2019年全国数学中考试卷分类汇编:中位线

合集下载

2019中考数学真题分类汇编解析版24 线段垂直平分线、角平分线、中位线

2019中考数学真题分类汇编解析版24  线段垂直平分线、角平分线、中位线

一、选择题
1.(2019浙江湖州,8,3分)如图,已知在四边形ABCD 中,∠BCD =90°,BD 平分∠ABC ,AB =6,BC =9,
CD =4,则四边形ABCD 的面积是( )
A .24
B .30
C .36
D .42
【答案】B .
【解析】如答图,过D 点作DE ⊥BA 于点D ,
又∵BD 平分∠ABC ,∠BCD =90°,
∴DC =DE =4.
∵AB =6,BC =9,
∴S 四边形ABCD =S △BCD +S 四边形ABD =
12AB •DE +12BC •DC =12×6×4+12
×9×4=12+18=30. 故选B .
【知识点】角平分线性质定理;割补法求图形的面积
二、解答题
1.(2019甘肃省,20,4分)如图,在ABC 中,点P 是AC 上一点,连接BP ,求作一点M ,使得点M 到AB 和AC 两边的距离相等,并且到点B 和点P 的距离相等.(不写作法,保留作图痕迹)
【思路分析】根据角平分线的作法、线段垂直平分线的作法作图即可.
【解题过程】解:如图,点M 即为所求,
第8题图 D
C
B A E
A B C
D
第8题答图
【知识点】线段垂直平分线的性质;角平分线的性质。

2019年数学中考真题知识点汇编22 线段垂直平分线、角平分线、中位线(含解析).docx

2019年数学中考真题知识点汇编22  线段垂直平分线、角平分线、中位线(含解析).docx

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】一、选择题5.(2019·泰州) 如图所示的网格由边长相同的小正方形组成,点A 、B 、C 、D 、E 、F 、G 在小正方形的顶点上,则△ABC 的重心是( )A.点DB.点EC.点FD.点G第5题图【答案】A【解析】三角形的重心是三条中线的交点,由图中可知,△ABC 的三边的中点都在格点上,三条中线如图所示交于点D,故选A.第5题图4.(2019·盐城)如图,点D 、E 分别是△ABC 边BA 、BC 的中点,AC =3,则DE 的长为( )A .2B .C .3D .【答案】D3423E DBAC ACE D G FABCE D G F【解析】由中位线的定义可知DE 是△ABC 的中位线,进而由中位线的性质可得DE =21AC =23,故选D. 7.(2019·青岛)如图,BD 是△ABC 的角平分钱,AE ⊥BD ,垂足为F . 若∠ABC =35°,∠C =50°,则∠CDE 的度数为A .35︒B .40︒C .45︒D .50︒【答案】C【解析】本题考查角平分线的性质,因为BD 平分∠ABC ,AE ⊥BD ,所以△ABF ≌△EBF ,所以BD 是线段AE 的垂直平分线,所以AD =ED ,所以∠BAD =∠BED =180°-35°-50°=95°, 所以∠CDE =180°-∠C =95°-50°=45°,故选C .1. (2019·湖州)如图,已知在四边形ABCD 中,∠BCD =90°,BD 平分∠ABC ,AB =6,BC =9,CD =4,则四边形ABCD 的面积是( )A .24B .30C .36D .42【答案】B .【解析】如图,过D 点作DE ⊥BA 于点D ,又∵BD 平分∠ABC ,∠BCD =90°,∴DC =DE =4.∵AB =6,BC =9,∴S 四边形ABCD =S △BCD +S 四边形ABD =12AB •DE +12BC •DC =12×6×4+12×9×4=12+18=30. 故选B .二、填空题17.(2019·长沙)如图,要测量池塘两岸相对的A ,B 两点间的距离,可以在池塘外选一点C ,连接AC ,BC ,分别取AC ,BC 的中点D ,E ,测得DE=50m ,则AB 的长是 m .【答案】100【解析】∵AC ,BC 的中点D ,E ,∴DE 是△ABC 的中位线,∴DE=12AB. ∵DE=50m ,∴AB=100m. 故填:100.18.(2019·广元)如图,已知:在△ABC中,∠BAC=90°,延长BA到点D,使AD=12AB,点E,F分别是边BC,AC的中点.求证:DF=BE.第18题图解:连接AE,∵点E,F分别是边BC,AC的中点,∴EF是△ABC的中位线,∴EF∥AB,即EF∥AD,且EF=12AB,又∵AD=12AB,∴AD=EF,∴四边形ADFE是平行四边形,∴DF=AE,又∵在Rt△ABC中,点E是中点,∴AE=12BC=BE=CE,∴BE=DF.。

2019年全国中考数学试题分类解析汇编(159套63专题)4

2019年全国中考数学试题分类解析汇编(159套63专题)4

2019年全国中考数学试题分类解析汇编(159套63专题)专题5:分式一、选择题1. (2019安徽省4分)化简xxx x -+-112的结果是【 】 A.x +1 B. x -1 C.—x D. x 【答案】D 。

【考点】分式的加法运算【分析】分式的加减,首先看分母是否相同,同分母的分式加减,分母不变,分子相加减,如果分母不同,先通分,后加减,本题分母互为相反数,可以化成同分母的分式加减:222(1)111111x x x x x x x x x x x x x x x --+=-===------。

故选D 。

2. (2019浙江湖州3分)要使分式1x有意义,x 的取值范围满足【 】A .x=0B .x≠0 C.x >0 D .x <0 【答案】B 。

【考点】分式有意义的条件。

【分析】根据分式分母不为0的条件,要使1x 在实数范围内有意义,必须x≠0。

故选B 。

3.(2019浙江嘉兴、舟山4分)若分式x 1x+2-的值为0,则【 】A . x=﹣2B . x=0C . x=1或2D .x=1 【答案】D 。

【考点】分式的值为零的条件。

【分析】∵分式x 1x+2-的值为0,∴x 1=0x+2x+20-⎧⎪⎨⎪≠⎩,解得x=1。

故选D 。

4. (2019浙江绍兴4分)化简111x x --可得【 】 A .21x x - B . 21x x -- C .221x x x+- D .221x x x--【答案】B 。

【考点】分式的加减法。

【分析】原式=211(1)x x x x x x--=---。

故选B 。

5. (2019浙江义乌3分)下列计算错误的是【 】A .0.2a b 2a b 0.7a b 7a b ++=--B .3223x y x y x y= C .a b 1b a -=-- D .123c c c +=【答案】A 。

【考点】分式的混合运算。

【分析】根据分式的运算法则逐一作出判断:A 、0.2a b 2a 10b0.7a b 7a 10b ++=--,故本选项错误; B 、3223x y xyx y =,故本选项正确; C 、a b b a1b a b a --=-=---,故本选项正确; D 、123c c c+=,故本选项正确。

2019年全国各地中考数学真题汇编:三角形(湖北专版)(解析卷)

2019年全国各地中考数学真题汇编:三角形(湖北专版)(解析卷)

2019年全国各地中考数学真题汇编(湖北专版)三角形参考答案与试题解析一.选择题(共3小题)1.(2019•黄石)如图,在△ABC中,∠B=50°,CD⊥AB于点D,∠BCD和∠BDC的角平分线相交于点E,F为边AC的中点,CD=CF,则∠ACD+∠CED=()A.125°B.145°C.175°D.190°解:∵CD⊥AB,F为边AC的中点,∴DF=AC=CF,又∵CD=CF,∴CD=DF=CF,∴△CDF是等边三角形,∴∠ACD=60°,∵∠B=50°,∴∠BCD+∠BDC=130°,∵∠BCD和∠BDC的角平分线相交于点E,∴∠DCE+∠CDE=65°,∴∠CED=115°,∴∠ACD+∠CED=60°+115°=175°,故选:C.2.(2019•宜昌)如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则sin∠BAC的值为()A.B.C.D.解:如图,过C作CD⊥AB于D,则∠ADC=90°,∴AC===5.∴sin∠BAC==.故选:D.3.(2019•荆门)如图,Rt△OCB的斜边在y轴上,OC=,含30°角的顶点与原点重合,直角顶点C在第二象限,将Rt△OCB绕原点顺时针旋转120°后得到△OC′B',则B点的对应点B′的坐标是()A.(,﹣1)B.(1,﹣)C.(2,0)D.(,0)解:如图,在Rt△OCB中,∵∠BOC=30°,∴BC=OC=×=1,∵Rt△OCB绕原点顺时针旋转120°后得到△OC′B',∴OC′=OC=,B′C′=BC=1,∠B′C′O=∠BCO=90°,∴点B′的坐标为(,﹣1).故选:A.二.填空题(共9小题)4.(2019•天门)如图,为测量旗杆AB的高度,在教学楼一楼点C处测得旗杆顶部的仰角为60°,在四楼点D处测得旗杆顶部的仰角为30°,点C与点B在同一水平线上.已知CD=9.6m,则旗杆AB的高度为14.4m.解:作DE⊥AB于E,如图所示:则∠AED=90°,四边形BCDE是矩形,∴BE=CD=9.6m,∠CDE=∠DEA=90°,∴∠ADC=90°+30°=120°,∵∠ACB=60°,∴∠ACD=30°,∴∠CAD=30°=∠ACD,∴AD=CD=9.6m,在Rt△ADE中,∠ADE=30°,∴AE=AD=4.8m,∴AB=AE+BE=4.8m+9.6m=14.4m;故答案为:14.4.5.(2019•武汉)如图,在▱ABCD中,E、F是对角线AC上两点,AE=EF=CD,∠ADF=90°,∠BCD=63°,则∠ADE的大小为21°.解:设∠ADE=x,∵AE=EF,∠ADF=90°,∴∠DAE=∠ADE=x,DE=AF=AE=EF,∵AE=EF=CD,∴DE=CD,∴∠DCE=∠DEC=2x,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠BCA=x,∴∠DCE=∠BCD﹣∠BCA=63°﹣x,∴2x=63°﹣x,解得:x=21°,即∠ADE=21°;故答案为:21°.6.(2019•黄石)如图,一轮船在M处观测灯塔P位于南偏西30°方向,该轮船沿正南方向以15海里/小时的速度匀速航行2小时后到达N处,再观测灯塔P位于南偏西60°方向,若该轮船继续向南航行至灯塔P最近的位置T处,此时轮船与灯塔之间的距离PT为15海里(结果保留根号).解:由题意得,MN=15×2=30海里,∵∠PMN=30°,∠PNT=60°,∴∠MPN=∠PMN=30°,∴PN=MN=30海里,∴PT=PN•sin∠PNT=15海里.故答案为:15.7.(2019•十堰)如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为24.解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,BO=DO,∵点E是BC的中点,∴OE是△BCD的中位线,∴CD=2OE=2×3=6,∴菱形ABCD的周长=4×6=24;故答案为:24.8.(2019•襄阳)如图,已知∠ABC=∠DCB,添加下列条件中的一个:①∠A=∠D,②AC=DB,③AB=DC,其中不能确定△ABC≌△DCB的是②(只填序号).解:∵已知∠ABC=∠DCB,且BC=CB∴若添加①∠A=∠D,则可由AAS判定△ABC≌△DCB;若添加②AC=DB,则属于边边角的顺序,不能判定△ABC≌△DCB;若添加③AB=DC,则属于边角边的顺序,可以判定△ABC≌△DCB.故答案为:②.9.(2019•荆州)如图①,已知正方体ABCD﹣A1B1C1D1的棱长为4cm,E,F,G分别是AB,AA1,AD的中点,截面EFG将这个正方体切去一个角后得到一个新的几何体(如图②),则图②中阴影部分的面积为2cm2.解:∵已知正方体ABCD﹣A1B1C1D1的棱长为4cm,E,F,G分别是AB,AA1,AD的中点,∴GF=GE=EF==2,过G作GH⊥EF于H,∴GH=GF=,∴图②中阴影部分的面积=×2×=2cm2.故答案为:2.10.(2019•孝感)如图,在P处利用测角仪测得某建筑物AB的顶端B点的仰角为60°,点C的仰角为45°,点P到建筑物的距离为PD=20米,则BC=(20﹣20)米.解:在Rt△PBD中,tan∠BPD=,则BD=PD•tan∠BPD=20,在Rt△PBD中,∠CPD=45°,∴CD=PD=20,∴BC=BD﹣CD=20﹣20,故答案为:(20﹣20).11.(2019•咸宁)如图所示,九(1)班数学课外活动小组在河边测量河宽AB(这段河流的两岸平行),他们在点C测得∠ACB=30°,点D处测得∠ADB=60°,CD=80m,则河宽AB约为69m(结果保留整数,≈1.73).解:在Rt△ABC中,∠ACB=30°,∠ADB=60°,∴∠DAC=30°,∴DA=DC=80,在Rt△ABD中,,∴==40≈69(米),故答案为69.12.(2019•荆州)如图,灯塔A在测绘船的正北方向,灯塔B在测绘船的东北方向,测绘船向正东方向航行20海里后,恰好在灯塔B的正南方向,此时测得灯塔A在测绘船北偏西63.5°的方向上,则灯塔A,B间的距离为22.4海里(结果保留整数).(参考数据sin26.5°≈0.45,cos26.5°≈0.90,tan26.5°≈0.50,≈2.24)解:由题意得,MN=20,∠ANB=63.5°,∠BMN=45°,∠AMN=∠BNM=90°,∴BN=MN=20,如图,过A作AE⊥BN于E,则四边形AMNE是矩形,∴AE=MN=20,EN=AM,∵AM=MN•tan26.5°=20×0.50=10,∴BE=20﹣10=10,∴AB==10≈22.4海里.故答案为:22.4.三.解答题(共14小题)13.(2019•武汉)如图,点A、B、C、D在一条直线上,CE与BF交于点G,∠A=∠1,CE∥DF,求证:∠E=∠F.解:∵CE∥DF,∴∠ACE=∠D,∵∠A=∠1,∴180°﹣∠ACE﹣∠A=180°﹣∠D﹣∠1,又∵∠E=180°﹣∠ACE﹣∠A,∠F=180°﹣∠D﹣∠1,∴∠E=∠F.14.(2019•黄石)如图,在△ABC中,∠BAC=90°,E为边BC上的点,且AB=AE,D为线段BE 的中点,过点E作EF⊥AE,过点A作AF∥BC,且AF、EF相交于点F.(1)求证:∠C=∠BAD;(2)求证:AC=EF.证明:(1)∵AB=AE,D为线段BE的中点,∴AD⊥BC∴∠C+∠DAC=90°,∵∠BAC=90°∴∠BAD+∠DAC=90°∴∠C=∠BAD(2)∵AF∥BC∴∠F AE=∠AEB∵AB=AE∴∠B=∠AEB∴∠B=∠F AE,且∠AEF=∠BAC=90°,AB=AE∴△ABC≌△EAF(ASA)∴AC=EF15.(2019•十堰)如图,拦水坝的横断面为梯形ABCD,AD=3m,坝高AE=DF=6m,坡角α=45°,β=30°,求BC的长.解:过A点作AE⊥BC于点E,过D作DF⊥BC于点F,则四边形AEFD是矩形,有AE=DF=6,AD=EF=3,∵坡角α=45°,β=30°,∴BE=AE=6,CF=DF=6,∴BC=BE+EF+CF=6+3+6=9+6,∴BC=(9+6)m,答:BC的长(9+6)m.16.(2019•宜昌)如图,在△ABC中,D是BC边上的一点,AB=DB,BE平分∠ABC,交AC边于点E,连接DE.(1)求证:△ABE≌△DBE;(2)若∠A=100°,∠C=50°,求∠AEB的度数.(1)证明:∵BE平分∠ABC,∴∠ABE=∠DBE,在△ABE和△DBE中,,∴△ABE≌△DBE(SAS);(2)解:∵∠A=100°,∠C=50°,∴∠ABC=30°,∵BE平分∠ABC,∴∠ABE=∠DBE=∠ABC=15°,在△ABE中,∠AEB=180°﹣∠A﹣∠ABE=180°﹣100°﹣15°=65°.17.(2019•襄阳)襄阳卧龙大桥横跨汉江,是我市标志性建筑之一.某校数学兴趣小组在假日对竖立的索塔在桥面以上的部分(上塔柱BC和塔冠BE)进行了测量.如图所示,最外端的拉索AB的底端A到塔柱底端C的距离为121m,拉索AB与桥面AC的夹角为37°,从点A出发沿AC方向前进23.5m,在D处测得塔冠顶端E的仰角为45°.请你求出塔冠BE的高度(结果精确到0.1m.参考数据sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41).解:在Rt△ABC中,tan A=,则BC=AC•tan A≈121×0.75=90.75,由题意得,CD=AC﹣AD=97.5,在Rt△ECD中,∠EDC=45°,∴EC=CD=97.5,∴BE=EC﹣BC=6.75≈6.8(m),答:塔冠BE的高度约为6.8m.18.(2019•荆门)如图,已知平行四边形ABCD中,AB=5,BC=3,AC=2.(1)求平行四边形ABCD的面积;(2)求证:BD⊥BC.解:(1)作CE⊥AB交AB的延长线于点E,如图:设BE=x,CE=h在Rt△CEB中:x2+h2=9①在Rt△CEA中:(5+x)2+h2=52②联立①②解得:x=,h=∴平行四边形ABCD的面积=AB•h=12;(2)作DF⊥AB,垂足为F∴∠DF A=∠CEB=90°∵平行四边形ABCD∴AD=BC,AD∥BC∴∠DAF=∠CBE又∵∠DF A=∠CEB=90°,AD=BC∴△ADF≌△BCE(AAS)∴AF=BE=,BF=5﹣=,DF=CE=在Rt△DFB中:BD2=DF2+BF2=()2+()2=16∴BD=4∵BC=3,DC=5∴CD2=DB2+BC2∴BD⊥BC.19.(2019•鄂州)为积极参与鄂州市全国文明城市创建活动,我市某校在教学楼顶部新建了一块大型宣传牌,如下图.小明同学为测量宣传牌的高度AB,他站在距离教学楼底部E处6米远的地面C 处,测得宣传牌的底部B的仰角为60°,同时测得教学楼窗户D处的仰角为30°(A、B、D、E在同一直线上).然后,小明沿坡度i=1:1.5的斜坡从C走到F处,此时DF正好与地面CE平行.(1)求点F到直线CE的距离(结果保留根号);(2)若小明在F处又测得宣传牌顶部A的仰角为45°,求宣传牌的高度AB(结果精确到0.1米,≈1.41,≈1.73).解:(1)过点F作FG⊥EC于G,依题意知FG∥DE,DF∥GE,∠FGE=90°;∴四边形DEFG是矩形;∴FG=DE;在Rt△CDE中,DE=CE•tan∠DCE;=6×tan30o=2(米);∴点F到地面的距离为2米;(2)∵斜坡CF i=1:1.5.∴Rt△CFG中,CG=1.5FG=2×1.5=3,∴FD=EG=3+6.在Rt△BCE中,BE=CE•tan∠BCE=6×tan60o=6.∴AB=AD+DE﹣BE.=3+6+2﹣6=6﹣≈4.3 (米).答:宣传牌的高度约为4.3米.20.(2019•孝感)如图,Rt△ABC中,∠ACB=90°,一同学利用直尺和圆规完成如下操作:①以点C为圆心,以CB为半径画弧,交AB于点G;分别以点G、B为圆心,以大于GB的长为半径画弧,两弧交点K,作射线CK;②以点B为圆心,以适当的长为半径画弧,交BC于点M,交AB的延长线于点N;分别以点M、N为圆心,以大于MN的长为半径画弧,两弧交于点P,作直线BP交AC的延长线于点D,交射线CK于点E.请你观察图形,根据操作结果解答下列问题;(1)线段CD与CE的大小关系是CD=CE;(2)过点D作DF⊥AB交AB的延长线于点F,若AC=12,BC=5,求tan∠DBF的值.解:(1)CD=CE,由作图知CE⊥AB,BD平分∠CBF,∴∠1=∠2=∠3,∵∠CEB+∠3=∠2+∠CDE=90°,∴∠CEB=∠CDE,∴CD=CE,故答案为:CD=CE;(2)∵BD平分∠CBF,BC⊥CD,BF⊥DF,∴BC=BF,∠CBD=∠FBD,在△BCD和△BFD中,∵,∴△BCD≌△BFD(AAS),∴CD=DF,设CD=DF=x,在Rt△ACB中,AB==13,∴sin∠DAF==,即=,解得x=,∵BC=BF=5,∴tan∠DBF==×=.21.(2019•荆门)如图,为了测量一栋楼的高度OE,小明同学先在操场上A处放一面镜子,向后退到B处,恰好在镜子中看到楼的顶部E;再将镜子放到C处,然后后退到D处,恰好再次在镜子中看到楼的顶部E(O,A,B,C,D在同一条直线上),测得AC=2m,BD=2.1m,如果小明眼睛距地面髙度BF,DG为1.6m,试确定楼的高度OE.解:设E关于O的对称点为M,由光的反射定律知,延长GC、F A相交于点M,连接GF并延长交OE于点H,答:楼的高度OE为32米.22.(2019•黄冈)如图,ABCD是正方形,E是CD边上任意一点,连接AE,作BF⊥AE,DG⊥AE,垂足分别为F,G.求证:BF﹣DG=FG.证明:∵四边形ABCD是正方形,∴AB=AD,∠DAB=90°,∵BF⊥AE,DG⊥AE,∴∠AFB=∠AGD=∠ADG+∠DAG=90°,∵∠DAG+∠BAF=90°,∴∠ADG=∠BAF,在△BAF和△ADG中,∵,∴△BAF≌△ADG(AAS),∴BF=AG,AF=DG,∵AG=AF+FG,∴BF=AG=DG+FG,∴BF﹣DG=FG.23.(2019•咸宁)在Rt△ABC中,∠C=90°,∠A=30°,D,E,F分别是AC,AB,BC的中点,连接ED,EF.(1)求证:四边形DEFC是矩形;(2)请用无刻度的直尺在图中作出∠ABC的平分线(保留作图痕迹,不写作法).(1)证明:∵D,E,F分别是AC,AB,BC的中点,∴DE∥FC,EF∥CD,∴四边形DEFC是平行四边形,∵∠DCF=90°,∴四边形DEFC是矩形.(2)连接EC,DF交于点O,作射线BO,射线BO即为所求.24.(2019•黄冈)如图,两座建筑物的水平距离BC为40m,从A点测得D点的俯角α为45°,测得C点的俯角β为60°.求这两座建筑物AB,CD的高度.(结果保留小数点后一位,≈1.414,≈1.732.)解:延长CD,交AE于点E,可得DE⊥AE,在Rt△AED中,AE=BC=40m,∠EAD=45°,∴ED=AE tan45°=20m,在Rt△ABC中,∠BAC=30°,BC=40m,∴AB=40≈69.3m,则CD=EC﹣ED=AB﹣ED=40﹣20≈29.3m.答:这两座建筑物AB,CD的高度分别为69.3m和29.3m.25.(2019•随州)在一次海上救援中,两艘专业救助船A,B同时收到某事故渔船的求救讯息,已知此时救助船B在A的正北方向,事故渔船P在救助船A的北偏西30°方向上,在救助船B的西南方向上,且事故渔船P与救助船A相距120海里.(1)求收到求救讯息时事故渔船P与救助船B之间的距离;(2)若救助船A,B分别以40海里/小时、30海里/小时的速度同时出发,匀速直线前往事故渔船P 处搜救,试通过计算判断哪艘船先到达.解:(1)作PC⊥AB于C,如图所示:则∠PCA=∠PB=90°,由题意得:P A=120海里,∠A=30°,∠BPC=45°,∴PC=P A=60海里,△BCP是等腰直角三角形,∴BC=PC=60海里,PB=PC=60海里;答:收到求救讯息时事故渔船P与救助船B之间的距离为60海里;(2)∵P A=120海里,PB=60海里,救助船A,B分别以40海里/小时、30海里/小时的速度同时出发,∴救助船A所用的时间为=3(小时),救助船B所用的时间为=2(小时),∵3>2,∴救助船B先到达.26.(2019•荆州)如图①,等腰直角三角形OEF的直角顶点O为正方形ABCD的中心,点C,D分别在OE和OF上,现将△OEF绕点O逆时针旋转α角(0°<α<90°),连接AF,DE(如图②).(1)在图②中,∠AOF=90°﹣α;(用含α的式子表示)(2)在图②中猜想AF与DE的数量关系,并证明你的结论.解:(1)如图2,∵△OEF绕点O逆时针旋转α角,∴∠DOF=∠COE=α,∵四边形ABCD为正方形,∴∠AOD=90°,∴∠AOF=90°﹣α;故答案为90°﹣α;(2)AF=DE.理由如下:如图②,∵四边形ABCD为正方形,∴∠AOD=∠COD=90°,OA=OD,∵∠DOF=∠COE=α,∴∠AOF=∠DOE,∵△OEF为等腰直角三角形,∴OF=OE,在△AOF和△DOE中,∴△AOF≌△DOE(SAS),∴AF=DE.。

