cos2Acos 2B +sin2Asin 2B <0,∴2A-2B 是第二象限角. 8.分别取⎩⎨⎧==.,0t y x ⎪⎪⎩⎪⎪⎨⎧=+=.2,2ππy t x ⎪⎪⎩⎪⎪⎨⎧+==.2,2t y x ππ代入方程,得⎪⎪⎩⎪⎪⎨⎧∙-=-++=++∙=-+)3(,sin )2(2)()()2(,0)()()1(,cos )0(2)()(t f t f t f t f t f t f t f t f πππ①+②-③,得2f(t)=2f(0)cost+2f(2π)sint.∵f(0)=a,f(2π)=b,∴f(x)=acosx+bsinx.(设计者:房增凤)。
【精品】高中数学 必修4_简单的三角恒等变换_讲义 知识点讲解+巩固练习(含答案)提高
简单的三角恒等变换【学习目标】1.能用二倍角公式推导出半角的正弦、余弦、正切公式; 2.掌握公式应用的常规思路和基本技巧;3.了解积化和差、和差化积公式的推导过程,能初步运用公式进行互化;4.通过运用公式进行简单的恒等变换,进一步提高运用联系的观点、化归的思想方法处理问题的自觉性,体会换元思想的作用,发展推理能力和运算能力;5.通过公式的推导,了解它们的内在联系和知识发展过程,体会特殊与一般的关系,培养利用联系的观点处理问题的能力.【要点梳理】要点一:升(降)幂缩(扩)角公式升幂公式:21cos 22cos αα+=, 21cos 22sin αα-= 降幂公式:21cos 2cos 2αα+=,21cos 2sin 2αα-= 要点诠释:利用二倍角公式的等价变形:21cos 2sin 2αα-=,21cos 2cos 2αα+=进行“升、降幂”变换,即由左边的“一次式”化成右边的“二次式”为“升幂”变换,逆用上述公式即为“降幂”变换. 要点二:辅助角公式1.形如sin cos a x b x +的三角函数式的变形:sin cos a x b x +x x ⎫⎪⎭令cos ϕϕ==,则sin cos a x b x +)sin cos cos sin x x ϕϕ+)x ϕ+(其中ϕ角所在象限由,a b 的符号确定,ϕ角的值由tan ba ϕ=确定,或由sin ϕ=和cos ϕ=)2.辅助角公式在解题中的应用通过应用公式sin cos a x b x +)x ϕ+(或sin cos a x b x +)αϕ-),将形如sin cos a x b x +(,a b 不同时为零)收缩为一个三角函数)x ϕ+(或)αϕ-).这种恒等变形实质上是将同角的正弦和余弦函数值与其他常数积的和变形为一个三角函数,这样做有利于函数式的化简、求值等.要点三:半角公式(以下公式只要求会推导,不要求记忆)sin2α=cos 2α=tan2α=以上三个公式分别称作半角正弦、余弦、正切公式,它们是用无理式表示的.sin 1cos tan,tan 21cos 2sin αααααα-==+ 以上两个公式称作半角正切的有理式表示. 要点四:积化和差公式1sin cos [sin()sin()]2αβαβαβ=-++1cos sin [sin()sin()]2αβαβαβ=+--1cos cos [cos()cos()]2αβαβαβ=-++1sin sin [cos()cos()]2αβαβαβ=--+要点诠释:规律1:公式右边中括号前的系数都有12.规律2:中括号中前后两项的角分别为αβ+和αβ-. 规律3:每个式子的右边分别是这两个角的同名函数.要点五:和差化积公式sin sin 2sincos22x y x yx y +-+= sin sin 2cos sin22x y x yx y +--=cos cos 2cos cos22x y x yx y +-+= cos cos 2sin sin22x y x yx y +--=- 要点诠释:规律1:在所有的公式中,右边积的系数中都有2.规律2:在所有的公式中,左边都是角A 与B 的弦函数相加减,右边都是2A B +与2A B-的弦函数相乘.规律3:在第三个公式中,左边是两个余弦相加,右边是两个余弦相乘,于是得出“扣(cos )加扣等于俩扣”;而第四个公式中,左边是两个余弦相减,右边没有余弦相乘,于是得出“扣减扣等于没扣”.规律4:两角正弦相加减时,得到的都是正弦、余弦相乘.注意1、公式中的“和差”与“积”,都是指三角函数间的关系,并不是指角的关系.2、只有系数绝对值相同的同名三角函数的和与差,才能直接应用公式化成积的形式.如sin cos αβ+就不能直接化积,应先化成同名三角函数后,再用公式化成积的形式.3、三角函数的和差化积,常因采用的途径不同,而导致结果在形式上有所差异,但只要没有运算错误,其结果实质上是一样的.4、为了能把三角函数的和差化成积的形式,有时需要把某些特殊数值当作三角函数值,如1πππcos cos cos 2sin sin 236262αααα⎛⎫⎛⎫-=-=-+- ⎪ ⎪⎝⎭⎝⎭. 5、三角函数式和差化积的结果应是几个三角函数式的最简形式.【典型例题】类型一:利用公式对三角函数式进行证明 例1.求证:A AA AA 4tan 4cos 2cos 434cos 2cos 43=+++-.【思路点拨】观察等式左右两边,易知运用倍角公式进行转换.【证法一】12cos 22cos 4312cos 22cos 4322-++-+-=A A A A 左边222cos 24cos 222cos 24cos 22A A A A -+=++12cos 22cos 12cos 22cos 22+++-=A A A A22(cos 21)(cos 21)A A -=+2222)cos 2()sin 2(A A =4tan A ==右边∴ 等式成立【证法二】)4cos 1()2cos 1(4)4cos 1()2cos 1(4A A A A --+---=左边=⋅-⋅-422242222222sin sin cos sin A AA A AA A A A A 222222cos sin 8cos 8cos sin 8sin 8--= 2222sin (1cos )cos (1sin )A A A A -=- 424sin tan cos AA A===右边 ∴ 等式成立【总结升华】 证明题的一般原则是由繁到简.本题从左往右证,方法是弦化切,注意到42A A A →→,然后巧妙地运用二倍角的余弦公式而获解. 举一反三:【变式1】求证:2tan 12tan2tan ,2tan 12tan 1cos ,2tan 12tan2sin 2222α-α=αα+α-=αα+α=α 【证明】2222sin cos2tan222sin 2sincos22sin cos 1tan 222ααααααααα===++22222222cos sin 1tan 222cos cos sin 22cos sin 1tan 222ααααααααα--=-==++ 2222sincos2tansin 222tan cos cos sin 1tan 222ααααααααα===--.【变式2】 证明:cos cos(120)cos(120)tan sin sin(120)sin(120)2A B B A BB A A +︒++︒-+=+︒+-︒-.【证明】cos cos(120)cos(120)sin sin(120)sin(120)A B B B A A +︒++︒-+︒+-︒-cos 2cos120cos sin 2cos120sin A BB A+︒=+︒ cos cos 2222sin sin 2222A B A B A B A B A B A B A B A B +-+-⎛⎫⎛⎫+-- ⎪ ⎪⎝⎭⎝⎭=+++-⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭ 2sinsin 22tan 22cos sin 22A B A BA B A B A B +--+==+--. 例2.已知βαβθθαθθ2cos 2cos 2,sin cos sin ,sin 2cos sin 2===+求证:. 【证明】方法一: αα2sin 212cos -=Θ()ααα22sin 42sin 2122cos 2-=-=∴ 将αθθsin 2cos sin =+代入:()2cos sin 22cos 2θθα+-=()θθθθ22cos cos sin 2sin 2++-=θθcos sin 21-=又,sin cos sin 2βθθ=Θ ββα2cos sin 212cos 22=-=∴ 方法二:βθθαθθ2sin cos sin ,sin 2cos sin ==+Θ, 又()βθθθθ22sin 21cos sin 21cos sin +=+=+Θ,βα22sin 21sin 4+=∴,1cos 21cos 241222αβ--∴⋅=+⋅, ()()βα2cos 112cos 12-+=-∴,βα2cos 2cos 2=∴.【总结升华】证明条件三角恒等式要注意观察条件和所要证的等式中角、三角函数名称、运算等方面的关系.方法一用代入法把θα化成,再把βθ化成;方法二中利用恒等式()θθθθcos sin 21cos sin 2+=+消去条件中θθcos sin 的方法,即消元法,这是三角变换中常用的方法.类型二:利用公式对三角函数式进行化简 例3. 已知322πθπ<<【思路点拨】根据化简的基本思想,本题需消去根式,联想到恒等式21sin sin cos 22θθθ⎛⎫±=± ⎪⎝⎭,于是【解析】原式sincossincos2222θθθθ=+--,∵322πθπ<<,∴342πθπ<<,∴0sin 22θ<<,1cos 22θ-<<- 从而sincos022θθ+<,sincos022θθ->,∴原式sin cos sin cos 2sin 22222θθθθθ⎛⎫⎛⎫=-+--=- ⎪ ⎪⎝⎭⎝⎭.【总结升华】从局部看(即每个式子本身)上述解法是唯一解法,但从整体看两个根号里面的式子相加得2,相乘得cos 2θ,因此可以“先平方暂时去掉根号”.注意到322πθπ<<,则sin 0θ<,cos 0θ>,设x =x <0,则2222cos x θ=-=-=-,又342πθπ<<,故sin 02θ>,从而2sin 2x θ==-. 举一反三: 【变式13,22αππ⎡⎤⎛⎫∈ ⎪⎢⎥⎝⎭⎣⎦. 【解析】∵3,22παπ⎛⎫∈ ⎪⎝⎭,∴cos α>0cos α=,∴原式=3,24αππ⎛⎫∈ ⎪⎝⎭,∴sin 02α>,sin 2α=.即原式=sin 2α. 类型三:利用公式进行三角函数式的求值例4. 已知1sin sin 31cos cos 2αβαβ⎧-=-⎪⎪⎨⎪-=⎪⎩①②,试求sin()αβ+的值.【解析】 解法一:由①2+②2,得1322cos()36αβ--=,即59cos()72αβ-=. 再将①②两边分别相乘,得111sin 2sin 2sin()226αβαβ+-+=-, 即1sin()cos()sin()6αβαβαβ+--+=-.将59cos()72αβ-=代入上式,得12sin()13αβ+=. 解法二:因为2sin sin3cos cos 222sin sin 2cos sin 22αβαβαβαβαβαβ+----==+--tan 2αβ+=-, 所以3tan 22αβ+=,再由例1的【变式1】中的公式可得:22tan 2sin()sin 221tan 2αβαβαβαβ++⎛⎫+=⨯= ⎪+⎝⎭+3212291314⨯==+. 【总结升华】 将条件进行加、减、乘、除以及对条件式进行平方再进行运算都是常用的解题手段,当然这需要根据题设条件灵活处理. 举一反三:【变式1】若tan α+1tan α=103,α∈(4π,2π),则sin(2α+4π)的值为( ) AC.10D. 10【答案】A【解析】 由tan α+1tan α=103⇒(tan α-3)(3tan α-1)=0得tan α=3或tan α=13,由α∈(4π,2π)得tan α>1,故tan α=13舍去,而sin(2α+4π)=2×sin 2cos 21αα+=2×22222sin cos cos sin sin cos αααααα+-+,将分式分子与分母同除以cos 2α得sin(2α+4π)=2×222tan 1tan 1tan ααα+-+=-10. 【变式2】若sin cos sin cos αααα+-=3,tan(α-β)=2,则tan(β-2α)=________ .【答案】43【解析】∵sin cos sin cos αααα+-=tan 1tan 1αα+-=3,∴tan α=2.又tan(α-β)=2,∴tan(β-2α)=tan[(β-α)-α] =-tan[(α-β)+α]=-tan()tan 1tan()tan αβααβα-+--⋅=43.类型四:三角恒等变换的综合应用【高清栏目:简单的三角恒等变换401793 例4】 例5.已知22()sin 2sin cos 3cos f x x x x x =++,求: (1)()f x 的最大值以及取得最大值的自变量的集合; (2)()f x 的单调区间.【思路点拨】先用降幂公式降幂,然后利用sin cos )a x b x x ωϕ++这个公式把原式进行变形.【答案】(1)|,8x x k k z ππ⎧⎫=+∈⎨⎬⎩⎭2(2)单增区间 3,,88x k k k z ππππ⎡⎤∈-++∈⎢⎥⎣⎦ 单间区间5,,88x k k k z ππππ⎡⎤∈++∈⎢⎥⎣⎦【解析】(1)()sin 2cos 22f x x x =++)24x π++ 由x R ∈,2242x k πππ∴+=+时即|,8x x k k z ππ⎧⎫=+∈⎨⎬⎩⎭时,max ()2f x =.(2)22,2422x k k πππππ⎡⎤+∈-++⎢⎥⎣⎦, 即3,,88x k k k z ππππ⎡⎤∈-++∈⎢⎥⎣⎦()f x 是单增函数.322,2422x k k πππππ⎡⎤+∈++⎢⎥⎣⎦, 即5,,88x k k k z ππππ⎡⎤∈++∈⎢⎥⎣⎦()f x 是单减函数.举一反三:【变式1】设函数f(x)=cos(2x+3π)+sin 2x. (1) 求函数f(x)的最大值和最小正周期.(2) 设A,B,C 为∆ABC 的三个内角,若cosB=31,f(3C)=-41,且C 为锐角,求sinA.【答案】(1)12 π(2)13【解析】(1)f(x)=cos(2x+3π)+sin 2x=1cos 21cos 2cos sin 2sin 23322x x x x ππ--+= 所以函数f(x),最小正周期π. (2)f(3C )=1223C =-41,所以2sin 32C =,因为C 为锐角,所以233C π=,所以2C π=,所以sinA=cosB=31.【变式2】已知函数2()sin cos cos (0)2f x a x x x a b a =⋅++> (1)写出函数的单调递减区间;(2)设]20[π,∈x ,()f x 的最小值是2-,最大值是3,求实数,a b 的值.【答案】(1)511[,],1212k k k Z ππππ++∈(2)22a b =⎧⎪⎨=-+⎪⎩【解析】1()sin 2(1cos 2)222f x a x x a b =-+++sin 22sin(2)23a x xb a x b π=+=-+ (1)3511222,2321212k x k k x k πππππππππ+≤-≤++≤≤+ 511[,],1212k k k Z ππππ∴++∈为所求 (2)20,2,sin(2)1233323x x x πππππ≤≤-≤-≤-≤-≤min max 3()2,()3,f x a b f x a b =-+=-=+= 3222233a ab b a b ⎧=⎧-+=-⎪⎪⇒⎨⎨=-+⎪⎩⎪+=⎩类型五:三角恒等变换在实际问题中的应用例6.青海玉树地震过后,当地人民积极恢复生产,焊工王师傅每天都很忙碌.今天他遇到了一个难题:如图所示,有一块扇形钢板,半径为1 m ,圆心角3πθ=,厂长要求王师傅按图中所画的那样,在钢板OPQ 上裁下一块平行四边形钢板ABOC ,要求使裁下钢板面积最大.试问王师傅如何确定A 点位置,才能使裁下的钢板符合要求?最大面积为多少?【思路点拨】因为A 点是动点,所以连接OA ,设∠AOP=α,然后用α的三角函数来表示平行四边形钢板ABOC 的面积,最后利用三角函数的知识求面积的最大值.【答案】当A 是»PQ的中点时,所裁钢板面积最大,最大面积为36m 3 【解析】连接OA ,设∠AOP=α,过A 作AH ⊥OP ,垂足为H ,在Rt △AOH 中,AH=sin α,OH=cos α.在Rt △ABH 中,tan 603AHBH=︒=,所以3sin 3BH α=,所以3cos sin 3OB OH BH αα=-=-, 设平行四边形ABOC 的面积为S ,则233cos sin sin sin cos sin S OB AH αααααα⎛⎫=⋅=-=- ⎪ ⎪⎝⎭ 13133sin 2(1cos 2)sin 2cos 222αααα=--=+- 313sin 2cos 2sin 22262633ππααα⎛⎫⎛⎫=+-=+- ⎪ ⎪ ⎪⎝⎭⎝⎭. 由于03πα<<,所以当262ππα+=,即6πα=时,max 333S =-=.所以当A 是»PQ 的中点时,所裁钢板面积最大,最大面积为36m 3. 【总结升华】 解决本题的关键是巧妙设元,使其他各有关的量均能用α表示,建立S 关于α的函数,再运用倍角公式、和角公式.构成函数,然后进行三角变换求解是解决此类问题的常用方法.注意数形结合思想在解决题中的应用.举一反三:【变式1】如图ABCD 是一块边长为100m 的正方形地皮,其中ATPN 是一半径为90m 的扇形小山,P 是弧TN 上一点,其余部分都是平地,现一开发商想在平地上建造一个有边落在BC 与CD 上的长方形停车场PQCR.(1)设PAB θ∠=,长方形停车场PQCR 面积为S ,求()S f θ= (2)求()S f θ=的最大值和最小值.【答案】(1)100009000(sin cos )8100sin cos S θθθθ=-++(2)14050-90002 950 【解析】(1)作PM ⊥AB 于M 点,又,(090)PAB θθ∠=≤≤o o ,则90cos ,90sin ,AM PM θθ==10090sin ,RP RM PM θ=-=-10090cos ,PQ MB θ==-(10090sin )(10090cos )S PQ PR θθ∴=⋅=--100009000(sin cos )8100sin cos θθθθ=-++(2)设sin cos t θθ+=,即2sin()(0)1242t t ππθθ=+≤≤∴≤≤则21sin cos 2t θθ-=.代入化简得2810010()95029S t =-+. 故当t=910时,S min =950(m 2);当t=2时,S max =14050-90002(m 2) .【巩固练习】1.设3sin 52πααπ⎛⎫=<< ⎪⎝⎭,1tan()2πβ-=,则tan(2)αβ-的值等于( )A .247-B .724-C .247D .7242.若71sin 63πα⎛⎫-=⎪⎝⎭,则3cos 22πα⎛⎫+ ⎪⎝⎭的值为( )A .79-B .13-C .13D .793.设函数()sin 2cos 244f x x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则( )A .()y f x =在0,2π⎛⎫⎪⎝⎭上单调递增,其图象关于直线4x π=对称B .()y f x =在0,2π⎛⎫⎪⎝⎭上单调递增,其图象关于直线2x π=对称C .()y f x =在0,2π⎛⎫⎪⎝⎭上单调递减,其图象关于直线4x π=对称D .()y f x =在0,2π⎛⎫⎪⎝⎭上单调递减,其图象关于直线2x π=对称4.sin 2002sin 2008cos6sin 2002cos 2008sin 6︒︒-︒︒︒+︒的值是( )A .tan28°B .-tan28°C .1tan 28︒D .1tan 28-︒5.若θ是第二象限的角,且cos02θ<sincos22- )A .-1B .12C .1D .2 6.在△ABC 中,sin 2A +cos 2B =1,则cosA +cosB +cosC 的最大值为( )A.54C .1 D.327.函数2()cos sin f x x x =+在区间ππ44⎡⎤-⎢⎥⎣⎦,上的最小值( )B. C.1-8.函数()cos f x x=( )A .在0,,,22πππ⎡⎫⎛⎤⎪ ⎢⎥⎣⎭⎝⎦上递增,在33,,,222ππππ⎡⎫⎛⎤⎪ ⎢⎥⎣⎭⎝⎦上递减 B .在30,,,22πππ⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭上递增,在3,,,222ππππ⎛⎤⎛⎤⎥⎥⎝⎦⎝⎦上递减 C .在3,,,222ππππ⎛⎤⎛⎤ ⎥⎥⎝⎦⎝⎦上递增,在30,,,22πππ⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭上递减D .在33,,,222ππππ⎡⎫⎛⎫⎪ ⎪⎢⎣⎭⎝⎭上递增,在0,,,22πππ⎡⎫⎛⎤⎪ ⎢⎥⎣⎭⎝⎦上递减 9.在△ABC 中,已知cos(4π+A )=35,则cos2A 的值为________.10.已知函数π()sin(2)6f x x =+,其中π[,]6x a ∈-.当3a π=时,()f x 的值域是______;若()f x 的值域是1[,1]2-,则a 的取值范围是______.11.已知sin αcos β=12,则cos αsin β的取值范围是________.12.若()sin sin 44f x a x b x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭(ab ≠0)是偶函数,则有序实数对(a ,b )可以是________.(注:写出你认为正确的一组数字即可) 13.已知5sin ,,52πααπ⎛⎫=∈ ⎪⎝⎭求下列各式的值. (1)sin 2α;(2)tan()4πα+.14.已知:0<α<2<β<π,cos(β-4π)=13,sin(α+β)=45.(1)求sin2β的值; (2)求cos(α+4π)的值. 15.已知函数()4cos sin 16f x x x π⎛⎫=+- ⎪⎝⎭.(1)求()f x 的最小正周期;(2)求()f x 在区间,64ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.16.如图,点P 在以AB 为直径的半圆上移动,且AB =1,过点P 作圆的切线PC ,使PC =1.连结BC ,当点P 在什么位置时,四边形ABCP 的面积等于12?【答案与解析】 1.【答案】D【解析】 ∵3sin 52πααπ⎛⎫=<< ⎪⎝⎭,∴4cos 5α=-,3tan 4α=-,1tan()2πβ-=,∴1tan 2β=-,4tan 23β=-,34tan tan 2743tan(2)1tan tan 21124αβαβαβ-+--===++,故选D . 2.【答案】A【解析】71sin 63πα⎛⎫-=⎪⎝⎭,∴1sin 63πα⎛⎫-=- ⎪⎝⎭, 原式217cos 212sin 2123639ππαα⎡⎤⎛⎫⎛⎫⎛⎫=--=---=-+⨯-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,故选A .3.【答案】D【解析】因为sin 2cos 222442y x x x x πππ⎛⎫⎛⎫⎛⎫=+++=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以2y x =在0,2π⎛⎫⎪⎝⎭单调递减,对称轴为2x=k π,即()2k x k Z π=∈. 4.【答案】D 【解析】原式sin 2002sin 2008cos(20082002)sin 2002cos 2008sin(20082002)︒︒-︒-︒=︒︒+︒-︒cos 2008cos 2002cos 28cot 28sin 2008cos 2002sin 28-︒︒︒==-=-︒︒︒︒,故选D .5.【答案】A【解析】θ是第二象限的角,且cos02θ<,∴5322422k k θππππ+<<+,k ∈R ,cossin 221sincossincos2222θθθθ-==---,故选A .6.【答案】D【解析】由sin 2A +cos 2B =1,得sin 2A =sin 2B , ∴A =B ,故cos A +cos B +cos C =2cos A -cos2A =-cos 2A +2cos A +1.又0<A <2π,0<cos A <1. ∴cos A =12时,有最大值32.7.【答案】D【解析】22241()cos sin 1sin sin sin 52f x x x x x x ⎛⎫=+=-+=-- ⎪⎝⎭,又因为,44x ππ⎡⎤∈-⎢⎥⎣⎦,所以22sin ,22x ⎡⎤∈-⎢⎥⎣⎦,故选D.8.【答案】A【解析】原式=2tan ,()2|sin |cos 2tan ()x x x x x x ⎧⎪=⎨-⎪⎩在一、二象限,在三、四象限,图象如图所示. 9.【答案】 【解析】cos(4π+A )=cos 4πcos A -sin 4πsin A =22(cos A -sin A )=35, ∴cos A -sin A =32>0. ① ∴0<A <4π,∴0<2A <2π ①2得1-sin2A =1825,∴sin2A =725. ∴cos2A =2241sin 225A -=. 10.【答案】1[,1]2-,[,]62ππ【解析】第一问略.(2)因为x ∈[-π/6,a],所以2x+π/6∈[-π/6,2a+π/6],因为值域是[-1/2,1],画一个单位圆可知定义域的长度是小于2π的.然后通过单位圆可知2a+π/6小于等于7π/6 ,大于等于π/2,所以a ∈[π/6,π/2] 11.【答案】[-12,12] 【解析】法一:设x =cos αsin β, 则sin(α+β)=sin αcos β+cos αsin β=12+x , sin(α-β)=sin αcos β-cos αsin β=12-x . ∵-1≤sin(α+β)≤1,-1≤sin(α-β)≤1,∴11121112x x ⎧-≤+≤⎪⎪⎨⎪-≤-≤⎪⎩ ∴31221322x x ⎧-≤≤⎪⎪⎨⎪-≤≤⎪⎩ ∴-12≤x ≤12. 法二:设x =cos αsin β,sin αcos βcos αsin β=12x . 即sin2αsin2β=2x .由|sin2αsin2β|≤1,得|2x |≤1,∴-12≤x ≤12. 12.【答案】(-2,2)【解析】由442x x πππ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭,得()sin cos 44f x a x b x ππ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭tan 4a x b πϕϕ⎛⎫⎛⎫=++= ⎪⎪⎝⎭⎝⎭.由于函数y=cos x 的对称轴为x=k π(k ∈Z ),因此只需4k πϕπ+=(k ∈Z )即可,于是4k πϕπ=-(k ∈Z ),此时tan ϕ=-1,∴a+b=0.于是取任意一对非零相反数即可,如(1,-1). 13.【解析】Q14.【解析】(1)法一:∵cos(β-4π)=cos 4πcosβ+sin 4πsinβ =13. ∴cosβ+sinβ=3. ∴1+sin2β=29,∴sin2β=-79. 法二:sin2β=cos(2π-2β) =2cos 2(β-4π)-1=-79.(2)∵0<α<2π<β<π,∴4π<β-4π<34π,2π<α+β<32π.∴sin(β-4π)>0,cos(α+β)<0. ∵cos(β-4π)=13,sin(α+β)=45,∴sin(β-4π)=223,cos(α+β)=-35.∴cos(α+4π)=cos[(α+β)-(β-4π)] =cos(α+β)cos(β-4π)+sin(α+β)sin(β-4π) =-35×13+4522823-.15.【解析】(1)因为31()4cos sin 14cos cos 1622f x x x x x x π⎛⎫⎛⎫=+-=+- ⎪ ⎪ ⎪⎝⎭⎝⎭2322cos 132cos 22sin 26x x x x x π⎛⎫=+-=+=+ ⎪⎝⎭,所以()f x 的最小正周期为π.(2)因为64x ππ-≤≤,所以22663x πππ-≤+≤. 于是,当262x ππ+=,即6x π=时,()f x 取得最大值2;当266x ππ+=-,即6x π=-时,()f x 取得最小值-1.16.【解析】设∠PAB=α,连结PB. ∵AB 是直径,∴∠APB=90°. 又AB=1,∴PA=cosα,PB=sinα. ∵PC 是切线,∴∠BPC=α.又PC=1, ∴S 四边形ABCP =S △APB +S △BPC=11sin 22PA PB PB PC α⋅+⋅⋅=211cos sin sin 22ααα+=11sin 2(1cos 2)44αα+-=11(sin 2cos 2)44αα-+=1)444πα-+11)442πα-+=sin(2)42πα∴-=.又30,,2,2444ππππαα⎛⎫⎛⎫∈∴-∈- ⎪ ⎪⎝⎭⎝⎭. 2,444πππαα∴-=∴=故当点P 位于AB 的中垂线与半圆的交点时,四边形ABCP 的面积等于12.。
