圆周运动典型基础练习题大全

合集下载

圆周运动典型基础练习题大全

圆周运动典型基础练习题大全

1.甲、乙两物体都做匀速圆周运动,其质量之比为1 :2,转动半径之比为1 :2,在相等时间里甲转过60°,乙转过45°,则它们所受外力的合力之比为()A. 1 :4B. 2 :3C. 4 :9D. 9 :162.如图所示,有一质量为M的大圆环,半径为R,被一轻杆固定后悬挂在。

点,有"‘夕'两个质量为m的小环(可视为质点),同时从大环两侧的对称位置由静止滑下。

两小厂―-弋环同时滑到大环底部时,速度都为v,则此时大环对轻杆的拉力大小为()(,1A. (2m+2M)gB. Mg一2mv2/R \/C. 2m(g+v2/R)+MgD. 2m(v2/R-g)+Mg 13.下列各种运动中,属于匀变速运动的有()A.匀速直线运动B.匀速圆周运动C.平抛运动D.竖直上抛运动4.关于匀速圆周运动的向心力,下列说法正确的是()A.向心力是指向圆心方向的合力,是根据力的作用效果命名的B.向心力可以是多个力的合力,也可以是其中一个力或一个力的分力C.对稳定的圆周运动,向心力是一个恒力D.向心力的效果是改变质点的线速度大小5. 一物体在水平面内沿半径R = 20cm的圆形轨道做匀速圆周运动,线速度v = 0.2m/s ,那么,它的向心加速度为m/s2 ,它的周期为s。

6.在一段半径为R = 15m的圆孤形水平弯道上,已知弯道路面对汽车轮胎的最大静摩擦力等于车重的u = 0.70倍,则汽车拐弯时的最大速度是______ m/s7.在如图所示的圆锥摆中,已知绳子长度为L ,绳子转动过程中与竖直一可—方向的夹角为0,试求小球做圆周运动的周期。

:"\8如图所示,质量m = 1 kg的小球用细线拴住,线长l=0.5 m,细线所受拉力达到F =18 N时就会被拉断。

当小球从图示位置释放后摆到悬点的正下方时,细线恰好被拉断。

若此时小球距水平地面的高度h = 5 m,重力加速度g =10 m/s2,求小球落小地处到地面上P 点的距离?求落地速度? S点在悬点的正下方)20.如图所示,半径为R,内径很小的光滑半圆管竖直放置,两个质量均为m 的小球A 、B 以不同速率进入管内,A 通过最高点C 时,对管壁上部的压力为3mg, B 通过最高点C 时,对管壁下部的压力为0. 75mg.求A 、B 两球落地点间的距离.21、如图所示,将一质量为m 的摆球用长为L 的细绳吊起,上端固定,使摆球在水平面内 做匀速圆周运动,细绳就会沿圆锥面旋转,这样就构成了一个圆锥摆。

圆周运动习题基础题(经典)

圆周运动习题基础题(经典)

1.质量为m=2.0×103kg的汽车在水平公路上行驶,轮胎与路面间的最大静摩擦力为F m=1.4×104N。

汽车经过半径为R=50m的弯路时,如果车速达到v=72km/h,这辆车会不会发生侧滑?2.在高速公路的拐弯处,通常路面都是外高内低。

如图所示,在某路段汽车向左拐弯,司机左侧的路面比右侧的路面低一些。

汽车的运动可看作是做半径为R的圆周运动。

设内外路面高度差为h,路基的水平宽度为d,路面的宽度为L。

已知重力加速度为g。

要使车轮与路面之间的横向摩擦力(即垂直于前进方向)等于零,则汽车转弯时的车速应是多少?3.如图一辆质量m=500kg的汽车静止在一座半径r=50m的圆弧形拱桥顶部.(g=10m/s2)(1)此时汽车对圆弧形拱桥的压力是多大?(2)如果汽车以6m/s的速度经过拱桥的顶部,则汽车对圆弧形拱桥的压力是多大?(3)汽车以多大速度通过拱桥的顶部时,汽车对圆弧形拱桥的压力恰好为零?4.质量为25kg的小孩坐在秋千上,小孩离系绳子的横梁2.5m。