2019年全国120份中考试卷分类汇编解析:点、线、面、角

2019年全国120份中考试卷分类汇编解析:点、线、面、角

点线面角一、选择题1.(2019山东济南,第2题,3分)如图,点O在直线AB 上,若 401=∠,则2∠的度数是A . 50B . 60C . 140D . 150 【解析】因为 18021=∠+∠,所以 1402=∠,故选C .2.(2019•四川凉山州,第2题,4分)下列图形中,∠1与∠2是对顶角的是( ) A .B .C .D .考点: 对顶角、邻补角分析: 根据对顶角的特征,有公共顶点,且两边互为反向延长线,对各选项分析判断后利用排除法求解.解答:解:A .∠1、∠2没有公共顶点,不是对顶角,故本选项错误; B .∠1、∠2两边不互为反向延长线,不是对顶角,故本选项错误;C .∠1、∠2有公共顶点,两边互为反向延长线,是对顶角,故本选项正确;D .∠1、∠2两边不互为反向延长线,不是对顶角,故本选项错误;故选:C .点评:本题主要考查了对顶角的定义,熟记对顶角的图形特征是解题的关键,是基础题,比较简单.3.(2019•襄阳,第7题3分)下列命题错误的是( ) A . 所有的实数都可用数轴上的点表示 B . 等角的补角相等 C . 无理数包括正无理数,0,负无理数 D . 两点之间,线段最短考点: 命题与定理. 专题: 计算题.AB O2 1第2题图分析:根据实数与数轴上的点一一对应对A进行判断;根据补角的定义对B进行判断;根据无理数的分类对C进行判断;根据线段公理对D进行判断.解答:解:A、所有的实数都可用数轴上的点表示,所以A选项的说法正确;B、等角的补角相等,所以B选项的说法正确;C、无理数包括正无理数和负无理,所以C选项的说法错误;D、两点之间,线段最短,所以D选项的说法正确.故选C.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.4.(2019·浙江金华,第2题4分)如图,经过刨平的木析上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线. 能解释这一实际问题的数学知识是【】A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直5.(2019•滨州,第5题3分)如图,OB是∠AOC的角平分线,OD是∠COE的角平分线,如果∠AOB=40°,∠COE=60°,则∠BOD的度数为()A.50 B.60 C.65 D.70考点:角的计算;角平分线的定义分析:先根据OB是∠AOC的角平分线,OD是∠COE的角平分线,∠AOB=40°,∠COE=60°求出∠BOC与∠COD的度数,再根据∠BOD=∠BOC+∠COD即可得出结论.解答:解:∵OB是∠AOC的角平分线,OD是∠COE的角平分线,∠AOB=40°,∠COE=60°,∴∠BOC=∠AOB=40°,∠COD=∠COE=×60°=30°,∴∠BOD=∠BOC+∠COD=40°+30°=70°.故选D.点评:本题考查的是角的计算,熟知角平分线的定义是解答此题的关键.6.(2019•济宁,第3题3分)把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理正确的是()A.两点确定一条直线B.垂线段最短C.两点之间线段最短D.三角形两边之和大于第三边考点:线段的性质:两点之间线段最短.专题:应用题.分析:此题为数学知识的应用,由题意把一条弯曲的公路改成直道,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.解答:解:要想缩短两地之间的里程,就尽量是两地在一条直线上,因为两点间线段最短.故选C.点评:本题考查了线段的性质,牢记线段的性质是解题关键.7.(2019年山东泰安,第5题3分)如图,把一直尺放置在一个三角形纸片上,则下列结论正确的是()A.∠1+∠6>180°B.∠2+∠5<180°C.∠3+∠4<180°D.∠3+∠7>180°分析:根据平行线的性质推出∠3+∠4=180°,∠2=∠7,根据三角形的内角和定理得出∠2+∠3=180°+∠A,推出结果后判断各个选项即可.解:A、∵DG∥EF,∴∠3+∠4=180°,∵∠6=∠4,∠3>∠1,∴∠6+∠1<180°,故本选项错误;B、∵DG∥EF,∴∠5=∠3,∴∠2+∠5=∠2+∠3=(180°﹣∠1)+(180°﹣∠ALH)=360°﹣(∠1+∠ALH)=360°﹣(180°﹣∠A)=180°+∠A>180°,故本选项错误;C、∵DG∥EF,∴∠3+∠4=180°,故本选项错误;D、∵DG∥EF,∴∠2=∠7,∵∠3+∠2=180°+∠A>180°,∴∠3+∠7>180°,故本选项正确;故选D.点评:本题考查了平行线的性质,三角形的内角和定理的应用,主要考查学生运用定理进行推理的能力,题目比较好,难度适中.8. (2019•广西贺州,第3题3分)如图,OA⊥OB,若∠1=55°,则∠2的度数是()A.35°B.40°C.45°D.60°考点:余角和补角分析:根据两个角的和为90°,可得两角互余,可得答案.解答:解:∵OA⊥OB,若∠1=55°,∴∠AO∠=90°,即∠2+∠1=90°,∴∠2=35°,故选:A.点评:本题考查了余角和补角,两个角的和为90°,这两个角互余.9.(2019•襄阳,第5题3分)如图,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于()A.35°B.45°C.55°D.65°考点:平行线的性质;直角三角形的性质分析:利用“直角三角形的两个锐角互余”的性质求得∠A=35°,然后利用平行线的性质得到∠1=∠B=35°.解答:解:如图,∵BC⊥AE,∴∠ACB=90°.∴∠A+∠B=90°.又∵∠B=55°,∴∠A=35°.又CD∥AB,∴∠1=∠B=35°.故选:A.点评:本题考查了平行线的性质和直角三角形的性质.此题也可以利用垂直的定义、邻补角的性质以及平行线的性质来求∠1的度数.10. (2019•湖北黄冈,第2题3分)如果α与β互为余角,则()A.α+β=180°B.α﹣β=180°C.α﹣β=90°D.α+β=90°考点:余角和补角.分析:根据互为余角的定义,可以得到答案.解答:解:如果α与β互为余角,则α+β=900.故选:D.点评:此题主要考查了互为余角的性质,正确记忆互为余角的定义是解决问题的关键.二、填空题1.(2019•山东枣庄,第18题4分)图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为(3+3)cm.考点:平面展开-最短路径问题;截一个几何体分析:要求蚂蚁爬行的最短距离,需将图②的几何体表面展开,进而根据“两点之间线段最短”得出结果.解答:解:如图所示:△BCD是等腰直角三角形,△ACD是等边三角形,在Rt△BCD中,CD==6cm,∴BE=CD=3cm,在Rt△ACE中,AE==3cm,∴从顶点A爬行到顶点B的最短距离为(3+3)cm.故答案为:(3+3).点评:考查了平面展开﹣最短路径问题,本题就是把图②的几何体表面展开成平面图形,根据等腰直角三角形的性质和等边三角形的性质解决问题.2. (2019•福建泉州,第13题4分)如图,直线a∥b,直线c与直线a,b都相交,∠1=65°,则∠2=65°.考点:平行线的性质.分析:根据平行线的性质得出∠1=∠2,代入求出即可.解答:解:∵直线a∥b,∴∠1=∠2,∵∠1=65°,∴∠2=65°,故答案为:65.点评:本题考查了平行线的性质的应用,注意:两直线平行,同位角相等.3. (2019•福建泉州,第15题4分)如图,在△ABC中,∠C=40°,CA=CB,则△ABC的外角∠ABD=110°.考点:等腰三角形的性质.分析:先根据等腰三角形的性质和三角形的内角和定理求出∠A,再根据三角形的外角等于等于与它不相邻的两个内角的和,进行计算即可.解答:解:∵CA=CB,∴∠A=∠ABC,∵∠C=40°,∴∠A=70°∴∠ABD=∠A+∠C=110°.故答案为:110.点评:此题考查了等腰三角形的性质,用到的知识点是等腰三角形的性质、三角形的外角等于等于与它不相邻的两个内角的和.4.(2019•邵阳,第11题3分)已知∠α=13°,则∠α的余角大小是77°.考点:余角和补角.分析:根据互为余角的两个角的和等于90°列式计算即可得解.解答:解:∵∠α=13°,∴∠α的余角=90°﹣13°=77°.故答案为:77°.点评:本题考查了余角的定义,是基础题,熟记概念是解题的关键.5.(2019•浙江湖州,第13题4分)计算:50°﹣15°30′=.分析:根据度化成分乘以60,可得度分的表示方法,根据同单位的相减,可得答案.解:原式=49°60′﹣15°30′=34°30′,故答案为:34°30′.点评:此类题是进行度、分、秒的加法计算,相对比较简单,注意以60为进制即可.6. (2019•福建泉州,第9题4分)如图,直线AB与CD相交于点O,∠AOD=50°,则∠BOC= 50°.考点:对顶角、邻补角.分析:根据对顶角相等,可得答案.解答:解;∵∠BOC与∠AOD是对顶角,∴∠BOC=∠AOD=50°,故答案为:50.点评:本题考查了对顶角与邻补角,对顶角相等是解题关键.7. (2019•四川广安,第14题3分)若∠α的补角为76°28′,则∠α=103°32′.考点:余角和补角;度分秒的换算.分析:根据互为补角的概念可得出∠α=180°﹣76°28′.解答:解:∵∠α的补角为76°28′,∴∠α=180°﹣76°28′=103°32′,故答案为103°32′.点评:本题考查了余角和补角以及度分秒的换算,是基础题,要熟练掌握.。