人教a版必修4学案:3.2简单的三角恒等变换(含答案)
3.2 简单的三角恒等变换自主学习知识梳理1.半角公式(1)S α2:sin α2=__________;(2)C α2:cos α2=________; (3)T α2:tan α2=________________=________________=__________(有理形式). 2.辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ),cos φ=__________,sin φ=______________其中φ称为辅助角,它的终边所在象限由________决定.自主探究1.试用cos α表示sin 2α2、cos 2α2、tan 2α2.2.证明:tan α2=sin α1+cos α=1-cos αsin α.对点讲练知识点一 半角公式的应用例1 已知sin θ=45,且5π2<θ<3π,求cos θ2和tan θ2的值.回顾归纳 在运用半角公式时,要注意根号前符号的选取,不能确定时,根号前应保持正、负两个符号.变式训练1 已知α为钝角,β为锐角,且sin α=45,sin β=1213,求cos α-β2.知识点二 利用辅助角公式研究函数性质例2 已知函数f (x )=3sin ⎝⎛⎭⎫2x -π6+2sin 2⎝⎛⎭⎫x -π12 (x ∈R ). (1)求函数f (x )的最小正周期;(2)求使函数f (x )取得最大值的x 的集合.回顾归纳 研究形如f (x )=a sin 2ωx +b sin ωx cos ωx +c cos 2ωx 的性质时,先化成f (x )=A sin(ω′x +φ)+B 的形式后,再解答.这是一个基本题型,许多题目化简后都化归为该题型.变式训练2 已知函数f (x )=sin(x +π6)+sin ⎝⎛⎭⎫x -π6+cos x +a (a ∈R ). (1)求函数y =f (x )的单调增区间;(2)若函数f (x )在⎣⎡⎦⎤-π2,π2上的最大值与最小值的和为3,求实数a 的值.知识点三 三角函数在实际问题中的应用例3 如图所示,已知OPQ 是半径为1,圆心角为π3的扇形,C 是扇形弧上的动点,ABCD 是扇形的内接矩形.记∠COP =α,求当角α取何值时,矩形ABCD 的面积最大?并求出这个最大面积.回顾归纳 利用三角函数知识解决实际问题,关键是目标函数的构建,自变量常常选取一个恰当的角度,要注意结合实际问题确定自变量的范围.变式训练3 某工人要从一块圆心角为45°的扇形木板中割出一块一边在半径上的内接长方形桌面,若扇形的半径长为1 m ,求割出的长方形桌面的最大面积(如图所示).1.学习三角恒等变换,不要只顾死记硬背公式,而忽视对思想方法的理解,要立足于在推导过程中记忆和运用公式.2.形如f (x )=a sin x +b cos x ,运用辅助角公式熟练化为一个角的一个三角函数的形式,即f (x )=a 2+b 2sin(x +φ) (φ由sin φ=b a 2+b 2,cos φ=a a 2+b2确定)进而研究函数f (x )性质. 如f (x )=sin x ±cos x =2sin ⎝⎛⎭⎫x ±π4, f (x )=sin x ±3cos x =2sin ⎝⎛⎭⎫x ±π3等.课时作业一、选择题1.已知180°<α<360°,则cos α2的值等于( ) A .-1-cos α2 B. 1-cos α2C .-1+cos α2 D. 1+cos α22.如果|cos θ|=15,5π2<θ<3π,那么sin θ2的值为( ) A .-105 B.105C .-155 D.1553.设a =12cos 6°-32sin 6°,b =2sin 13°cos 13°,c =1-cos 50°2,则有( ) A .a >b >c B .a <b <cC .a <c <bD .b <c <a4.函数f (x )=sin x -3cos x (x ∈[-π,0])的单调递增区间是( )A.⎣⎡⎦⎤-π,-5π6B.⎣⎡⎦⎤-5π6,-π6 C.⎣⎡⎦⎤-π3,0 D.⎣⎡⎦⎤-π6,0 5.函数f (x )=cos x (sin x +cos x )的最小正周期为( )A .2πB .π C.π2 D.π4二、填空题6.函数y =cos x +cos ⎝⎛⎭⎫x +π3的最大值是________. 7.若3sin x -3cos x =23sin(x +φ),φ∈(-π,π),则φ的值是________.8.已知函数f (x )=a sin[(1-a )x ]+cos[(1-a )x ]的最大值为2,则f (x )的最小正周期为________.三、解答题9.已知向量a =(sin(π2+x ),3cos x ),b =(sin x ,cos x ),f (x )=a ·b . (1)求f (x )的最小正周期和单调增区间;(2)如果三角形ABC 中,满足f (A )=32,求角A 的值.10.已知函数f (x )=2a sin 2x -23a sin x cos x +b (a >0)的定义域为⎣⎡⎦⎤0,π2,值域为[-5,4],求常数a ,b 的值.§3.2 简单的三角恒等变换答案知识梳理1.(1)±1-cos α2 (2)± 1+cos α2 (3)± 1-cos α1+cos α sin α1+cos α 1-cos αsin α 2.a a 2+b 2 b a 2+b 2点(a ,b ) 自主探究1.解 ∵cos α=cos 2α2-sin 2α2=1-2sin 2α2∴2sin 2α2=1-cos α,sin 2α2=1-cos α2. ① ∵cos α=2cos 2α2-1,∴cos 2α2=1+cos α2② 由①②得:tan 2α2=1-cos α1+cos α. 2.证明 ∵sin α1+cos α=2sin α2cos α22cos 2α2=tan α2. ∴tan α2=sin α1+cos α,同理可证:tan α2=1-cos αsin α. ∴tan α2=sin α1+cos α=1-cos αsin α. 对点讲练例1 解 ∵sin θ=45,5π2<θ<3π. ∴cos θ=-1-sin 2θ=-35. 又5π4<θ2<3π2. ∴cos θ2=-1+cos θ2=-1-352=-55. tan θ2=1-cos θ1+cos θ=1-⎝⎛⎭⎫-351+⎝⎛⎭⎫-35=2.变式训练1 解 ∵α为钝角,β为锐角,sin α=45,sin β=1213. ∴cos α=-35,cos β=513. cos(α-β)=cos αcos β+sin αsin β=-35×513+45×1213=3365. 又∵π2<α<π,0<β<π2, ∴0<α-β<π.0<α-β2<π2. ∴cos α-β2=1+cos (α-β)2=1+33652=76565. 例2 解 (1)∵f (x )=3sin ⎝⎛⎭⎫2x -π6 +2sin 2⎝⎛⎭⎫x -π12 =3sin2⎝⎛⎭⎫x -π12+1-cos2⎝⎛⎭⎫x -π12 =2⎣⎡⎦⎤32sin2⎝⎛⎭⎫x -π12-12cos2⎝⎛⎭⎫x -π12+1 =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12-π6+1 =2sin ⎝⎛⎭⎫2x -π3+1,∴T =2π2=π. (2)当f (x )取得最大值时,sin ⎝⎛⎭⎫2x -π3=1, 有2x -π3=2k π+π2, 即x =k π+5π12(k ∈Z ), ∴所求x 的集合为{x |x =k π+5π12,k ∈Z }. 变式训练2 解 (1)f (x )=sin ⎝⎛⎭⎫x +π6+ sin ⎝⎛⎭⎫x -π6+cos x +a =3sin x +cos x +a =2sin ⎝⎛⎭⎫x +π6+a , 解不等式2k π-π2≤x +π6≤2k π+π2(k ∈Z ), 得y =f (x )的单调增区间是 ⎣⎡⎦⎤2k π-2π3,2k π+π3(k ∈Z ). (2)当x ∈⎣⎡⎦⎤-π2,π2时,-π3≤x +π6≤2π3,sin ⎝⎛⎭⎫x +π6∈⎣⎡⎦⎤-32,1, ∴f (x )的值域是[-3+a,2+a ].故(-3+a )+(2+a )=3,即a =3-1.例3 解 在直角三角形OBC 中,OB =cos α,BC =sin α. 在直角三角形OAD 中,DA OA=tan 60°= 3.∴OA =33DA =33BC =33sin α, ∴AB =OB -OA =cos α-33sin α 设矩形ABCD 的面积为S ,则S =AB ·BC =⎝⎛⎭⎫cos α-33sin αsin α =sin αcos α-33sin 2α =12sin 2α-36(1-cos 2α) =12sin 2α+36cos 2α-36=13⎝⎛⎭⎫32sin 2α+12cos 2α-36 =13sin ⎝⎛⎭⎫2α+π6-36. 由于0<α<π3,所以π6<2α+π6<5π6, 所以当2α+π6=π2, 即α=π6时,S 最大=13-36=36. 因此,当α=π6时,矩形ABCD 的面积最大,最大面积为36. 变式训练3 解如图所示,连OC , 设∠COB =θ,则0<θ<π4,OC =1. ∵AB =OB -OA =cos θ-AD=cos θ-sin θ,∴S 矩形ABCD =AB ·BC=(cos θ-sin θ)·sin θ=-sin 2θ+sin θcos θ =-12(1-cos 2θ)+12sin 2θ =12(sin 2θ+cos 2θ)-12=22cos ⎝⎛⎭⎫2θ-π4-12 ∴当2θ-π4=0,即θ=π8时,S max =2-12(m 2), ∴割出的长方形桌面的最大面积为2-12(m 2). 课时作业1.C 2.C3.C [由题可得a =sin 24°,b =sin 26°,c =sin 25°,所以a <c <b .]4.D [f (x )=2sin ⎝⎛⎭⎫x -π3,f (x )的单调递增区间为 ⎣⎡⎦⎤2k π-π6,2k π+56π (k ∈Z ), 令k =0得增区间为⎣⎡⎦⎤-π6,5π6.] 5.B [f (x )=sin x cos x +cos 2x =12sin 2x +1+cos 2x 2=12sin 2x +12cos 2x +12=22sin ⎝⎛⎭⎫2x +π4+12.∴T =π.] 6. 3解析 (1)y =cos x +cos ⎝⎛⎭⎫x +π3 =cos x +cos x cos π3-sin x sin π3=32cos x -32sin x =3⎝⎛⎭⎫32cos x -12sin x =3cos ⎝⎛⎭⎫x +π6. 当cos ⎝⎛⎭⎫x +π6=1时,y 有最大值 3. 7.-π6解析 3sin x -3cos x =23⎝⎛⎭⎫32sin x -12cos x =23sin ⎝⎛⎭⎫x -π6.∴φ=-π6. 8.π解析 由a +1=2,∴a =3,∴f (x )=-3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +5π6,∴T =π. 9.解 (1)由题意知,f (x )=sin x cos x +32+32cos 2x =sin(2x +π3)+32 2k π-π2≤2x +π3≤2k π+π2,k ∈Z , 即k π-5π12≤x ≤k π+π12,k ∈Z 最小正周期为π,单调增区间为[k π-5π12,k π+π12],k ∈Z . (2)由(1)知,f (x )=sin ⎝⎛⎭⎫2x +π3+32. ∵f (A )=32,∴sin(2A +π3)=0, 又∵A ∈(0,π),∴π3<2A +π3<7π3,∴2A +π3=π或2π, ∴A =π3或5π6. 10.解 f (x )=2a sin 2x -23a sin x cos x +b=2a ·1-cos 2x 2-3a sin 2x +b =-(3a sin 2x +a cos 2x )+a +b=-2a sin ⎝⎛⎭⎫2x +π6+a +b ∵0≤x ≤π2,∴π6≤2x +π6≤76π. ∴-12≤sin ⎝⎛⎭⎫2x +π6≤1. ∵a >0,∴f (x )max =2a +b =4,f (x )min =b -a =-5. 由⎩⎪⎨⎪⎧ 2a +b =4b -a =-5,得⎩⎪⎨⎪⎧a =3b =-2.。
最新精编高中人教A版必修四高中数学第31课时简单的三角恒等变换和答案
第31课时 简单的三角恒等变换1.2.了解和差化积与积化和差公式,以及它与两角和与差公式的内在联系. 3.了解y =a sin x +b cos x 的函数的变换,并会求形如y =a sin x +b cos x 的函数的性质.1sin 2α2=1-cos α2,sin α2=±1-cos α2 cos 2α2=1+cos α2,cos α2=±1+cos α2 tan 2α2=1-cos α1+cos α,tan α2=± 1-cos α1+cos α根号前符号,由α2所在象限三角函数符号确定.2.辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ),其中cos φ=aa 2+b 2,sin φ=b a 2+b 2.一、选择题1.已知cos θ=-1(-180°<θ<-90°),则cos θ=( )A .-64 B.64C .-38 D.38答案:B解析:因为-180°<θ<-90°,所以-90°<θ2<-45°.又cos θ=-14,所以cos θ2=1+cos θ2=1-142=64,故选B. 2.已知α∈⎝ ⎛⎭⎪⎫-π,0,cos α=45,则tan α2=( )A .3B .-3 C.13 D .-13 答案:D解析:因为α∈⎝ ⎛⎭⎪⎫-π2,0,且cos α=45,所以α2∈⎝ ⎛⎭⎪⎫-π4,0,tan α2=-1-cos α1+cos α=-1-451+45=-13,故选D. 3.在△ABC 中,若B =45°,则cos A sin C 的取值范围是( ) A .[-1,1] B.⎣⎢⎡⎦⎥⎤2-24,2+24 C.⎣⎢⎡⎦⎥⎤-1,2+24 D.⎣⎢⎡⎦⎥⎤24,2+24答案:B解析:在△ABC 中,B =45°,所以cos A sin C =12[sin(A +C )-sin(A -C )]=24-12sin(A -C ),因为-1≤sin(A -C )≤1,所以2-24≤cos A sin C ≤2+24,故选B.4.若sin(α-β)sin β-cos(α-β)cos β=45,且α是第二象限角,则tan ⎝ ⎛⎭⎪⎫π4+α等于( )A .7B .-7 C.17 D .-17 答案:C解析:∵sin(α-β)sin β-cos(α-β)cos β=45,∴cos α=-45.又α是第二象限角,∴sin α=35,则tan α=-34.∴tan ⎝ ⎛⎭⎪⎫π4+α=tan π4+tan α1-tan π4tan α=1-341+34=17.5.函数f (x )=sin2x cos x1-sin x 的值域为( )A.⎝ ⎛⎭⎪⎫-12,+∞B.⎣⎢⎡⎭⎪⎫-12,4C.⎝ ⎛⎭⎪⎫-12,4D.⎣⎢⎡⎦⎥⎤-12,4 答案:B解析:f (x )=2sin x cos 2x 1-sin x =2sin x -sin 2x 1-sin x=2sin x +2sin 2x ,又-1≤sin x <1,∴f (x )∈⎣⎢⎡⎭⎪⎫-12,4.故选B.6.在△ABC 中,若sin A sin B =cos 2C2,则△ABC 是( )A .等边三角形B .等腰三角形C .不等边三角形D .直角三角形 答案:B解析:sin A sin B =1+cos C22sin A sin B =1-cos(π-A -B ) cos A cos B +sin A sin B =1 cos(A -B )=1A =B∴是等腰三角形. 二、填空题7.若3sin x -3cos x =23sin(x +φ),φ∈(-π,π),则φ等于________. 答案:-π6解析:3sin x -3cos x =2 3sin ⎝ ⎛⎭⎪⎫x -π6,所以φ=-π6.8.已知sin ⎝ ⎛⎭⎪⎫π6+α=23,则cos 2⎝ ⎛⎭⎪⎫π6-α2=________.答案:56解析:因为cos ⎝ ⎛⎭⎪⎫π3-α=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3-α=sin ⎝ ⎛⎭⎪⎫π6+α=23.所以cos 2⎝ ⎛⎭⎪⎫π6-α2=1+cos ⎝ ⎛⎭⎪⎫π3-α2=1+232=56.9.在△ABC 中,若3cos 2A -B 2+5sin2A +B 2=4,则tan A tan B =________.答案:14解析:因为3cos2A -B 2+5sin2A +B 2=4,所以32cos(A -B )-52cos(A +B )=0,所以32cos A cos B +32sin A sin B -52cos A cos B +52sin A sin B =0,即cos A cos B =4sin A sin B ,所以tan A tan B =14.三、解答题10.已知α为钝角,β为锐角,且sin α=45,sin β=1213,求cos α-β2.解:∵α为钝角,β为锐角,sin α=45,sin β=1213,∴cos α=-3,cos β=5.cos(α-β)=cos αcos β+sin αsin β=-35×513+45×1213=3365.又∵π2<α<π,0<β<π2,∴0<α-β<π,0<α-β2<π2.∴cosα-β2=1+α-β2=76565.11.已知sin(2α+β)=5sin β.求证:2tan(α+β)=3tan α. 证明:由条件得sin[(α+β)+α] =5sin[(α+β)-α],两边分别展开得 sin(α+β)cos α+cos(α+β)sin α =5sin(α+β)cos α-5cos(α+β)sin α. 整理得:4sin(α+β)cos α=6cos(α+β)sin α. 两边同除以cos(α+β)cos α得: 2tan(α+β)=3tan α.12.要使3sin α+cos α=4m -64-m 有意义,则应有( )A .m ≤73 B .m ≥-1C .m ≤-1或m ≥73D .-1≤m ≤73答案:D解析:3sin α+cos α=2⎝ ⎛⎭⎪⎫32sin α+12cos α=2sin ⎝ ⎛⎭⎪⎫α+π6=4m -64-m ,所以sin ⎝ ⎛⎭⎪⎫α+π6=2m -34-m ,由于-1≤sin ⎝ ⎛⎭⎪⎫α+π6≤1,所以-1≤2m -34-m ≤1,所以-1≤m ≤73.13.已知函数f (x )=sin x ·(2cos x -sin x )+cos 2x . (1)求函数f (x )的最小正周期;(2)若π4<α<π2,且f (α)=-5213,求sin2α的值.解:(1)因为f (x )=sin x ·(2cos x -sin x )+cos 2x ,所以f (x )=sin2x -sin 2x +cos 2x =sin2x +cos2x =2sin ⎝⎛⎭⎪⎫2x +π4,所以函数f (x )的最小正周期是π.(2)f (α)=-5213,即2sin ⎝ ⎛⎭⎪⎫2α+π4=-5213,sin ⎝ ⎛⎭⎪⎫2α+π4=-513.因为π4<α<π2,所以3π4<2α+π4<5π4,所以cos ⎝ ⎛⎭⎪⎫2α+π4=-1213,所以sin2α=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2α+π4-π4=22sin ⎝ ⎛⎭⎪⎫2α+π4-22cos ⎝ ⎛⎭⎪⎫2α+π4=22×⎝ ⎛⎭⎪⎫-513-22×⎝ ⎛⎭⎪⎫-1213 =7226.。
高中数学必修4(人教B版)第三章三角恒等变换3.4知识点总结含同步练习题及答案
例题: 求 sin 18∘ 的值. 解:因为 sin 36∘ = cos 54∘ ,所以
sin 36∘ = 2 sin 18∘ cos 18∘ = 4 cos3 18∘ − 3 cos 18∘ ,
因为 cos 18∘ ≠ 0 ,所以
因为 cos 18∘ ≠ 0 ,所以
2 sin 18∘ = 4 cos2 18∘ − 3,
即 2 sin 18∘ = 4 − 4 sin 2 18∘ − 3,整理得 4 sin 2 18∘ + 2 sin 18∘ − 1 = 0,故
sin 18∘ =
√5 − 1 . 4
高考不提分,赔付1万元,关注快乐学了解详情。
高中数学必修4(人教B版)知识点总结含同步练习题及答案
第三章 三角恒等变换 3.4 三倍角公式(补充)
一、学习任务 能运用两角和与差的三角函数公式进行简单的恒等变换,了解三倍角公式. 二、知识清单
三倍角公式
三、知识讲解
1.三倍角公式 描述: 正弦 − 4 sin 3 α = 4 sin α sin(
证明:
π π + α) sin( − α) 3 3
sin 3α = = = = =
余弦三倍角公式
sin(2α + α) sin 2α cos α + cos 2α sin α 2 sin α cos2 α + (1 − 2 sin 2 α) sin α 2 sin α(1 − sin 2 α) + sin α − 2 sin 3 α 3 sin α − 4 sin 3 α. π π + α) cos( − α) 3 3
cos 3α = 4 cos3 α − 3 cos α = 4 cos α cos(
最新必修四简单的三角恒等变换(附答案)