秋千摆到最低点时,如果小孩运动速度的大小是5m/s,他对秋千的压力是多大?5.如图所示,在光滑水平面上竖直固定一半径为R的光滑半圆槽轨道,其底端恰与水平面相切.质量为m的小球以大小为v0的初速度经半圆槽轨道最低点A滚上半圆槽,小球恰好能通过最高点B后落回到水平面上的C点.不计空气阻力,重力加速度为g,求:(1)小球通过A点时对半圆槽的压力大小;(2)小球达到B点时的速度大小;(3)A、C两点间的距离;C6.如图所示,长为L的细绳一端固定,另一端系一质量为m的小球。

给小球一个合适的初速度,小球便可在水平面内做匀速圆周运动,这样就构成了一个圆锥摆,设细绳与竖直方向的夹角为θ,重力加速度为g,求:(1)细绳对小球的拉力大小?(2)小球运动的线速度大小?(3)小球运动的周期。

θ7.如图所示,一质量m=0.6kg的小球(可看成质点),用l=0.4m长的细线拴住在竖直面内作圆周运动(g=10m/s2),求:(1)小球能够完成圆周运动,在最高点的最小速度是多少?(2)当小球在圆上最高点速度为4m/s时,细线的拉力是多大?(3)当小球在圆上最低点速度为6m/s时,细线的拉力是多大?8.如图所示,长L=0.5m的轻杆(质量不计),其一端连接着一个质量为m=0.1kg的小球(球大小不计),现让小球在竖直平面内绕O点做圆周运动。

最新高考物理生活中的圆周运动题20套(带答案)

最新高考物理生活中的圆周运动题20套(带答案)

最新高考物理生活中的圆周运动题20套(带答案)一、高中物理精讲专题测试生活中的圆周运动1.如图所示,带有14光滑圆弧的小车A 的半径为R ,静止在光滑水平面上.滑块C 置于木板B 的右端,A 、B 、C 的质量均为m ,A 、B 底面厚度相同.现B 、C 以相同的速度向右匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高处.则:(已知重力加速度为g ) (1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【答案】(1)023v gR =(2)123gRv =253gR v =【解析】本题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为v 0,AB 相碰过程中动量守恒,设碰后AB 总体速度u ,由02mv mu =,解得02v u =C 滑到最高点的过程: 023mv mu mu +='222011123222mv mu mu mgR +⋅=+'⋅ 解得023v gR =(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有01222mv mu mv mv +=+22220121111222222mv mu mv mv +⋅=+⋅ 解得:123gRv =253gR v =2.如图所示,水平长直轨道AB 与半径为R =0.8m 的光滑14竖直圆轨道BC 相切于B ,BC 与半径为r =0.4m 的光滑14竖直圆轨道CD 相切于C ,质量m =1kg 的小球静止在A 点,现用F =18N 的水平恒力向右拉小球,在到达AB 中点时撤去拉力,小球恰能通过D 点.已知小球与水平面的动摩擦因数μ=0.2,取g =10m/s 2.求: (1)小球在D 点的速度v D 大小;(2)小球在B 点对圆轨道的压力N B 大小; (3)A 、B 两点间的距离x .【答案】(1)2/D v m s = (2)45N (3)2m 【解析】 【分析】 【详解】(1)小球恰好过最高点D ,有:2Dv mg m r=解得:2m/s D v = (2)从B 到D ,由动能定理:2211()22D B mg R r mv mv -+=- 设小球在B 点受到轨道支持力为N ,由牛顿定律有:2Bv N mg m R-=N B =N联解③④⑤得:N =45N (3)小球从A 到B ,由动能定理:2122B x Fmgx mv μ-= 解得:2m x =故本题答案是:(1)2/D v m s = (2)45N (3)2m 【点睛】利用牛顿第二定律求出速度,在利用动能定理求出加速阶段的位移,3.水平面上有一竖直放置长H =1.3m 的杆PO ,一长L =0.9m 的轻细绳两端系在杆上P 、Q 两点,PQ 间距离为d =0.3m ,一质量为m =1.0kg 的小环套在绳上。