(word完整版)2019年全国中考数学真题分类汇编24:相似、位似及其应用,推荐文档

(word完整版)2019年全国中考数学真题分类汇编24:相似、位似及其应用,推荐文档

相似、位似及其应用一、选择题1.(2019·苏州)如图,在△ABC 中,点D 为BC 边上的一点.且AD =AB =2,AD ⊥AB ,过点D 作DE ⊥AD ,DE 交AC 于点F .若DE =1,则△ABC 的面积为( )A .B .4C .D .8【答案】B【解析】∵AB ⊥AD ,AD ⊥DE ,∴∠BAD =∠ADE =90°,∴DE ∥AB ,∴∠CED =∠CAB ,∵∠C =∠C ,∴△CED ∽△CAB ,∵DE =1,AB =2,即DE ∶AB =1∶2,∴S △DEC ∶S △ACB =1∶4,∴S四边形ABDE ∶S △ACB =3∶4,∵S 四边形ABDE =S △ABD +S △ADE 12=⨯2×212+⨯2×1=2+1=3,∴S △ACB =4,故选B . 2.(2019·杭州)如图,在△ABC 中,点D ,E 分别在AB 和AC 边上,DE ∥BC ,M 为BC 边上一点(不与点B ,C 重合)连接AM 交DE 干点N ,则( )A.AD AN AN AE = B. BD MN MN CE = C. DN NE BM MC = D. DN NEMC BM=【答案】CB【解析】根据DE ∥BC ,可得△ADN ∽△ABM 与△ANE ∽△AMC ,再应用相似三角形的性质可得结论.∵DN ∥BM ,∴△ADN ∽△ABM ,∴DN AN BM AM =,∵NE ∥MC ,∴△ANE ∽△AMC ,∴NE AN MC AM =,∴DN NEBM MC=.故选C .3.(2019·常德)如图,在等腰三角形△ABC 中,AB =AC ,图中所有三角形均相似,其中最小的三角形的面积为1,△ABC 的面积为42,则四边形DBCE 的面积是( )A .20B .22C .24D .26【答案】D【解析】∵图中所有三角形均相似,其中最小的三角形的面积为1,△ABC 的面积为42,∴最小的三角形与△ABCADE ∽△ABC ,∴ADE ABC S S V V =2DE BC ⎛⎫⎪⎝⎭,∵DE BC =4ADE ABC S S V V =1642=821, ∴S △ADE =821×42=16,∴四边形DBCE 的面积=S △ABC -S △ADE =26,故选项D 正确. 4.(2019·陇南)如图,将图形用放大镜放大,应该属于( )A .平移变换B .相似变换C .旋转变换D .对称变换【答案】B【解析】由图可知,放大前与放大后图形是相似的,故选:B .5. (2019·枣庄)如图,将△ABC 沿BC 边上的中线AD 平移到△A'B'C'的位置,已知△ABC 的面积为16,阴影部分三角形的面积为9,若AA'=1,则A'D 等于 A.2B.3C.4D.32【答案】B【解析】由平移可得,△ABC ∽△A'MN,设相似比为k,∵S △ABC =16,S △A'MN =9,∴k 2=16:9,∴k =4:3,因为AD 和A'D分别为两个三角形的中线,∴AD:A'D =k =4:3,∵AD =AA'+A'D,∴AA':A'D =1:3,∵AA'=1,则A'D =3,故选B.6.(2019·淄博)如图,在△ABC 中,AC =2,BC =4,D 为BC 边上的一点,且∠CAD =∠B. 若△ADC 的面积为a ,则△ABD 的面积为()BA .2aB .52a C .3a D .72a 【答案】C .【解析】在△BAC 和△ADC 中,∵∠C 是公共角,∠CAD =∠B.,∴△BAC ∽△ADC ,∴2BCAC =, ∴2AB DA =()4C C S BC S AC=V V ,又∵△ADC 的面积为a ,∴△ABC 的面积为4a ,∴△ABD 的面积为3a . 7. (2019· 巴中)如图,Y ABCD,F 为BC 中点,延长AD 至E,使DE:AD =1:3,连接EF 交DC 于点G,则S△DEG :S △CFG =()A.2:3B.3:2C.9:4D.4:9【答案】D【解析】因为DE:AD =1:3,F 为BC 中点,所以DE:CF =2:3,Y ABCD 中,DE ∥CF,所以△DEG ∽△CFG,相似比为2:3,所以S △DEG :S △CFG =4:9.故选D.8.(2019·乐山)把边长分别为1和2的两个正方形按如图的方式放置.则图中阴影部分的面积为( )A .61 B .31 C .51 D .41【答案】A12第8题图第8题答图【解析】∵四边形ABCD 与四边形CEFG 都是正方形,∴AD =DC =1,CE =2,AD ∥CE ,∴△ADH ∽△ECF ,∴AD DHCE CH=,∴121DH DH =-,解得DH =13,∴阴影部分面积为12×13×1=16,故选A. 9.(2019·乐山)如图,在边长为3的菱形ABCD 中,︒=∠30B ,过点A 作BC AE ⊥于点E ,现将△ABE 沿直线AE 翻折至△AFE 的位置,AF 与CD 交于点G .则CG 等于( )A .13-B .1C .21D .23第9题图【答案】A【解析】∵BC AE ⊥,∴∠AEB=90°,菱形ABCD 的边长为3,︒=∠30B ,∴AE=12AB=12,BE=CF==1.5,BF=3,CF=BF-BC=3-,∵AD ∥CF ,∴△AGD ∽△FGC ,∴DG ADCG CF=,∴=CG1,故选A. 10.(2019·凉山)如图,在△ABC 中,D 在AC 边上,AD ∶DC = 1∶2,O 是BD 的中点,连接A 0并延长交BC 于 E ,则BE ∶EC =( ▲ )A. 1∶2 B . 1∶3 C . 1∶4 D . 2∶3【答案】B【解析】过点D 作DF ∥AE ,则1==OD BO EF BE ,21==CD AD FC EF ,∴BE ∶EF ∶FC =1∶1∶2,∴BE ∶EC =1∶3.故选B.11.(2019·眉山)如图,在菱形ABCD 中已知AB =4,∠ABC =60°,∠EAF =60°,点E 在CB 的延长线上,点F 在DC 的延长线上,有下列结论:①BE =CF ,②∠EAB =∠CEF ;③△ABE ∽△EFC ,④若∠BAE =15°,则点F 到BC 的距离为2,则其中正确结论的个数是A .1个B . 2个C .3个D . 4个【答案】B【解析】连接AC ,在菱形ABCD 中,AB=BC ,∠ABC=60°,∴△ABC 是等边三角形,∴AB=AC ,∠BAC=60°,∵∠EAF=60°,∴∠EAB+∠BAF=∠CAF+∠BAF=60°,即∠EAB=∠CAF ,∵∠ABE=∠ACF=120°,∴△ABE ≌△ACF ,∴BE=CF ,故①正确;由△ABE ≌△ACF ,可得AE=AF ,∵∠EAF=60°,∴△AEF 是等边三角形,∴∠AEF=60°,∴∠AEB+∠CEF=60°,∵∠AEB+∠EAB=60°,∴∠CEF=∠EAB ,故②正确;在△ABE 中,∠AEB <60°,∠ECF=60°,∴③错误;过点A 作AG ⊥BC 于点G ,过点F 作FH ⊥EC 于点H ,∵∠EAB=15°,∠ABC=60°,∴∠AEB=45°,在Rt △AGB 中,∵∠ABC=60°,AB=4,∴BG=12AB=2,Rt △AEG 中,∵∠AEG=∠EAG=45°,∴AG=GE=∴EB=EG-BG=,∵∠BAC=∠EAF=60°,∴∠BAE=∠CAF ,∵∠ABC=∠ACD=60°,∴∠ABE=∠ACF=120°在△AEB 和△AFC 中,⎧⎪⎨⎪⎩∠∠∠∠︒EAB FACAB AC ABE ACF 120====,∴△AEB ≌△AFC ,∴AE=AF ,EB=CF=-2,在Rt △CHF 中,∵∠HCF=180°-∠BCD=60°,CF=,∴FH=CF •sin60°=(-2)∴点F 到BC 的距离为故④错误.故选B.12.(2019·重庆B 卷)下列命题是真命题的是( )A.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C.如果两个三角形相似,相似比为4:9,那么这两个全角形的面积比为2:3D.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:9 【答案】B【解析】如果两个三角形相似,那么这两个三角形的周长比等于相似比,面积比是相似比的平方.即如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9;面积比是相似比的平方,即16:81.故选B. 二、填空题13.(2019·滨州)在平面直角坐标系中,△ABO 三个顶点的坐标分别为A (-2,4),B (-4,0),O (0,0).以原点O 为位似中心,把这个三角形缩小为原来的12,得到△CDO ,则点A 的对应点C 的坐标是________________________.【答案】(-1,2)或(1,-2)【解析】点A的对应点C的坐标是(-2×12,4×12)或(-2×(-12),4×(-12)),即(-1,2)或(1,-2).14.(2019·滨州)如图,▱ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB于点E,交BD于点F,且∠ABC=60°,AB=2BC,连接OE.下列结论:①EO⊥AC;②S△AOD=4S△OCF;③AC:BD=:7;④FB2=OF•DF.其中正确的结论有____________.(填写所有正确结论的序号)【答案】①③④【解析】在Y ABCD中,AB∥DC,∠ABC=60°,∴∠BCD=120°.∵CE平分∠BCD,∴∠BCE=60°,∴△BCE是等边三角形,∴BE=BC=CE,∠BEC=60°.∵AB=2BC,∴AE=BE=CE,∴∠EAC=∠ACE=30°,∴∠ACB=90°.在Y ABCD中,AO=CO,BO=DO,∴OE是△ACB的中位线,∴OE∥BC,∴OE⊥AC,故①正确;∵OE是△ACB的中位线,∴OE=12BC,∵OE∥BC,∴△OEF∽△BCF,∴OF:BF=OE:BC=1:2,∴S△AOD=S△BOC=3S△OCF,故②错误;在Rt△ABC中,∵AB=2BC,∴BC,∴OC=2BC.在Rt△BCO中,OB=2BC,∴BDBC,∴AC:BC:7,故③正确;∵OF:BF=1:2,∴BF=2OF,OB=3OF,∵OD=OB,∴DF=4OF,∴BF2=(2OF)2=4OF2,OF·DF=OF·4OF=4OF2,∴BF2=OF·DF,故④正确.15.(2019·凉山)在□ABCD中,E是AD上一点,且点E将AD分为2∶3的两部分,连接BE、AC相交于F,则S△AEF∶S△CBF是▲.【答案】4:25或9∶25【解析】在□ABCD中,∵AD∥BC,∴△AEF∽△CBF.如答图1,当AE∶DE=2∶3时,AE∶AD=2∶5,∵AD=BC,∴AE ∶BC =2∶5,∴S △AEF ∶S △CBF =4∶25;如答图2,当AE ∶DE =3∶2时,AE ∶AD =3∶5,∵AD =BC ,∴AE ∶BC =3∶5,∴S △AEF ∶S △CBF =9∶25.故答案为4∶25或9∶25.(第16题图答图1) (第16题图答图2)16.(2019·衢州)如图,由两个长为2,宽为1的长方形组成“7”字图形。

2019年全国中考试题解析版分类汇编-梯形(46页)

2019年全国中考试题解析版分类汇编-梯形(46页)

2019年全国中考试题解析版分类汇编-梯形(46页)注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!1.〔2017•宁夏,3,3分〕等腰梯形的上底是2cm,腰长是4cm,一个底角是60°,那么等腰梯形的下底是〔〕A、5cmB、6cmC、7cmD、8cm考点:等腰梯形的性质;等边三角形的判定与性质;平行四边形的判定与性质。

专题:计算题。

分析:过D作DE∥AB交BC于E,推出平行四边形ABED,得出AD=BE=2cm,AB=DE=DC,推出等边三角形DEC,求出EC的长,根据BC=EB+EC即可求出答案、解答:解:过D作DE∥AB交BC于E,∵DE∥AB,AD∥BC,∴四边形ABED是平行四边形,∴AD=BE=2cm,DE=AB=4cm,∠DEC=∠B=60°,AB=DE=DC,∴△DEC是等边三角形,∴EC=CD=4cm,∴BC=4cm+2cm=6cm、应选B、点评:此题主要考查对等腰梯形的性质,平行四边形的性质和判定,全等等边三角形的性质和判定等知识点的理解和掌握,把等腰梯形转化成平行四边形和等边三角形是解此题的关键、2.〔2017新疆乌鲁木齐,9,4〕如图、梯形ABCD中,AD∥BC、AB=CD,AC丄BD于点O,∠BAC=60°,假设BC=6,那么此梯形的面积为〔〕A、2B、1+3C、62 D、2+3考点:等腰梯形的性质;垂线;三角形内角和定理;全等三角形的判定与性质;等腰三角形的判定与性质;直角三角形斜边上的中线;勾股定理。

专题:计算题。

分析:过O作EF⊥AD交AD于E,交BC于F,根据等腰梯形的性质得出∠ABC=∠DCB,证△ABC≌△DCB,推出∠DBC=∠ACB,求出∠DBC=∠ACB=45°,根据直角三角形性质求出OF,根据勾股定理求出OB、OA,OE、AD,根据面积公式即可求出面积、解答:解:过O 作EF ⊥AD 交AD 于E ,交BC 于F ,∵等腰梯形ABCD ,AD ∥BC ,AB =CD ,∴∠ABC =∠DCB ,∵BC =BC ,∴△ABC ≌△DCB ,∴∠DBC =∠ACB ,∵AC ⊥BD ,∴∠BOC =90°,∴∠DBC =∠ACB =45°,∴OB =OC ,∵OF ⊥BC ,∴OF =BF =CF =21BC =26,由勾股定理得:OB =3,∵∠BAC =60°,∴∠ABO =30°,由勾股定理得:OA =1,AB =2,同法可求OD =OA =1,AD =2,OE =22,S 梯形ABCD =21〔AD +BC 〕•EF =21×〔62 〕×〔22+26〕=2+3故答案为:2+3、点评:此题主要考察对等腰梯形的性质,全等三角形的性质和判定,等腰三角形的性质和判定,三角形的内角和定理,垂线,勾股定理,直角三角形斜边上的中线性质等知识点的理解和掌握,能综合运用这些性质进行推理是解此题的关键、3.〔2017•贵港〕如下图,在梯形ABCD 中,AB ∥CD ,E 是BC 的中点,EF ⊥AD 于点F ,AD=4,EF=5,那么梯形ABCD 的面积是〔〕A 、40B 、30C 、20D 、10考点:梯形;全等三角形的判定与性质。

苏州市2019年中考数学《三角形中位线》拓展课本例题+【五套中考模拟卷】

苏州市2019年中考数学《三角形中位线》拓展课本例题+【五套中考模拟卷】

精心设计 重在思维 勤于训练——从一道题目的拓展训练说起三角形中位线是初中数学中的重点也是难点之一笔者通过精心的教学设计,为学生编织有效的知识,达到了事半功倍的教学效果.现呈现如下,旨在与大家交流提高.一、例题及跟进训练例题如图1,在ABC V 中,M 是BC 的中点,AB CD =,F 是AD 的中点,MF 的延长线交BA 的延长线于E 点,求证:AE AF =.略解 如图2,连BD ,取BD 中点P ,连PF 、PM ,则有//PF AB ,12PF AB =; //PM CD ,12PM CD =. PFM E ∴∠=∠,PMF MFC ∠=∠. AB CD =Q ,PF PM ∴=.PFM PMF ∴∠=∠,E MFC AFE ∴∠=∠=∠,AE AF ∴=.反思 在本问题的解答过程中,由中点产生联想,构造中位线,将看似本无关联的两条线段联系在一起,是解决问题的关键.为帮助学生熟识此“模式”,笔者安排了以下跟进训练.训练1 如图3,在四边形ABCD 中,AB DC =,E 、F 分别为AD 和BC 的中点,FE 的延长线分别交CD 的延长线和BA 的延长线于点N 、M .求证:BMF CNF ∠=∠.略解 连AC (或BD )并取其中点P ,再连PE 、PF ,如图4.利用例题方法很容易得结论.反思 从学生的反馈来看,学生还处在简单的模仿期,能否创新,并内化为自己的能力还有待检验考核.于是进一步探讨下面的问题:训练2 如图5,在ABC V 中,AC AB >,在它的两边AB ,AC 上分别截取BD CE =,F 、G 分别是BC ,DE 的中点,又AT 是BAC ∠的平分线.求证://FG AT .略解 方法1:如图6,连DC ,并取其中点P ,再连PG 、PF ,延长FG 、BA 交于点M ,FG 交AC 于点N .则易用类似例题方法证得//FG AT .方法2:如图7,连结DF ,并延长到H 点,使FH DF =,连CH 、EH ,则有BDF CHF ≅V V ,得BD CH =,B BCH ∠=∠,CE CH ∴=,.CEH CHE ∴∠=∠.由三角形内角和定理,知CEH CHE BAC ∠+∠=∠,于是由TAC HEC ∠=∠ ,得//FG AT .方法3:如图8,过D 点作AT 的垂线分别交AT 、AC 于M 、P 点,过B 点作AT 的垂线分别交AT 、AC 于N 、Q 点,连MG 、NF .由AT 是BAC ∠的平分线,很容易得:M 、N 分别为DP 、BQ 的中点,BD PQ CE ==,PE CQ ∴=.F 、G 分别是BC 、DE 的中点,//MG AC ∴,12MG PE =, //NF AC ,12NF CQ =, //MG NF ∴,且MG NF =.∴四边形MNFG 为平行四边形,故得结论//FG AT .反思 方法1构造中点在预设之中,延长FG 与BA 交于M 点在生成之外.显然是学生在模仿利用了前面的经验而构造的中点,在矛盾冲突中才尝试构造出延长线.这是学生一个很大的进步和创新.训练2比训练1又进了一个梯度,这能真实的反映学生的点滴收获.方法2比方法1更有创意.事实上,利用F 这个中点构造全等三角形是我们常讲的方法,也是学生能熟练运用的方法.解法3是最能体现命题者意图的方法,其中涉及角平分线,作垂线,等腰三角形“三线合一”性质,是我们解决此类问题的有效思路.二、课内练习1.已知:如图9,在Rt ABC V 中,90ACB ∠=︒,D 为AB 中点,连CD .求证: 12CD AB =.设置这个问题,因为它是一个简单的与中点有关的重要问题,实际上就是后面将要学习的“直角三角形斜边中线等于斜边一半”的问题.学生的表现可谓精彩纷呈:学生1:如图10,延长CD 到E ,使DE CD =,连AE .学生2:如图11,延长AC 到F ,使CF AC =,连BF .学生3:如图12,延长BC 到G ,使CG BC =,连AG ,…2.已知:ACB V 和AED V 都是等腰直角三角形,90AED ACB ∠=∠=︒,M 、N 分别是BD 、CE 的中点.①如图13,若D 点在线段AB 上,判断MN 与CE 之间的关系,并说明理由.学生1:如图14,连EM 并延长到F ,使MF ME =,连FC ,则有EDM FBM ≅V V ,得BF DE AE ==.由EAC FBC ≅V V ,得CF EC =,因MN 是EFC V 的中位线而得MN EC ⊥,且12MN EC =.学生2:如图15,连CM 并延长到G ,使MG CG =,连EG ,类似同学1方法得结论.学生3:如图16,连DN 并延长到H ,使NH DN =,连BH .(实际上在问题解决的过程中,我们发现:H 点在线段AC 上,因此可以优化辅助线作法:连DN 并延长交AC 于H 点,连BH .)学生4:如图17,延长EA 、BN 交于点P ,连DP ,则可证AEC EDP ≅V V ,得EP AC BC ==;再证ENP CNB ≅V 得N 为BP 中点,利用中位线得结论.②如图18,将图13中的AED V 绕A 点逆时针旋转一个锐角,①的结论是否仍然成立?请说明理由.利用前面经验和方法,可以类似解决,不再赘述.三、课后反思1.提倡自主学习,是我们的共识自主学习是提高学习成绩的最佳策略.教师有效的教会学生怎样解题,培养学生基本数学素养和能力是我们的目的.我们教会学生做一千道题,但当一千零一道题出现时,学生可能还是不会,所以教学中要强调教会学生掌握必要的数学思想方法.这是新课标将“三基”扩展到“四基”的初衷,也是我们的共同追求.2.恰当设置问题,是激活学生思维的最好平台实践证明,一题多解,变式训练,都是培养学生数学思维的有效的途径或手段.上述在解决中位线这个比较难的问题时,教师组合了一个问题串,传递的信息有很强的指向性:连线段,取中点,作中位线,改变问题呈现形式,循序渐进,逐层推进,高频率,强刺激,收到了很好的效果.3.解题常用方法须强化和深化解决线段间的数量关系,是我们常见的问题,学生在解决方法中的表现可谓精彩纷呈:用中心对称的性质旋转变换;轴对称变换;旋转变换等等.多种方法的求解,对提高学生解决问题的能力大有裨益,我们要将常用的解题方法进行强化和深化,以形成一种技能,提高学生的素质.中考数学模拟试卷一、选择题(每小题3分,共计24分)1.方程x2-4x+3=0中二次项系数、一次项系数和常数项分别是()A.1,4,3 B.2,-4,3 C.1,-4,3 D.2,-4,32.二次函数y=x2-2x+1与x轴的交点个数是()A.0 B.1 C.2 D.323.如图,A、B、C是⊙O上的点,若∠AOB=70°,则∠ACB的度数为()A.70° B.50° C.40° D.35°4.到三角形三条边距离相等的点,是这个三角形的()A.三条中线的交点 B.三条角平分线的交点第3题图C.三条高的交点 D.三边的垂直平分线的交点5.某型号的手机连续两次降阶,每台手机售价由原来的3600元降到2500元,设平均每次降价的百分率为x,则列出方程正确的是()A.2500(1+x)2=3600 B.3600(1-x)2=2500C.3600 (1-2x) = 2500 D.3600(1-x2)=25006.根据下列表格中二次函数y=ax2+bx+c的自变量x与函数值y的对应值,判断方程ax2+bx+c=0(a≠0,a,b,c,为常数)的一个解x的范围是()A.5.1<x<5.2B.5.2<x<5.3 C.5.3<x<5.4 D.5.4<x<5.5www-2-1-cnjy-com 7.在Rt△ABC中,∠C=90°,AC=6,BC=8,则这个三角形的外接圆的半径是()A.10 B.5 C.4 D.38.抛物线y=ax2+bx和直线y=ax+b在同一坐标系的图象可能是()A. B. C. D.第II 卷 主观题部分二、填空题(每小题3分,共计30分)9.当m=_______时,关于x 的方程2x m-2=5是一元二次方程.10.函数y=6(x+1)2+3的顶点坐标是___________.11.关于x 的一元二次方程x 2+mx-6=0的一个根的值为3,则另一个根的值是_____.12.已知关于x 的一元二次方程x 2﹣2x+k=0有两个相等的实数根,则k 值为_____. 13.如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D ,若∠C=20°,则∠CAD=_______°.第13题图 第14题图 第18题图14.如图,在以O 为圆心的两个同心圆中,大圆的弦AB 与小圆相切于点C ,若大圆的半径为5 cm ,小圆的半径为3 cm ,则弦AB 的长为_______cm .15.在平面直角坐标系中,将二次函数y=2x 2的图像向右平移1个单位长度,再向上平移3个单位长度,所得图像的函数关系式是____________________.16.已知抛物线y=ax 2+bx+c=0(a ≠0)与x 轴交于A ,B 两点,若点A 的坐标为(-1,0),抛物线的对称轴为直线x=2,则线段AB 的长为__________.17.圆锥的侧面展开图的面积为18 ,母线长为6,则圆锥的底面半径为________.18.如图,将边长为(cm 的正方形绕其中心旋转45°,则两个正方形公共部分(图中阴影部分)的面积为___________cm 2.三、解答题(共计86分)19.解方程(本题满分10分)(1) (x +1)2-9=0 (2)(x-4)2+2(x-4)=020.(本题满分8分)已知关于x 的方程x 2+4x+3-a=0.(1)若此方程有两个不相等的实数根,求a 的取值范围;(2)在(1)的条件下,当a 取满足条件的最小整数,求此时方程的解.21.(本题满分6分)如图,AB 是半圆的直径,点D 是AC ︵的中点,∠ABC =A CAB50°,求∠BA D 的度数.22.(本题满分8分)已知:如图,AB 是⊙O 的直径,M 、N 分别为AO 、BO 的中点,CM ⊥AB ,DN ⊥AB ,垂足分别为M 、N ,连接OC 、OD .求证:AC=BD .23. (本题满分8分)已知二次函数y 1=x 2-2x-3的图像与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点C ,顶点为D .(1)求点D 的坐标,并在下面直角坐标系中画出该二次函数的大致图像;(2)设一次函数y 2=kx+b(k ≠0)的图像经过B 、D 两点,请直接写出满足y 1≤y 2的x 的取值范围.24.(本题满分8分)某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.调查表明:这种台灯的售价每上涨1元,其销售量就将减少10个,但售价不能超过70元.为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少元?25.(本题满分8分)如图,AB 为⊙O 的直径,C 是⊙O 上一点,过点C 的直线交AB 的延长线于点D ,AE ⊥DC ,垂足为E ,F 是AE 与⊙O 的交点,AC 平分∠BAE ,连接OC .(1)求证:DE 是⊙O 的切线;(2)若⊙O 半径为4,∠D=30°,求图中阴影部分的面积(结果用含π和根号的式子表示).xF E26.(本题满分8分)如图,用18米长的木方条做一个有一条横档的矩形窗子,窗子的宽AB 不能超过2米. 为使透进的光线最多,则窗子的长、宽应各为多少米?27.(本题满分10分)如图,抛物线283y ax =-与x 轴交于A 、B (A 在B 左侧)两点, 一次函数y=-x+4与坐标轴分别交于点C 、D ,与抛物线交于点M 、N ,其中点M 的横坐标是52. (1)求出点C 、D 的坐标;(2)求抛物线的表达式以及点A 、B 的坐标;(3)在平面内存在动点P (P 不与A ,B 重合),满足∠APB 为直角,动点P 到直线CD 的距离是否有最小值,如果有,请直接写出这个最小值的结果;如果没有,请说明理由。