简单的三角恒等变换[学习目标] 1.能用二倍角公式导出半角公式以及万能公式,体会其中的三角恒等变换的基本思想方法,以及进行简单的应用.2.了解两角和与差的正弦、余弦公式导出积化和差、和差化积公式的基本方法.理解方程思想、换元思想在整个变换过程中所起的作用.3.了解三角恒等变换的特点、变换技巧,掌握三角恒等变换的基本思想方法,能利用三角恒等变换对三角函数式化简、求值以及三角恒等式的证明和一些简单的应用.知识点一 半角公式及其推导(1)2S α:sin α2=± 1-cos α2; (2)2C α:cos α2=± 1+cos α2; (3)2T α:tan α2=± 1-cos α1+cos α(无理形式) =sin α1+cos α=1-cos αsin α(有理形式). 思考1 试用cos α表示sin α2、cos α2、tan α2. 答案 ∵cos α=cos 2α2-sin 2α2=1-2sin 2α2, ∴2sin 2α2=1-cos α,∴sin 2α2=1-cos α2, ∴sin α2=± 1-cos α2; ∵cos α=2cos 2α2-1,∴cos 2α2=1+cos α2,∴cos α2=± 1+cos α2; ∵tan 2α2=sin 2α2cos 2α2=1-cos α21+cos α2=1-cos α1+cos α, ∴tan α2=± 1-cos α1+cos α. 思考2 证明tan α2=sin α1+cos α=1-cos αsin α. 证明 ∵sin α1+cos α=2sin α2cos α22cos 2α2=tan α2, ∴tan α2=sin α1+cos α,同理可证tan α2=1-cos αsin α. ∴tan α2=sin α1+cos α=1-cos αsin α.知识点二 辅助角公式a sin x +b cos x =a 2+b 2·sin(x +φ)使a sin x +b cos x =a 2+b 2sin(x +φ)成立时,cos φ=a a 2+b 2,sin φ=b a 2+b 2,其中φ称为辅助角,它的终边所在象限由点(a ,b )决定.辅助角公式在研究三角函数的性质中有着重要的应用.思考1 将下列各式化成A sin(ωx +φ)的形式,其中A >0,ω>0,|φ|<π2. (1)sin x +cos x =2sin ⎝⎛⎭⎫x +π4; (2)sin x -cos x =2sin ⎝⎛⎭⎫x -π4; (3)3sin x +cos x =2sin ⎝⎛⎭⎫x +π6;(4)3sin x -cos x =2sin ⎝⎛⎭⎫x -π6; (5)sin x +3cos x =2sin ⎝⎛⎭⎫x +π3; (6)sin x -3cos x =2sin ⎝⎛⎭⎫x -π3. 思考2 请写出把a sin x +b cos x 化成A sin(ωx +φ)形式的过程.答案 a sin x +b cos x =a 2+b 2⎝ ⎛⎭⎪⎫a a 2+b 2sin x +b a 2+b 2cos x =a 2+b 2(sin x cos φ+cos x sin φ)=a 2+b 2sin(x +φ)(其中sin φ=b a 2+b 2,cos φ=a a 2+b 2).题型一 半角公式的应用例1 已知cos α=13,α为第四象限角,求sin α2、cos α2、tan α2. 解 sin α2=± 1-cos α2=± 1-132=±33, cos α2=± 1+cos α2=± 1+132=±63, tan α2=± 1-cos α1+cos α=±1-131+13=±22. ∵α为第四象限角,∴α2为第二、四象限角.当α2为第二象限角时, sin α2=33,cos α2=-63,tan α2=-22; 当α2为第四象限角时, sin α2=-33,cos α2=63,tan α2=-22.跟踪训练1 已知sin θ=45,且5π2<θ<3π,求cos θ2和tan θ2. 解 ∵sin θ=45,5π2<θ<3π, ∴cos θ=-1-sin 2θ=-35. 由cos θ=2cos 2θ2-1得cos 2θ2=1+cos θ2=15. ∵5π4<θ2<32π. ∴cos θ2=- 1+cos θ2=-55. tan θ2=sin θ2cos θ2=2cos θ2sin θ22cos 2θ2=sin θ1+cos θ=2.题型二 三角恒等式的证明例2 (1)求证:1+2cos 2θ-cos 2θ=2.(2)求证:2sin x cos x (sin x +cos x -1)(sin x -cos x +1)=1+cos x sin x . 证明 (1)左边=1+2cos 2θ-cos 2θ=1+2×1+cos 2θ2-cos 2θ =2=右边.所以原等式成立.(2)原式=2sin x cos x (2sin x 2cos x 2-2sin 2x 2)(2sin x 2cos x 2+2sin 2x 2) =2sin x cos x 4sin 2x 2(cos 2x 2-sin 2x 2) =sin x 2sin 2x 2=cos x 2sin x 2=2cos 2x 22sin x 2cos x 2=1+cos x sin x=右边. 所以原等式成立.跟踪训练2 证明:sin 4x 1+cos 4x ·cos 2x 1+cos 2x ·cos x 1+cos x=tan x 2. 证明 左边=2sin 2x cos 2x 2cos 22x ·cos 2x 1+cos 2x ·cos x 1+cos x=sin 2x 1+cos 2x ·cos x 1+cos x=2sin x cos x 2cos 2x ·cos x 1+cos x =sin x 1+cos x =2sin x 2cos x 22cos 2x 2=tan x 2=右边. 所以原等式成立.题型三 与三角函数性质有关的综合问题例3 已知函数f (x )=cos(π3+x )cos(π3-x ),g (x )= 12sin 2x -14. (1)求函数f (x )的最小正周期;(2)求函数h (x )=f (x )-g (x )的最大值,并求使h (x )取得最大值的x 的集合.解 (1)f (x )=(12cos x -32sin x )(12cos x +32sin x ) =14cos 2x -34sin 2x =1+cos 2x 8-3(1-cos 2x )8=12cos 2x -14, ∴f (x )的最小正周期T =2π2=π. (2)h (x )=f (x )-g (x )=12cos 2x -12sin 2x =22cos(2x +π4), 当2x +π4=2k π(k ∈Z )时,h (x )有最大值22. 此时x 的取值集合为{x |x =k π-π8,k ∈Z }.跟踪训练3 如图所示,要把半径为R 的半圆形木料截成长方形,应怎样截取,才能使△OAB 的周长最大?解 设∠AOB =α,△OAB 的周长为l ,则AB =R sin α,OB =R cos α,∴l =OA +AB +OB=R +R sin α+R cos α=R (sin α+cos α)+R =2R sin(α+π4)+R . ∵0<α<π2,∴π4<α+π4<3π4. ∴l 的最大值为2R +R =(2+1)R ,此时,α+π4=π2,即α=π4, 即当α=π4时,△OAB 的周长最大.构建三角函数模型,解决实际问题例4 如图,ABCD 是一块边长为100 m 的正方形地皮,其中AST 是半径为90 m 的扇形小山,其余部分都是平地.一开发商想在平地上建一个矩形停车场,使矩形的一个顶点P 在ST 上,相邻两边CQ 、CR 正好落在正方形的边BC 、CD 上,求矩形停车场PQCR 面积的最大值和最小值.分析 解答本题可设∠P AB =θ并用θ表示PR 、PQ .根据S 矩形PQCR =PQ ·PR 列出关于θ的函数式,求最大值、最小值.解 如图连接AP ,设∠P AB =θ(0°≤θ≤90°),延长RP 交AB 于M ,则AM =90cos θ,MP =90sin θ.所以PQ =MB =100-90cos θ,PR =MR -MP =100-90sin θ.所以S 矩形PQCR =PQ ·PR=(100-90cos θ)(100-90sin θ)=10 000-9 000(sin θ+cos θ)+8 100sin θcos θ.令t =sin θ+cos θ(1≤t ≤2),则sin θcos θ=t 2-12. 所以S 矩形PQCR =10 000-9 000t +8 100·t 2-12=8 1002(t -109)2+950. 故当t =109时,S 矩形PQCR 有最小值950 m 2;当t =2时,S 矩形PQCR 有最大值(14 050-9 0002) m 2.1.若cos α=13,α∈(0,π),则cos α2的值为( ) A.63 B .-63 C .±63 D .±33 2.下列各式与tan α相等的是( )A. 1-cos 2α1+cos 2αB.sin α1+cos αC.sin α1-cos 2αD.1-cos 2αsin 2α 3.函数f (x )=2sin x 2sin ⎝⎛⎭⎫π3-x 2的最大值等于( ) A.12 B.32C .1D .2 4.已知π<α<3π2,化简1+sin α1+cos α-1-cos α+ 1-sin α1+cos α+1-cos α.5.求函数f (x )=3sin(x +20°)+5sin(x +80°)的最大值.一、选择题1.已知180°<α<360°,则cos α2的值等于( )A .- 1-cos α2 B. 1-cos α2C .- 1+cos α2 D. 1+cos α22.使函数f (x )=sin(2x +θ)+3cos(2x +θ)为奇函数的θ的一个值是( )A.π6 B.π3 C.π2 D.2π33.已知cos α=45,α∈(32π,2π),则sin α2等于( ) A .-1010 B.1010 C.310 3 D .-354.函数f (x )=sin 4x +cos 2x 的最小正周期是( )A.π4 B.π2 C .π D .2π 5.设a =12cos 6°-32sin 6°,b =2sin 13°cos 13°,c =1-cos 50°2,则有( )A .c <b <aB .a <b <cC .a <c <bD .b <c <a6.若cos α=-45,α是第三象限的角,则1+tan α21-tan α2等于( ) A .-12 B.12C .2D .-2二、填空题7.函数f (x )=sin(2x -π4)-22sin 2x 的最小正周期是______. 8.若8sin α+5cos β=6,8cos α+5sin β=10,则sin(α+β)=________.9.已知等腰三角形顶角的余弦值为45,则底角的正切值为________. 10.sin 220°+sin 80°·sin 40°的值为________.三、解答题11.已知函数f (x )=4cos x sin ⎝⎛⎭⎫x +π6-1. (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π6,π4上的最大值和最小值.12.已知sin ⎝⎛⎭⎫α+π3+sin α=-435,-π2<α<0,求cos α的值.13.已知函数f (x )=(1+1tan x)sin 2x -2sin ⎝⎛⎭⎫x +π4sin ⎝⎛⎭⎫x -π4. (1)若tan α=2,求f (α);(2)若x ∈⎣⎡⎦⎤π12,π2,求f (x )的取值范围.当堂检测答案1.答案 A解析 由题意知α2∈(0,π2),∴cos α2>0,cos α2=1+cos α2=63. 2.答案 D解析 1-cos 2αsin 2α=2sin 2α2sin αcos α=sin αcos α=tan α. 3.答案 A解析 ∵f (x )=2sin x 2⎝⎛⎭⎫sin π3cos x 2-cos π3sin x 2 =32sin x -sin 2x 2=32sin x -1-cos x 2 =32sin x +12cos x -12=sin ⎝⎛⎭⎫x +π6-12. ∴f (x )max =12. 4.解 原式=(sin α2+cos α2)22|cos α2|-2|sin α2| +(sin α2-cos α2)22|cos α2|+2|sin α2|, ∵π<α<3π2,∴π2<α2<3π4, ∴cos α2<0,sin α2>0.∴原式=(sin α2+cos α2)2-2(sin α2+cos α2)+(sin α2-cos α2)22(sin α2-cos α2) =-sin α2+cos α22+sin α2-cos α22=-2cos α2. 5.解 3sin(x +20°)+5sin(x +80°)=3sin(x +20°)+5sin(x +20°)cos 60°+5cos(x +20°)sin 60°=112sin(x +20°)+532cos(x +20°) =⎝⎛⎭⎫1122+⎝⎛⎭⎫5322sin(x +20°+φ) =7sin ()x +20°+φ 其中cos φ=1114,sin φ=5314. 所以f (x )max =7.课时精练答案一、选择题1.答案 C 2.答案 D解析 f (x )=sin(2x +θ)+3cos(2x +θ)=2sin ⎝⎛⎭⎫2x +π3+θ. 当θ=23π时,f (x )=2sin(2x +π)=-2sin 2x . 3.答案 B解析 由题意知α2∈(34π,π), ∴sin α2>0,sin α2= 1-cos α2=1010. 4.答案 B解析 ∵f (x )=sin 4x +1-sin 2x=sin 4x -sin 2x +1=-sin 2x (1-sin 2x )+1=1-sin 2x cos 2x =1-14sin 22x =1-14×1-cos 4x 2=18cos 4x +78, ∴T =2π4=π2. 5.答案 C解析 a =sin 30°cos 6°-cos 30°sin 6°=sin(30°-6°)=sin 24°,b =2sin 13°·cos 13°=sin 26°,c =sin 25°,y =sin x 在[0,π2]上是递增的. ∴a <c <b .6.答案 A解析 ∵α是第三象限角,cos α=-45,∴sin α=-35. ∴1+tan α21-tan α2=1+sin α2cos α21-sin α2cos α2=cos α2+sin α2cos α2-sin α2=cos α2+sin α2cos α2-sin α2·cos α2+sin α2cos α2+sin α2=1+sin αcos α=1-35-45=-12. 二、填空题7.答案 π解析 ∵f (x )=22sin 2x -22cos 2x -2(1-cos 2x ) =22sin 2x +22cos 2x -2=sin(2x +π4)-2, ∴T =2π2=π. 8.答案 4780解析 ∵(8sin α+5cos β)2+(8cos α+5sin β)2=64+25+80(sin αcos β+cos αsin β)=89+80sin(α+β)=62+102=136.∴80sin(α+β)=47,∴sin(α+β)=4780. 9.答案 3解析 设该等腰三角形的顶角为α,则cos α=45,底角大小为12(180°-α). ∴tan ⎣⎡⎦⎤12(180°-α)=1-cos (180°-α)sin (180°-α)=1+cos αsin α=1+4535=3. 10.答案 34解析 原式=sin 220°+sin(60°+20°)·sin(60°-20°)=sin 220°+(sin 60°cos 20°+cos 60°sin 20°)·(sin 60°cos 20°-cos 60°sin 20°) =sin 220°+sin 260°cos 220°-cos 260°sin 220°=sin 220°+34cos 220°-14sin 220° =34sin 220°+34cos 220°=34. 三、解答题11.解 (1)因为f (x )=4cos x sin ⎝⎛⎭⎫x +π6-1 =4cos x ⎝⎛⎭⎫sin x cos π6+cos x sin π6-1 =4cos x ⎝⎛⎭⎫32sin x +12cos x -1 =3sin 2x +2cos 2x -1=3sin 2x +cos 2x=2sin ⎝⎛⎭⎫2x +π6, 所以f (x )的最小正周期为π.(2)因为-π6≤x ≤π4,所以-π6≤2x +π6≤2π3. 于是,当2x +π6=π2,即x =π6时, f (x )取得最大值2;当2x +π6=-π6,即x =-π6时,f (x )取得最小值-1.12.解 ∵sin ⎝⎛⎭⎫α+π3+sin α =sin αcos π3+cos αsin π3+sin α=32sin α+32cos α=-453. ∴32sin α+12cos α=-45,∴sin ⎝⎛⎭⎫α+π6=-45.∵-π2<α<0,∴-π3<α+π6<π6, ∴cos ⎝⎛⎭⎫α+π6=35. ∴cos α=cos ⎣⎡⎦⎤⎝⎛⎭⎫α+π6-π6 =cos ⎝⎛⎭⎫α+π6cos π6+sin ⎝⎛⎭⎫α+π6sin π6 =35×32+⎝⎛⎭⎫-45×12=33-410. 13.解 (1)f (x )=sin 2x +sin x cos x +cos 2x =1-cos 2x 2+12sin 2x +cos 2x=12(sin 2x +cos 2x )+12, 由tan α=2得sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1=45, cos 2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2αtan 2α+1=-35, 所以f (α)=12×⎝⎛⎭⎫45-35+12=35. (2)由(1)得f (x )=12(sin 2x +cos 2x )+12=22sin ⎝⎛⎭⎫2x +π4+12,由x ∈⎣⎡⎦⎤π12,π2得2x +π4∈⎣⎡⎦⎤5π12,5π4, 所以sin ⎝⎛⎭⎫2x +π4∈⎣⎡⎦⎤-22,1, 从而f (x )=22sin ⎝⎛⎭⎫2x +π4+12∈⎣⎢⎡⎦⎥⎤0,1+22.。
简单的三角恒等变换
简单的三角恒等变换 考点一 三角函数式的化简[典例] (1)sin (180°+2α)1+cos 2α·cos 2αcos (90°+α)等于( )A .-sin αB .-cos αC .sin αD .cos α(2)化简:sin (2α+β)sin α-2cos(α+β).[解] (1)选D 原式=-sin 2α·cos 2α2cos 2α(-sin α)=-2sin αcos α·cos 2α2cos 2α(-sin α)=cos α.(2)原式=sin (2α+β)-2sin αcos (α+β)sin α=sin[α+(α+β)]-2sin αcos (α+β)sin α=sin αcos (α+β)+cos αsin (α+β)-2sin αcos (α+β)sin α=cos αsin (α+β)-sin αcos (α+β)sin α=sin[(α+β)-α]sin α=sin βsin α.[解题技法] [题组训练]1.化简:sin 2α-2cos 2αsin ⎝⎛⎭⎫α-π4=________.解析:原式=2sin αcos α-2cos 2α22(sin α-cos α)=22cos α.答案:22cos α2.化简:2cos 2α-12tan ⎝⎛⎭⎫π4-αcos 2⎝⎛⎭⎫π4-α.解:原式=cos 2α2sin ⎝⎛⎭⎫π4-αcos ⎝⎛⎭⎫π4-α=cos 2αsin ⎝⎛⎭⎫π2-2α=cos 2αcos 2α=1.考点二 三角函数式的求值考法(一) 给角求值 [典例]cos 10°(1+3tan 10°)cos 50°的值是________.[解析] 原式=cos 10°+3sin 10°cos 50°=2sin (10°+30°)cos 50°=2sin 40°sin 40°=2.[答案] 2[解题技法] 三角函数给角求值问题的解题策略一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换转化为求特殊角的三角函数值问题,另外此类问题也常通过代数变形(比如:正负项相消、分子分母相约等)的方式来求值.考法(二) 给值求值[典例] 已知sin ⎝⎛⎭⎫α+π4=210,α∈⎝⎛⎭⎫π2,π. 求:(1)cos α的值; (2)sin ⎝⎛⎭⎫2α-π4的值. [解] (1)由sin ⎝⎛⎭⎫α+π4=210, 得sin αcos π4+cos αsin π4=210,化简得sin α+cos α=15,①又sin 2α+cos 2α=1,且α∈⎝⎛⎭⎫π2,π② 由①②解得cos α=-35.(2)∵α∈⎝⎛⎭⎫π2,π,cos α=-35,∴sin α=45, ∴cos 2α=1-2sin 2α=-725,sin 2α=2sin αcos α=-2425,∴sin ⎝⎛⎭⎫2α-π4=sin 2αcos π4-cos 2αsin π4=-17250.[解题技法] 三角函数给值求值问题的基本步骤 (1)先化简所求式子或已知条件;(2)观察已知条件与所求式子之间的联系(从三角函数的名及角入手); (3)将已知条件代入所求式子,化简求值. 考法(三) 给值求角 [典例] 若sin 2α=55,sin(β-α)=1010,且α∈⎣⎡⎦⎤π4,π,β∈⎣⎡⎦⎤π,3π2,则α+β的值是( ) A.7π4 B.9π4C.5π4或7π4D.5π4或9π4[解析] ∵α∈⎣⎡⎦⎤π4,π,∴2α∈⎣⎡⎦⎤π2,2π, ∵sin 2α=55,∴2α∈⎣⎡⎦⎤π2,π. ∴α∈⎣⎡⎦⎤π4,π2且cos 2α=-255. 又∵sin(β-α)=1010,β∈⎣⎡⎦⎤π,3π2, ∴β-α∈⎣⎡⎦⎤π2,5π4,cos(β-α)=-31010, ∴cos(α+β)=cos[(β-α)+2α] =cos(β-α)cos 2α-sin(β-α)sin 2α =⎝⎛⎭⎫-31010×⎝⎛⎭⎫-255-1010×55=22,又∵α+β∈⎣⎡⎦⎤5π4,2π,∴α+β=7π4. [答案] A[解题技法] 三角函数给值求角问题的解题策略 (1)根据已知条件,选取合适的三角函数求值. ①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数.若角的范围是⎝⎛⎭⎫0,π2,选正、余弦函数皆可;若角的范围是(0,π),选余弦函数较好;若角的范围是⎝⎛⎭⎫-π2,π2,选正弦函数较好. (2)注意讨论所求角的范围,及解题过程中角的范围.[题组训练]1.求值:cos 20°cos 35°1-sin 20°=( )A .1B .2 C. 2D. 3解析:选C 原式=cos 20°cos 35°|sin 10°-cos 10°|=cos 210°-sin 210°cos 35°(cos 10°-sin 10°)=cos 10°+sin 10°cos 35°=2⎝⎛⎭⎫22cos 10°+22sin 10°cos 35°=2cos (45°-10°)cos 35°=2cos 35°cos 35°= 2.2.已知α为第二象限角,sin α+cos α=33,则cos 2α=( ) A .-53B .-59C.59D.53解析:选A 法一:因为sin α+cos α=33,所以(sin α+cos α)2=13,即2sin αcos α=-23,即sin 2α=-23. 又因为α为第二象限角且sin α+cos α=33>0, 所以sin α>0,cos α<0,cos α-sin α<0,cos 2α=cos 2α-sin 2α=(cos α+sin α)(cos α- sin α)<0.所以cos 2α=-1-sin 22α=-1-⎝⎛⎭⎫-232=-53. 法二:由cos 2α=cos 2α-sin 2α=(cos α+sin α)(cos α-sin α),且α为第二象限角,得cos α-sin α<0,因为sin α+cos α=33, 所以(sin α+cos α)2=13=1+2sin αcos α,得2sin αcos α=-23,从而(cos α-sin α)2=1-2sin αcos α=53,则cos α-sin α=-153,所以cos 2α=33×⎝⎛⎭⎫-153=-53.3.已知锐角α,β满足sin α=55,cos β=31010,则α+β等于( ) A.3π4 B.π4或3π4C.π4D .2k π+π4(k ∈Z)解析:选C 由sin α=55,cos β=31010,且α,β为锐角, 可知cos α=255,sin β=1010,故cos(α+β)=cos αcos β-sin αsin β=255×31010-55×1010=22,又0<α+β<π,故α+β=π4.考点三 三角恒等变换的综合应用[典例] (2018·北京高考)已知函数f (x )=sin 2x +3sin x cos x . (1)求f (x )的最小正周期;(2)若f (x )在区间⎣⎡⎦⎤-π3,m 上的最大值为32,求m 的最小值. [解] (1)因为f (x )=sin 2x +3sin x cos x =12-12cos 2x +32sin 2x =sin ⎝⎛⎭⎫2x -π6+12, 所以f (x )的最小正周期为T =2π2=π. (2)由(1)知f (x )=sin ⎝⎛⎭⎫2x -π6+12. 由题意知-π3≤x ≤m ,所以-5π6≤2x -π6≤2m -π6.要使f (x )在区间⎣⎡⎦⎤-π3,m 上的最大值为32, 即sin ⎝⎛⎭⎫2x -π6在区间⎣⎡⎦⎤-π3,m 上的最大值为1, 所以2m -π6≥π2,即m ≥π3.所以m 的最小值为π3.[解题技法]三角恒等变换综合应用的解题思路(1)将f (x )化为a sin x +b cos x 的形式; (2)构造f (x )=a 2+b 2⎝⎛⎭⎪⎫a a 2+b 2·sin x +b a 2+b 2·cos x ; (3)和角公式逆用,得f (x )=a 2+b 2sin(x +φ)(其中φ为辅助角); (4)利用f (x )=a 2+b 2sin(x +φ)研究三角函数的性质; (5)反思回顾,查看关键点、易错点和答题规范.[题组训练]1.已知ω>0,函数f (x )=sin ωx cos ωx +3cos 2ωx -32的最小正周期为π,则下列结论正确的是( )A .函数f (x )的图象关于直线x =π3对称B .函数f (x )在区间⎣⎡⎦⎤π12,7π12上单调递增C .将函数f (x )的图象向右平移π6个单位长度可得函数g (x )=cos 2x 的图象D .当x ∈⎣⎡⎦⎤0,π2时,函数f (x )的最大值为1,最小值为-32 解析:选D 因为f (x )=sin ωx cos ωx +3cos 2ωx -32=12sin 2ωx +32cos 2ωx =sin ⎝⎛⎭⎫2ωx +π3,所以T =2π2ω=π,所以ω=1,所以f (x )=sin ⎝⎛⎭⎫2x +π3.