2019年全国各地中考数学试题分类汇编(第一期) 专题26 图形的相似与位似(含解析)

2019年全国各地中考数学试题分类汇编(第一期) 专题26 图形的相似与位似(含解析)
4.(2019,山东枣庄,3 分)如图,将△ABC 沿 BC 边上的中线 AD 平移到△A′B′C′的 位置.已知△ABC 的面积为 16,阴影部分三角形的面积 9.若 AA′=1,则 A′D 等于 ( )
A.2
B.3
C.4
D.
【分析】由 S△ABC=16.S△A′EF=9 且 AD 为 BC 边的中线知 S△A′DE= S△A′EF= ,S
7.(2019,四川巴中,4 分)如图▱ABCD,F 为 BC 中点,延长 AD 至 E,使 DE:AD=1: 3,连结 EF 交 DC 于点 G,则 S△DEG:S△CFG=( )
A.2:3
B.3:2
C.9:4
D.4:9
【分析】先设出 DE=x,进而得出 AD=3x,再用平行四边形的性质得出 BC=3x,进而
△ABD= S△ABC=8,根据△DA′E∽△DAB 知(
)2=
,据此求解可
得.
第 3 页 共 82 页
【解答】解:∵S△ABC=16.S△A′EF=9,且 AD 为 BC 边的中线, ∴S△A′DE= S△A′EF= ,S△ABD= S△ABC=8, ∵将△ABC 沿 BC 边上的中线 AD 平移得到△A'B'C', ∴A′E∥AB, ∴△DA′E∽△DAB,
设 DE=x,则 AD=8﹣x, 根据题意得: (8﹣x+8)×3×3=3×3×6,
解得:x=4,
∴DE=4,
∵∠E=90°,
由勾股定理得:CD=

∵∠BCE=∠DCF=90°, ∴∠DCE=∠BCF, ∵∠DEC=∠BFC=90°, ∴△CDE∽△BCF,




∴CF= .

2019年全国中考试题解析版分类汇编-尺规作图

2019年全国中考试题解析版分类汇编-尺规作图

2019年全国中考试题解析版分类汇编-尺规作图注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!【一】选择题1.〔2017•台湾33,4分〕如图,AB为圆O的直径,在圆O上取异于A、B的一点C,并连接BC、AC、假设想在AB上取一点P,使得P与直线BC的距离等于AP长,判断以下四个作法何者正确?〔〕A、作的中垂线,交于P点B、作∠ACB的角平分线,交于P点C、作∠ABC的角平分线,交于D点,过D作直线BC平行线,交于P点D、过A作圆O的切线,交直线BC于D点,作∠ADC的角平分线,交于P点考点:切线的性质;角平分线的性质。

分析:A圆内弦中垂线过原点;角平分线上点到到两边距离相等;角平分线上点到两边距离相等;D角平分线上点到两边距离相等,与切线与过切点的直径垂直、从而判断出来、解答:解:A、圆内弦的中垂线过原点,有圆内弦性质可知,所以交AB于圆点O,故本选项错误;B、作∠ACB的角平分线,那么点P到BC的距离等于点P到AC的距离,而不等于AP,故本选项错误;C、假设过点D作直线BC的平行线交AB于点P,那么点P的距离,等于DP也不等于AP,故本选项错误;D、角平分线DP交直径AB与点P,根据角平分线定理,由PA⊥AD,得到点P到BC的距离等于AP,故正确、点评:此题考查了切线的性质,A考查了圆内弦中垂线过原点;B考查了角平分线上点到到两边距离相等;C考查了角平分线上点到两边距离相等;D考查了角平分线上点到两边距离相等,与切线与过切点的直径垂直、2.〔2017湖北荆州,15,3分〕请将含60°顶角的菱形分割成至少含一个等腰梯形且面积相等的六部分,用实线画出分割后的图形、答案不唯一、考点:作图—应用与设计作图、专题:作图题、分析:整个图形含有36个小菱形,分为面积相等的六部分,那么每一个部分含6个小菱形,由此设计分割方案、解答:解:分割后的图形如下图、此题答案不唯一、点评:此题考查了应用与设计作图、关键是理解题意,根据图形设计分割方案、3.〔2017•西宁〕用直尺和圆规作一个菱形,如图,能得到四边形ABCD是菱形的依据是〔〕A、一组临边相等的四边形是菱形B、四边相等的四边形是菱形C、对角线互相垂直的平行四边形是菱形D、每条对角线平分一组对角的平行四边形是菱形考点:菱形的判定;作图—复杂作图。

2019年全国中考真题分类汇编(三角形的基础知识)

2019年全国中考真题分类汇编(三角形的基础知识)

第14讲三角形的基础知识知识点1 三角形的高、中线、角平分线知识点2 三角形的中位线的性质知识点3 三角形的三边关系知识点4 三角形的内角和定理及其推论知识点1 三角形的高、中线、角平分线(2019·宜宾)(2019·泰州)(2019·北京)知识点2 三角形的中位线的性质(2019·长沙)(2019·盐城)知识点3 三角形的三边关系(2019·毕节)(2019·金华)若长度分别为a ,3,5 的三条线段能组成一个三角形,则a 的值可以是( C )A.1 B. 2 C.3 D. 8(2019·自贡)(2019·台州)(2019·黔东南)在下列长度的三条线段中,不能组成三角形的是()A. 2 cm, 3 cm. 4cmB. 3 cm, 6 cm. 76cmC. 2 cm, 2 cm, 6cmD.5 cm, 6 cm. 7 cm(2019·扬州)(2019·淮安)知识点4 三角形的内角和定理及其推论(2019·宿迁)一副三角板如图摆放(直角顶点C重合),边AB与CE交于点F,DE∥BC,则∠BFC 等于()A. 105°B. 100°C. 75°D. 60°△中,若一个内角等于另外两个角的差,则()(2019·杭州)在ABCA.必有一个角等于30B. 必有一个角等于45C. 必有一个角等于60D. 必有一个角等于90(2019·枣庄)(2019·十堰)(2019·凉山州)(2019·威海)(2019·绍兴)答案:B(2019·乐山)如图2,直线a ∥b ,点B 在a 上,且BC AB ⊥.若︒=∠351,那么2∠等于 ( C )()A ︒45 ()B ︒50 ()C ︒55()D ︒60(2019·资阳)(2019·河南)(2019·邵阳)(2019·广西北部湾经济)(2019·河北)答案:C(2019·东营)将一副三角板(∠A=30°,∠E=45°)按如图所示方式摆放,使得B A∥EF,则∠AOF 等于( A )(2019·天水)一把直尺和一块三角板ABC(含30°、60°角)如所示摆放,直尺一遍边于三角板的两直角边分别交于点D和点E,另一边与三角板的两直角边分别交于点F和点A,且∠CED=50°,那么∠BFA的大小为( B )A. 145° B. 140° C. 135° D. 130°(2019·荆门)(2019·襄阳)A.75°B.90°C.105°D.115°(2019·眉山)如图,在△ABC中,AD平分∠BAC交BC于点D,∠B=300,∠ADC=700,则∠C的度数是(C)A.50°B.60°C.70°D.80°(2019·大庆)(2019·铁岭)(2019·长春)答案:57(2019·郴州)(2019·吉林)(2019·益阳)答案:52°(2019·哈尔滨)第14讲三角形的基础知识9/ 9。

2019年全国各地中考数学真题汇编:三角形(四川专版)(解析卷)

2019年全国各地中考数学真题汇编:三角形(四川专版)(解析卷)