对于A ,因为f ⎝⎛⎭⎫π3=0,所以不正确;对于B ,当x ∈⎣⎡⎦⎤π12,7π12时,2x +π3∈⎣⎡⎦⎤π2,3π2,所以函数f (x )在区间⎣⎡⎦⎤π12,7π12上单调递减,故不正确;对于C ,将函数f (x )的图象向右平移π6个单位长度所得图象对应的函数y=f ⎝⎛⎭⎫x -π6=sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π6+π3=sin 2x ,所以不正确;对于D ,当x ∈⎣⎡⎦⎤0,π2时,2x +π3∈⎣⎡⎦⎤π3,4π3,所以f (x )∈⎣⎡⎦⎤-32,1,故正确.故选D. 2.已知函数f (x )=4sin x cos ⎝⎛⎭⎫x -π3- 3. (1)求函数f (x )的单调区间;(2)求函数f (x )图象的对称轴和对称中心.解:(1)f (x )=4sin x cos ⎝⎛⎭⎫x -π3- 3 =4sin x ⎝⎛⎭⎫12cos x +32sin x - 3=2sin x cos x +23sin 2x - 3 =sin 2x +3(1-cos 2x )- 3 =sin 2x -3cos 2x =2sin ⎝⎛⎭⎫2x -π3. 令2k π-π2≤2x -π3≤2k π+π2(k ∈Z),得k π-π12≤x ≤k π+5π12(k ∈Z),所以函数f (x )的单调递增区间为⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z). 令2k π+π2≤2x -π3≤2k π+3π2(k ∈Z),得k π+5π12≤x ≤k π+11π12(k ∈Z),所以函数f (x )的单调递减区间为⎣⎡⎦⎤k π+5π12,k π+11π12(k ∈Z). (2)令2x -π3=k π+π2(k ∈Z),得x =k π2+5π12(k ∈Z),所以函数f (x )的对称轴方程为x =k π2+5π12(k ∈Z).令2x -π3=k π(k ∈Z),得x =k π2+π6(k ∈Z),所以函数f (x )的对称中心为⎝⎛⎭⎫k π2+π6,0(k ∈Z).[课时跟踪检测]A 级1.已知sin ⎝⎛⎭⎫π6-α=cos ⎝⎛⎭⎫π6+α,则tan α=( ) A .1 B .-1 C.12D .0解析:选B ∵sin ⎝⎛⎭⎫π6-α=cos ⎝⎛⎭⎫π6+α, ∴12cos α-32sin α=32cos α-12sin α, 即⎝⎛⎭⎫32-12sin α=⎝⎛⎭⎫12-32cos α,∴tan α=sin αcos α=-1.2.化简:cos 40°cos 25°1-sin 40°=( )A .1 B. 3 C. 2D .2解析:选C 原式=cos 220°-sin 220°cos 25°(cos 20°-sin 20°)=cos 20°+sin 20°cos 25°=2cos 25°cos 25°= 2.3.(2018·唐山五校联考)已知α是第三象限的角,且tan α=2,则sin ⎝⎛⎭⎫α+π4=( ) A .-1010B.1010C .-31010D.31010解析:选C 因为α是第三象限的角,tan α=2,所以⎩⎨⎧sin αcos α=2,2α+cos 2α=1,所以cos α=-55,sin α=-255, 则sin ⎝⎛⎭⎫α+π4=sin αcos π4+cos αsin π4=-255×22-55×22=-31010. 4.(2019·咸宁模拟)已知tan(α+β)=2,tan β=3,则sin 2α=( ) A.725 B.1425C .-725D .-1425解析:选C 由题意知tan α=tan[(α+β)-β]=tan (α+β)-tan β1+tan (α+β)tan β=-17,所以sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1=-725.5.已知cos ⎝⎛⎭⎫2π3-2θ=-79,则sin ⎝⎛⎭⎫π6+θ的值为( ) A.13 B .±13C .-19D.19解析:选B ∵cos ⎝⎛⎭⎫2π3-2θ=-79, ∴cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π3+2θ=-cos ⎝⎛⎭⎫π3+2θ =-cos ⎣⎡⎦⎤2⎝⎛⎭⎫π6+θ=-⎣⎡⎦⎤1-2sin 2⎝⎛⎭⎫π6+θ=-79, 解得sin 2⎝⎛⎭⎫π6+θ=19,∴sin ⎝⎛⎭⎫π6+θ=±13. 6.若sin(α-β)sin β-cos(α-β)cos β=45,且α为第二象限角,则tan ⎝⎛⎭⎫α+π4=( ) A .7 B.17C .-7D .-17解析:选B ∵sin(α-β)sin β-cos(α-β)cos β=45,即-cos(α-β+β)=-cos α=45,∴cos α=-45.又∵α为第二象限角,∴tan α=-34,∴tan ⎝⎛⎭⎫α+π4=1+tan α1-tan α=17. 7.化简:2sin (π-α)+sin 2αcos 2α2=________.解析:2sin (π-α)+sin 2αcos 2α2=2sin α+2sin αcos α12(1+cos α)=4sin α(1+cos α)1+cos α=4sin α.答案:4sin α8.(2018·洛阳第一次统考)已知sin α+cos α=52,则cos 4α=________. 解析:由sin α+cos α=52,得sin 2α+cos 2α+2sin αcos α=1+sin 2α=54,所以sin 2α=14,从而cos 4α=1-2sin 22α=1-2×⎝⎛⎭⎫142=78. 答案:789.若锐角α,β满足tan α+tan β=3-3tan αtan β,则α+β=________. 解析:由已知可得tan α+tan β1-tan αtan β=3,即tan(α+β)= 3.又因为α+β∈(0,π),所以α+β=π3.答案:π310.函数y =sin x cos ⎝⎛⎭⎫x +π3的最小正周期是________. 解析:y =sin x cos ⎝⎛⎭⎫x +π3=12sin x cos x -32sin 2x =14sin 2x -32·1-cos 2x 2=12sin ⎝⎛⎭⎫2x +π3-34,故函数f (x )的最小正周期T =2π2=π. 答案:π11.化简:(1)3tan 12°-3sin 12°(4cos 212°-2); (2)cos 2α1tanα2-tan α2. 解:(1)原式=3sin 12°cos 12°-32(2cos 212°-1)sin 12°=3sin 12°-3cos 12°2sin 12°cos 12°cos 24°=23(sin 12°cos 60°-cos 12°sin 60°)sin 24°cos 24°=43sin (12°-60°)sin 48°=-4 3.(2)法一:原式=cos 2αcos α2sin α2-sin α2cos α2=cos 2 αcos 2 α2-sin 2 α2sin α2cos α2=cos 2αsin α2cos α2cos 2 α2-sin 2α2=cos 2αsin α2cosα2cos α=sin α2cos α2cos α=12sin αcos α=14sin 2α.法二:原式=cos 2αtan α21-tan 2 α2=12cos 2α·2tanα21-tan 2 α2=12cos 2α·tan α=12cos αsin α=14sin 2α. 12.已知函数f (x )=2sin x sin ⎝⎛⎭⎫x +π6. (1)求函数f (x )的最小正周期和单调递增区间;(2)当x ∈⎣⎡⎦⎤0,π2时,求函数f (x )的值域. 解:(1)因为f (x )=2sin x ⎝⎛⎭⎫32sin x +12cos x =3×1-cos 2x 2+12sin 2x =sin ⎝⎛⎭⎫2x -π3+32, 所以函数f (x )的最小正周期为T =π. 由-π2+2k π≤2x -π3≤π2+2k π,k ∈Z ,解得-π12+k π≤x ≤5π12+k π,k ∈Z ,所以函数f (x )的单调递增区间是⎣⎡⎦⎤-π12+k π,5π12+k π,k ∈Z. (2)当x ∈⎣⎡⎦⎤0,π2时,2x -π3∈⎣⎡⎦⎤-π3,2π3, sin ⎝⎛⎭⎫2x -π3∈⎣⎡⎦⎤-32,1,f (x )∈⎣⎡⎦⎤0,1+32. 故f (x )的值域为⎣⎡⎦⎤0,1+32. B 级1.(2018·大庆中学期末)已知tan α,1tan α是关于x 的方程x 2-kx +k 2-3=0的两个实根,且3π<α<7π2,则cos α+sin α=( )A. 3B. 2 C .- 2D .- 3解析:选C ∵tan α,1tan α是关于x 的方程x 2-kx +k 2-3=0的两个实根,∴tan α+1tan α=k ,tan α·1tan α=k 2-3.∵3π<α<7π2,∴k >0,∴k =2,∴tan α=1,∴α=3π+π4,则cos α=-22,sin α=-22,∴cos α+sin α=- 2. 2.在△ABC 中,sin(C -A )=1,sin B =13,则sin A =________.解析:∵sin(C -A )=1, ∴C -A =90°,即C =90°+A , ∵sin B =13,∴sin B =sin(A +C )=sin(90°+2A )=cos 2A =13,即1-2sin 2A =13,∴sin A =33.答案:333.已知角α的顶点在坐标原点,始边与x 轴的正半轴重合,终边经过点P (-3,3). (1)求sin 2α-tan α的值;(2)若函数f (x )=cos(x -α)cos α-sin(x -α)sin α,求函数g (x )=3f ⎝⎛⎭⎫π2-2x -2f 2(x )在区间⎣⎡⎦⎤0,2π3上的值域.解:(1)∵角α的终边经过点P (-3,3), ∴sin α=12,cos α=-32,tan α=-33.∴sin 2α-tan α=2sin αcos α-tan α=-32+33=-36. (2)∵f (x )=cos(x -α)cos α-sin(x -α)sin α=cos x ,∴g (x )=3cos ⎝⎛⎭⎫π2-2x -2cos 2x =3sin 2x -1-cos 2x =2sin ⎝⎛⎭⎫2x -π6-1. ∵0≤x ≤2π3,∴-π6≤2x -π6≤7π6.∴-12≤sin ⎝⎛⎭⎫2x -π6≤1, ∴-2≤2sin ⎝⎛⎭⎫2x -π6-1≤1, 故函数g (x )=3f ⎝⎛⎭⎫π2-2x -2f 2(x )在区间⎣⎡⎦⎤0,2π3上的值域是[-2,1].第七节 正弦定理和余弦定理一、基础知识1.正弦定理a sin A =b sin B =c sin C=2R (R 为△ABC 外接圆的半径).正弦定理的常见变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ; (2)sin A =a 2R ,sin B =b 2R ,sin C =c 2R; (3)a ∶b ∶c =sin A ∶sin B ∶sin C ; (4)a +b +c sin A +sin B +sin C =a sin A. 2.余弦定理a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C . 3.三角形的面积公式(1)S △ABC =12ah a (h a 为边a 上的高);(2)S △ABC =12ab sin C =12bc sin A =12ac sin B ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).二、常用结论汇总——规律多一点 1.三角形内角和定理在△ABC 中,A +B +C =π;变形:A +B 2=π2-C2.2.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ; (3)sin A +B 2=cos C 2;(4)cos A +B 2=sin C2.3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 4.用余弦定理判断三角形的形状在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,当b 2+c 2-a 2>0时,可知A 为锐角;当b 2+c 2-a 2=0时,可知A 为直角;当b 2+c 2-a 2<0时,可知A 为钝角.第一课时 正弦定理和余弦定理(一) 考点一 利用正、余弦定理解三角形考法(一) 正弦定理解三角形[典例] (1)(2019·江西重点中学联考)在△ABC 中,a =3,b =2,A =30°,则cos B =________.(2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b=________.[解析] (1)由正弦定理可得sin B =b sin A a =2×sin 30°3=13,∵a =3>b =2,∴B <A ,即B为锐角,∴cos B =1-sin 2B =223. (2)∵sin B =12且B ∈(0,π),∴B =π6或B =5π6,又∵C =π6,∴B =π6,A =π-B -C =2π3.又a =3,由正弦定理得a sin A =bsin B ,即3sin 2π3=b sinπ6,解得b =1. [答案] (1)223 (2)1考法(二) 余弦定理解三角形[典例] (1)(2019·山西五校联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b cos A +a cos B =c 2,a =b =2,则△ABC 的周长为( )A .7.5B .7C .6D .5(2)(2018·泰安二模)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且c -b2c -a=sin Asin B +sin C,则角B =________.[解析] (1)∵b cos A +a cos B =c 2,∴由余弦定理可得b ·b 2+c 2-a 22bc +a ·a 2+c 2-b 22ac=c 2,整理可得2c 2=2c 3,解得c =1,则△ABC 的周长为a +b +c =2+2+1=5.(2)由正弦定理可得c -b 2c -a =sin A sin B +sin C =ab +c, ∴c 2-b 2=2ac -a 2,∴c 2+a 2-b 2=2ac ,∴cos B =a 2+c 2-b 22ac =22,∵0<B <π,∴B =π4.[答案] (1)D (2)π4[题组训练]1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,c =2a ,则cos C =( ) A.24B .-24C.34D .-34解析:选B 由题意得,b 2=ac =2a 2,即b =2a ,∴cos C =a 2+b 2-c 22ab =a 2+2a 2-4a 22a ×2a=-24.2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( )A.π12 B.π6C.π4D.π3解析:选B 因为sin B +sin A (sin C -cos C )=0, 所以sin(A +C )+sin A sin C -sin A cos C =0,所以sin A cos C +cos A sin C +sin A sin C -sin A cos C =0,整理得sin C (sin A +cos A )=0.因为sin C ≠0,所以sin A +cos A =0,所以t a n A =-1, 因为A ∈(0,π),所以A =3π4,由正弦定理得sin C =c ·sin Aa =2×222=12, 又0<C <π4,所以C =π6.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 2B +sin 2C =sin 2A +sin B sin C .(1)求角A 的大小;(2)若cos B =13,a =3,求c 的值.解:(1)由正弦定理可得b 2+c 2=a 2+bc ,由余弦定理得cos A =b 2+c 2-a 22bc =12,因为A ∈(0,π),所以A =π3.(2)由(1)可知sin A =32, 因为cos B =13,B 为△ABC 的内角,所以sin B =223,故sin C =sin(A +B )=sin A cos B +cos A sin B =32×13+12×223=3+226. 由正弦定理a sin A =c sin C得c =a sin C sin A =3×(3+22)32×6=1+263.考点二 判定三角形的形状[典例] (1)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac ,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状为( )A .直角三角形B .等腰非等边三角形C .等边三角形D .钝角三角形[解析] (1)法一:因为b cos C +c cos B =a sin A , 由正弦定理知sin B cos C +sin C cos B =sin A sin A , 得sin(B +C )=sin A sin A .又sin(B +C )=sin A ,得sin A =1, 即A =π2,因此△ABC 是直角三角形.法二:因为b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a 22a=a ,所以a sin A =a ,即sin A =1,故A =π2,因此△ABC 是直角三角形.(2)因为sin A sin B =a c ,所以a b =ac,所以b =c .又(b +c +a )(b +c -a )=3bc ,所以b 2+c 2-a 2=bc , 所以cos A =b 2+c 2-a 22bc =bc 2bc =12.因为A ∈(0,π),所以A =π3,所以△ABC 是等边三角形.[答案] (1)B (2)C[变透练清]1.(变条件)若本例(1)条件改为“a sin A +b sin B <c sin C ”,那么△ABC 的形状为________. 解析:根据正弦定理可得a 2+b 2<c 2,由余弦定理得cos C =a 2+b 2-c 22ab <0,故C 是钝角,所以△ABC 是钝角三角形. 答案:钝角三角形2.(变条件)若本例(1)条件改为“c -a cos B =(2a -b )cos A ”,那么△ABC 的形状为________.解析:因为c -a cos B =(2a -b )cos A , C =π-(A +B ),所以由正弦定理得sin C -sin A cos B =2sin A cos A -sin B ·cos A , 所以sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A , 所以cos A (sin B -sin A )=0, 所以cos A =0或sin B =sin A , 所以A =π2或B =A 或B =π-A (舍去),所以△ABC 为等腰或直角三角形. 答案:等腰或直角三角形3.(变条件)若本例(2)条件改为“cos A cos B =ba =2”,那么△ABC 的形状为________.解析:因为cos A cos B =b a ,由正弦定理得cos A cos B =sin B sin A ,所以sin 2A =sin 2B .由ba =2,可知a ≠b ,所以A ≠B .又因为A ,B ∈(0,π),所以2A =π-2B ,即A +B =π2,所以C =π2,于是△ABC是直角三角形.答案:直角三角形[课时跟踪检测]A 级1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若sin A a =cos Bb,则B 的大小为( ) A .30° B .45° C .60°D .90°解析:选B 由正弦定理知,sin A sin A =cos Bsin B ,∴sin B =cos B ,∴B =45°.2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知b =40,c =20,C =60°,则此三角形的解的情况是( )A .有一解B .有两解C .无解D .有解但解的个数不确定解析:选C 由正弦定理得b sin B =c sin C, ∴sin B =b sin Cc=40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.3.(2018·重庆六校联考)在△ABC 中,cos B =ac (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形D .等腰三角形或直角三角形解析:选A 因为cos B =ac ,由余弦定理得a 2+c 2-b 22ac =a c ,整理得b 2+a 2=c 2,即C 为直角,则△ABC 为直角三角形.4.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3, cos B =23,则b =( )A .14B .6 C.14D. 6解析:选D ∵b sin A =3c sin B ⇒ab =3bc ⇒a =3c ⇒c =1,∴b 2=a 2+c 2-2ac cos B =9+1-2×3×1×23=6,∴b = 6.5.(2019·莆田调研)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a sin B cos C+c sin B cos A =12b ,且a >b ,则B =( )A.π6B.π3C.2π3D.5π6解析:选A ∵a sin B cos C +c sin B cos A =12b ,∴根据正弦定理可得sin A sin B cos C +sinC sin B cos A =12sin B ,即sin B (sin A cos C +sin C cos A )=12sin B .∵sin B ≠0,∴sin(A +C )=12,即sin B =12.∵a >b ,∴A >B ,即B 为锐角,∴B =π6.6.(2019·山西大同联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2(b cos A +a cos B )=c 2,b =3,3cos A =1,则a =( )A. 5 B .3 C.10D .4解析:选B 由正弦定理可得2(sin B cos A +sin A cos B )=c sin C , ∵2(sin B cos A +sin A cos B )=2sin(A +B )=2sin C ,∴2sin C =c sin C ,∵sin C >0,∴c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =32+22-2×3×2×13=9,∴a =3.7.在△ABC 中,AB =6,A =75°,B =45°,则AC =________. 解析:C =180°-75°-45°=60°, 由正弦定理得AB sin C =AC sin B ,即6sin 60°=AC sin 45°,解得AC =2. 答案:28.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =________.解析:∵3sin A =2sin B ,∴3a =2b . 又∵a =2,∴b =3.由余弦定理可知c 2=a 2+b 2-2ab cos C , ∴c 2=22+32-2×2×3×⎝⎛⎭⎫-14=16,∴c =4. 答案:49.(2018·浙江高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =7,b =2,A =60°,则sinB =________,c =________.解析:由正弦定理a sin A =bsin B ,得sin B =b a ·sin A =27×32=217.由余弦定理a 2=b 2+c 2-2bc cos A , 得7=4+c 2-4c ×cos 60°,即c 2-2c -3=0,解得c =3或c =-1(舍去). 答案:2173 10.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,sin A ,sin B ,sin C 成等差数列,且a =2c ,则cos A =________.解析:因为sin A ,sin B ,sin C 成等差数列,所以2sin B =sin A +sin C .由正弦定理得a +c =2b ,又因为a =2c ,可得b =32c ,所以cos A =b 2+c 2-a 22bc =94c 2+c 2-4c 22×32c 2=-14.答案:-1411.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且A =2B . (1)求证:a =2b cos B ; (2)若b =2,c =4,求B 的值.解:(1)证明:因为A =2B ,所以由正弦定理a sin A =b sin B ,得a sin 2B =bsin B ,所以a =2b cos B .(2)由余弦定理,a 2=b 2+c 2-2bc cos A , 因为b =2,c =4,A =2B ,所以16c os 2B =4+16-16cos 2B ,所以c os 2B =34,因为A +B =2B +B <π,所以B <π3,所以cos B =32,所以B =π6.12.(2019·绵阳模拟)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.解:(1)由已知,结合正弦定理,得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc . 又由余弦定理,得a 2=b 2+c 2-2bc cos A , 所以bc =-2bc cos A ,即cos A =-12.由于A 为△ABC 的内角,所以A =2π3.(2)由已知2a sin A =(2b +c )sin B +(2c +b )sin C ,结合正弦定理,得2sin 2A =(2sin B +sin C )sin B +(2sin C +sin B )sin C , 即sin 2A =sin 2B +sin 2C +sin B sin C =sin 22π3=34.又由sin B +sin C =1,得sin 2B +sin 2C +2sin B sin C =1,所以sin B sin C =14,结合sin B +sin C =1,解得sin B =sin C =12.因为B +C =π-A =π3,所以B =C =π6,所以△ABC 是等腰三角形.B 级1.(2019·郑州质量预测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若2c os 2A +B2-cos 2C =1,4sin B =3sin A ,a -b =1,则c 的值为( )A.13B.7C.37D .6解析:选A 由2c os 2A +B2-cos 2C =1,得1+c os(A +B )-(2c os 2C -1)=2-2c os 2C -cos C =1,即2c os 2C +cos C -1=0,解得cos C =12或cos C =-1(舍去).由4sin B =3sin A及正弦定理,得4b =3a ,结合a -b =1,得a =4,b =3.由余弦定理,知c 2=a 2+b 2-2ab cos C =42+32-2×4×3×12=13,所以c =13.2.(2019·长春模拟)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =3,2sin A a =t a n C c,若sin(A -B )+sin C =2sin 2B ,则a +b =________. 解析:∵2sin A a =t a n C c =sin C c cos C ,且由正弦定理可得a =2R sin A ,c =2R sin C (R 为△ABC的外接圆的半径),∴cos C =12.∵C ∈(0,π),∴C =π3.∵sin(A -B )+sin C =2sin 2B ,sin C =sin(A +B ),∴2sin A cos B =4sin B cos B .当cos B =0时,B =π2,则A =π6,∵c =3, ∴a =1,b =2,则a +b =3.当cos B ≠0时,sin A =2sin B ,即a =2b .∵cos C =a 2+b 2-c 22ab =12,∴b 2=1,即b =1,∴a =2,则a +b =3.综上,a +b =3.答案:33.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2a cos C -c =2b . (1)求角A 的大小;(2)若c =2,角B 的平分线BD =3,求a .解:(1)2a cos C -c =2b ⇒2sin A cos C -sin C =2sin B ⇒2sin A cos C -sin C =2sin(A +C )=2sin A cos C +2cos A sin C ,∴-sin C =2cos A sin C , ∵sin C ≠0,∴cos A =-12,又A ∈(0,π),∴A =2π3.(2)在△ABD 中,由正弦定理得,AB sin ∠ADB =BDsin A ,∴sin ∠ADB =AB sin A BD =22.又∠ADB ∈(0,π),A =2π3,∴∠ADB =π4,∴∠ABC =π6,∠ACB =π6,b =c =2,由余弦定理,得a 2=c 2+b 2-2c ·b ·cos A =(2)2+(2)2-2×2×2c os 2π3=6,∴a = 6.第二课时 正弦定理和余弦定理(二) 考点一 有关三角形面积的计算[典例] (1)(2019·广州调研)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知b =7,c =4,cos B =34,则△ABC 的面积等于( )A .37 B.372C .9D.92(2)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若△ABC 的面积为34(a 2+c 2-b 2),则B =________.[解析] (1)法一:由余弦定理b 2=a 2+c 2-2ac cos B ,代入数据,得a =3,又cos B =34,B ∈(0,π),所以sin B =74,所以S △ABC =12ac sin B =372. 法二:由cos B =34,B ∈(0,π),得sin B =74,由正弦定理b sin B =csin C 及b =7,c =4,可得sin C =1,所以C =π2,所以sin A =cos B =34,所以S △ABC =12bc sin A =372.(2)由余弦定理得cos B =a 2+c 2-b 22ac ,∴a 2+c 2-b 2=2ac cos B . 又∵S =34(a 2+c 2-b 2),∴12ac sin B =34×2ac cos B , ∴t a n B =3,∵B ∈()0,π,∴B =π3.[答案] (1)B (2)π3[变透练清]1.(变条件)本例(1)的条件变为:若c =4,sin C =2sin A ,sin B =154,则S △ABC =________. 解析:因为sin C =2sin A ,所以c =2a ,所以a =2,所以S △ABC =12ac sin B =12×2×4×154=15.答案:152.(变结论)本例(2)的条件不变,则C 为钝角时,ca 的取值范围是________.解析:∵B =π3且C 为钝角,∴C =2π3-A >π2,∴0<A <π6.由正弦定理得ca =sin ⎝⎛⎭⎫2π3-A sin A=32cos A +12sin A sin A =12+32·1t a n A.∵0<t a n A <33,∴1t a n A>3, ∴c a >12+32×3=2,即ca >2. 答案:(2,+∞)3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,(2b -a )cos C =c cos A . (1)求角C 的大小;(2)若c =3,△ABC 的面积S =433,求△ABC 的周长.解:(1)由已知及正弦定理得(2sin B -sin A )cos C =sin C cos A , 即2sin B cos C =sin A cos C +sin C cos A =sin(A +C )=sin B , ∵B ∈(0,π),∴sin B >0,∴cos C =12,∵C ∈(0,π),∴C =π3.(2)由(1)知,C =π3,故S =12ab sin C =12ab sin π3=433,解得ab =163.由余弦定理可得c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =(a +b )2-3ab , 又c =3,∴(a +b )2=c 2+3ab =32+3×163=25,得a +b =5.∴△ABC 的周长为a +b +c =5+3=8.[解题技法]1.求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积.(2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,代入公式求面积.总之,结合图形恰当选择面积公式是解题的关键.2.已知三角形面积求边、角的方法(1)若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解. (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解. 考点二 平面图形中的计算问题[典例] (2018·广东佛山质检)如图,在平面四边形ABCD 中,∠ABC =3π4,AB ⊥AD ,AB =1. (1)若AC =5,求△ABC 的面积; (2)若∠ADC =π6,CD =4,求sin ∠CAD .[解] (1)在△ABC 中,由余弦定理得,AC 2=AB 2+BC 2-2AB ·BC ·c os ∠ABC , 即5=1+BC 2+2BC ,解得BC =2,所以△ABC 的面积S △ABC =12AB ·BC ·sin ∠ABC =12×1×2×22=12.(2)设∠CAD =θ,在△ACD 中,由正弦定理得AC sin ∠ADC =CDsin ∠CAD ,即AC sin π6=4sin θ, ① 在△ABC 中,∠BAC =π2-θ,∠BCA =π-3π4-⎝⎛⎭⎫π2-θ=θ-π4, 由正弦定理得AC sin ∠ABC =ABsin ∠BCA ,即AC sin3π4=1sin ⎝⎛⎭⎫θ-π4,② ①②两式相除,得sin 3π4sin π6=4sin ⎝⎛⎭⎫θ-π4sin θ,即4⎝⎛⎭⎫22sin θ-22cos θ=2sin θ,整理得sin θ=2cos θ. 又因为sin 2θ+c os 2θ=1,所以sin θ=255,即sin ∠CAD =255.[解题技法]与平面图形有关的解三角形问题的关键及思路求解平面图形中的计算问题,关键是梳理条件和所求问题的类型,然后将数据化归到三角形中,利用正弦定理或余弦定理建立已知和所求的关系.具体解题思路如下:(1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理求解;(2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.[提醒] 做题过程中,要用到平面几何中的一些知识点,如相似三角形的边角关系、平行四边形的一些性质,要把这些性质与正弦、余弦定理有机结合,才能顺利解决问题.[题组训练]1.如图,在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则sin C 的值为________.解析:设AB =a ,∵AB =AD,2AB =3BD ,BC =2BD ,∴AD =a ,BD =2a 3,BC =4a 3. 在△ABD 中,c os ∠ADB =a 2+4a 23-a 22a ×2a 3=33,∴sin ∠ADB =63,∴sin ∠BDC =63. 在△BDC 中,BD sin C =BCsin ∠BDC ,∴sin C =BD ·sin ∠BDC BC =66.答案:662.如图,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC =7,EA=2,∠ADC =2π3,且∠CBE ,∠BEC ,∠BCE 成等差数列.(1)求sin ∠CED ; (2)求BE 的长. 解:设∠CED =α.因为∠CBE ,∠BEC ,∠BCE 成等差数列, 所以2∠BEC =∠CBE +∠BCE ,又∠CBE +∠BEC +∠BCE =π,所以∠BEC =π3.(1)在△CDE 中,由余弦定理得EC 2=CD 2+DE 2-2CD ·DE ·c os ∠EDC , 即7=CD 2+1+CD ,即CD 2+CD -6=0, 解得CD =2(CD =-3舍去). 在△CDE 中,由正弦定理得EC sin ∠EDC =CDsin α,于是sin α=CD ·sin 2π3EC =2×327=217,即sin ∠CED =217.(2)由题设知0<α<π3,由(1)知cos α=1-sin 2α=1-2149=277,又∠AEB =π-∠BEC -α=2π3-α,所以c os ∠AEB =c os ⎝⎛⎭⎫2π3-α=c os 2π3cos α+sin 2π3sin α=-12×277+32×217=714. 在Rt △EAB 中,c os ∠AEB =EA BE =2BE =714,所以BE =47.考点三 三角形中的最值、范围问题[典例] (1)在△ABC 中,内角A ,B ,C 对应的边分别为a ,b ,c ,A ≠π2,sin C +sin(B-A )=2sin 2A ,则角A 的取值范围为( )A.⎝⎛⎦⎤0,π6 B.⎝⎛⎦⎤0,π4 C.⎣⎡⎦⎤π6,π4D.⎣⎡⎦⎤π6,π3(2)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos 2A +cos 2B =2cos 2C ,则cos C 的最小值为( )A.32B.22C.12D .-12[解析] (1)在△ABC 中,C =π-(A +B ),所以sin(A +B )+sin(B -A )=2sin 2A ,即2sin B cos A =22sin A cos A ,因为A ≠π2,所以cos A ≠0,所以sin B =2sin A ,由正弦定理得,b =2a ,所以A 为锐角.又因为sin B =2sin A ∈(0,1],所以sin A ∈⎝⎛⎦⎤0,22,所以A ∈⎝⎛⎦⎤0,π4. (2)因为cos 2A +cos 2B =2cos 2C ,所以1-2sin 2A +1-2sin 2B =2-4sin 2C ,得a 2+b 2=2c 2,cos C =a 2+b 2-c 22ab =a 2+b 24ab ≥2ab 4ab =12,当且仅当a =b 时等号成立,故选C.[答案] (1)B (2)C[解题技法]1.三角形中的最值、范围问题的解题策略解与三角形中边角有关的量的取值范围时,主要是利用已知条件和有关定理,将所求的量用三角形的某个内角或某条边表示出来,结合三角形边角取值范围等求解即可.2.求解三角形中的最值、范围问题的注意点(1)涉及求范围的问题,一定要搞清已知变量的范围,利用已知的范围进行求解, 已知边的范围求角的范围时可以利用余弦定理进行转化.(2)注意题目中的隐含条件,如A +B +C =π,0<A <π,b -c <a <b +c ,三角形中大边对大角等.[题组训练]1.在钝角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,B 为钝角,若a cos A = b sin A ,则sin A +sin C 的最大值为( )A. 2B.98C .1D.78解析:选B ∵a cos A =b sin A ,由正弦定理可得,sin A cos A =sin B sin A ,∵sin A ≠0,∴cos A =sin B ,又B 为钝角,∴B =A +π2,sin A +sin C =sin A +sin(A +B )=sin A +cos 2A=sin A +1-2sin 2A =-2⎝⎛⎭⎫sin A -142+98,∴sin A +sin C 的最大值为98. 2.(2018·哈尔滨三中二模)在△ABC 中,已知c =2,若sin 2A +sin 2B -sin A sin B =sin 2C ,则a +b 的取值范围为________.解析:∵sin 2A +sin 2B -sin A sin B =sin 2C ,∴a 2+b 2-ab =c 2,∴cos C =a 2+b 2-c 22ab =12,又∵C ∈(0,π),∴C =π3.由正弦定理可得a sin A =b sin B =2sin π3=433,∴a =433sin A ,b =433sin B .又∵B =2π3-A ,∴a +b =433sin A +433sin B =433sin A +433sin ⎝⎛⎭⎫2π3-A =4sin ⎝⎛⎭⎫A +π6.又∵A ∈⎝⎛⎭⎫0,2π3,∴A +π6∈⎝⎛⎭⎫π6,5π6,∴sin ⎝⎛⎭⎫A +π6∈⎝⎛⎦⎤12,1,∴a +b ∈(2,4]. 答案:(2,4]3.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos B b +cos C c =sin A 3sin C .(1)求b 的值;(2)若cos B +3sin B =2,求△ABC 面积的最大值.解:(1)由题意及正、余弦定理得a 2+c 2-b 22abc +a 2+b 2-c 22abc =3a 3c ,整理得2a 22abc =3a3c ,所以b = 3.(2)由题意得cos B +3sin B =2sin ⎝⎛⎭⎫B +π6=2, 所以sin ⎝⎛⎭⎫B +π6=1, 因为B ∈(0,π),所以B +π6=π2,所以B =π3.由余弦定理得b 2=a 2+c 2-2ac cos B , 所以3=a 2+c 2-ac ≥2ac -ac =ac , 即ac ≤3,当且仅当a =c =3时等号成立. 所以△ABC 的面积S △ABC =12ac sin B =34ac ≤334,当且仅当a =c =3时等号成立.故△ABC 面积的最大值为334.考点四 解三角形与三角函数的综合应用考法(一) 正、余弦定理与三角恒等变换[典例] (2018·天津高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知 b sin A =ac os ⎝⎛⎭⎫B -π6. (1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A -B )的值. [解] (1)在△ABC 中,由正弦定理a sin A =b sin B ,可得b sin A =a sin B .又因为b sin A =ac os ⎝⎛⎭⎫B -π6, 所以a sin B =ac os ⎝⎛⎭⎫B -π6, 即sin B =32cos B +12sin B , 所以t a n B = 3.因为B ∈(0,π),所以B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3,得b 2=a 2+c 2-2ac cos B =7,故b =7. 由b sin A =ac os ⎝⎛⎭⎫B -π6,可得sin A =37. 因为a <c ,所以cos A =27. 所以sin 2A =2sin A cos A =437,cos 2A =2c os 2A -1=17.所以sin(2A -B )=sin 2A cos B -cos 2A sin B =437×12-17×32=3314. 考法(二) 正、余弦定理与三角函数的性质[典例] (2018·辽宁五校联考)已知函数f (x )=c os 2x +3sin(π-x )c os(π+x )-12.(1)求函数f (x )在[0,π]上的单调递减区间;(2)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知f (A )=-1,a =2,b sin C =a sin A ,求△ABC 的面积.[解] (1)f (x )=c os 2x -3sin x cos x -12=1+cos 2x 2-32sin 2x -12=-sin ⎝⎛⎭⎫2x -π6, 令2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,得k π-π6≤x ≤k π+π3,k ∈Z ,又∵x ∈[0,π],∴函数f (x )在[0,π]上的单调递减区间为⎣⎡⎦⎤0,π3和⎣⎡⎦⎤5π6,π. (2)由(1)知f (x )=-sin ⎝⎛⎭⎫2x -π6, ∴f (A )=-sin ⎝⎛⎭⎫2A -π6=-1, ∵△ABC 为锐角三角形,∴0<A <π2,∴-π6<2A -π6<5π6,∴2A -π6=π2,即A =π3.又∵b sin C =a sin A ,∴bc =a 2=4, ∴S △ABC =12bc sin A = 3.[对点训练]在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,(2a -c )cos B -b cos C =0. (1)求角B 的大小;(2)设函数f (x )=2sin x cos x cos B -32cos 2x ,求函数f (x )的最大值及当f (x )取得最大值时x 的值.解:(1)因为(2a -c )cos B -b cos C =0, 所以2a cos B -c cos B -b cos C =0, 由正弦定理得2sin A cos B -sin C cos B -cos C sin B =0, 即2sin A cos B -sin(C +B )=0,又因为C +B =π-A ,所以sin(C +B )=sin A . 所以sin A (2cos B -1)=0.在△ABC 中,sin A ≠0,所以cos B =12,又因为B ∈(0,π),所以B =π3.。
(北师大版)高中数学必修四:3.3三角恒等变形公式汇总(含答案)
知识归纳:三角恒等变形一、两角和与差公式及规律 常见变形sin()sin cos cos sin .cos()cos cos sin sin .tan tan tan().1tan tan αβαβαβαβαβαβαβαβαβ±=±±=±±= (1)tan tan :tan tan tan()(1tan tan ).1tan :tan().41tan αβαβαβαβπααα±=±±±=,的和(差)与积互相转化(2)特例二、二倍角公式及规律 常见变形( ※ )三、积化和差与和差化积公式 1sin cos [sin()sin()].2αβαβαβ=++- 1cos sin [sin()sin()].2αβαβαβ=+-- 1cos cos [cos()cos()].2αβαβαβ=++- 1sin sin [cos()cos()].2αβαβαβ=-+--sin sin 2sin cos.22αβαβαβ+-+= 四、学习本章应注意的问题1、两角差的余弦公式是本章中其余公式的基础,应记准该公式的形式.222221cos cos .222cos .1cos 21cos sin .222sin .1cos 2tan .21cos αααααααααα+⎧=⎪⎧⎪⎪-⎪⎪⇒±==⎨⎨⎪⎪⎪-⎪⎩=⎪+⎩222221cos cos .222cos .1cos 21cos sin .222sin .1cos 2tan .21cos αααααααααα+⎧=⎪⎧⎪⎪-⎪⎪⇒±==⎨⎨⎪⎪⎪-⎪⎩=⎪+⎩2sin 2sin 2cos ,sin .1sin (sin cos ).2cos 2cos 22ααααααααα⇒==±=± sin 22sin cos .ααα=2222cos 2cos sin 2cos 112sin .ααααα=-=-=- 22tan tan 2.1tan ααα=- sin sin 2cos sin .22αβαβαβ+--= cos cos 2cos cos .22αβαβαβ+-+=cos cos 2sin sin .22αβαβαβ+--=-2、倍角公式ααα22sin 211cos 22cos -=-=有升、降幂的功能,如果升幂,则角减半,如果降幂,则角加倍,根据条件灵活选用.3、公式的“三用”(顺用、逆用、变用)是熟练进行三角变形的前提.。
苏教版高中数学必修4第3章 三角恒等变换 全章复习讲义(含答案解析)
【变式1】化简:
(1) ;(2) ; (3)
【答案】(1)4(2)4(3)
【解析】
(1)原式= ;
(2)原式= ;
(3)原式=
= .
【变式2】若 ,且 ,则 ___________.
【答案】
【解析】由 , ,得 ,
.
例7.已知 , ,求 的值.
【思路点拨】先分析所求式 ,分子、分母均为已知条件中和差角的展开式的项.
【典型例题】
类型一:正用公式
例1.已知: ,求 的值.
【思路点拨】因为不知道角 所在的象限,所以要对 分别讨论求 的值.
【解析】由已知可求得 .
当 在第一象限而 在第二象限时,
.
当 在第一象限而 在第三象限时,
.
当 在第二象限而 在第二象限时,
.
当 在第二象限而 在第三象限时,
.
【总结升华】分类的原则是:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论要逐级进行.掌握分类的方法,领会其实质,对于加深基础知识的理解,提高分析问题、解决问题的能力是十分重要的.
【解析】(1)
因 ,所以函数 的值域为
(2)因 在每个闭区间 上为增函数,故 在每个闭区间 上为增函数.
依题意知 对某个 成立,此时必有 ,于是
,解得 ,故 的最大值为 .
【变式2】已知向量 ,函数 的最大值为6.
(Ⅰ)求 ;
(Ⅱ)将函数 的图象向左平移 个单位,再将所得图象上各点的横坐标缩短为原来的 倍,纵坐标不变,得到函数 的图象.求 在 上的值域.
【解析】法一: ,两边平方可得
是第二象限角,因此 ,
所以
法二:单位圆中函数线+估算,因为 是第二象限的角,又
高中数学必修4(人教A版)第三章三角恒等变换3.1知识点总结含同步练习及答案
α 1 − cos α = 2 2 α 1 + cos α = cos2 2 2 α 1 − cos α = tan2 2 1 + cos α α sin α 1 − cos α tan = = 2 1 + cos α sin α sin 2 12 3 例题: 已知 ,α ∈ (π, π) ,求sin 2α ,cos 2α,tan 2α的值. cos α = − 13 2 12 3 解:因为cos α = − ,α ∈ (π, π) .所以 13 2 − − − − − − − − − − 5 12 2 − − − − − − − − . sin α = −√1 − cos2 α = −√1 − (− ) =− 13 13 5 12 120
)
C.
1 9
D.