2019年全国各地中考数学真题汇编(四川专版)三角形参考答案与试题解析一.选择题(共6小题)1.(2019•凉山州)如图,在△ABC中,CA=CB=4,cos C=,则sin B的值为()A.B.C.D.解:过点A作AD⊥BC,垂足为D,如图所示.在Rt△ACD中,CD=CA•cos C=1,∴AD==;在Rt△ABD中,BD=CB﹣CD=3,AD=,∴AB==2,∴sin B==.故选:D.2.(2019•广元)如图,AB,AC分别是⊙O的直径和弦,OD⊥AC于点D,连接BD,BC,且AB =10,AC=8,则BD的长为()A.2B.4C.2D.4.8解:∵AB为直径,∴∠ACB=90°,∴BC===3,∵OD⊥AC,∴CD=AD=AC=4,在Rt△CBD中,BD==2.故选:C.3.(2019•遂宁)如图,▱ABCD中,对角线AC、BD相交于点O,OE⊥BD交AD于点E,连接BE,若▱ABCD的周长为28,则△ABE的周长为()A.28B.24C.21D.14解:∵四边形ABCD是平行四边形,∴OB=OD,AB=CD,AD=BC,∵平行四边形的周长为28,∴AB+AD=14∵OE⊥BD,∴OE是线段BD的中垂线,∴BE=ED,∴△ABE的周长=AB+BE+AE=AB+AD=14,故选:D.4.(2019•乐山)把边长分别为1和2的两个正方形按如图的方式放置.则图中阴影部分的面积为()A.B.C.D.解:如图,设BC=x,则CE=1﹣x易证△ABC∽△FEC∴===解得x=∴阴影部分面积为:S△ABC=××1=故选:A.5.(2019•巴中)如图▱ABCD,F为BC中点,延长AD至E,使DE:AD=1:3,连结EF交DC 于点G,则S△DEG:S△CFG=()A.2:3B.3:2C.9:4D.4:9解:设DE=x,∵DE:AD=1:3,∴AD=3x,∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=3x,∵点F是BC的中点,∴CF=BC=x,∵AD∥BC,∴△DEG∽△CFG,∴=()2=()2=,故选:D.6.(2019•宜宾)如图,∠EOF的顶点O是边长为2的等边△ABC的重心,∠EOF的两边与△ABC 的边交于E,F,∠EOF=120°,则∠EOF与△ABC的边所围成阴影部分的面积是()A.B.C.D.解:连接OB、OC,过点O作ON⊥BC,垂足为N,∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∵点O为△ABC的内心∴∠OBC=∠OBA=∠ABC,∠OCB=∠ACB.∴∠OBA=∠OBC=∠OCB=30°.∴OB=OC.∠BOC=120°,∵ON⊥BC,BC=2,∴BN=NC=1,∴ON=tan∠OBC•BN=×1=,∴S△OBC=BC•ON=.∵∠EOF=∠AOB=120°,∴∠EOF﹣∠BOF=∠AOB﹣∠BOF,即∠EOB=∠FOC.在△EOB和△FOC中,,∴△EOB≌△FOC(ASA).∴S阴影=S△OBC=故选:C.二.填空题(共10小题)7.(2019•自贡)如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,CD∥AB,∠ABC的平分线BD交AC于点E,DE=.解:∵∠ACB=90°,AB=10,BC=6,∴AC=8,∵BD平分∠ABC,∴∠ABE=∠CDE,∵CD∥AB,∴∠D=∠ABE,∴∠D=∠CBE,∴CD=BC=6,∴△AEB∽△CED,∴,∴CE=AC=×8=3,BE=,DE=BE=×=,故答案为.8.(2019•成都)如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为.解:∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△A'B'D',∴A′B′=AB=1,∠A′B′D=30°,当B′C⊥A′B′时,A'C+B'C的值最小,∵AB∥A′B′,AB=A′B′,AB=CD,AB∥CD,∴A′B′=CD,A′B′∥CD,∴四边形A′B′CD是矩形,∠B′A′C=30°,∴B′C=,A′C=,∴A'C+B'C的最小值为,故答案为:.9.(2019•广元)如图,△ABC中,∠ABC=90°,BA=BC=2,将△ABC绕点C逆时针旋转60°得到△DEC,连接BD,则BD2的值是8+4.解:如图,连接AD,设AC与BD交于点O,解:如图,连接AM,由题意得:CA=CD,∠ACD=60°∴△ACD为等边三角形,∴AD=CD,∠DAC=∠DCA=∠ADC=60°;∵∠ABC=90°,AB=BC=2,∴AC=CD=2,∵AB=BC,CD=AD,∴BD垂直平分AC,∴BO=AC=,OD=CD•sin60°=,∴BD=+∴BD2=(+)2=8+4,故答案为8+410.(2019•乐山)如图,在△ABC中,∠B=30°,AC=2,cos C=.则AB边的长为.解:如图,作AH⊥BC于H.在Rt△ACH中,∵∠AHC=90°,AC=2,COSC=,∴=,∴CH=,∴AH===,在Rt△ABH中,∵∠AHB=90°,∠B=30°,∴AB=2AH=,故答案为.11.(2019•眉山)如图,在Rt△ABC中,∠B=90°,AB=5,BC=12,将△ABC绕点A逆时针旋转得到△ADE,使得点D落在AC上,则tan∠ECD的值为.解:在Rt△ABC中,由勾股定理可得AC=13.根据旋转性质可得AE=13,AD=5,DE=12,∴CD=8.在Rt△CED中,tan∠ECD==.故答案为.12.(2019•广安)等腰三角形的两边长分别为6cm,13cm,其周长为32cm.解:由题意知,应分两种情况:(1)当腰长为6cm时,三角形三边长为6,6,13,6+6<13,不能构成三角形;(2)当腰长为13cm时,三角形三边长为6,13,13,周长=2×13+6=32cm.故答案为32.13.(2019•宜宾)如图,已知直角△ABC中,CD是斜边AB上的高,AC=4,BC=3,则AD=.解:在Rt△ABC中,AB==5,由射影定理得,AC2=AD•AB,∴AD==,故答案为:.14.(2019•凉山州)如图所示,AB是⊙O的直径,弦CD⊥AB于H,∠A=30°,CD=2,则⊙O 的半径是2.解:连接BC,如图所示:∵AB是⊙O的直径,弦CD⊥AB于H,∴∠ACB=90°,CH=DH=CD=,∵∠A=30°,∴AC=2CH=2,在Rt△ABC中,∠A=30°,∴AC=BC=2,AB=2BC,∴BC=2,AB=4,∴OA=2,即⊙O的半径是2;故答案为:2.15.(2019•达州)如图,▱ABCD的对角线AC、BD相交于点O,点E是AB的中点,△BEO的周长是8,则△BCD的周长为16.解:∵▱ABCD的对角线AC、BD相交于点O,∴BO=DO=BD,BD=2OB,∴O为BD中点,∵点E是AB的中点,∴AB=2BE,BC=2OE,∵四边形ABCD是平行四边形,∴AB=CD,∴CD=2BE.∵△BEO的周长为8,∴OB+OE+BE=8,∴BD+BC+CD=2OB+2OE+2BE=2(OB+OE+BE)=16,∴△BCD的周长是16,故答案为16.16.(2019•凉山州)如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B、C 重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为4.解:∵∠BEP+∠BPE=90°,∠QPC+∠BPE=90°,∴∠BEP=∠CPQ.又∠B=∠C=90°,∴△BPE∽△CQP.∴.设CQ=y,BP=x,则CP=12﹣x.∴,化简得y=﹣(x2﹣12x),整理得y=﹣(x﹣6)2+4,所以当x=6时,y有最大值为4.故答案为4.三.解答题(共18小题)17.(2019•攀枝花)如图,在△ABC中,CD是AB边上的高,BE是AC边上的中线,且BD=CE.求证:(1)点D在BE的垂直平分线上;(2)∠BEC=3∠ABE.解:(1)连接DE,∵CD是AB边上的高,∴∠ADC=∠BDC=90°,∵BE是AC边上的中线,∴AE=CE,∴DE=CE,∵BD=CE,∴BD=DE,∴点D在BE的垂直平分线上;(2)∵DE=AE,∴∠A=∠ADE,∵∠ADE=∠DBE+∠DEB,∵BD=DE,∴∠DBE=∠DEB,∴∠A=∠ADE=2∠ABE,∵∠BEC=∠A+∠ABE,∴∠BEC=3∠ABE.18.(2019•成都)2019年,成都马拉松成为世界马拉松大满贯联盟的候选赛事,这大幅提升了成都市的国际影响力,如图,在一场马拉松比赛中,某人在大楼A处,测得起点拱门CD的顶部C的俯角为35°,底部D的俯角为45°,如果A处离地面的高度AB=20米,求起点拱门CD的高度.(结果精确到1米;参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)解:作CE⊥AB于E,则四边形CDBE为矩形,∴CE=AB=20,CD=BE,在Rt△ADB中,∠ADB=45°,∴AB=DB=20,在Rt△ACE中,tan∠ACE=,∴AE=CE•tan∠ACE≈20×0.70=14,∴CD=BE=AB﹣AE=6,答:起点拱门CD的高度约为6米.19.(2019•广元)如图,已知:在△ABC中,∠BAC=90°,延长BA到点D,使AD=AB,点E,F分别是边BC,AC的中点.求证:DF=BE.证明:∵∠BAC=90°,∴∠DAF=90°,∵点E,F分别是边BC,AC的中点,∴AF=FC,BE=EC,FE是△ABC的中位线,∴FE=AB,FE∥AB,∴∠EFC=∠BAC=90°,∴∠DAF=∠EFC,∵AD=AB,∴AD=FE,在△ADF和△FEC中,,∴△ADF≌△FEC(SAS),∴DF=EC,∴DF=BE.20.(2019•绵阳)如图,AB是⊙O的直径,点C为的中点,CF为⊙O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.证明:(1)∵C是的中点,∴,∵AB是⊙O的直径,且CF⊥AB,∴,∴,∴CD=BF,在△BFG和△CDG中,∵,∴△BFG≌△CDG(AAS);(2)解法一:如图,连接OF,设⊙O的半径为r,Rt△ADB中,BD2=AB2﹣AD2,即BD2=(2r)2﹣22,Rt△OEF中,OF2=OE2+EF2,即EF2=r2﹣(r﹣2)2,∵,∴,∴BD=CF,∴BD2=CF2=(2EF)2=4EF2,即(2r)2﹣22=4[r2﹣(r﹣2)2],解得:r=1(舍)或3,∴BF2=EF2+BE2=32﹣(3﹣2)2+22=12,∴BF=2;解法二:如图,过C作CH⊥AD于H,连接AC、BC,∵,∴∠HAC=∠BAC,∵CE⊥AB,∴CH=CE,∵AC=AC,∴Rt△AHC≌Rt△AEC(HL),∴AE=AH,∵CH=CE,CD=CB,∴Rt△CDH≌Rt△CBE(HL),∴DH=BE=2,∴AE=AH=2+2=4,∴AB=4+2=6,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB=∠BEC=90°,∵∠EBC=∠ABC,∴△BEC∽△BCA,∴,∴BC2=AB•BE=6×2=12,∴BF=BC=2.解法三:如图,连接OC,交BD于H,∵C是的中点,∴OC⊥BD,∴DH=BH,∵OA=OB,∴OH=AD=1,∵OC=OB,∠COE=∠BOH,∠OHB=∠OEC=90°,∴△COE≌△BOH(AAS),∴OH=OE=1,∴CE=EF==2,∴BF===2.21.(2019•泸州)如图,海中有两个小岛C,D,某渔船在海中的A处测得小岛位于东北方向上,且相距20nmile,该渔船自西向东航行一段时间到达点B处,此时测得小岛C恰好在点B的正北方向上,且相距50nmile,又测得点B与小岛D相距20nmile.(1)求sin∠ABD的值;(2)求小岛C,D之间的距离(计算过程中的数据不取近似值).解:(1)过D作DE⊥AB于E,在Rt△AED中,AD=20,∠DAE=45°,∴DE=20×sin45°=20,在Rt△BED中,BD=20,∴sin∠ABD===;(2)过D作DF⊥BC于F,在Rt△BED中,DE=20,BD=20,∴BE==40,∵四边形BFDE是矩形,∴DF=EB=40,BF=DE=20,∴CF=BC﹣BF=30,在Rt△CDF中,CD==50,∴小岛C,D之间的距离为50nmile.22.(2019•遂宁)如图,在四边形ABCD中,AD∥BC,延长BC到E,使CE=BC,连接AE交CD 于点F,点F是CD的中点.求证:(1)△ADF≌△ECF.(2)四边形ABCD是平行四边形.证明:(1)∵AD∥BC,∴∠DAF=∠E,∵点F是CD的中点,∴DF=CF,在△ADF与△ECF中,,∴△ADF≌△ECF(AAS);(2)∵△ADF≌△ECF,∴AD=EC,∵CE=BC,∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形.23.(2019•广元)如图,某海监船以60海里/时的速度从A处出发沿正西方向巡逻,一可疑船只在A的西北方向的C处,海监船航行1.5小时到达B处时接到报警,需巡査此可疑船只,此时可疑船只仍在B的北偏西30°方向的C处,然后,可疑船只以一定速度向正西方向逃离,海监船立刻加速以90海里/时的速度追击,在D处海监船追到可疑船只,D在B的北偏西60°方同.(以下结果保留根号)(1)求B,C两处之间的距离;(2)求海监船追到可疑船只所用的时间.解:(1)作CE⊥AB于E,如图1所示:则∠CEA=90°,由题意得:AB=60×1.5=90(海里),∠CAB=45°,∠CBN=30°,∠DBN=60°,∴△ACE是等腰直角三角形,∠CBE=60°,∴CE=AE,∠BCE=30°,∴CE=BE,BC=2BE,设BE=x,则CE=x,AE=BE+AB=x+90,∴x=x+90,解得:x=45+45,∴BC=2x=90+90;答:B,C两处之间的距离为(90+90)海里;(2)作DF⊥AB于F,如图2所示:则DF=CE=x=135+45,∠DBF=90°﹣60°=30°,∴BD=2DF=270+90,∴海监船追到可疑船只所用的时间为=3+(小时);答:海监船追到可疑船只所用的时间为(3+)小时.24.(2019•遂宁)汛期即将来临,为保证市民的生命和财产安全,市政府决定对一段长200米且横断面为梯形的大坝用土石进行加固.如图,加固前大坝背水坡坡面从A至B共有30级阶梯,平均每级阶梯高30cm,斜坡AB的坡度i=1:1;加固后,坝顶宽度增加2米,斜坡EF的坡度i=1:,问工程完工后,共需土石多少立方米?(计算土石方时忽略阶梯,结果保留根号)解:过A作AH⊥BC于H,过E作EH⊥BC于G,则四边形EGHA是矩形,∴EG=AH,GH=AE=2,∵斜坡AB的坡度i=1:1,∴AH=BH=30×30=900cm=9米,∴BG=BH﹣HG=7,∵斜坡EF的坡度i=1:,∴FG=9,∴BF=FG﹣BG=9﹣7,∴S梯形ABFE=(2+9﹣7)×9=,∴共需土石为×200=100(81﹣45)立方米.25.(2019•南充)如图,点O是线段AB的中点,OD∥BC且OD=BC.(1)求证:△AOD≌△OBC;(2)若∠ADO=35°,求∠DOC的度数.(1)证明:∵点O是线段AB的中点,∴AO=BO,∵OD∥BC,∴∠AOD=∠OBC,在△AOD与△OBC中,,∴△AOD≌△OBC(SAS);(2)解:∵△AOD≌△OBC,∴∠ADO=∠OCB=35°,∵OD∥BC,∴∠DOC=∠OCB=35°.26.(2019•眉山)如图,在岷江的右岸边有一高楼AB,左岸边有一坡度i=1:2的山坡CF,点C与点B在同一水平面上,CF与AB在同一平面内.某数学兴趣小组为了测量楼AB的高度,在坡底C处测得楼顶A的仰角为45°,然后沿坡面CF上行了20米到达点D处,此时在D处测得楼顶A的仰角为30°,求楼AB的高度.解:在Rt△DEC中,∵i==,DE2+EC2=CD2,CD=20,∴DE2+(2DE)2=(20)2,解得:DE=20(m),∴EC=40m,过点D作DG⊥AB于G,过点C作CH⊥DG于H,如图所示:则四边形DEBG、四边形DECH、四边形BCHG都是矩形,∵∠ACB=45°,AB⊥BC,∴AB=BC,设AB=BC=xm,则AG=(x﹣20)m,DG=(x+40)m,在Rt△ADG中,∵=tan∠ADG,∴=,解得:x=50+30.答:楼AB的高度为(50+30)米.27.(2019•达州)如图,在Rt△ABC中,∠ACB=90°,AC=2,BC=3.(1)尺规作图:不写作法,保留作图痕迹.①作∠ACB的平分线,交斜边AB于点D;②过点D作BC的垂线,垂足为点E.(2)在(1)作出的图形中,求DE的长.解:(1)如图,DE为所作;(2)∵CD平分∠ACB,∴∠BCD=∠ACB=45°,∵DE⊥BC,∴△CDE为等腰直角三角形,∴DE=CE,∵DE∥AC,∴△BDE∽△BAC,∴=,即=,∴DE=.28.(2019•宜宾)如图,为了测得某建筑物的高度AB,在C处用高为1米的测角仪CF,测得该建筑物顶端A的仰角为45°,再向建筑物方向前进40米,又测得该建筑物顶端A的仰角为60°.求该建筑物的高度AB.(结果保留根号)解:设AM=x米,在Rt△AFM中,∠AFM=45°,∴FM=AM=x,在Rt△AEM中,tan∠AEM=,则EM==x,由题意得,FM﹣EM=EF,即x﹣x=40,解得,x=60+20,∴AB=AM+MB=61+20,答:该建筑物的高度AB为(61+20)米.29.(2019•巴中)如图,等腰直角三角板如图放置.直角顶点C在直线m上,分别过点A、B作AE ⊥直线m于点E,BD⊥直线m于点D.①求证:EC=BD;②若设△AEC三边分别为a、b、c,利用此图证明勾股定理.①证明:∵∠ACB=90°,∴∠ACE+∠BCD=90°.∵∠ACE+∠CAE=90°,∴∠CAE=∠BCD.在△AEC与△BCD中,∴△CAE≌△BCD(AAS).∴EC=BD;②解:由①知:BD=CE=aCD=AE=b∴S梯形AEDB=(a+b)(a+b)=a2+ab+b2.又∵S梯形AEDB=S△AEC+S△BCD+S△ABC=ab+ab+c2=ab+c2.∴a2+ab+b2=ab+c2.整理,得a2+b2=c2.30.(2019•广安)如图,某数学兴趣小组为测量一颗古树BH和教学楼CG的高,先在A处用高1.5米的测角仪AF测得古树顶端H的仰角∠HFE为45°,此时教学楼顶端G恰好在视线FH上,再向前走10米到达B处,又测得教学楼顶端G的仰角∠GED为60°,点A、B、C三点在同一水平线上.(1)求古树BH的高;(2)求教学楼CG的高.(参考数据:=1.4,=1.7)解:(1)在Rt△EFH中,∠HEF=90°,∠HFE=45°,∴HE=EF=10,∴BH=BE+HE=1.5+10=11.5,∴古树的高为11.5米;(2)在Rt△EDG中,∠GED=60°,∴DG=DE tan60°=DE,设DE=x米,则DG=x米,在Rt△GFD中,∠GDF=90°,∠GFD=45°,∴GD=DF=EF+DE,∴x=10+x,解得:x=5+5,∴CG=DG+DC=x+1.5=(5+5)+1.5=16.5+5≈25,答:教学楼CG的高约为25米.31.(2019•达州)渠县賨人谷是国家AAAA级旅游景区,以“奇山奇水奇石景,古賨古洞古部落”享誉巴渠,被誉为川东“小九寨”.端坐在观音崖旁的一块奇石似一只“啸天犬”,昂首向天,望穿古今.一个周末,某数学兴趣小组的几名同学想测出“啸天犬”上嘴尖与头顶的距离.他们把蹲着的“啸天犬”抽象成四边形ABCD,想法测出了尾部C看头顶B的仰角为40°,从前脚落地点D看上嘴尖A的仰角刚好60°,CB=5m,CD=2.7m.景区管理员告诉同学们,上嘴尖到地面的距离是3m.于是,他们很快就算出了AB的长.你也算算?(结果精确到0.1m.参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84.≈1.41,≈1.73)解:作BF⊥CE于F,在Rt△BFC中,BF=BC•sin∠BCF≈3.20,CF=BC•cos∠BCF≈3.85,在Rt△ADE中,DE===≈1.73,∴BH=BF﹣HF=0.20,AH=EF=CD+DE﹣CF=0.58,由勾股定理得,AB=≈0.6(m),答:AB的长约为0.6m.32.(2019•巴中)某区域平面示意图如图所示,点D在河的右侧,红军路AB与某桥BC互相垂直.某校“数学兴趣小组”在“研学旅行”活动中,在C处测得点D位于西北方向,又在A处测得点D 位于南偏东65°方向,另测得BC=414m,AB=300m,求出点D到AB的距离.(参考数据sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)解:如图,过点D作DE⊥AB于E,过D作DF⊥BC于F,则四边形EBFD是矩形,设DE=x,在Rt△ADE中,∠AED=90°,∵tan∠DAE=,∴DF=CF=414﹣x,又BE=CF,即:300﹣=414﹣x,解得:x=214,故:点D到AB的距离是214m.33.(2019•资阳)如图,南海某海域有两艘外国渔船A、B在小岛C的正南方向同一处捕鱼.一段时间后,渔船B沿北偏东30°的方向航行至小岛C的正东方向20海里处.(1)求渔船B航行的距离;(2)此时,在D处巡逻的中国渔政船同时发现了这两艘渔船,其中B渔船在点D的南偏西60°方向,A渔船在点D的西南方向,我渔政船要求这两艘渔船迅速离开中国海域.请分别求出中国渔政船此时到这两艘外国渔船的距离.(注:结果保留根号)解:(1)由题意得,∠CAB=30°,∠ACB=90°,BC=20,∴AB=2BC=40海里,答:渔船B航行的距离是40海里;(2)过B作BE⊥AE于E,过D作DH⊥AE于H,延长CB交DH于G,则四边形AEBC和四边形BEHG是矩形,∴BE=GH=AC=20,AE=BC=20,设BG=EH=x,∴AH=x+20,由题意得,∠BDG=60°,∠ADH=45°,∴x,DH=AH,∴20+x=x+20,解得:x=20,∴BG=20,AH=20+20,∴BD==40,AD=AH=20+20,答:中国渔政船此时到外国渔船B的距离是40海里,到外国渔船A的距离是(20+20)海里.34.(2019•凉山州)如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接EB.过点A作AM⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.证明:∵四边形ABCD是正方形.∴∠BOE=∠AOF=90°,OB=OA.又∵AM⊥BE,∴∠MEA+∠MAE=90°=∠AFO+∠MAE,∴∠MEA=∠AFO.∴△BOE≌△AOF(AAS).∴OE=OF.。