√5 3
答案: B
因为 sin α =
2 1 ,所以 cos (π − 2α) = − cos 2α = − (1 − 2sin 2 α) = − . 3 9 )
B.−
3. 化简 A.
sin 2 35∘ − sin 20∘
1 2 = (
答案: B
1 2
1 2
C.−1
D.1
4. 如图,正方形 ABCD 的边长为 1 ,延长 BA 至 E,使 AE = 1 ,连接 EC , ED,则 sin ∠CED =
(1)已知 sin α =
= (− cos 83∘ )(− cos 23∘ ) + sin 83∘ sin 23∘ = cos(83∘ − 23∘ ) 1 = cos 60∘ = . 2
sin(
π π π + α) = sin cos α + cos sin α 3 3 3 4 1 3 √3 = × + × 2 5 2 5 4√3 + 3 = 10 π π π − α) = sin cos α − cos cos α 3 3 3 4 1 3 √3 = × − × 2 5 2 5 3 − 4√3 = 10
2018版数学人教A版必修四文档:第三章 三角恒等变换
1 三角恒等变换中角的变换的技巧三角函数是以角为自变量的函数,因此三角恒等变换离不开角之间的变换.观察条件及目标式中角度间联系,立足消除角之间存在的差异,或改变角的表达形式以便更好地沟通条件与结论使之统一,或有利于公式的运用,化角是三角恒等变换的一种常用技巧. 一、利用条件中的角表示目标中的角例1 已知cos ⎝⎛⎭⎫π6+α=33,求cos ⎝⎛⎭⎫5π6-α的值. 分析 将π6+α看作一个整体,观察π6+α与5π6-α的关系.解 ∵⎝⎛⎭⎫π6+α+⎝⎛⎭⎫5π6-α=π, ∴5π6-α=π-⎝⎛⎭⎫π6+α. ∴cos ⎝⎛⎭⎫5π6-α=cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π6+α =-cos ⎝⎛⎭⎫π6+α=-33,即cos ⎝⎛⎭⎫5π6-α=-33. 二、利用目标中的角表示条件中的角例2 设α为第四象限角,若sin 3αsin α=135,则tan 2α=_______________________________.分析 要求tan 2α的值,注意到sin 3α=sin(2α+α)=sin 2αcos α+cos 2αsin α,代入到sin 3αsin α=135中,首先求出cos 2α的值后,再由同角三角函数之间的关系求出tan 2α. 解析 由sin 3αsin α=sin (2α+α)sin α=sin 2αcos α+cos 2αsin αsin α=2cos 2α+cos 2α=135.∵2cos 2α+cos 2α=1+2cos 2α=135.∴cos 2α=45.∵α为第四象限角,∴2k π+3π2<α<2k π+2π(k ∈Z ), ∴4k π+3π<2α<4k π+4π(k ∈Z ), ∴2α可能在第三、四象限, 又∵cos 2α=45,∴2α在第四象限,∴sin 2α=-35,tan 2α=-34.答案 -34三、注意发现互余角、互补角,利用诱导公式转化角 例3 已知sin ⎝⎛⎭⎫π4-x =513,0<x <π4,求cos 2x cos ⎝⎛⎭⎫π4+x 的值. 分析 转化为已知角⎝⎛⎭⎫π4-x 的三角函数值,求这个角的其余三角函数值,这样可以将所求式子化简,使其出现⎝⎛⎭⎫π4-x 这个角的三角函数. 解 原式=sin ⎝⎛⎭⎫π2+2x cos ⎝⎛⎭⎫π4+x =2sin ⎝⎛⎭⎫π4+x cos ⎝⎛⎭⎫π4+x cos ⎝⎛⎭⎫π4+x=2sin ⎝⎛⎭⎫π4+x =2cos ⎝⎛⎭⎫π4-x , ∵sin ⎝⎛⎭⎫π4-x =513,且0<x <π4,∴π4-x ∈⎝⎛⎭⎫0,π4. ∴cos ⎝⎛⎭⎫π4-x =1-sin 2⎝⎛⎭⎫π4-x =1213,∴原式=2×1213=2413.四、观察式子结构特征,灵活凑出特殊角例4 求函数f (x )=1-32sin(x -20°)-cos(x +40°)的最大值.分析 观察角(x +40°)-(x -20°)=60°,可以把x +40°看成(x -20°)+60°后运用公式展开,再合并化简函数f (x ).解 f (x )=1-32sin(x -20°)-cos [(x -20°)+60°]=12sin(x -20°)-32sin(x -20°)-cos(x -20°)cos 60°+sin(x -20°)sin 60°=12[sin(x -20°)-cos(x -20°)]=22sin(x -65°), 当x -65°=k ·360°+90°,即x =k ·360°+155°(k ∈Z )时,f (x )有最大值22.2 三角恒等变换的几个技巧三角题是高考的热点,素以“小而活”著称.除了掌握基础知识之外,还要注意灵活运用几个常用的技巧.下面通过例题进行解析,希望对同学们有所帮助. 一、灵活降幂例13-sin 70°2-cos 210°=________.解析3-sin 70°2-cos 210°=3-sin 70°2-1+cos 20°2=3-cos 20°3-cos 20°2=2. 答案 2点评 常用的降幂技巧还有:因式分解降幂、用平方关系sin 2θ+cos 2θ=1进行降幂:如cos 4θ+sin 4θ=(cos 2θ+sin 2θ)2-2cos 2θsin 2θ=1-12sin 22θ,等等.二、化平方式 例2 化简求值: 12-1212+12cos 2α(α∈(3π2,2π)). 解 因为α∈(3π2,2π),所以α2∈(3π4,π),所以cos α>0,sin α2>0,故原式= 12-121+cos 2α2= 12-12cos α= sin 2α2=sin α2. 点评 一般地,在化简求值时,遇到1+cos 2α、1-cos 2α、1+sin 2α、1-sin 2α常常化为平方式:2cos 2α、2sin 2α、(sin α+cos α)2、(sin α-cos α)2. 三、灵活变角例3 已知sin(π6-α)=13,则cos(2π3+2α)=________.解析 cos(2π3+2α)=2cos 2(π3+α)-1=2sin 2(π6-α)-1=2×(13)2-1=-79.答案 -79点评 正确快速求解本题的关键是灵活运用已知角“π6-α”表示待求角“2π3+2α”,善于发现前者和后者的一半互余.四、构造齐次弦式比,由切求弦例4 已知tan θ=-12,则cos 2θ1+sin 2θ的值是________.解析 cos 2θ1+sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ+2sin θcos θ=1-tan 2θ1+tan 2θ+2tan θ=1-141+14+2×(-12)=3414=3. 答案 3点评 解本题的关键是先由二倍角公式和平方关系把“cos 2θ1+sin 2θ”化为关于sin θ和cos θ的二次齐次弦式比. 五、分子、分母同乘以2n sin α求cos αcos 2αcos 4αcos 8α…cos 2n -1·α的值例5 求cosπ11cos 2π11cos 3π11cos 4π11cos 5π11的值. 解 原式=-cos π11cos 2π11cos 4π11cos 8π11cos 5π11=-24sin π11cos π11cos 2π11cos 4π11cos 8π11cos 5π1124sinπ11=-sin 16π11cos 5π1124sin π11=sin 5π11cos 5π1124sin π11=12·sin 10π1124sinπ11=sinπ1125sinπ11=132.点评 这类问题的解决方法是分子、分母同乘以最小角的正弦的倍数即可.3 聚焦三角函数最值的求解策略一、化为y =A sin(ωx +φ)+B 的形式求解例1 求函数f (x )=sin 4x +cos 4x +sin 2x cos 2x2-sin 2x 的最值.解 原函数变形得f (x )=(sin 2x +cos 2x )2-sin 2x cos 2x2-sin 2x=1-14sin 22x 2-sin 2x =⎝⎛⎭⎫1+12sin 2x ⎝⎛⎭⎫1-12sin 2x 2⎝⎛⎭⎫1-12sin 2x=14sin 2x +12.∴f (x )max =34,f (x )min =14. 例2 求函数y =sin 2x +2sin x cos x +3cos 2x 的最小值,并写出y 取最小值时x 的集合. 解 原函数化简得y =sin 2x +cos 2x +2 =2sin ⎝⎛⎭⎫2x +π4+2. 当2x +π4=2k π+32π,k ∈Z ,即x =k π+58π,k ∈Z 时,y min =2- 2.此时x 的集合为{x |x =k π+58π,k ∈Z }.点评 形如y =a sin 2ωx +b sin ωx cos ωx +c cos 2ωx +d (a ,b ,c ,d 为常数)的式子,都能转化成y =A sin(2ωx +φ)+B 的形式求最值. 二、利用正、余弦函数的有界性求解 例3 求函数y =2sin x +12sin x -1的值域.解 原函数整理得sin x =y +12(y -1).∵|sin x |≤1,∴⎪⎪⎪⎪⎪⎪y +12(y -1)≤1,解出y ≤13或y ≥3.∴函数的值域为{y |y ≤13或y ≥3}.例4 求函数y =sin x +3cos x -4的值域.解 原函数整理得sin x -y cos x =-4y -3, ∴y 2+1sin(x +φ)=-4y -3,∴sin(x +φ)=-4y -31+y2. ∵|sin(x +φ)|≤1,解不等式⎪⎪⎪⎪⎪⎪-4y -31+y 2≤1得-12-2615≤y ≤-12+2615. 点评 对于形如y =a sin x +b c sin x +d 或y =a sin x +b c cos x +d 的这类函数,均可利用三角函数中弦函数的有界性去求最值.三、转化为一元二次函数在某确定区间上求最值例5 设关于x 的函数y =cos 2x -2a cos x -2a 的最小值为f (a ),写出f (a )的表达式.解 y =cos 2x -2a cos x -2a =2cos 2x -2a cos x -(2a +1)=2⎝⎛⎭⎫cos x -a 22-⎝⎛⎭⎫a22+2a +1. 当a2<-1,即a <-2时,f (a )=y min =1,此时cos x =-1. 当-1≤a 2≤1,即-2≤a ≤2时,f (a )=y min =-a 22-2a -1,此时cos x =a2.当a2>1,即a >2时,f (a )=y min =1-4a ,此时cos x =1. 综上所述,f (a )=⎩⎪⎨⎪⎧1(a <-2),-12a 2-2a -1(-2≤a ≤2),1-4a (a >2).点评 形如y =a sin 2x +b sin x +c 的三角函数可转化为二次函数y =at 2+bt +c 在区间[-1,1]上的最值问题解决.例6 试求函数y =sin x +cos x +2sin x cos x +2的最值.解 设sin x +cos x =t ,t ∈[-2,2 ],则2sin x cos x =t 2-1,原函数变为y =t 2+t +1,t ∈[-2, 2 ],当t =-12时,y min =34;当t =2时,y max =3+ 2.点评 一般地,既含sin x +cos x (或sin x -cos x )又含sin x cos x 的三角函数采用换元法可以转化为t 的二次函数解最值.注意以下结论的运用,设sin x +cos x =t ,则sin x cos x =12(t 2-1);sin x -cos x =t ,则sin x cos x =12(1-t 2).四、利用函数的单调性求解例7 求函数y =(1+sin x )(3+sin x )2+sin x 的最值.解 y =sin 2x +4sin x +3sin x +2=(sin x +2)2-1sin x +2=(sin x +2)-1(sin x +2),令t =sin x +2,则t ∈[1,3],y =t -1t.利用函数单调性的定义易证函数y =t -1t 在[1,3]上为增函数.故当t =1,即sin x =-1时,y min =0; 当t =3,即sin x =1时,y max =83.例8 在Rt △ABC 内有一内接正方形,它的一条边在斜边BC 上,设AB =a ,∠ABC =θ,△ABC 的面积为P ,正方形面积为Q .求PQ的最小值.解 AC =a tan θ,P =12AB ·AC =12a 2tan θ.设正方形的边长为x ,AG =x cos θ,BC =acos θ.BC 边上的高h =a sin θ, ∵AG AB =h -x h ,即x cos θa =a sin θ-xa sin θ, ∴x =a sin θ1+sin θcos θ,∴Q =x 2=a 2sin 2θ(1+sin θcos θ)2.从而P Q =sin θ2cos θ·(1+sin θcos θ)2sin 2θ=(2+sin 2θ)24sin 2θ=1+⎝⎛⎭⎫sin 2θ4+1sin 2θ. 易知函数y =1t +t4在区间(0,1]上单调递减,从而,当sin 2θ=1时,⎝⎛⎭⎫P Q min =94.点评 一些复杂的三角函数最值问题,通过适当换元转化为简单的代数函数后,可利用函数单调性巧妙解决.4 行百里者半九十——《三角恒等变换》一章易错问题盘点一、求角时选择三角函数类型不当而致错 例1 已知sin α=55,sin β=1010,α和β都是锐角,求α+β的值. [错解] 因为α和β都是锐角,且sin α=55,sin β=1010,所以cos α=255,cos β=31010, sin(α+β)=sin αcos β+cos αsin β =55×31010+255×1010=22. 因为α,β∈⎝⎛⎭⎫0,π2,则α+β∈(0,π). 所以α+β=π4或3π4.[剖析] 由sin α=55,sin β=1010,α和β都是锐角,可以知道α和β都是定值,因此α+β也是定值,因此上述解法出现两个答案,其中就有一个是错误的.这是因为sin(α+β)在第一、第二象限没有区分度,应选择计算cos(α+β)的值.[正解] 因为α和β都是锐角,且sin α=55,sin β=1010,所以cos α=255,cos β=31010,cos(α+β)=cos αcos β-sin αsin β=255×31010-55×1010=22.因为α,β∈⎝⎛⎭⎫0,π2,所以α+β∈(0,π),所以α+β=π4.二、忽视条件中隐含的角的范围而致错例2 已知tan 2α+6tan α+7=0,tan 2β+6tan β+7=0,α、β∈(0,π),且α≠β,求α+β的值.[错解] 由题意知tan α、tan β是方程x 2+6x +7=0的两根,由根与系数的关系,得⎩⎪⎨⎪⎧tan α+tan β=-6, ①tan αtan β=7, ② ∴tan(α+β)=tan α+tan β1-tan αtan β=-61-7=1.∵0<α<π,0<β<π,∴0<α+β<2π, ∴α+β=π4或α+β=54π.[剖析] 由①②知tan α<0,tan β<0,角α、β都是钝角.上述解法忽视了这一隐含条件.[正解] 由⎩⎪⎨⎪⎧tan α+tan β=-6,tan αtan β=7易知tan α<0,tan β<0.∵α、β∈(0,π),∴π2<α<π,π2<β<π,∴π<α+β<2π. 又∵tan(α+β)=1,∴α+β=54π.三、忽略三角形内角间的关系而致错例3 在△ABC 中,已知sin A =35,cos B =513,求cos C .[错解] 由sin A =35,得cos A =±45,由cos B =513,得sin B =1213,当cos A =45时,cos C =-cos(A +B )=sin A sin B -cos A cos B =1665.当cos A =-45时,cos C =-cos(A +B )=sin A sin B -cos A cos B =5665.[剖析] 在△ABC 中,三个内角A 、B 、C 的和为π,解题时要充分利用这一定理.本题得到cos A =±45后,没有对cos A =-45这一结果是否合理进行检验,从而导致结论不正确.[正解] 由cos B =513>0,得B ∈⎝⎛⎭⎫0,π2,且sin B =1213. 由sin A =35,得cos A =±45,当cos A =-45时,cos A <-12,∴A >2π3.∵sin B =1213>32,B ∈⎝⎛⎭⎫0,π2,∴B >π3. 故当cos A =-45时,A +B >π,与A 、B 是△ABC 的内角矛盾.∴cos A =45,cos C =-cos(A +B )=sin A sin B -cos A cos B =1665.四、忽略三角函数的定义域而致错例4 判断函数f (x )=1+sin x -cos x 1+sin x +cos x 的奇偶性.[错解] f (x )=1+sin x -cos x1+sin x +cos x=1+2sin x 2cos x2-⎝⎛⎭⎫1-2sin 2x 21+2sin x 2cos x 2+⎝⎛⎭⎫2cos 2x2-1=2sin x2⎝⎛⎭⎫cos x 2+sin x 22cos x2⎝⎛⎭⎫sin x 2+cos x 2=tan x2,由此得f (-x )=tan ⎝⎛⎭⎫-x 2=-tan x2=-f (x ), 因此函数f (x )为奇函数.[剖析] 运用公式后所得函数f (x )=tan x2的定义域为{}x |x ∈R ,x ≠2k π+π,k ∈Z .两函数的定义域不同,变形后的函数定义域扩大致错. [正解] 事实上,由1+sin x +cos x ≠0可得 sin x +cos x ≠-1,即2sin ⎝⎛⎭⎫x +π4≠-1, 从而sin ⎝⎛⎭⎫x +π4≠-22, 所以x +π4≠2k π+5π4且x +π4≠2k π+7π4(k ∈Z ),故函数f (x )的定义域是⎩⎨⎧⎭⎬⎫x |x ≠2k π+π且x ≠2k π+3π2,k ∈Z ,显然该定义域不关于原点对称. 因此,函数f (x )为非奇非偶函数.温馨点评 判断函数的奇偶性,首先要看定义域,若定义域不关于原点对称,则函数一定是非奇非偶函数.上述解法正是由于忽视了对函数定义域这一隐含条件的考虑致错. 五、误用公式a sin x +b cos x =a 2+b 2sin(x +φ)而致错例5 若函数f (x )=sin(x +θ)+cos(x -θ),x ∈R 是偶函数,求θ的值. [错解] ∵f (x )=sin(x +θ)+cos(x -θ), ∴f (0)=sin θ+cos θ=2sin ⎝⎛⎭⎫θ+π4. ∵f (x )=sin(x +θ)+cos(x -θ)是偶函数. ∴|f (0)|=f (x )max = 2. ∴f (0)=2sin ⎝⎛⎭⎫θ+π4=±2, ∴sin ⎝⎛⎭⎫θ+π4=±1, ∴θ+π4=k π+π2,k ∈Z .即θ=k π+π4,k ∈Z .[剖析] ∵x +θ与x -θ是不同的角.∴函数f (x )的最大值不是2,上述解答把f (x )的最大值误当作2来处理. [正解] ∵f (x )=sin(x +θ)+cos(x -θ)是偶函数. ∴f (x )=f (-x )对一切x ∈R 恒成立.即sin(x +θ)+cos(x -θ)=sin(-x +θ)+cos(-x -θ)恒成立. ∴[sin(x +θ)+sin(x -θ)]+[cos(x -θ)-cos(x +θ)]=0. ∴2sin x cos θ+2sin x sin θ=0恒成立. 即2sin x (cos θ+sin θ)=0恒成立. ∴cos θ+sin θ=0.∵cos θ+sin θ=2sin ⎝⎛⎭⎫θ+π4=0. ∴θ+π4=k π,即θ=k π-π4,k ∈Z .5 平面向量与三角函数的交汇题型大全平面向量与三角函数的交汇是当今高考命题的一个热点,这是因为此类试题既新颖而精巧,又符合在知识的“交汇处”构题的命题思想.这类试题解答的关键是利用向量的平行、垂直、夹角、模、数量积公式将问题转化为三角问题,然后联想相关的三角函数知识求解. 一、平面向量平行与三角函数交汇例1 已知a =(2cos x +23sin x ,1),b =(y ,cos x ),且a ∥b .若f (x )是y 关于x 的函数,则f (x )的最小正周期为________.解析 由a ∥b 得2cos 2x +23sin x cos x -y =0, 即y =2cos 2x +23sin x cos x =cos 2x +3sin 2x +1 =2sin(2x +π6)+1,所以f (x )=2sin(2x +π6)+1,所以函数f (x )的最小正周期为T =2π2=π.答案 π点评 解答平面向量平行与三角函数的交汇试题一般先用平面向量平行的条件求涉及到三角函数的解析式或某角的函数值,然后再利用三角知识求解.二、平面向量垂直与三角函数交汇例2 已知向量a =(4,5cos α),b =(3,-4tan α),α∈(0,π2),若a ⊥b ,则cos(2α+π4)=________.解析 因为a ⊥b ,所以4×3+5cos α×(-4tan α)=0, 解得sin α=35.又因为α∈(0,π2),所以cos α=45.cos 2α=1-2sin 2α=725,sin 2α=2sin αcos α=2425,于是cos(2α+π4)=cos 2αcos π4-sin 2αsin π4=-17250.答案 -17250点评 解答平面向量垂直与三角函数的交汇试题通常先利用平面向量垂直的条件将向量问题转化为三角函数问题,再利用三角函数的知识进行处理. 三、平面向量夹角与三角函数交汇例3 已知向量m =(sin θ,1-cos θ)(0<θ<π)与向量n =(2,0)的夹角为π3,则θ=________.解析 由条件得|m |=sin 2θ+(1-cos θ)2=2-2cos θ,|n |=2,m ·n =2sin θ,于是由平面向量的夹角公式得cos π3=m ·n |m ||n |=2sin θ22-2cos θ=12,整理得2cos 2θ-cos θ-1=0,解得cos θ=-12或cos θ=1(舍去).因为0<θ<π,所以θ=2π3.答案2π3点评 解答平面向量的夹角与三角函数的交汇试题主要利用平面向量的夹角公式建立某角的三角函数的方程或不等式,然后由三角函数的知识求解. 四、平面向量的模与三角函数交汇例4 若向量a =(cos θ,sin θ),b =(3,-1),则|2a -b |的最大值为________. 解析 由条件可得|a |=1,|b |=2,a ·b =3cos θ-sin θ, 则|2a -b |=|2a -b |2= 4a 2+b 2-4a ·b=8-4(3cos θ-sin θ)= 8-8cos (θ+π6)≤4,所以|2a -b |的最大值为4. 答案 4点评 解答平面向量的模与三角函数交汇一般要用到向量的模的性质|a |2=a 2.如果是求模的大小,则一般可直接求解;如果是求模的最值,则常常先建立模关于某角的三角函数,然后利用三角函数的有界性求解. 五、平面向量数量积与三角函数交汇例5 若函数f (x )=2sin(π6x +π3)(-2<x <10)的图象与x 轴交于点A ,过点A 的直线l 与函数的图象交于B 、C 两点,则(OB →+OC →)·OA →等于( ) A.-32 B.-16 C.16D.32解析 由f (x )=0,解得x =4,即A (4,0),过点A 的直线l 与函数的图象交于B 、C 两点,根据对称性可知,A 是BC 的中点,所以OB →+OC →=2OA →,所以(OB →+OC →)·OA →=2OA →·OA →=2|OA →|2=2×42=32,答案 D点评 平面向量数量积与三角函数的综合主要体现为两类:(1)利用三角函数给出向量的坐标形式,然后求数量积,解答时利用数量积公式可直接解决;(2)给出三角函数图象,求图象上相关点构成的向量之间的数量积,解答时关键是求涉及到的向量的模、以及它们的夹角.6 单位圆与三角恒等变换巧结缘单位圆与三角函数有着密切联系,下面我们通过例题来看看单位圆与三角恒等变换是如何结缘的.一、借助单位圆解决问题例1 已知sin α+sin β=14,cos α+cos β=13,求tan α+β2.(提示:已知A (x 1,y 1),B (x 2,y 2),则AB 中点的坐标为⎝⎛⎭⎫⎝⎛⎭⎫x 1+x 22,⎝⎛⎭⎫y 1+y 22解 设A (cos α,sin α),B (cos β,sin β)均在单位圆上,如图,则以OA 、OB 为终边的角分别为α、β,由已知,sin α+sin β=14,cos α+cos β=13,用题设所给的中点坐标公式,得AB 的中点C ⎝⎛⎭⎫16,18,如图,由平面几何知识知,以OC 为终边的角为β-α2+α=α+β2,且过点C ⎝⎛⎭⎫16,18,由三角函数的坐标定义,知tan α+β2=1816=34.点评 借助单位圆使问题简单化,这种思维方法贯穿整个三角函数问题的始终,特别在求值中更能显出它的价值. 二、单位圆与恒等变换的交汇例2 已知圆x 2+y 2=R 2与直线y =2x +m 相交于A 、B 两点,以x 轴的正方向为始边,OA 为终边(O 是坐标原点)的角为α,OB 为终边的角为β,则tan(α+β)的值为________. 