(完整)2019年全国中考数学真题分类汇编:圆内有关性质(包含答案),推荐文档

(完整)2019年全国中考数学真题分类汇编:圆内有关性质(包含答案),推荐文档

2019 年全国中考数学真题分类汇编:圆内有关性质一、选择题1.(2019 年ft东省滨州市)如图,AB 为⊙O 的直径,C,D 为⊙O 上两点,若∠BCD=40°,则∠ABD 的大小为()A.60°B.50°C.40°D.20°【考点】圆周角定理、直角三角形的性质【解答】解:连接AD,∵AB 为⊙O 的直径,∴∠ADB=90°.∵∠BCD=40°,∴∠A=∠BCD=40°,∴∠ABD=90°﹣40°=50°.故选:B.2.(2019 年ft东省德州市)如图,点O 为线段BC 的中点,点A,C,D 到点O 的距离相等,若∠ABC=40°,则∠ADC 的度数是()A. 130 ∘B. 140 ∘C. 150 ∘D. 160 ∘【考点】圆内接四边形的性质【解答】解:由题意得到OA=OB=OC=OD,作出圆O,如图所示,∴四边形ABCD 为圆O 的内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=40°,∴∠ADC=140°,故选:B.3.(2019 年ft东省菏泽市)如图,AB 是⊙O 的直径,C,D 是⊙O 上的两点,且BC 平分∠ABD,AD 分别与BC,OC 相交于点E,F,则下列结论不一定成立的是()A.OC∥BD B.AD⊥OC C.△CEF≌△BED D.AF=FD【考点】圆周角定理、垂径定理、等腰三角形的性质、平行线的性质、角平分线的性质【解答】解:∵AB 是⊙O 的直径,BC 平分∠ABD,∴∠ADB=90°,∠OBC=∠DBC,∴AD⊥BD,∵OB=OC,∴∠OCB=∠OBC,∴∠DBC=∠OCB,∴OC∥BD,选项A 成立;∴AD⊥OC,选项B 成立;∴AF=FD,选项D 成立;∵△CEF 和△BED 中,没有相等的边,∴△CEF 与△BED 不全等,选项C 不成立;故选:C.4.(2019 年四川省资阳市)如图,直径为2cm 的圆在直线l 上滚动一周,则圆所扫过的图形面积为()A.5πB.6πC.20πD.24π【考点】圆的面积、矩形的面积、圆的周长【解答】解:圆所扫过的图形面积=π+2π×2=5π,故选:A.2 3 ⏜ ⏜5. (2019 年广西贵港市)如图,AD 是⊙O 的直径,AB =CD ,若∠AOB =40°,则圆周角∠BPC 的度数是()A. 40 ∘B. 50 ∘C. 60 ∘D. 70 ∘【考点】圆周角定理【解答】解:∵=,∠AOB=40°,∴∠COD=∠AOB=40°,∵∠AOB+∠BOC+∠COD=180°,∴∠BOC=100°,∴∠BPC= ∠BOC=50°, 故选:B .6. (2019 年湖北省十堰市) 如图,四边形 ABCD 内接于⊙O ,AE ⊥CB 交 CB 的延长线于点 E ,若 BA 平分∠DBE ,AD =5,CE = 13,则AE =( ) A .3B .3C .4D .2【考点】圆内接四边形的性质、勾股定理【解答】解:连接 AC ,如图,∵BA 平分∠DBE ,∴∠1=∠2,∵∠1=∠CDA ,∠2=∠3,∴∠3=∠CDA ,∴AC =AD =5,∵AE ⊥CB ,3∴∠AEC=90°,= 52‒ ( 13)2=2 3.∴AE=故选:D.7.(2019 年陕西省)如图,AB 是⊙O 的直径,EF、EB 是⊙O 的弦,且EF=EB,EF 与AB 交于点C,连接OF.若∠AOF=40°,则∠F 的度数是()A.20°B.35°C.40°D.55°【考点】圆内有关性质【解答】连接FB,得到FOB=140°;∴∠FEB=70°∵EF=EB∴∠EFB=∠EBF∵FO=BO,∴∠OFB=∠OBF,∴∠EFO=∠EBO,∠F=35°8.(2019 年浙江省衢州市)一块圆形宣传标志牌如图所示,点A,B,C 在⊙O 上,CD 垂直平分AB 于点D,现测得AB=8dm,DC=2dm,则圆形标志牌的半径为()A.6dmB. 5dmC. 4dmD. 3dm【考点】垂径定理的应用【解答】解:连结OD,OA,如图,设半径为r,∵AB=8,CD⊥AB,∴AD=4,点O、D、C 三点共线,AC2 ‒C E2∵CD=2,∴OD=r-2,在Rt△ADO 中,∵AO2=AD2+OD2,,即r2=42+(r-2)2,解得:r=5,故答案为:B.9.(2019 年甘肃省天水市)如图,四边形ABCD 是菱形,⊙O 经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=80°,则∠EAC 的度数为()A.20°B.25°C.30°D.35°【考点】菱形的性质,三角形的内角和,圆内接四边形的性质【解答】解:∵四边形ABCD 是菱形,∠D=80°,1 1∴∠ACB=2∠DCB=2(180°﹣∠D)=50°,∵四边形AECD 是圆内接四边形,∴∠AEB=∠D=80°,∴∠EAC=∠AEB﹣∠ACE=30°,故选:C.10.(2019 年甘肃省)如图,AB 是⊙O 的直径,点C、D 是圆上两点,且∠AOC=126°,则∠CDB=()A.54°B.64°C.27°D.37°【考点】圆周角定理【解答】解:∵∠AOC=126°,∴∠BOC=180°﹣∠AOC=54°,∵∠CDB=∠BOC=27°.故选:C.11.(2019 年湖北省襄阳市)如图,AD 是⊙O 的直径,BC 是弦,四边形OBCD 是平行四边形,AC 与OB 相交于点P,下列结论错误的是()A.AP=2OP B.CD=2OP C.OB⊥AC D.AC 平分OB 【考点】圆内有关性质【解答】解:∵AD 为直径,∴∠ACD=90°,∵四边形OBCD 为平行四边形,∴CD∥OB,CD=OB,在Rt△ACD 中,sin A==,∴∠A=30°,在Rt△AOP 中,AP=OP,所以A 选项的结论错误;∵OP∥CD,CD⊥AC,∴OP⊥AC,所以C 选项的结论正确;∴AP=CP,∴OP 为△ACD 的中位线,∴CD=2OP,所以 B 选项的结论正确;∴OB=2OP,∴AC 平分OB,所以D 选项的结论正确.故选:A.12.(2019 年湖北省宜昌市)如图,点A,B,C 均在⊙O 上,当∠OBC=40°时,∠A 的度数是()A.50°B.55°C.60°D.65°【考点】圆周角定理【解答】解:∵OB=OC,∴∠OCB=∠OBC=40°,∴∠BOC=180°﹣40°﹣40°=100°,∴∠A=∠BOC=50°.故选:A.13.(2019 年甘肃省武威市)如图,点A,B,S 在圆上,若弦AB 的长度等于圆半径的倍,则∠ASB 的度数是()A.22.5°B.30°C.45°D.60°【考点】圆周角定理【解答】解:设圆心为O,连接OA、OB,如图,∵弦AB 的长度等于圆半径的倍,即AB=OA,∴OA2+OB2=AB2,∴△OAB 为等腰直角三角形,∠AOB=90°,∴∠ASB=∠AOB=45°.故选:C.14.(2019 年内蒙古包头市)如图,在Rt△ABC 中,∠ACB=90°,AC=BC=2 ,以BC为直径作半圆,交AB 于点D,则阴影部分的面积是()A.π﹣1 B.4﹣πC.D.2【考点】圆周角定理【解答】解:连接CD,∵BC 是半圆的直径,∴CD⊥AB,∵在Rt△ABC 中,∠ACB=90°,AC=BC=2 ,∴△ACB 是等腰直角三角形,∴CD=BD,∴阴影部分的面积=×2 2 =2,故选:D.15.(2019 年内蒙古赤峰市)如图,AB 是⊙O 的弦,OC⊥AB 交⊙O 于点C,点D 是⊙O上一点,∠ADC=30°,则∠BOC 的度数为()A.30°B.40°C.50°D.60°【考点】圆内有关性质【解答】解:如图,∵∠ADC=30°,∴∠AOC=2∠ADC=60°.∵AB 是⊙O 的弦,OC⊥AB 交⊙O 于点C,∴=.∴∠AOC=∠BOC=60°.故选:D.16.(2019 年西藏)如图,在⊙O 中,半径OC 垂直弦AB 于D,点E 在⊙O 上,∠E=22.5°,AB=2,则半径OB 等于()A.1B.C.2 D.2【考点】勾股定理、垂径定理、圆周角定理【解答】解:∵半径OC⊥弦AB 于点D,∴=,∴∠E=∠BOC=22.5°,∴∠BOD=45°,∴△ODB 是等腰直角三角形,∵AB=2,∴DB=OD=1,则半径OB 等于:=.故选:B.17.(2019 年海南省)如图,直线l1∥l2,点A 在直线l1 上,以点A 为圆心,适当长度为半径画弧,分别交直线l1、l2于B、C 两点,连结AC、BC.若∠ABC=70°,则∠1 的大小为()A.20°B.35°C.40°D.70°【考点】圆内有关性质【解答】解:∵点A 为圆心,适当长度为半径画弧,分别交直线l1、l2 于B、C,∴AC=AB,∴∠CBA=∠BCA=70°,∵l1∥l2,∴∠CBA+∠BCA+∠1=180°,∴∠1=180°﹣70°﹣70°=40°,故选:C.二、填空题1.(2019 年ft东省德州市)如图,CD 为⊙O 的直径,弦AB⊥CD,垂足为⏜⏜E,= ,CE=1,AB=6,则弦AF 的长度为.【考点】圆周角、弧、弦的关系、垂径定理、勾股定理【解答】解:连接OA、OB,OB 交AF 于G,如图,∵AB⊥CD,1∴AE=BE=2AB=3,设⊙O 的半径为r,则OE=r-1,OA=r,在Rt△OAE 中,32+(r-1)2=r2,解得r=5,∵= ,∴OB⊥AF,AG=FG,在Rt△OAG 中,AG2+OG2=52,①在Rt△ABG 中,AG2+(5-OG)2=62,②24解由①②组成的方程组得到AG= 5 ,48 48∴AF=2AG= 5 .故答案为 5 .⏜2.(2019 年湖北省随州市)如图,点A,B,C 在⊙O 上,点C 在优弧AB上,若∠OBA=50°,则∠C 的度数为.【考点】圆周角定理【解答】解:∵OA=OB,∴∠OAB=∠OBA=50°,∴∠AOB=180°-50°-50°=80°,∴∠C=∠AOB=40°.故答案为40°.3.(2019 年黑龙江省伊春市)如图,在⊙O 中,半径OA 垂直于弦BC,点D 在圆上且∠ADC=30°,则∠AOB 的度数为.【考点】圆周角定理【解答】解:∵OA⊥BC,∴=,∴∠AOB=2∠ADC,∵∠ADC=30°,∴∠AOB=60°,故答案为60°.4.(2019 年江苏省泰州市)如图,⊙O 的半径为5,点P 在⊙O 上,点A 在⊙O 内,且AP=3,过点A 作AP 的垂线交于⊙O 点B、C.设PB=x,PC=y,则y 与x 的函数表达式为.【考点】圆周角定理、相似三角形的判定和性质【解答】如图,连接 PO 并延长交⊙O 于点N,连接 BN,∵PN 是直径,∴∠PBN=90°.∵AP⊥BC,∴∠PAC =90°,∴∠PBN=∠PAC,又∵∠PNB=∠PCA,∴△PBN∽△PAC,PB PN∴ PA = PC ,x 10∴ 3 = y30∴y= x .30故答案为:y= x .三、解答题1.(2019 年上海市)已知:如图,AB、AC 是⊙O 的两条弦,且AB=AC,D 是AO 延长线上一点,联结BD 并延长交⊙O 于点E,联结CD 并延长交⊙O 于点F.(1)求证:BD=CD;(2)如果AB2=AO•AD,求证:四边形ABDC 是菱形.【考点】圆内有关性质、相似三角形、菱形的判定【解答】证明:(1)如图1,连接BC,OB,OD,∵AB、AC 是⊙O 的两条弦,且AB=AC,∴A 在BC 的垂直平分线上,∵OB=OA=OD,∴O 在BC 的垂直平分线上,∴AO 垂直平分BC,C D E F O ∴BD =CD ;(2)如图 2,连接 OB ,∵AB 2=AO •AD ,=∴AOAB , ∵∠BAO =∠DAB ,∴△ABO ∽△ADB ,∴∠OBA =∠ADB ,∵OA =OB ,∴∠OBA =∠OAB ,∴∠OAB =∠BDA ,∴AB =BD ,∵AB =AC ,BD =CD ,∴AB =AC =BD =CD ,∴四边形 ABDC 是菱形.2. (2019 年江苏省苏州市)如图,AE 为 O 的直径,D 是弧 BC 的中点 BC 与 AD ,OD 分别交于点 E ,F .(1) 求证: DO ∥AC ;(2) 求证: DE ⋅ DA = DC 2 ;(3) 若 tan ∠CAD = 1,求sin ∠CDA 的值. 2A B【考点】圆内有关性质、相似三角形、锐角三角函数【解答】(1)证明:∵D 为弧 BC 的中点,OD 为 O 的半径∴ OD ⊥BC又∵AB 为 O 的直径∴ ∠ACB = 90︒∴ AC ∥OD(2) 证明:∵D 为弧 BC 的中点∴ CD = B D ∴ ∠DCB = ∠DAC∴ ∆DCE ∽∆DAC∴ DC = DE DA DC即 DE ⋅ DA = DC 2(3) 解:∵ ∆DCE ∽∆DAC , tan ∠CAD = 12∴ CD = DE = CE = 1 DA DC AC 2设 CD = 2a ,则 DE = a , DA = 4a又∵ AC ∥OD∴ ∆AEC ∽DEF∴ CE = AE = 3 EF DE所以 BC = 8 CE3又 AC = 2CE∴ AB = 10 CE3即sin ∠CDA = sin ∠CBA = CA = 3AB 53. (2019 年河南省)如图,在△ABC 中,BA =BC ,∠ABC =90°,以 AB 为直径的半圆 O 交AC 于点 D ,点 E 是上不与点 B ,D 重合的任意一点,连接 AE 交 BD 于点 F ,连接 BE 并延长交 AC 于点 G .(1) 求证:△ADF ≌△BDG ;(2) 填空: ①若 AB =4,且点 E 是的中点,则 DF 的长为 ; ②取的中点 H ,当∠EAB 的度数为 时,四边形 OBEH 为菱形.2【考点】圆的性质、垂径定理、等腰直角三角形的性质、菱形的性质、解直角三角形、特殊角的三角函数值【解答】解:(1)证明:如图 1,∵BA =BC ,∠ABC =90°,∴∠BAC =45°∵AB 是⊙O 的直径,∴∠ADB =∠AEB =90°,∴∠DAF +∠BGD =∠DBG +∠BGD =90°∴∠DAF =∠DBG∵∠ABD +∠BAC =90°∴∠ABD =∠BAC =45°∴AD =BD∴△ADF ≌△BDG (ASA );(2)①如图 2,过 F 作 FH ⊥AB 于 H ,∵点 E 是的中点,∴∠BAE =∠DAE∵FD ⊥AD ,FH ⊥AB∴FH =FD∵=sin ∠ABD =sin45°= ,∴ ,即 BF = FD ∵AB =4,∴BD =4cos45°=2,即 BF +FD =2 ,( +1)FD =2 ∴FD ==4﹣ 故答案为 .②连接 OE ,EH ,∵点 H 是的中点, ∴OH ⊥AE ,∵∠AEB=90°∴BE⊥AE∴BE∥OH∵四边形OBEH 为菱形,∴BE=OH=OB=AB∴sin∠EAB==∴∠EAB=30°.故答案为:30°4.(2019 年浙江省温州市)如图,在△ABC 中,∠BAC=90°,点E 在BC 边上,且CA=CE,过A,C,E 三点的⊙O 交AB 于另一点F,作直径AD,连结DE 并延长交AB 于点G,连结CD,CF.(1)求证:四边形DCFG 是平行四边形.(2)当BE=4,CD=AB 时,求⊙O 的直径长.【考点】三角形的外接圆与外心、平行四边形的判定和性质、勾股定理、圆周角定理【解答】(1)证明:连接AE,∵∠BAC=90°,∴CF 是⊙O 的直径,∵AC=EC,∴CF⊥AE,∵AD 是⊙O 的直径,∴∠AED=90°,即GD⊥AE,∴CF∥DG,∵AD 是⊙O 的直径,∴∠ACD=90°,∴∠ACD+∠BAC=180°,∴AB∥CD,∴四边形DCFG 是平行四边形;(2)解:由CD=AB,设CD=3x,AB=8x,∴CD=FG=3x,∵∠AOF=∠COD,∴AF=CD=3x,∴BG=8x﹣3x﹣3x=2x,∵GE∥CF,∴,∵BE=4,∴AC=CE=6,∴BC=6+4=10,∴AB==8=8x,∴x=1,在Rt△ACF 中,AF=10,AC=6,∴CF==3 ,即⊙O 的直径长为3 .5.(2019 年湖北省宜昌市)已知:在矩形ABCD 中,E,F 分别是边AB,AD 上的点,过点F 作EF 的垂线交DC 于点H,以EF 为直径作半圆O.(1)填空:点A (填“在”或“不在”)⊙O 上;当=时,tan∠AEF 的值是;(2)如图1,在△EFH 中,当FE=FH 时,求证:AD=AE+DH;(3)如图2,当△EFH 的顶点F 是边AD 的中点时,求证:EH=AE+DH;(4)如图3,点M 在线段FH 的延长线上,若FM=FE,连接EM 交DC 于点N,连接FN,当AE=AD 时,FN=4,HN=3,求tan∠AEF 的值.【考点】圆的有关性质、全等三角形的判定和性质、相似三角形的判定和性质、三角函数【解答】解:(1)连接AO,∵∠EAF=90°,O 为EF 中点,∴AO=EF,∴点A 在⊙O 上,当=时,∠AEF=45°,∴tan∠AEF=tan45°=1,故答案为:在,1;(2)∵EF⊥FH,∴∠EFH=90°,在矩形ABCD 中,∠A=∠D=90°,∴∠AEF+∠AFE=90°,∠AFE+∠DFH=90°,∴∠AEF=∠DFH,又FE=FH,∴△AEF≌△DFH(AAS),∴AF=DH,AE=DF,∴AD=AF+DF=AE+DH;(3)延长EF 交HD 的延长线于点G,∵F 分别是边AD 上的中点,∴AF=DF,∵∠A=∠FDG=90°,∠AFE=∠DFG,∴△AEF≌△DGF(ASA),∴AE=DG,EF=FG,∵EF⊥FG,∴EH=GH,∴GH=DH+DG=DH+AE,∴EH=AE+DH;(4)过点M 作MQ⊥AD 于点Q.设AF=x,AE=a,∵FM=FEEF⊥FH,∴△EFM 为等腰直角三角形,∴∠FEM=∠FMN=45°,∵FM=FE,∠A=∠MQF=90°,∠AEF=∠MFQ,∴△AEF≌△QFM(ASA),∴AE=EQ=a,AF=QM,∵AE=AD,∴AF=DQ=QM=x,∵DC∥QM,∴,∵DC∥AB∥QM,∴,∴,∵FE=FM,∴,∠FEM=∠FMN=45°,∴△FEN~△HMN,∴,∴.AC=2 ,弦BM 平分∠ABC 交AC 于点D,连接MA,MC.(1)求⊙O 半径的长;(2)求证:AB+BC=BM.【考点】圆内有关性质、全等三角形的判定和性质、等边三角形的判定和性质【解答】解:(1)连接OA、OC,过O 作OH⊥AC 于点H,如图1,∵∠ABC=120°,∴∠AMC=180°﹣∠ABC=60°,∴∠AOC=2∠AMC=120°,∴∠AOH=∠AOC=60°,∵AH=AC=,∴OA=,故⊙O 的半径为2.(2)证明:在BM 上截取BE=BC,连接CE,如图2,∵∠MBC=60°,BE=BC,∴△EBC 是等边三角形,∴CE=CB=BE,∠BCE=60°,∴∠BCD+∠DCE=60°,∵∠∠ACM=60°,∴∠ECM+∠DCE=60°,∴∠ECM=∠BCD,∵∠ABC=120°,BM 平分∠ABC,∴∠ABM=∠CBM=60°,∴∠CAM=∠CBM=60°,∠ACM=∠ABM=60°,∴△ACM 是等边三角形,∴AC=CM,∴△ACB≌△MCE,∴AB=ME,∵ME+EB=BM,∴AB+BC=BM.“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

备战中考数学专题练习(2019人教版)三角形的中位线卷一(含解析)-教育文档

备战中考数学专题练习(2019人教版)三角形的中位线卷一(含解析)-教育文档

备战中考数学专题练习(2019人教版)-三角形的中位线(含解析)一、单选题1.如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB于点G,若△CEF的面积为12cm2,则S△DGF的值为()A. 4cm2B. 6cm2C. 8cm2D. 9cm22.某地需要开辟一条隧道,隧道AB长度无法直接测量。

如图所示,在地面上取一点C,使点C均可直接到达A、B两点,测量找到AC和BC的中点D、E,测得DE的长为1100m,则隧道AB的长度为()A. 3300mB. 2200mC. 1100mD. 550m3.如图,DE是△ABC的中位线,若BC的长为3cm,则DE的长是()A. 2cmB. 1.5cmC. 1.2cmD. 1cm4.如图,在梯形中,,中位线与对角线交于两点,若cm, cm,则的长等于( )A. 10 cmB. 13 cmC. 20 cmD. 26 cm5.如图,在△ABC中,点D、E分别是边AB、AC的中点,已知DE=6cm,则BC的长是()A. 3cmB. 12cmC. 18cmD. 9cm6.如图所示,A ,B两点分别位于一个池塘的两端,小聪想用绳子测量A ,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A ,B的点C ,找到AC ,BC的中点D ,E ,并且测出DE的长为10m,则A ,B间的距离为()A. 15mB. 25mC. 30mD. 20m7.如图所示,已知四边形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点,当点P在BC上从点B向点C移动而点R不动时,那么下列结论成立的是()A. 线段EF的长逐渐增大B. 线段EF的长逐渐减少C. 线段EF的长不变D. 线段EF 的长不能确定8.如图,已知长方形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点,当点P在BC上从点B向点C移动,而点R不动时,那么下列结论成立的是()A. 线段EF的长逐渐增大B. 线段EF的长逐渐减少C. 线段EF的长不变D. 线段EF的长先增大后变小二、填空题9.如图,在△ABC中,D、E分别是边AB、AC的中点,BC=8,则DE=________.10.如图,现需测量池塘边上A、B两点间的距离,小强在池塘外选取一个点C,连接AC与BC并找到它们中点E、F,测得EF长为45米,则池塘的宽AB为________ 米.11.如图,在△ABC中,AB=8,点D,E分别是BC,CA的中点,连接DE,则DE=________.12.已知:如图,在△ABC中,点D为BC上一点,CA=CD,CF平分∠ACB,交AD于点F,点E为AB的中点.若EF=2,则BD=________13.如图,CD是△ABC的中线,点E,F分别是AC、DC的中点,EF=2,则BD=________14.如图,△ABC中,AC、BC上的中线交于点O,且BE⊥AD.若BD=10,BO=8,则AO的长为________15.在△ABC中,已知D、E分别为边AB、AC的中点,若△ADE的周长为3cm,则△ABC的周长为________ cm.16.如图,A,B,C三点在⊙O上,且AB是⊙O的直径,半径OD⊥AC,垂足为F,若∠A=30°,OF=3,则BC=________三、解答题17.如图,点O是△ABC内任意一点,G、D、E分别为AC、OA、OB的中点,F为BC上一动点,问四边形GDEF能否为平行四边形?若可以,指出F点位置,并给予证明.18.如图,D、E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB、AC的中点.O是△ABC 平面上的一动点,连接OB、OC,G、F分别是OB、OC的中点,顺次连接点D、G、F、E.(1)如图,当点O在△ABC内时,求证:四边形DGFE是平行四边形;(2)若连接AO,且满足AO=BC,AO⊥BC.问此时四边形DGFE又是什么形状?并请说明理由.19.已知:如图,在四边形ABCD中,对角线AC、BD相交于点O,且AC=BD,E、F分别是AB、CD的中点,EF分别交BD、AC于点G、H.求证:OG=OH.四、综合题20.在学习三角形中位线的性质时,小亮对课本给出的解决办法进行了认真思考:课本研究三角形中位线性质的方法已知:如图①,已知△ABC中,D,E分别是AB,AC两边中点.求证:DE∥BC,DE= BC.证明:延长DE至点F,使EF=DE,连接FC.…则△ADE≌△CFE.∴…请你利用小亮的发现解决下列问题:(1)如图③,AD是△ABC的中线,BE交AC于点E,交AD于点F,且AE=EF,求证:AC=BF.请你帮助小亮写出辅助线作法并完成论证过程:(2)解决问题:如图⑤,在△ABC中,∠B=45°,AB=10,BC=8,DE是△ABC的中位线.过点D,E作DF∥EG,分别交BC于点F,G,过点A作MN∥BC,分别与FD,GE的延长线交于点M,N,则四边形MFGN周长的最小值是________.21.如图,已知∠1+∠2=180°,∠3=∠B.(1)试判断∠AED与∠ACB的大小关系,并说明你的理由.(2)若D、E、F分别是AB、AC、CD边上的中点,S四边形ADFE=4(平方单位),求S△ABC.22.如图,在四边形ABCD中,AB=DC,E、F分别是AD、BC的中点,G、H分别是对角线BD、AC的中点.(1)求证:四边形EGFH是菱形(2)若AB=,则当∠ABC+∠DCB=90°时,求四边形EGFH的面积.答案解析部分一、单选题1.【答案】A【考点】三角形中位线定理【解析】【解答】解:如图,取CG的中点H,连接EH,∵E是AC的中点,∴EH是△ACG的中位线,∴EH∥AD,∴∠GDF=∠HEF,∵F是DE的中点,∴DF=EF,在△DFG和△EFH中,∴△DFG≌△EFH(ASA),∴FG=FH,S△EFH=S△DGF,又∵FC=FH+HC=FH+GH=FH+FG+FH=3FH,∴S△CEF=3S△EFH,∴S△CEF=3S△DGF,∴S△DGF=×12=4(cm2).故选:A.【分析】取CG的中点H,连接EH,根据三角形的中位线定理可得EH∥AD,再根据两直线平行,内错角相等可得∠GDF=∠HEF,然后利用“角边角”证明△DFG和△EFH全等,根据全等三角形对应边相等可得FG=FH,全等三角形的面积相等可得S△EFH=S△DGF,再求出FC=3FH,再根据等高的三角形的面积比等于底边的比求出两三角形的面积的比,从而得解.2.【答案】B【考点】三角形中位线定理【解析】【解答】解:∵D,E分别是AC,BC的中点,∴DE是△ABC的中位线,则DE=AB,则AB=2DE=2200m,故选B。