解析 如图,过O 作OM ⊥AB 于点M ,不妨设α、β∈[0,2π],则∠AOM =∠BOM =12∠AOB=12(β-α), 又因为∠xOM =α+∠AOM =α+β2, 所以tanα+β2=k OM =-1k AB =-12, 故tan(α+β)=2tanα+β21-tan 2α+β2=-43.答案 -43点评 若是采用先求A 、B 两点的坐标,再求α、β的正切值这一思路就很繁锁甚至做不下去,可见用不同的解决方法繁简程度不同.例3 如图,A ,B 是单位圆O 上的点,OA 为角α的终边,OB 为角β的终边,M 为AB 的中点,连接OM 并延长交圆O 于点C .(1)若α=π6,β=π3,求点M 的坐标;(2)设α=θ(θ∈⎣⎡⎦⎤0,π3),β=π3,C (m ,n ),求y =m +n 的最小值,并求使函数取得最小值时θ的取值.解 (1)由三角函数定义可知,A ⎝⎛⎭⎫32,12,B ⎝⎛⎭⎫12,32, 由中点坐标公式可得M ⎝⎛⎭⎪⎫3+14,3+14.(2)由已知得∠xOC =12(α+β)=12(θ+π3),即C ⎝⎛⎭⎫cos ⎝⎛⎭⎫12θ+π6,sin ⎝⎛⎭⎫12θ+π6, 故m =cos ⎝⎛⎭⎫12θ+π6,n =sin ⎝⎛⎭⎫12θ+π6, 所以y =cos ⎝⎛⎭⎫12θ+π6+sin ⎝⎛⎭⎫12θ+π6=2sin ⎝⎛⎭⎫12θ+5π12, 又因为θ∈⎣⎡⎦⎤0,π3,故5π12≤12θ+5π12≤7π12, 当θ=0或π3时,函数取得最小值y min =2sin 5π12=3+12.点评 借助单位圆和点的坐标,数形结合,利用平面几何知识和三角函数的定义使问题简单化.7 教你用好辅助角公式在三角函数中,辅助角公式a sin θ+b cos θ=a 2+b 2·sin(θ+φ),其中角φ所在的象限由a ,b 的符号确定,φ的值由tan φ=ba 确定,它在三角函数中应用比较广泛,下面举例说明,以供同学们参考. 一、求最值例1 求函数y =2sin x (sin x -cos x )的最小值.解 y =2sin x (sin x -cos x )=2sin 2x -2sin x cos x =1-cos2x -sin 2x=1-2⎝⎛⎭⎫sin 2x ·22+cos 2x ·22=1-2⎝⎛⎭⎫sin 2x cos π4+cos 2x sin π4 =1-2sin ⎝⎛⎭⎫2x +π4, 所以函数y 的最小值为1- 2. 二、求单调区间例2 求函数y =12cos 2x +32sin x cos x +1的单调区间.解 y =12cos 2x +32sin x cos x +1=14(1+cos 2x )+34sin 2x +1 =34sin 2x +14cos 2x +54=12⎝⎛⎭⎫32sin 2x +12cos 2x +54 =12sin ⎝⎛⎭⎫2x +π6+54. 由2k π-π2≤2x +π6≤2k π+π2(k ∈Z ),得k π-π3≤x ≤k π+π6(k ∈Z ).由2k π+π2≤2x +π6≤2k π+3π2(k ∈Z ),得k π+π6≤x ≤k π+2π3(k ∈Z ).所以函数的单调增区间是[k π-π3,k π+π6](k ∈Z );函数的单调减区间是[k π+π6,k π+2π3](k ∈Z ).三、求周期例3 函数y =cos 22x +4cos 2x sin 2x 的最小正周期是( ) A.2π B.π C.π2 D.π4答案 C解析 y =cos 22x +4cos 2x sin 2x =12cos 4x +2sin 4x +12=172sin(4x +φ)+12(其中sin φ=1717,cos φ=41717),函数的最小正周期为T =2π4=π2.故选C.四、求参数的值例4 如果函数y =sin 2x +a cos 2x 的图象关于直线x =-π8对称,则实数a 的值为( )A. 2B.- 2C.1D.-1 答案 D解析 y =1+a 2sin(2x +φ)(其中tan φ=a ).因为x =-π8是对称轴,所以直线x =-π8过函数图象的最高点或最低点.即当x =-π8时,y =1+a 2或y =-1+a 2.所以sin ⎝⎛⎭⎫-π4+a cos ⎝⎛⎭⎫-π4=±1+a 2. 即22(a -1)=±1+a 2.所以a =-1.故选D.。
必修四简单的三角恒等变换(附答案)
简单的三角恒等变换[学习目标] 1.能用二倍角公式导出半角公式以及万能公式,体会其中的三角恒等变换的基本思想方法,以及进行简单的应用.2.了解两角和与差的正弦、余弦公式导出积化和差、和差化积公式的基本方法.理解方程思想、换元思想在整个变换过程中所起的作用.3.了解三角恒等变换的特点、变换技巧,掌握三角恒等变换的基本思想方法,能利用三角恒等变换对三角函数式化简、求值以及三角恒等式的证明和一些简单的应用.知识点一 半角公式及其推导 (1)2S α:sin α2=±1-cos α2; (2)2C α:cos α2=±1+cos α2; (3)2T α:tan α2=±1-cos α1+cos α(无理形式)=sin α1+cos α=1-cos αsin α(有理形式).思考1 试用cos α表示sin α2、cos α2、tan α2.答案 ∵cos α=cos 2α2-sin 2α2=1-2sin 2α2,∴2sin 2α2=1-cos α,∴sin 2α2=1-cos α2,∴sin α2=±1-cos α2; ∵cos α=2cos 2α2-1,∴cos 2α2=1+cos α2,∴cos α2=±1+cos α2; ∵tan 2α2=sin 2α2cos2α2=1-cos α21+cos α2=1-cos α1+cos α,∴tan α2=±1-cos α1+cos α.思考2 证明tan α2=sin α1+cos α=1-cos αsin α.证明 ∵sin α1+cos α=2sin α2cosα22cos 2α2=tan α2,∴tan α2=sin α1+cos α,同理可证tan α2=1-cos αsin α.∴tan α2=sin α1+cos α=1-cos αsin α.知识点二 辅助角公式a sin x +b cos x =a 2+b 2·sin(x +φ) 使a sin x +b cos x =a 2+b 2sin(x +φ)成立时,cos φ=a a 2+b 2,sin φ=ba 2+b2,其中φ称为辅助角,它的终边所在象限由点(a ,b )决定.辅助角公式在研究三角函数的性质中有着重要的应用.思考1 将下列各式化成A sin(ωx +φ)的形式,其中A >0,ω>0,|φ|<π2.(1)sin x +cos x =2sin ⎝⎛⎭⎫x +π4; (2)sin x -cos x =2sin ⎝⎛⎭⎫x -π4; (3)3sin x +cos x =2sin ⎝⎛⎭⎫x +π6; (4)3sin x -cos x =2sin ⎝⎛⎭⎫x -π6; (5)sin x +3cos x =2sin ⎝⎛⎭⎫x +π3; (6)sin x -3cos x =2sin ⎝⎛⎭⎫x -π3. 思考2 请写出把a sin x +b cos x 化成A sin(ωx +φ)形式的过程. 答案 a sin x +b cos x =a 2+b 2⎝⎛⎭⎪⎫a a 2+b 2sin x +b a 2+b 2cos x=a 2+b 2(sin x cos φ+cos x sin φ) =a 2+b 2sin(x +φ) (其中sin φ=b a 2+b 2,cos φ=a a 2+b 2).题型一 半角公式的应用例1 已知cos α=13,α为第四象限角,求sin α2、cos α2、tan α2.解 sin α2=±1-cos α2=± 1-132=±33, cos α2=±1+cos α2=± 1+132=±63, tan α2=±1-cos α1+cos α=±1-131+13=±22. ∵α为第四象限角,∴α2为第二、四象限角.当α2为第二象限角时, sin α2=33,cos α2=-63,tan α2=-22; 当α2为第四象限角时, sin α2=-33,cos α2=63,tan α2=-22.跟踪训练1 已知sin θ=45,且5π2<θ<3π,求cos θ2和tan θ2.解 ∵sin θ=45,5π2<θ<3π,∴cos θ=-1-sin 2θ=-35.由cos θ=2cos 2θ2-1得cos 2θ2=1+cos θ2=15.∵5π4<θ2<32π. ∴cos θ2=-1+cos θ2=-55. tan θ2=sinθ2cos θ2=2cos θ2sin θ22cos2θ2=sin θ1+cos θ=2.题型二 三角恒等式的证明例2 (1)求证:1+2cos 2θ-cos 2θ=2.(2)求证:2sin x cos x(sin x +cos x -1)(sin x -cos x +1)=1+cos x sin x .证明 (1)左边=1+2cos 2θ-cos 2θ =1+2×1+cos 2θ2-cos 2θ=2=右边. 所以原等式成立. (2)原式=2sin x cos x(2sin x 2cos x 2-2sin 2x 2)(2sin x 2cos x 2+2sin 2x 2)=2sin x cos x 4sin 2x 2(cos 2x 2-sin 2x 2)=sin x2sin 2x 2=cos x 2sin x 2=2cos 2x 22sin x 2cosx 2=1+cos x sin x =右边.所以原等式成立.跟踪训练2 证明:sin 4x 1+cos 4x ·cos 2x 1+cos 2x ·cos x 1+cos x =tan x2.证明 左边=2sin 2x cos 2x 2cos 22x ·cos 2x 1+cos 2x ·cos x1+cos x =sin 2x1+cos 2x ·cos x 1+cos x =2sin x cos x 2cos 2x ·cos x 1+cos x =sin x1+cos x =2sin x 2cosx22cos 2x 2=tan x2=右边.所以原等式成立.题型三 与三角函数性质有关的综合问题 例3 已知函数f (x )=cos(π3+x )cos(π3-x ),g (x )=12sin 2x -14. (1)求函数f (x )的最小正周期;(2)求函数h (x )=f (x )-g (x )的最大值,并求使h (x )取得最大值的x 的集合. 解 (1)f (x )=(12cos x -32sin x )(12cos x +32sin x )=14cos 2x -34sin 2x =1+cos 2x 8-3(1-cos 2x )8 =12cos 2x -14, ∴f (x )的最小正周期T =2π2=π.(2)h (x )=f (x )-g (x )=12cos 2x -12sin 2x=22cos(2x +π4), 当2x +π4=2k π(k ∈Z )时,h (x )有最大值22.此时x 的取值集合为{x |x =k π-π8,k ∈Z }.跟踪训练3 如图所示,要把半径为R 的半圆形木料截成长方形,应怎样截取,才能使△OAB 的周长最大?解 设∠AOB =α,△OAB 的周长为l , 则AB =R sin α,OB =R cos α, ∴l =OA +AB +OB=R +R sin α+R cos α=R (sin α+cos α)+R =2R sin(α+π4)+R .∵0<α<π2,∴π4<α+π4<3π4.∴l 的最大值为2R +R =(2+1)R , 此时,α+π4=π2,即α=π4,即当α=π4时,△OAB 的周长最大.构建三角函数模型,解决实际问题例4 如图,ABCD 是一块边长为100 m 的正方形地皮,其中AST 是半径为90 m 的扇形小山,其余部分都是平地.一开发商想在平地上建一个矩形停车场,使矩形的一个顶点P 在ST 上,相邻两边CQ 、CR 正好落在正方形的边BC 、CD 上,求矩形停车场PQCR 面积的最大值和最小值.分析 解答本题可设∠P AB =θ并用θ表示PR 、PQ .根据S 矩形PQCR =PQ ·PR 列出关于θ的函数式,求最大值、最小值.解 如图连接AP ,设∠P AB =θ(0°≤θ≤90°),延长RP 交AB 于M , 则AM =90cos θ,MP =90sin θ. 所以PQ =MB =100-90cos θ,PR =MR -MP =100-90sin θ. 所以S 矩形PQCR =PQ ·PR =(100-90cos θ)(100-90sin θ)=10 000-9 000(sin θ+cos θ)+8 100sin θcos θ. 令t =sin θ+cos θ(1≤t ≤2), 则sin θcos θ=t 2-12.所以S 矩形PQCR =10 000-9 000t +8 100·t 2-12=8 1002(t -109)2+950.故当t =109时,S 矩形PQCR 有最小值950 m 2;当t =2时,S 矩形PQCR 有最大值(14 050-9 0002)m 2.1.若cos α=13,α∈(0,π),则cos α2的值为( )A.63 B .-63 C .±63 D .±332.下列各式与tan α相等的是( ) A.1-cos 2α1+cos 2αB.sin α1+cos αC.sin α1-cos 2αD.1-cos 2αsin 2α3.函数f (x )=2sin x2sin ⎝⎛⎭⎫π3-x 2的最大值等于( ) A.12 B.32 C .1 D .2 4.已知π<α<3π2,化简1+sin α1+cos α-1-cos α+1-sin α1+cos α+1-cos α.5.求函数f (x )=3sin(x +20°)+5sin(x +80°)的最大值.一、选择题1.已知180°<α<360°,则cos α2的值等于( )A .- 1-cos α2 B. 1-cos α2 C .-1+cos α2D. 1+cos α22.使函数f (x )=sin(2x +θ)+3cos(2x +θ)为奇函数的θ的一个值是( ) A.π6 B.π3 C.π2 D.2π3 3.已知cos α=45,α∈(32π,2π),则sin α2等于( )A .-1010 B.1010 C.310 3 D .-354.函数f (x )=sin 4x +cos 2x 的最小正周期是( )A.π4B.π2 C .π D .2π 5.设a =12cos 6°-32sin 6°,b =2sin 13°cos 13°,c =1-cos 50°2,则有( ) A .c <b <a B .a <b <c C .a <c <bD .b <c <a6.若cos α=-45,α是第三象限的角,则1+tanα21-tanα2等于( )A .-12 B.12 C .2 D .-2二、填空题7.函数f (x )=sin(2x -π4)-22sin 2x 的最小正周期是______.8.若8sin α+5cos β=6,8cos α+5sin β=10,则sin(α+β)=________. 9.已知等腰三角形顶角的余弦值为45,则底角的正切值为________.10.sin 220°+sin 80°·sin 40°的值为________.三、解答题11.已知函数f (x )=4cos x sin ⎝⎛⎭⎫x +π6-1. (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π6,π4上的最大值和最小值.12.已知sin ⎝⎛⎭⎫α+π3+sin α=-435,-π2<α<0,求cos α的值.13.已知函数f (x )=(1+1tan x)sin 2x -2sin ⎝⎛⎭⎫x +π4sin ⎝⎛⎭⎫x -π4. (1)若tan α=2,求f (α);(2)若x ∈⎣⎡⎦⎤π12,π2,求f (x )的取值范围.当堂检测答案1.答案 A解析 由题意知α2∈(0,π2),∴cos α2>0,cos α2=1+cos α2=63. 2.答案 D解析 1-cos 2αsin 2α=2sin 2α2sin αcos α=sin αcos α=tan α.3.答案 A解析 ∵f (x )=2sin x2⎝⎛⎭⎫sin π3cos x 2-cos π3sin x 2 =32sin x -sin 2x 2=32sin x -1-cos x 2=32sin x +12cos x -12=sin ⎝⎛⎭⎫x +π6-12. ∴f (x )max =12.4.解 原式=(sin α2+cos α2)22|cos α2|-2|sin α2|+(sin α2-cos α2)22|cos α2|+2|sin α2|,∵π<α<3π2,∴π2<α2<3π4,∴cos α2<0,sin α2>0. ∴原式=(sin α2+cos α2)2-2(sin α2+cos α2)+(sin α2-cos α2)22(sin α2-cos α2) =-sin α2+cos α22+sin α2-cos α22=-2cos α2. 5.解 3sin(x +20°)+5sin(x +80°)=3sin(x +20°)+5sin(x +20°)cos 60°+5cos(x +20°)sin 60°=112sin(x +20°)+532cos(x +20°) =⎝⎛⎭⎫1122+⎝⎛⎭⎫5322sin(x +20°+φ) =7sin ()x +20°+φ 其中cos φ=1114,sin φ=5314. 所以f (x )max =7.课时精练答案一、选择题1.答案 C 2.答案 D解析 f (x )=sin(2x +θ)+3cos(2x +θ)=2sin ⎝⎛⎭⎫2x +π3+θ. 当θ=23π时,f (x )=2sin(2x +π)=-2sin 2x . 3.答案 B解析 由题意知α2∈(34π,π), ∴sin α2>0,sin α2= 1-cos α2=1010. 4.答案 B解析 ∵f (x )=sin 4x +1-sin 2x=sin 4x -sin 2x +1=-sin 2x (1-sin 2x )+1=1-sin 2x cos 2x =1-14sin 22x =1-14×1-cos 4x 2=18cos 4x +78, ∴T =2π4=π2. 5.答案 C解析 a =sin 30°cos 6°-cos 30°sin 6°=sin(30°-6°)=sin 24°,b =2sin 13°·cos 13°=sin 26°,c =sin 25°,y =sin x 在[0,π2]上是递增的. ∴a <c <b .6.答案 A解析 ∵α是第三象限角,cos α=-45,∴sin α=-35. ∴1+tan α21-tan α2=1+sinα2cos α21-sin α2cos α2=cos α2+sin α2cos α2-sin α2 =cos α2+sin α2cos α2-sin α2·cos α2+sin α2cos α2+sin α2=1+sin αcos α=1-35-45=-12. 二、填空题7.答案 π解析 ∵f (x )=22sin 2x -22cos 2x -2(1-cos 2x )=22sin 2x +22cos 2x -2=sin(2x +π4)-2, ∴T =2π2=π. 8.答案 4780解析 ∵(8sin α+5cos β)2+(8cos α+5sin β)2=64+25+80(sin αcos β+cos αsin β)=89+80sin(α+β)=62+102=136.∴80sin(α+β)=47,∴sin(α+β)=4780. 9.答案 3解析 设该等腰三角形的顶角为α,则cos α=45,底角大小为12(180°-α). ∴tan ⎣⎡⎦⎤12(180°-α)=1-cos (180°-α)sin (180°-α)=1+cos αsin α=1+4535=3. 10.答案 34解析 原式=sin 220°+sin(60°+20°)·sin(60°-20°)=sin 220°+(sin 60°cos 20°+cos 60°sin 20°)·(sin 60°cos 20°-cos 60°sin 20°) =sin 220°+sin 260°cos 220°-cos 260°sin 220°=sin 220°+34cos 220°-14sin 220° =34sin 220°+34cos 220°=34. 三、解答题11.解 (1)因为f (x )=4cos x sin ⎝⎛⎭⎫x +π6-1 =4cos x ⎝⎛⎭⎫sin x cos π6+cos x sin π6-1=4cos x ⎝⎛⎭⎫32sin x +12cos x -1 =3sin 2x +2cos 2x -1=3sin 2x +cos 2x=2sin ⎝⎛⎭⎫2x +π6, 所以f (x )的最小正周期为π.(2)因为-π6≤x ≤π4,所以-π6≤2x +π6≤2π3. 于是,当2x +π6=π2,即x =π6时, f (x )取得最大值2;当2x +π6=-π6,即x =-π6时, f (x )取得最小值-1.12.解 ∵sin ⎝⎛⎭⎫α+π3+sin α =sin αcos π3+cos αsin π3+sin α =32sin α+32cos α=-453. ∴32sin α+12cos α=-45, ∴sin ⎝⎛⎭⎫α+π6=-45. ∵-π2<α<0,∴-π3<α+π6<π6, ∴cos ⎝⎛⎭⎫α+π6=35. ∴cos α=cos ⎣⎡⎦⎤⎝⎛⎭⎫α+π6-π6 =cos ⎝⎛⎭⎫α+π6cos π6+sin ⎝⎛⎭⎫α+π6sin π6 =35×32+⎝⎛⎭⎫-45×12=33-410. 13.解 (1)f (x )=sin 2x +sin x cos x +cos 2x =1-cos 2x 2+12sin 2x +cos 2x=12(sin 2x +cos 2x )+12, 由tan α=2得sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1=45, cos 2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2αtan 2α+1=-35, 所以f (α)=12×⎝⎛⎭⎫45-35+12=35. (2)由(1)得f (x )=12(sin 2x +cos 2x )+12=22sin ⎝⎛⎭⎫2x +π4+12, 由x ∈⎣⎡⎦⎤π12,π2得2x +π4∈⎣⎡⎦⎤5π12,5π4, 所以sin ⎝⎛⎭⎫2x +π4∈⎣⎡⎦⎤-22,1, 从而f (x )=22sin ⎝⎛⎭⎫2x +π4+12∈⎣⎢⎡⎦⎥⎤0,1+22.。
2020年高中数学 人教A版 必修4 同步作业本《简单的三角恒等变换》(含答案解析)