全国专卷2019年中考数学真题分类解析汇编 23直角三角形与勾股定理

全国专卷2019年中考数学真题分类解析汇编 23直角三角形与勾股定理

直角三角形与勾股定理一、选择题1. (2014•湘潭,第7题,3分)以下四个命题正确的是()2. (2014•湘潭,14题,3分)如图,⊙O的半径为3,P是CB延长线上一点,PO=5,PA 切⊙O于A点,则PA= 4 .(第2题图)=3. (2014•泰州,第6题,3分)如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是(),、底边上的高是,可知是顶角4. (2014•扬州,第7题,3分)如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N 在边OB上,PM=PN,若MN=2,则OM=()(第4题图)=,=5.(2014•扬州,第8题,3分)如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()(第5题图)﹣2 ∠AC,=.﹣22=﹣===6. (2014•安徽省,第8题4分)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A.B.C. 4 D. 5考点:翻折变换(折叠问题).分析:设BN=x,则由折叠的性质可得DN=AN=9﹣x,根据中点的定义可得BD=3,在Rt△ABC 中,根据勾股定理可得关于x的方程,解方程即可求解.解答:解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△ABC中,x2+32=(9﹣x)2,解得x=4.故线段BN的长为4.故选:C.点评:考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.7. (2014•广西贺州,第11题3分)如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则弧BD的长是()A.B.C.D.考点:垂径定理;勾股定理;勾股定理的逆定理;弧长的计算.分析:连接OC,先根据勾股定理判断出△ACE的形状,再由垂径定理得出CE=DE,故=,由锐角三角函数的定义求出∠A的度数,故可得出∠BOC的度数,求出OC的长,再根据弧长公式即可得出结论.解答:解:连接OC,∵△ACE中,AC=2,AE=,CE=1,∴AE2+CE2=AC2,∴△ACE是直角三角形,即AE⊥CD,∵sinA==,∴∠A=30°,∴∠COE=60°,∴=sin∠COE,即=,解得OC=,∵AE⊥CD,∴=,∴===.故选B.点评:本题考查的是垂径定理,涉及到直角三角形的性质、弧长公式等知识,难度适中.8.(2014•滨州,第7题3分)下列四组线段中,可以构成直角三角形的是(),(9.(2014年山东泰安,第8题3分)如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=CD,过点B作BF∥DE,与AE的延长线交于点F.若AB=6,则BF的长为()A.6 B.7 C.8 D.10分析:根据直角三角形斜边上的中线等于斜边的一半得到CD=AB=3,则结合已知条件CE=CD可以求得ED=4.然后由三角形中位线定理可以求得BF=2ED=8.解:如图,∵∠ACB=90°,D为AB的中点,AB=6,∴CD=AB=3.又CE=CD,∴CE=1,∴ED=CE+CD=4.又∵BF∥DE,点D是AB的中点,∴ED是△AFD的中位线,∴BF=2ED=8.故选:C.点评:本题考查了三角形中位线定理和直角三角形斜边上的中线.根据已知条件求得ED的长度是解题的关键与难点.10.(2014年山东泰安,第12题3分)如图①是一个直角三角形纸片,∠A=30°,BC=4cm,将其折叠,使点C落在斜边上的点C′处,折痕为BD,如图②,再将②沿DE折叠,使点A落在DC′的延长线上的点A′处,如图③,则折痕DE的长为()A.cm B.2cm C.2cm D.3cm分析:根据直角三角形两锐角互余求出∠ABC=60°,翻折前后两个图形能够互相重合可得∠BDC=∠BDC′,∠CBD=∠ABD=30°,∠ADE=∠A′DE,然后求出∠BDE=90°,再解直角三角形求出BD,然后求出DE即可.解:∵△ABC是直角三角形,∠A=30°,∴∠ABC=90°﹣30°=60°,∵沿折痕BD折叠点C落在斜边上的点C′处,∴∠BDC=∠BDC′,∠CBD=∠ABD=∠ABC=30°,∵沿DE折叠点A落在DC′的延长线上的点A′处,∴∠ADE=∠A′DE,∴∠BDE=∠ABD+∠A′DE=×180°=90°,在Rt△BCD中,BD=BC÷cos30°=4÷=cm,在Rt△ADE中,DE=BD•tan30°=×=cm.故选A.点评:本题考查了翻折变换的性质,解直角三角形,熟记性质并分别求出有一个角是30°角的直角三角形是解题的关键.二.填空题1. (2014•福建泉州,第14题4分)如图,Rt△ABC中,∠ACB=90°,D为斜边AB的中点,AB=10cm,则CD的长为 5 cm.=AB×10=52. (2014•广东,第14题4分)如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为 3 .考点:垂径定理;勾股定理.分析:作OC⊥AB于C,连结OA,根据垂径定理得到AC=BC=AB=3,然后在Rt△AOC中利用勾股定理计算OC即可.解答:解:作OC⊥AB于C,连结OA,如图,∵OC⊥AB,∴AC=BC=AB=×8=4,在Rt△AOC中,OA=5,∴OC===3,即圆心O到AB的距离为3.故答案为:3.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.3.(2014•新疆,第14题5分)如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=3,BC=4,则AD的长为.==5===,即=,解得故答案为:.4.(2014•邵阳,第17题3分)如图,在Rt△ABC中,∠C=90°,D为AB的中点,DE⊥AC 于点E.∠A=30°,AB=8,则DE的长度是 2 .AD5.(2014·云南昆明,第10题3分)如图,在Rt△ABC中,∠ABC=90°,AC=10cm,点D为AC的中点,则BD= Acm.三.解答题1. (2014•湘潭,第19题)如图,修公路遇到一座山,于是要修一条隧道.为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过C点作直线AB的垂线L,过点B作一直线(在山的旁边经过),与L相交于D点,经测量∠ABD=135°,BD=800米,求直线L上距离D点多远的C处开挖?(≈1.414,精确到1米)=4002. (2014•益阳,第20题,10分)如图,直线y=﹣3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x﹣2)2+k经过点A、B,并与X轴交于另一点C,其顶点为P.(1)求a,k的值;(2)抛物线的对称轴上有一点Q,使△ABQ是以AB为底边的等腰三角形,求Q点的坐标;(3)在抛物线及其对称轴上分别取点M、N,使以A,C,M,N为顶点的四边形为正方形,求此正方形的边长.(第2题图),解得,=,即正方形的边长为.3. (2014•益阳,第21题,12分)如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x.(1)求AD的长;(2)点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;(3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值.(第3题图),根据≠且≠,再分两种情况讨论:=(= x,x x)x﹣+=4×=2=2=2=,,≠且≠)•PB(﹣x=xx x,x xx x)也成立,(﹣+x﹣+=x4. (2014•株洲,第21题,6分)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.5. (2014•株洲,第22题,8分)如图,在Rt△ABC中,∠C=90°,∠A的平分线交BC于点E,EF⊥AB于点F,点F恰好是AB的一个三等分点(AF>BF).(1)求证:△ACE≌△AFE;(2)求tan∠CAE的值.=,在=;====,===.6. (2014•株洲,第23题,8分)如图,PQ为圆O的直径,点B在线段PQ的延长线上,OQ=QB=1,动点A在圆O的上半圆运动(含P、Q两点),以线段AB为边向上作等边三角形AB C.(1)当线段AB所在的直线与圆O相切时,求△ABC的面积(图1);(2)设∠AOB=α,当线段AB、与圆O只有一个公共点(即A点)时,求α的范围(图2,直接写出答案);(3)当线段AB与圆O有两个公共点A、M时,如果AO⊥PM于点N,求CM的长度(图3).(第6题图)=,××的面积为==...==.,,..=的长度为7. (2014•泰州,第23题,10分)如图,BD是△ABC的角平分线,点E,F分别在BC、AB 上,且DE∥AB,EF∥A C.(1)求证:BE=AF;(2)若∠ABC=60°,BD=6,求四边形ADEF的面积.(第7题图)BD×6=3,==2,=2=68.(2014•泰州,第25题,12分)如图,平面直角坐标系xOy中,一次函数y=﹣x+b(b 为常数,b>0)的图象与x轴、y轴分别相交于点A、B,半径为4的⊙O与x轴正半轴相交于点C,与y轴相交于点D、E,点D在点E上方.(第8题图)(1)若直线AB与有两个交点F、G.①求∠CFE的度数;②用含b的代数式表示FG2,并直接写出b的取值范围;(2)设b≥5,在线段AB上是否存在点P,使∠CPE=45°?若存在,请求出P点坐标;若不存在,请说明理由.xxb b((b﹣(FG﹣(b﹣﹣有两个交点x,)9. (2014•扬州,第28题,12分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.(第9题图)(1)如图1,已知折痕与边BC交于点O,连结AP、OP、O A.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为1:4,求边AB的长;(2)若图1中的点P恰好是CD边的中点,求∠OAB的度数;(3)如图2,,擦去折痕AO、线段OP,连结BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.试问当点M、N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求出线段EF的长度.DC AB AP===.===.PQ=PQ QB P==4==2.10.(2014•安徽省,第19题10分)如图,在⊙O中,半径OC与弦AB垂直,垂足为E,以OC为直径的圆与弦AB的一个交点为F,D是CF延长线与⊙O的交点.若OE=4,OF=6,求⊙O 的半径和CD的长.考点:垂径定理;勾股定理;圆周角定理;相似三角形的判定与性质.专题:计算题.分析:由OE⊥AB得到∠OEF=90°,再根据圆周角定理由OC为小圆的直径得到∠OFC=90°,则可证明Rt△OEF∽Rt△OFC,然后利用相似比可计算出⊙O的半径OC=9;接着在Rt△OCF 中,根据勾股定理可计算出C=3,由于OF⊥CD,根据垂径定理得CF=DF,所以CD=2CF=6.解答:解:∵OE⊥AB,∴∠OEF=90°,∵OC为小圆的直径,∴∠OFC=90°,而∠EOF=∠FOC,∴Rt△OEF∽Rt△OFC,∴OE:OF=OF:OC,即4:6=6:OC,∴⊙O的半径OC=9;在Rt△OCF中,OF=6,OC=9,∴CF==3,∵OF⊥CD,∴CF=DF,∴CD=2CF=6.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理、圆周角定理和相似三角形的判定与性质.11. (2014•珠海,第18题7分)如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,线段AB为半圆O的直径,将Rt△ABC沿射线AB方向平移,使斜边与半圆O相切于点G,得△DEF,DF与BC交于点H.(1)求BE的长;(2)求Rt△ABC与△DEF重叠(阴影)部分的面积.= =5=,即==﹣;=,即BD××2=重叠(阴影)部分的面积为12.(2014•温州,第22题8分)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣A.∵S四边形ADCB=S△ACD+S△ABC=b2+a B.又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b﹣a)∴b2+ab=c2+a(b﹣a)∴a2+b2=c2请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2证明:连结过点B作DE边上的高BF,则BF=b﹣a,∵S五边形ACBED= S△ACB+S△ABE+S△ADE=ab+b2+ab,又∵S五边形ACBED= S△ACB+S△ABD+S△BDE=ab+c2+a(b﹣a),∴ab+b2+ab=ab+c2+a(b﹣a),∴a2+b2=c2.++ab c+ab b ab+。

中考-2019年全国数学中考试卷分类汇编:中位线

中考-2019年全国数学中考试卷分类汇编:中位线

2019年全国数学中考试卷分类汇编:中位线数学精品复习资料中考全国100份试卷分类汇编中位线1、(2013?昆明)如图,在△ABC中,点D,E分别是AB,AC的中点,△A=50°,△ADE=60°,则△C的度数为()2、(2013?宁波)如果三角形的两条边分别为4和6,那么连结该三角形三边中点所得的周3、(2013?雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S△CEF:S四边形BCED的值为()4、(2013?巴中)如图,在梯形ABCD中,AD△BC,点E、F分别是AB、CD的中点且EF=6,则AD+BC的值是()5、(2013?铁岭)如果三角形的两边长分别是方程x2﹣8x+15=0的两个根,那么连接这个三7、(2013?绥化)如图,在平行四边形ABCD中,对角线AC,BD相交于点O,点E,F分别是边AD,AB的中点,EF交AC于点H,则的值为().=.8、(2013哈尔滨)如图,在△ABC中,M、N分别是边AB、AC的中点,则△AMN 的面积与四边形MBCN的面积比为( ).(A) 12(B)13(C)14(D)23考点:相似三角形的性质。

,三角形的中位线分析:利用相似三角形的判定和性质是解题的关键解答:由MN 是三角形的中位线,2MN=BC, MN △BC△△ABC△△AMN △三角形的相似比是2:1,△△ABC 与△AMN 的面积之比为4:1.,则△AMN 的面积与四边形MBCN 的面积比为13, 故选B9、(2013年深圳市)如图1,有一张一个角为30°,最小边长为2的直角三角形纸片,沿图中所示的中位线剪开后,将两部分拼成一个四边形,所得四边形的周长是()A.8或32B.10或324+C.10或32D.8或324+答案:D解析:如下图,BC =2,DE =1,AB =4,AC =(1)AE 与EC 重合时,周长为:8;(2)AD 与BD 重合时,周长为:4+所以,选D 。

2019年全国中考数学真题分类 线运动(印刷版)

2019年全国中考数学真题分类 线运动(印刷版)

2. 线运动一、填空题1. (2018·成都)设双曲线y=kx(k>0)与直线y=x交于A,B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P,Q两点,此时我们称平移后的两条曲线所围部分(图中涂色部分)为双曲线的“眸”,PQ为双曲线的“眸径”.当双曲线y=kx(k>0)的眸径为6时,k的值为________.第1题第2题2. (2018·台州)如图,把平面内一条数轴x绕原点O按逆时针方向旋转θ(0°<θ<90°)得到另一条数轴y,x轴和y轴构成一个平面斜坐标系.规定:过点P作y轴的平行线,交x轴于点A,过点P作x轴的平行线,交y轴于点B.若点A在x轴上对应的实数为a,点B在y 轴上对应的实数为b,则称有序实数对(a,b)为点P的斜坐标.在某平面斜坐标系中,已知θ=60°,点M的斜坐标为(3,2),点N与点M关于y轴对称,则点N的斜坐标为________.二、解答题3. (2019·贵阳)如图,一次函数y=-2x+8的图象与坐标轴交于A,B两点,并与反比例函数y=8x的图象相切于点C.(1) 切点C的坐标是________;(2) 若M为线段BC的中点,将一次函数y=-2x+8的图象向左平移m(m>0)个单位长度后,点C和点M平移后的对应点同时落在另一个反比例函数y=kx的图象上,求k的值.第3题4. (2018·南通)如图,在正方形ABCD中,AB=25,O是边BC的中点,E是正方形内一动点,OE=2,连接DE,将线段DE绕点D按逆时针方向旋转90°得DF,连接AE,CF.(1) 求证:AE=CF;(2) 若A,E,O三点共线,连接OF,求线段OF的长;(3) 求线段OF长的最小值.第4题5.(2019·聊城)如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于点A(-2,0),点B(4,0),与y轴交于点C(0,8),连接BC,又已知位于y轴右侧且垂直于x轴的动直线l,沿x轴正方向从点O运动到点B(不含点O和点B),且分别交抛物线、线段BC以及x轴于点P,D,E.(1) 求抛物线对应的函数解析式;(2) 连接AC,AP,当直线l运动时,求使得△PEA和△AOC相似的点P的坐标;(3) 作PF⊥BC,垂足为F,当直线l运动时,求Rt△PFD面积的最大值.第5题6. (2019·广州)已知抛物线G:y=mx2-2mx-3有最低点.(1) 求二次函数y=mx2-2mx-3的最小值(用含m的式子表示).(2) 将抛物线G向右平移m(m>0)个单位长度得到抛物线G1.经过探究发现,随着m的变化,抛物线G1顶点的纵坐标y与横坐标x之间存在一个函数关系,求这个函数的解析式,并写出自变量x的取值范围.(3) 记(2)所求的函数为H ,抛物线G 与函数H 的图象交于点P ,结合图象,求点P 的纵坐标的取值范围.7.(2019·武汉)已知抛物线C 1:y =(x -1)2-4和抛物线C 2:y =x 2. (1) 如何将抛物线C 1平移得到抛物线C 2?(2) 如图①,抛物线C 1与x 轴正半轴交于点A ,直线y =-43x +b 经过点A ,交抛物线C 1于另一点B.请你在线段AB 上取点P ,过点P 作直线PQ ∥y 轴交抛物线C 1于点Q ,连接AQ.① 若AP =AQ ,求点P 的横坐标;② 若PA =PQ ,直接写出点P 的横坐标.(3) 如图②,△MNE 的顶点M ,N 在抛物线C 2上,点M 在点N 右边,两条直线ME ,NE 与抛物线C 2均有唯一公共点,ME ,NE 均与y 轴不平行.若△MNE 的面积为2,设M ,N 两点的横坐标分别为m ,n ,求m 与n 之间的数量关系.第7题8. (2019·江西)特例感知:(1) 如图①,对于抛物线y 1=-x 2-x +1,y 2=-x 2-2x +1,y 3=-x 2-3x +1,下列结论:① 抛物线y 1,y 2,y 3都经过点C(0,1);② 抛物线y 2,y 3的对称轴由抛物线y 1的对称轴依次向左平移12个单位长度得到;③ 抛物线y 1,y 2,y 3与直线y =1的交点中,相邻两点之间的距离相等.其中正确的是______________(填序号).形成概念:(2) 把满足y n =-x 2-nx +1(n 为正整数)的抛物线称为“系列平移抛物线”. 知识应用:在(2)中,如图②.① “系列平移抛物线”的顶点依次为P 1,P 2,P 3,…,P n ,用含n 的代数式表示顶点P n的坐标,并写出该顶点纵坐标y 与横坐标x 之间的关系式.② “系列平移抛物线”存在“系列整数点(横、纵坐标均为整数的点)”:C 1,C 2,C 3,…,C n ,其横坐标分别为-k -1,-k -2,-k -3,…,-k -n(k 为正整数),判断相邻两点之间的距离是否都相等.若相等,直接写出相邻两点之间的距离;若不相等,说明理由.③ 在②中,直线y =1分别交“系列平移抛物线”于点A 1,A 2,A 3,…,A n ,连接C n A n ,C n -1A n -1,判断C n A n ,C n -1A n -1是否平行?并说明理由.第8题2. 线 运 动一、 1. 322. (-3,5)二、 3. (1) (2,4) (2) ∵ 一次函数y =-2x +8的图象与x 轴交于点B ,∴ 点B 的坐标为(4,0).∵ M 为线段BC 的中点,∴ 点M 的坐标为(3,2).∴ 点C 和点M 平移后的对应点的坐标分别为(2-m ,4),(3-m ,2).∴ 4(2-m)=2(3-m),解得m =1.∴ k =44. (1) 由旋转的性质,得∠EDF =90°,DE =DF.∵ 四边形ABCD 是正方形,∴ ∠ADC =90°,AD =CD.∴ ∠ADC =∠EDF.∴ ∠ADC -∠EDC =∠EDF -∠EDC ,即∠ADE =∠CDF.在△ADE 和△CDF 中,⎩⎪⎨⎪⎧AD =CD ,∠ADE =∠CDF ,DE =DF ,∴ △ADE ≌△CDF.∴ AE =CF (2) 如图①,连接OF ,过点F 作OC 的垂线,交BC 的延长线于点P ,则FP ⊥BP.∵ 四边形ABCD 是正方形,∴ AB =BC =25,∠ABC =∠BAD =∠BCD =90°.∵ O 是BC 的中点,∴ OB =OC =12BC = 5.∵ A ,E ,O 三点共线,∴ 在Rt △ABO 中,AO =AB 2+OB 2=5.∵ OE =2,∴ AE =5-2=3.由(1),得△ADE ≌△CDF ,∴ ∠DAE =∠DCF ,AE =CF =3.∵ ∠BAD =∠DCP =90°,∴ ∠BAD -∠DAE =∠DCP -∠DCF ,即∠OAB =∠PCF.∵ ∠ABO =∠P =90°,∴ △ABO ∽△CPF.∴AB CP =OB FP ,即25CP =5FP.∴ CP =2FP.设FP =x ,则CP =2x.在Rt △CPF 中,由勾股定理,得32=x 2+(2x)2,解得x =355(负值舍去).∴ FP =355,OP =5+355×2=1155.∴ 在Rt △FPO 中,由勾股定理,得OF =OP 2+FP 2=⎝⎛⎭⎫11552+⎝⎛⎭⎫3552=26 (3) 如图②,∵ OE =2,∴ 点E 可以看成是在以点O 为圆心,2为半径的半圆上运动,延长BA 到点P ,使得AP =OC ,连接PE ,OF.由(1),得∠EAD =∠FCD.又∵ ∠BAD =∠PAD =∠OCD =90°,∠PAD +∠EAD =∠OCD +∠FCD ,即∠PAE =∠OCF.在△PAE 和△OCF 中,⎩⎪⎨⎪⎧PA =OC ,∠PAE =∠OCF ,AE =CF ,∴ △PAE ≌△OCF.∴ PE =OF.根据“两点之间,线段最短”,得当O ,E ,P 三点共线时,OP 最短,此时PE =OP -OE.∵ 在Rt △PBO 中,OP =OB 2+PB 2=(5)2+(25+5)2=52,∴ PE =OP -OE =52-2.∴ OF 长的最小值是52-2第4题5. (1) 将点A ,B ,C 的坐标代入y =ax 2+bx +c ,得⎩⎪⎨⎪⎧4a -2b +c =0,16a +4b +c =0,c =8,解得⎩⎪⎨⎪⎧a =-1,b =2,c =8,∴抛物线对应的函数解析式为y =-x 2+2x +8 (2) ∵ A(-2,0),C(0,8),∴ OA =2,OC =8.∵ 直线l ⊥x 轴,∴ ∠PEA =∠AOC =90°.∵ ∠PAE ≠∠CAO ,∴ 只有当∠PAE =∠ACO 时,△PEA ∽△AOC ,此时AE CO =PE AO ,即AE 8=PE2.∴ AE =4PE.设点P 的纵坐标为k(k>0),则PE =k ,AE =4k ,∴ OE =4k -2.将点P(4k -2,k)代入y =-x 2+2x +8,得k =-(4k -2)2+2(4k -2)+8,解得k =0(不合题意,舍去)或k =2316,∴ 点P 的坐标为⎝⎛⎭⎫154,2316 (3) ∵ 直线l ∥y 轴,∴ ∠PDF =∠BCO.又∵ PF ⊥BC ,∴ ∠PFD =∠BOC =90°.∴ △PFD ∽△BOC.∴ S △PFD S △BOC=⎝⎛⎭⎫PD BC 2.∴ S △PDF =⎝⎛⎭⎫PD BC 2·S △BOC .∵ OB =4,OC =8,∴ S △BOC =12OB·OC =12×4×8=16,BC =CO 2+BO 2=4 5.∴ S △PDF =⎝⎛⎭⎫PD BC 2·S △BOC =15PD 2,即当PD 取得最大值时,S △PDF 最大.易得直线BC 对应的函数解析式为y =-2x +8,设点P(m ,-m 2+2m +8),则点D(m ,-2m +8),∴ PD =-m 2+2m +8+2m -8=-(m -2)2+4.∵ 0<m<4,∴ 当m =2时,PD 长的最大值为4.∴ S △PDF 的最大值为1656. (1) ∵ y =mx 2-2mx -3=m(x -1)2-m -3,抛物线有最低点,∴ 二次函数y =mx 2-2mx -3的最小值为-m -3 (2) ∵ 抛物线G 对应的函数解析式为y =m(x -1)2-m -3,∴ 平移后的抛物线G 1对应的函数解析式为y =m(x -1-m)2-m -3.∴ 抛物线G 1的顶点坐标为(m +1,-m -3).∴ x =m +1,y =-m -3.∴ x +y =m +1-m -3=-2.∴ y =-x -2.∵ m >0,m =x -1,∴ x -1>0,解得x >1.∴ 所求函数的解析式为y =-x -2(x >1) (3) 如图,在y =-x -2(x>1)中,当x =2时,y =-2-2=-4, ∴ 函数H 的图象过点B(2,-4).在y =mx 2-2mx -3=m(x 2-2x)-3中,令x 2-2x =0,得x =0或x =2,此时y =-3,∴ 抛物线G 恒过点A(2,-3).由图象可知,若抛物线G 与函数H 的图象有交点P ,则y B <y P <y A ,∴ 点P 纵坐标的取值范围为-4<y P <-3第6题7. (1) 将抛物线C 1先向左平移1个单位长度,再向上平移4个单位长度,即可得到抛物线C 2(或将抛物线C 1先向上平移4个单位长度,再向左平移1个单位长度,即可得到抛物线C 2) (2) ① 设抛物线C 1与y 轴交于点C ,直线AB 与y 轴交于点D.对于抛物线C 1:y =(x -1)2-4,令y =0,得x 1=-1,x 2=3.∴ 点A 的坐标为(3,0).令x =0,得y =-3,∴ 点C 的坐标为(0,-3).∵ 直线y =-43x +b 经过点A(3,0),∴ b =4,则点D 的坐标为(0,4).∵ AP =AQ ,PQ ∥y 轴,∴ P ,Q 两点关于x 轴对称.设D(0,4)关于x 轴的对称点为D′,则点D′的坐标为(0,-4),易得直线AD′对应的函数解析式为y =43x -4.由⎩⎪⎨⎪⎧y =(x -1)2-4,y =43x -4,得⎩⎪⎨⎪⎧x 1=3,y 1=0,⎩⎨⎧x 2=13,y 2=-329.∴ x P=x Q=13.∴ 点P 的横坐标为13 ② 点P 的横坐标为-23 (3) ∵ M ,N 两点的横坐标分别为m ,n ,且均在抛物线C 2:y =x 2上,∴ M(m ,m 2),N(n ,n 2).设直线ME 对应的函数解析式为y =kx +t ,则m 2=km +t ,得t =m 2-km.∴ y =kx +m 2-km.联立⎩⎪⎨⎪⎧y =x 2,y =kx +m 2-km ,得x 2-kx +km -m 2=0.依题意,有Δ=k 2-4km +4m 2=(k -2m)2=0,∴ k =2m.∴ 直线ME 对应的函数解析式为y =2mx -m 2,同理,可得直线NE 对应的函数解析式为y =2nx -n 2.联立⎩⎪⎨⎪⎧y =2mx -m 2,y =2nx -n 2,得⎩⎪⎨⎪⎧x =m +n 2,y =mn.∴ 点E 的坐标为⎝⎛⎭⎫m +n 2,mn .∵ M(m ,m 2),N(n ,n 2),∴ 易得直线MN 对应的函数解析式为y =(m +n)x -mn.作EF ∥y 轴交MN 于点F ,则易得F ⎝⎛⎭⎫m +n 2,m 2+n 22.∴ EF =m 2+n 22-mn =12(m -n)2.∴ S △MNE =12(m -n)·12(m -n)2=14(m -n)3=2.∴ m -n =28. (1) ①②③(2) ① y n =-x 2-nx +1的顶点P n 的坐标为⎝⎛⎭⎫-n 2,n 2+44.∵ x =-n 2,y =n 2+44,∴ y =x 2+1 ② 根据题意,得C n (-k -n ,-k 2-nk +1),C n -1(-k -n +1,-k 2-nk +k +1).∴ C n ,C n -1两点之间的铅直高度为-k 2-nk +k +1-(-k 2-nk +1)=k ,C n ,C n -1两点之间的水平距离为-k -n +1-(-k -n)=1.∴ 由勾股定理,得C n C n -1=k 2+1.∴ 相邻两点之间的距离都相等,且距离为k 2+1 ③ C n A n 与C n -1A n -1不平行 理由:根据题意,得C n (-k -n ,-k 2-nk +1),C n -1(-k -n +1,-k 2-nk +k +1),A n (-n ,1),A n -1(-n +1,1).过点C n ,C n -1分别作直线y =1的垂线,垂足为D ,E ,∴ D(-k -n ,1),E(-k -n +1,1).在Rt △DA n C n 中,tan ∠DA n C n =C n D A n D =1-(-k 2-nk +1)-n -(-k -n )=k 2+nkk =k +n.在Rt △EA n -1C n -1中,tan ∠EA n -1C n -1=C n -1E A n -1E =1-(-k 2-nk +k +1)-n +1-(-k -n +1)=k 2+nk -kk =k +n -1.∵ k +n ≠k +n -1,∴ tan ∠DA n C n ≠tan ∠EA n -1C n -1.∴ ∠DA n C n ≠∠EA n -1C n -1.∴ C n A n 与C n -1A n -1不平行.。

2019全国中考数学真题分类汇编之06:线段垂直平分线、角平分线、中位线

2019全国中考数学真题分类汇编之06:线段垂直平分线、角平分线、中位线

一、选择题1.(2019·泰州) 如图所示的网格由边长相同的小正方形组成,点A 、B 、C 、D 、E 、F 、G 在小正方形的顶点上,则△ABC 的重心是( )A.点DB.点EC.点FD.点G第5题图【答案】A【解析】三角形的重心是三条中线的交点,由图中可知,△ABC 的三边的中点都在格点上,三条中线如图所示交于点D,故选A.第5题图2.(2019·盐城)如图,点D 、E 分别是△ABC 边BA 、BC 的中点,AC =3,则DE 的长为( )A .2B .C .3D . 3423ABC ED G FACE D G F【答案】D 【解析】由中位线的定义可知DE 是△ABC 的中位线,进而由中位线的性质可得DE=21AC=23,故选D.3.(2019·青岛)如图,BD 是△ABC 的角平分钱,AE ⊥BD ,垂足为F. 若∠ABC=35°,∠C=50°,则∠CDE 的度数为A .35︒B .40︒C .45︒D .50︒【答案】C【解析】本题考查角平分线的性质,因为BD 平分∠ABC ,AE ⊥BD ,所以△ABF ≌△EBF,所以BD 是线段AE 的垂直平分线,所以AD=ED ,所以∠BAD=∠BED=180°-35°-50°=95°, 所以∠CDE=180°-∠C=95°-50°=45°,故选C.4. (2019·湖州)如图,已知在四边形ABCD 中,∠BCD =90°,BD 平分∠ABC ,AB =6,BC =9,CD =4,则四边形ABCD 的面积是( )A .24B .30C .36D .42【答案】B .EBC DC B A【解析】如图,过D点作DE⊥BA于点D,又∵BD平分∠ABC,∠BCD=90°,∴DC=DE=4.∵AB=6,BC=9,∴S四边形ABCD=S△BCD+S四边形ABD=12AB•DE+12BC•DC=12×6×4+12×9×4=12+18=30.故选B.二、填空题5.(2019·长沙)如图,要测量池塘两岸相对的A,B两点间的距离,可以在池塘外选一点C,连接AC,BC,分别取AC,BC的中点D,E,测得DE=50m,则AB的长是m.【答案】100【解析】∵AC,BC的中点D,E,∴DE是△ABC的中位线,∴DE=12AB. ∵DE=50m,∴AB=100m. 故填:100.6.(2019·广元)如图,已知在△ABC中,∠BAC=90°,延长BA到点D,使AD=12AB,点E,F分别是边BC,AC的中点.求证DF=BE.EAB CD第18题图解:连接AE,∵点E,F分别是边BC,AC的中点,∴EF是△ABC的中位线,∴EF∥AB,即EF∥AD,且EF=12AB,又∵AD=12AB,∴AD=EF,∴四边形ADFE是平行四边形,∴DF=AE,又∵在Rt△ABC中,点E是中点,∴AE=12BC=BE=CE,∴BE=DF.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学精品复习资料中考全国100份试卷分类汇编中位线1、(2013•昆明)如图,在△ABC中,点D,E分别是AB,AC的中点,∠A=50°,∠ADE=60°,则∠C的度数为()2、(2013•宁波)如果三角形的两条边分别为4和6,那么连结该三角形三边中点所得的周3、(2013•雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S△CEF:S四边形BCED的值为()4、(2013•巴中)如图,在梯形ABCD中,AD∥BC,点E、F分别是AB、CD的中点且EF=6,则AD+BC的值是()5、(2013•铁岭)如果三角形的两边长分别是方程x2﹣8x+15=0的两个根,那么连接这个三7、(2013•绥化)如图,在平行四边形ABCD中,对角线AC,BD相交于点O,点E,F分别是边AD,AB的中点,EF交AC于点H,则的值为().=.8、(2013哈尔滨)如图,在△ABC中,M、N分别是边AB、AC的中点,则△AMN的面积与四边形MBCN的面积比为( ).(A) 12(B)13(C)14(D)23考点:相似三角形的性质。

,三角形的中位线分析:利用相似三角形的判定和性质是解题的关键解答:由MN 是三角形的中位线,2MN=BC, MN ∥BC∴△ABC∽△AMN ∴三角形的相似比是2:1,∴△ABC 与△AMN 的面积之比为4:1.,则△AMN 的面积与四边形MBCN 的面积比为13, 故选B9、(2013年深圳市)如图1,有一张一个角为30°,最小边长为2的直角三角形纸片,沿图中所示的中位线剪开后,将两部分拼成一个四边形,所得四边形的周长是( )A.8或32B.10或324+C.10或32D.8或324+答案:D解析:如下图,BC =2,DE =1,AB =4,AC =(1)AE 与EC 重合时,周长为:8;(2)AD 与BD 重合时,周长为:4+所以,选D 。

10、(2013年广州市)如图5,四边形ABCD 是梯形,AD ∥BC ,CA 是BCD ∠的平分线,且,4,6,AB AC AB AD ⊥==则tan B =( )A B C 114 D 4分析:先判断DA=DC ,过点D 作DE ∥AB ,交AC 于点F ,交BC 于点E ,由等腰三角形的性质,可得点F 是AC 中点,继而可得EF 是△CAB 的中位线,继而得出EF 、DF 的长度,在Rt △ADF 中求出AF ,然后得出AC ,tanB 的值即可计算.解:∵CA 是∠BCD 的平分线,∴∠DCA=∠ACB ,又∵AD ∥BC ,∴∠ACB=∠CAD ,∴∠DAC=∠DCA ,∴DA=DC ,过点D 作DE ∥AB ,交AC 于点F ,交BC 于点E ,∵AB ⊥AC ,∴DE ⊥AC (等腰三角形三线合一的性质),∴点F 是AC 中点,∴AF=CF ,∴EF 是△CAB 的中位线,∴EF=AB=2,∵==1,∴EF=DF=2,在Rt △ADF 中,AF==4,则AC=2AF=8,tanB===2.故选B . 点评:本题考查了梯形的知识、等腰三角形的判定与性质、三角形的中位线定理,解答本题的关键是作出辅助线,判断点F 是AC 中点,难度较大.11、(2013•烟台)如图,▱ABCD 的周长为36,对角线AC ,BD 相交于点O .点E 是CD 的中点,BD=12,则△DOE 的周长为 15 .12、(2013•衢州)如图,在菱形ABCD中,边长为10,∠A=60°.顺次连结菱形ABCD各边中点,可得四边形A1B1C1D1;顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边形A2B2C2D2各边中点,可得四边形A3B3C3D3;按此规律继续下去….则四边形A2B2C2D2的周长是20;四边形A2013B2013C2013D2013的周长是.=AC=5,5=,13、(2013•滨州)在▱ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,且AB=6,BC=10,则OE=5.14、(2013鞍山)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是.考点:三角形中位线定理;勾股定理.分析:利用勾股定理列式求出BC的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EH=FG=AD,EF=GH=BC,然后代入数据进行计算即可得解.解答:解:∵BD⊥CD,BD=4,CD=3,∴BC===5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴EH=FG=AD,EF=GH=BC,∴四边形EFGH的周长=EH+GH+FG+EF=AD+BC,又∵AD=6,∴四边形EFGH的周长=6+5=11.故答案为:11.点评:本题考查了三角形的中位线定理,勾股定理的应用,熟记三角形的中位线平行于第三边并且等于第三边的一半是解题的关键.15、(2013•淮安)如图,在△ABC中,点D、E分别是AB、AC的中点.若DE=3,则BC= 6.16、(2013•呼和浩特)如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E、F、G、H分别为边AD、AB、BC、CD的中点.若AC=8,BD=6,则四边形EFGH的面积为12.BD=3BD17、(2013•遵义)如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=9cm.AC=EF=OD=BD=AC=,AD=BC=4cmAO=AC=,18、(2013•钦州)如图,DE是△ABC的中位线,则△ADE与△ABC的面积的比是1:4.DE=BC(或)19、(13年安徽省4分、13)如图,P为平行四边形ABCD边AD上一点,E、F分别为PB、PC的中点,ΔPEF、ΔPDC、ΔPAB的面积分别为S、S1、S2。

若S=2,则S1+S2=20、(2013菏泽)如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P 在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=12.考点:相似三角形的判定与性质;等腰三角形的判定与性质;三角形中位线定理.分析:延长BQ交射线EF于M,根据三角形的中位线平行于第三边可得EF∥BC,根据两直线平行,内错角相等可得∠M=∠CBM,再根据角平分线的定义可得∠PBM=∠CBM,从而得到∠M=∠PBM,根据等角对等边可得BP=PM,求出EP+BP=EM,再根据CQ=CE求出EQ=2CQ,然后根据△MEQ和△BCQ相似,利用相似三角形对应边成比例列式求解即可.解答:解:如图,延长BQ交射线EF于M,∵E、F分别是AB、AC的中点,∴EF∥BC,∴∠M=∠CBM,∵BQ是∠CBP的平分线,∴∠PBM=∠CBM,∴∠M=∠PBM,∴BP=PM,∴EP+BP=EP+PM=EM,∵CQ=CE,∴EQ=2CQ,由EF∥BC得,△MEQ∽△BCQ,∴==2,∴EM=2BC=2×6=12,即EP+BP=12.故答案为:12.点评:本题考查了相似三角形的判定与性质,角平分线的定义,平行线的性质,延长BQ构造出相似三角形,求出EP+BP=EM并得到相似三角形是解题的关键,也是本题的难点.21、(13年北京4分、11)如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为__________答案:20解析:由勾股定理,得AC=13,因为BO为直角三角形斜边上的中线,所以,BO=6.5,由中位线,得MO=2.5,所以,四边形ABOM的周长为:6.5+2.5+6+5=2022、(2013安顺)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE 到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.考点:菱形的判定与性质;三角形中位线定理.分析:从所给的条件可知,DE是△ABC中位线,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以是菱形;∠BCF是120°,所以∠EBC为60°,所以菱形的边长也为4,求出菱形的高面积就可求.解答:(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC,又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形,又∵BE=FE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为2,∴菱形的面积为4×2=8.点评:本题考查菱形的判定和性质以及三角形中位线定理,以及菱形的面积的计算等知识点.23、(2013•恩施州)如图所示,在梯形ABCD中,AD∥BC,AB=CD,E、F、G、H分别为边AB、BC、CD、DA的中点,求证:四边形EFGH为菱形.AC BDEF=ACACBD24、(2013•常德压轴题)已知两个共一个顶点的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;(2)如图1,若CB=a,CE=2a,求BM,ME的长;(3)如图2,当∠BCE=45°时,求证:BM=ME.BM= AGAC=AD=BM=CG=CF=ME=a aAG=DF=×a=BE=BM=DFME=AG 中,BD。

相关文档
最新文档