2020年高中数学 人教A 版 必修4 同步作业本《简单的三角恒等变换》一、选择题1.已知sin α-cos α=-54,则sin 2α的值等于( )A.716 B .-716 C .-916 D.916 2.若si n(π-α)=-53且α∈(π,3π2),则sin(π2+α2)等于( ) A .-63 B .-66 C.66 D.633.已知450°<α<540°,则12+12 12+12cos 2α的值是( ) A .-sin α2 B .cos α2 C .sin α2 D .-cos α24.若sin(α+β)cos β-cos(α+β)sin β=0,则sin(α+2β)+sin(α-2β)等于( )A .1B .-1C .0D .±15.若函数f(x)=(1+3tan x)cos x,0≤x<π2,则f(x)的最大值是( )A .1B .2 C.3+1 D.3+26.使函数f(x)=sin(2x +θ)+3cos(2x +θ)为奇函数的一个θ值是( )A.π6B.π3C.π2D.2π37.如图所示,某园林单位准备绿化一块直径为BC 的半圆形空地,△ABC 的地方种草,△ABC 的内接正方形PQRS 为一水池,其余地方种花,BC=a(a 为定值),∠ABC=θ,△ABC 的面积为S 1,正方形PQRS 的面积S 2,当S 1S 2取得最小值时,角θ的值为( )A.π6B.π4C.π3D.5π12二、填空题 8.函数y=32sin 2x +cos 2x 的最小正周期为________.9.已知sin θ2+cos θ2=233,则cos 2θ=__________.10.在△ABC 中,若cos A=13,则sin 2B +C2+cos 2A 等于________.11.设p=cos αcos β,q=cos 2α+β2,则p 与q 的大小关系是________.12.关于函数f(x)=sin xcos x -cos 2x ,给出下列命题:①f(x)的最小正周期为2π;②f(x)在区间(0,π8)上为增函数;③直线x=3π8是函数f(x)图象的一条对称轴;④函数f(x)的图象可由函数f(x)=22sin 2x 的图象向右平移π8个单位得到; ⑤对任意x ∈R ,恒有f(π4+x)+f(-x)=-1.其中正确命题的序号是________.三、解答题13.如图,有一块以点O 为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD 开辟为绿地,使其一边AD 落在半圆的直径上,另两点B ,C 落在半圆的圆周上.已知半圆的半径长为20 m ,如何选择关于点O 对称的点A ,D 的位置,可以使矩形ABCD 的面积最大?14.已知函数f(x)=(a +2cos 2x)·cos(2x+θ)为奇函数,且f(π4)=0,其中a ∈R ,θ∈(0,π).(1)求a ,θ的值;(2)若f ⎝ ⎛⎭⎪⎫α4=-25,α∈(π2,π),求sin ⎝⎛⎭⎪⎫α+π3的值.15.如图所示,由半圆和长方形组成的铁皮,长方形的边AD为半圆的直径,O为半圆的圆心,AB=1,BC=2,现要将此铁皮剪出一个等腰三角形PMN,其底边MN⊥BC.(1)设∠MOD=30°,求三角形铁皮PMN的面积;(2)求剪下的三角形铁皮PMN的面积的最大值.答案解析1.答案为:C.解析:由sin α-cos α=-54,(sin α-cos α)2=1-2sin αcos α=1-sin 2α=2516,所以sin 2α=-916.2.答案为:B.解析:由题意知sin α=-53,α∈(π,3π2),∴cos α=-23.∵α2∈(π2,3π4),∴sin(π2+α2)=cos α2=-1+cos α2=-66.故选B.3.答案为:A.解析:因为450°<α<540°,所以225°<α2<270°.所以cos α<0,sin α2<0.所以原式= 12+121+cos 2α2= 12+12cos 2α =12+12|cos α|= 12-12cos α= sin 2 α2=⎪⎪⎪⎪⎪⎪sin α2=-sin α2.故选A.4.答案为:C.解析:∵sin(α+β)cos β-cos(α+β)sin β=sin(α+β-β)=sin α=0, ∴sin(α+2β)+sin(α-2β)=2sin αcos 2β=0.5.答案为:B.解析:f(x)=(1+3tan x)cos x=⎝ ⎛⎭⎪⎫1+3sin x cos x cos x=3sin x +cos x=2sin ⎝⎛⎭⎪⎫x +π6. ∵0≤x<π2,∴π6≤x+π6<23π,∴当x +π6=π2时,f(x)取到最大值2.6.答案为:D.解析:f(x)=sin(2x +θ)+3cos(2x +θ)=2sin ⎝⎛⎭⎪⎫2x +θ+π3,当θ=2π3时, f(x)=2sin(2x +π)=-2sin 2x 为奇函数.7.答案为:B.解析:由题意得θ∈(0,π2),AB=acos θ,S 1=12a 2cos θsin θ=14a 2sin 2θ.设PS=m ,则AP=mcos θ,BP=m sin θ,由AB=AP +BP ,得mcos θ+msin θ=acos θ,所以m=12asin 2θ12sin 2θ+1,S 1S 2=14a 2sin 2θ⎝ ⎛⎭⎪⎫12asin 2θ12si n 2θ+12=14sin 22θ+sin 2θ+1sin 2θ=sin 2θ4+1sin 2θ+1.令t=sin 2θ,θ∈(0,π2),则t ∈(0,1],由于y=t 4+1t +1在(0,1]上为减函数,因此t=sin 2θ=1,即θ=π4时,S 1S 2取得最小值.故选B.8.答案为:π;解析:y=32sin 2x +cos 2x=32sin 2x +12cos 2x +12=sin(2x +π6)+12,其周期为T=2π2=π.9.答案为:79;解析:因为sin θ2+cos θ2=233,所以1+sin θ=43,即sin θ=13,所以cos 2θ=1-2sin 2θ=1-29=79.10.答案为:-19;解析:在△ABC 中,B +C 2=π2-A2,所以sin 2B +C 2+cos 2A=sin 2⎝ ⎛⎭⎪⎫π2-A 2+cos 2A=cos 2A 2+cos 2A=1+cos A 2+2cos 2A -1=-19.11.答案为:p≤q;解析:因为p -q=2cos αcos β-1-cos α+β2=2cos αcos β-1-cos αcos β+sin αsin β2=cos α-β-12≤0,所以p≤q.12.答案为:②③⑤;解析:f(x)=12sin 2x -1+cos 2x 2=22sin(2x -π4)-12,显然①错;x ∈(0,π8)时,2x -π4∈(-π4,0),函数f(x)为增函数,故②正确;令2x -π4=π2+kπ,k ∈Z ,得x=3π8+kπ2,k ∈Z ,显然x=3π8是函数f(x)图象的一条对称轴,故③正确;f(x)=22sin 2x 的图象向右平移π8个单位得到y=22sin 2(x -π8)=22sin(2x -π4),故④错; f(π4+x)+f(-x)=22sin(2x +π4)-12+22sin(-2x -π4)-12 =22sin(2x +π4)-22sin(2x +π4)-1=-1,故⑤正确.13.解:连接OB ,设∠AOB=θ,则AB=OBsin θ=20sin θ,OA=OBcos θ=20cos θ,且θ∈⎝⎛⎭⎪⎫0,π2.∵A ,D 关于原点对称,∴AD=2OA=40cos θ. 设矩形ABCD 的面积为S ,则S=AD·AB =40cos θ·20sin θ=400sin 2θ.∵θ∈⎝⎛⎭⎪⎫0,π2,∴当sin 2θ=1,即θ=π4时,S max =400(m 2).此时AO=DO=102(m).故当A 、D 距离圆心O 为10 2 m 时,矩形ABCD 的面积最大,其最大面积是400 m 2.14.解:(1)因为f(x)=(a +2cos 2x)cos(2x +θ)是奇函数,而y 1=a +2cos 2x 为偶函数,所以y 2=cos(2x +θ)为奇函数.又θ∈(0,π),得θ=π2,所以f(x)=-sin 2x·(a+2cos 2x).由f ⎝ ⎛⎭⎪⎫π4=0,得-(a +1)=0,即a=-1. (2)由(1)得f(x)=-12sin 4x ,因为f ⎝ ⎛⎭⎪⎫α4=-12sin α=-25,即sin α=45,又α∈⎝ ⎛⎭⎪⎫π2,π,从而cos α=-35, 所以有sin ⎝⎛⎭⎪⎫α+π3=sin αcos π3+cos αsin π3=4-3310.15.解:(1)由题意知OM=12AD=12BC=12×2=1,∴MN=OMsin ∠MOD +AB=1×12+1=32,BN=OA +OMcos ∠MOD=1+1×cos 30°=1+32=2+32, ∴S △PMN =12MN·BN =12×32×2+32=6+338,即三角形铁皮PMN 的面积为6+338;(2)设∠MOD=x,0<x≤π2,则MN=OMsin x +CD=sin x +1,BN=OMcos x +OA=cos x +1,∴S △PMN =12MN·BN =12(sin x +1)·(cos x+1)=12(sin xcos x +sin x +cos x +1).令t=sin x +cos x=2sin(x +π4),由于0<x≤π2,所以π4<x +π4≤3π4,则有22≤sin(x+π4)≤1,所以1≤t≤2, 且t 2=(sin x +cos x)2=1+2sin xcos x ,所以sin xcos x=t 2-12,故S △PMN =12(t 2-12+t +1)=14(t 2+2t +1)=14(t +1)2,而函数y=14(t +1)2在区间[1,2]上单调递增,故当t=2时,y 取最大值,即y max =14(2+1)2=3+224,即剪下的三角形铁皮PMN 的面积的最大值为3+224.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简单的三角恒等变换[学习目标] 1.能用二倍角公式导出半角公式以及万能公式,体会其中的三角恒等变换的基本思想方法,以及进行简单的应用.2.了解两角和与差的正弦、余弦公式导出积化和差、和差化积公式的基本方法.理解方程思想、换元思想在整个变换过程中所起的作用.3.了解三角恒等变换的特点、变换技巧,掌握三角恒等变换的基本思想方法,能利用三角恒等变换对三角函数式化简、求值以及三角恒等式的证明和一些简单的应用.知识点一半角公式及其推导(1)2Sα:sinα2=±1-cos α2;(2)2Cα:cosα2=±1+cos α2;(3)2Tα:tanα2=±1-cos α1+cos α(无理形式)=sin α1+cos α=1-cos αsin α(有理形式).思考1 试用cos α表示sinα2、cosα2、tanα2.答案∵cos α=cos2α2-sin2α2=1-2sin2α2,∴2sin2α2=1-cos α,∴sin2α2=1-cos α2,∴sinα2=±1-cos α2;∵cos α=2cos2α2-1,∴cos2α2=1+cos α2,∴cosα2=±1+cos α2;∵tan2α2=sin2α2cos2α2=1-cos α21+cos α2=1-cos α1+cos α,∴tan α2=±1-cos α1+cos α.思考2 证明tan α2=sin α1+cos α=1-cos αsin α.证明 ∵sin α1+cos α=2sin α2cosα22cos2α2=tan α2,∴tan α2=sin α1+cos α,同理可证tan α2=1-cos αsin α.∴tan α2=sin α1+cos α=1-cos αsin α.知识点二 辅助角公式a sin x +b cos x =a 2+b 2·sin(x +φ) 使a sin x +b cos x =a 2+b 2sin(x +φ)成立时,cos φ=aa 2+b2,sin φ=b a 2+b 2,其中φ称为辅助角,它的终边所在象限由点(a ,b )决定.辅助角公式在研究三角函数的性质中有着重要的应用.思考1 将下列各式化成A sin(ωx +φ)的形式,其中A >0,ω>0,|φ|<π2.(1)sin x +cos x =2sin ⎝⎛⎭⎫x +π4;(2)sin x -cos x =2sin ⎝⎛⎭⎫x -π4; (3)3sin x +cos x =2sin ⎝⎛⎭⎫x +π6;(4)3sin x -cos x =2sin ⎝⎛⎭⎫x -π6; (5)sin x +3cos x =2sin ⎝⎛⎭⎫x +π3; (6)sin x -3cos x =2sin ⎝⎛⎭⎫x -π3.思考2 请写出把a sin x +b cos x 化成A sin(ωx +φ)形式的过程. 答案 a sin x +b cos x=a 2+b 2⎝ ⎛⎭⎪⎫a a 2+b 2sin x +b a 2+b 2cos x =a 2+b 2(sin x cos φ+cos x sin φ)=a2+b2sin(x+φ)(其中sin φ=ba2+b2,cos φ=aa2+b2).题型一半角公式的应用例1 已知cos α=13,α为第四象限角,求sinα2、cosα2、tanα2. 解sinα2=±1-cos α2=±1-132=±33,cosα2=±1+cos α2=±1+132=±63,tanα2=±1-cos α1+cos α=±1-131+13=±22.∵α为第四象限角,∴α2为第二、四象限角.当α2为第二象限角时,sinα2=33,cosα2=-63,tanα2=-22;当α2为第四象限角时,sinα2=-33,cosα2=63,tanα2=-22.跟踪训练1 已知sin θ=45,且5π2<θ<3π,求cosθ2和tanθ2.解∵sin θ=45,5π2<θ<3π,∴cos θ=-1-sin2θ=-35.由cos θ=2cos2θ2-1得cos2θ2=1+cos θ2=15.∵5π4<θ2<32π. ∴cos θ2=-1+cos θ2=-55. tan θ2=sin θ2cos θ2=2cos θ2sin θ22cos2θ2=sin θ1+cos θ=2.题型二 三角恒等式的证明例2 (1)求证:1+2cos 2θ-cos 2θ=2.(2)求证:2sin x cos x (sin x +cos x -1)(sin x -cos x +1)=1+cos xsin x .证明 (1)左边=1+2cos 2θ-cos 2θ =1+2×1+cos 2θ2-cos 2θ=2=右边. 所以原等式成立. (2)原式=2sin x cos x(2sin x 2cos x 2-2sin 2x 2)(2sin x 2cos x2+2sin 2x2)=2sin x cos x 4sin 2x 2(cos 2x 2-sin 2x 2)=sin x2sin 2x 2=cos x2sin x 2=2cos2x22sin x 2cosx 2=1+cos x sin x =右边.所以原等式成立.跟踪训练2 证明:sin 4x 1+cos 4x ·cos 2x 1+cos 2x ·cos x 1+cos x =tan x2.证明 左边=2sin 2x cos 2x 2cos 22x ·cos 2x 1+cos 2x ·cos x1+cos x =sin 2x 1+cos 2x ·cos x 1+cos x =2sin x cos x 2cos 2x ·cos x1+cos x =sin x1+cos x =2sin x 2cosx22cos2x 2 =tan x2=右边.所以原等式成立.题型三 与三角函数性质有关的综合问题 例3 已知函数f (x )=cos(π3+x )cos(π3-x ),g (x )=12sin 2x -14. (1)求函数f (x )的最小正周期;(2)求函数h (x )=f (x )-g (x )的最大值,并求使h (x )取得最大值的x 的集合. 解 (1)f (x )=(12cos x -32sin x )(12cos x +32sin x )=14cos 2x -34sin 2x =1+cos 2x 8-3(1-cos 2x )8 =12cos 2x -14, ∴f (x )的最小正周期T =2π2=π.(2)h (x )=f (x )-g (x )=12cos 2x -12sin 2x=22cos(2x +π4), 当2x +π4=2k π(k ∈Z )时,h (x )有最大值22.此时x 的取值集合为{x |x =k π-π8,k ∈Z }.跟踪训练3 如图所示,要把半径为R 的半圆形木料截成长方形,应怎样截取,才能使△OAB 的周长最大?解 设∠AOB =α,△OAB 的周长为l , 则AB =R sin α,OB =R cos α, ∴l =OA +AB +OB =R +R sin α+R cos α =R (sin α+cos α)+R =2R sin(α+π4)+R .∵0<α<π2,∴π4<α+π4<3π4.∴l 的最大值为2R +R =(2+1)R , 此时,α+π4=π2,即α=π4,即当α=π4时,△OAB 的周长最大.构建三角函数模型,解决实际问题例4 如图,ABCD 是一块边长为100 m 的正方形地皮,其中AST 是半径为90 m 的扇形小山,其余部分都是平地.一开发商想在平地上建一个矩形停车场,使矩形的一个顶点P 在ST 上,相邻两边CQ 、CR 正好落在正方形的边BC 、CD 上,求矩形停车场PQCR 面积的最大值和最小值.分析 解答本题可设∠PAB =θ并用θ表示PR 、PQ .根据S 矩形PQCR =PQ ·PR 列出关于θ的函数式,求最大值、最小值.解 如图连接AP ,设∠PAB =θ(0°≤θ≤90°),延长RP 交AB 于M , 则AM =90cos θ,MP =90sin θ. 所以PQ =MB =100-90cos θ,PR =MR -MP =100-90sin θ.所以S 矩形PQCR =PQ ·PR=(100-90cos θ)(100-90sin θ)=10 000-9 000(sin θ+cos θ)+8 100sin θcos θ.令t =sin θ+cos θ(1≤t ≤2), 则sin θcos θ=t 2-12.所以S 矩形PQCR =10 000-9 000t +8 100·t 2-12=8 1002(t -109)2+950.故当t =109时,S 矩形PQCR 有最小值950 m 2;当t =2时,S 矩形PQCR 有最大值(14 050-9 0002)m 2.1.若cos α=13,α∈(0,π),则cos α2的值为( )A.63 B .-63 C .±63 D .±332.下列各式与tan α相等的是( ) A.1-cos 2α1+cos 2αB.sin α1+cos αC.sin α1-cos 2αD.1-cos 2αsin 2α3.函数f (x )=2sin x2sin ⎝ ⎛⎭⎪⎫π3-x 2的最大值等于( )A.12B.32 C .1 D .2 4.已知π<α<3π2,化简1+sin α1+cos α-1-cos α+1-sin α1+cos α+1-cos α.5.求函数f (x )=3sin(x +20°)+5sin(x +80°)的最大值.一、选择题1.已知180°<α<360°,则cos α2的值等于( )A .-1-cos α2 B. 1-cos α2 C .-1+cos α2D. 1+cos α22.使函数f (x )=sin(2x +θ)+3cos(2x +θ)为奇函数的θ的一个值是( ) A.π6 B.π3 C.π2 D.2π33.已知cos α=45,α∈(32π,2π),则sin α2等于( )A .-1010 B.1010 C.310 3 D .-354.函数f (x )=sin 4x +cos 2x 的最小正周期是( )A.π4B.π2 C .π D .2π 5.设a =12cos 6°-32sin 6°,b =2sin 13°cos 13°,c =1-cos 50°2,则有( ) A .c <b <a B .a <b <c C .a <c <bD .b <c <a6.若cos α=-45,α是第三象限的角,则1+tanα21-tanα2等于( )A .-12 B.12 C .2 D .-2二、填空题7.函数f (x )=sin(2x -π4)-22sin 2x 的最小正周期是______.8.若8sin α+5cos β=6,8cos α+5sin β=10,则sin(α+β)=________. 9.已知等腰三角形顶角的余弦值为45,则底角的正切值为________.10.sin 220°+sin 80°·sin 40°的值为________.三、解答题11.已知函数f (x )=4cos x sin ⎝⎛⎭⎫x +π6-1.(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π6,π4上的最大值和最小值.12.已知sin ⎝⎛⎭⎫α+π3+sin α=-435,-π2<α<0,求cos α的值.13.已知函数f (x )=(1+1tan x )sin 2x -2sin ⎝⎛⎭⎫x +π4sin ⎝⎛⎭⎫x -π4.(1)若tan α=2,求f (α);(2)若x ∈⎣⎡⎦⎤π12,π2,求f (x )的取值范围.当堂检测答案1.答案 A解析 由题意知α2∈(0,π2),∴cos α2>0,cos α2=1+cos α2=63. 2.答案 D解析 1-cos 2αsin 2α=2sin 2α2sin αcos α=sin αcos α=tan α. 3.答案 A 解析 ∵f (x )=2sin x 2⎝ ⎛⎭⎪⎫sin π3cos x 2-cos π3sin x 2 =32sin x -sin 2x 2=32sin x -1-cos x 2 =32sin x +12cos x -12=sin ⎝⎛⎭⎫x +π6-12. ∴f (x )max =12. 4.解 原式=(sin α2+cos α2)22|cos α2|-2|sin α2| +(sin α2-cos α2)22|cos α2|+2|sin α2|, ∵π<α<3π2,∴π2<α2<3π4, ∴cos α2<0,sin α2>0. ∴原式=(sin α2+cos α2)2-2(sin α2+cos α2)+(sin α2-cos α2)22(sin α2-cos α2) =-sin α2+cos α22+sin α2-cos α22=-2cos α2. 5.解 3sin(x +20°)+5sin(x +80°)=3sin(x +20°)+5sin(x +20°)cos 60°+5cos(x +20°)sin 60°=112sin(x +20°)+532cos(x +20°) =⎝ ⎛⎭⎪⎫1122+⎝ ⎛⎭⎪⎫5322sin(x +20°+φ)=7sin ()x +20°+φ 其中cos φ=1114,sin φ=5314. 所以f (x )max =7.课时精练答案一、选择题1.答案 C2.答案 D解析 f (x )=sin(2x +θ)+3cos(2x +θ)=2sin ⎝⎛⎭⎫2x +π3+θ. 当θ=23π时,f (x )=2sin(2x +π)=-2sin 2x . 3.答案 B解析 由题意知α2∈(34π,π), ∴sin α2>0,sin α2= 1-cos α2=1010. 4.答案 B解析 ∵f (x )=sin 4x +1-sin 2x=sin 4x -sin 2x +1=-sin 2x (1-sin 2x )+1=1-sin 2x cos 2x =1-14sin 22x =1-14×1-cos 4x 2=18cos 4x +78, ∴T =2π4=π2. 5.答案 C解析 a =sin 30°cos 6°-cos 30°sin 6°=sin(30°-6°)=sin 24°, b =2sin 13°·cos 13°=sin 26°,c =sin 25°,y =sin x 在[0,π2]上是递增的.∴a <c <b .6.答案 A解析 ∵α是第三象限角,cos α=-45,∴sin α=-35. ∴1+tan α21-tan α2=1+sin α2cos α21-sin α2cos α2=cos α2+sin α2cos α2-sin α2 =cos α2+sin α2cos α2-sin α2·cos α2+sin α2cos α2+sin α2=1+sin αcos α=1-35-45=-12. 二、填空题7.答案 π解析 ∵f (x )=22sin 2x -22cos 2x -2(1-cos 2x ) =22sin 2x +22cos 2x -2=sin(2x +π4)-2, ∴T =2π2=π. 8.答案 4780解析 ∵(8sin α+5cos β)2+(8cos α+5sin β)2=64+25+80(sin αcos β+cos αsin β)=89+80sin(α+β)=62+102=136.∴80sin(α+β)=47,∴sin(α+β)=4780. 9.答案 3解析 设该等腰三角形的顶角为α,则cos α=45,底角大小为12(180°-α).∴tan ⎣⎢⎡⎦⎥⎤12(180°-α)=1-cos(180°-α)sin(180°-α) =1+cos αsin α=1+4535=3. 10.答案 34解析 原式=sin 220°+sin(60°+20°)·sin(60°-20°)=sin 220°+(sin 60°cos 20°+cos 60°sin 20°)·(sin 60°cos 20°-cos 60°sin 20°) =sin 220°+sin 260°cos 220°-cos 260°sin 220°=sin 220°+34cos 220°-14sin 220° =34sin 220°+34cos 220°=34. 三、解答题11.解 (1)因为f (x )=4cos x sin ⎝⎛⎭⎫x +π6-1 =4cos x ⎝⎛⎭⎫sin x cos π6+cos x sin π6-1 =4cos x ⎝ ⎛⎭⎪⎫32sin x +12cos x -1 =3sin 2x +2cos 2x -1=3sin 2x +cos 2x=2sin ⎝⎛⎭⎫2x +π6, 所以f (x )的最小正周期为π. (2)因为-π6≤x ≤π4,所以-π6≤2x +π6≤2π3. 于是,当2x +π6=π2,即x =π6时, f (x )取得最大值2; 当2x +π6=-π6,即x =-π6时, f (x )取得最小值-1.12.解 ∵sin ⎝⎛⎭⎫α+π3+sin α =sin αcos π3+cos αsin π3+sin α=32sin α+32cos α=-453. ∴32sin α+12cos α=-45, ∴sin ⎝⎛⎭⎫α+π6=-45. ∵-π2<α<0,∴-π3<α+π6<π6, ∴cos ⎝⎛⎭⎫α+π6=35. ∴cos α=cos ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫α+π6-π6 =cos ⎝⎛⎭⎫α+π6cos π6+sin ⎝⎛⎭⎫α+π6sin π6=35×32+⎝ ⎛⎭⎪⎫-45×12=33-410. 13.解 (1)f (x )=sin 2x +sin x cos x +cos 2x =1-cos 2x 2+12sin 2x +cos 2x =12(sin 2x +cos 2x )+12, 由tan α=2得sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1=45, cos 2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2αtan 2α+1=-35, 所以f (α)=12×⎝ ⎛⎭⎪⎫45-35+12=35. (2)由(1)得f (x )=12(sin 2x +cos 2x )+12=22sin ⎝⎛⎭⎫2x +π4+12, 由x ∈⎣⎡⎦⎤π12,π2得2x +π4∈⎣⎢⎡⎦⎥⎤5π12,5π4,所以sin ⎝⎛⎭⎫2x +π4∈⎣⎢⎡⎦⎥⎤-22,1, 从而f (x )=22sin ⎝⎛⎭⎫2x +π4+12∈⎣⎢⎡⎦⎥⎤0,1+22.。