高中物理《圆周运动》基础过关测试题(精品含答案)

高中物理《圆周运动》基础过关测试题(精品含答案)

《圆周运动》基础过关题1.如图所示,由于地球的自转,地球表面上P、Q两物体均绕地球自转轴做匀速圆周运动,对于P、Q两物体的运动,下列说法正确的是( ) A.P、Q两点的角速度大小相等B.P、Q两点的线速度大小相等C.P点的线速度比Q点的线速度大D.P、Q两物体均受重力和支持力两个力作用2. 如图所示,光滑水平面上,小球m在拉力F作用下做匀速圆周运动.若小球运动到P点时,拉力F发生变化,关于小球运动情况的说法正确的是( ) A.若拉力突然消失,小球将沿轨迹Pa做离心运动B.若拉力突然变小,小球将沿轨迹Pa做离心运动C.若拉力突然变大,小球将沿轨迹Pb做离心运动D.若拉力突然变小,小球将沿轨迹Pc运动3. 如图所示,地球可以看成一个巨大的拱形桥,桥面半径R=6 400 km,地面上行驶的汽车重力G=3×104 N,在汽车的速度可以达到需要的任意值,且汽车不离开地面的前提下,下列分析中正确的是( )A.汽车的速度越大,则汽车对地面的压力也越大B.不论汽车的行驶速度如何,驾驶员对座椅压力大小都等于3×104NC.不论汽车的行驶速度如何,驾驶员对座椅压力大小都小于他自身的重力D.如果某时刻速度增大到使汽车对地面压力为零,则此时驾驶员会有超重的感觉4.风速仪结构如图(a)所示.光源发出的光经光纤传输,被探测器接收,当风轮旋转时,通过齿轮带动凸轮圆盘旋转,当圆盘上的凸轮经过透镜系统时光被遮挡.已知风轮叶片转动半径为r,每转动n圈带动凸轮圆盘转动一圈.若某段时间Δt内探测器接收到的光强随时间变化关系如图(b)所示,则该时间段内风轮叶片( )A.转速逐渐减小,平均速率为4πnr ΔtB.转速逐渐减小,平均速率为8πnr ΔtC.转速逐渐增大,平均速率为4πnr ΔtD.转速逐渐增大,平均速率为8πnr Δt5.某机器内有两个围绕各自固定轴匀速转动的铝盘A、B,A盘固定一个信号发射装置P,能持续沿半径向外发射红外线,P到圆心的距离为28 cm.B盘上固定一个带窗口的红外线信号接收装置Q,Q到圆心的距离为16 cm.P、Q转动的线速度均为4π m/s.当P、Q正对时,P发出的红外线恰好进入Q的接收窗口,如图所示,则Q每隔一定时间就能接收到红外线信号,这个时间的最小值为( )A.0.42 s B.0.56 sC.0.70 s D.0.84 s6. 如图所示,用一根长为l=1 m的细线,一端系一质量为m=1 kg的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为F T.(g取10 m/s2,结果可用根式表示)求:(1)若要小球刚好离开锥面,则小球的角速度ω0至少为多大?(2)若细线与竖直方向的夹角为60°,则小球的角速度ω′为多大?7. (多选)公路急转弯处通常是交通事故多发地带.如图所示,某公路急转弯处是一圆弧,当汽车行驶的速率为v c时,汽车恰好没有向公路内外两侧滑动的趋势.在该弯道处( )A.路面外侧高内侧低B.车速只要低于v c,车辆便会向内侧滑动C.车速虽然高于v c,但只要不超出某一最高限度,车辆便不会向外侧滑动D.当路面结冰时,与未结冰时相比,v c的值变小8. (多选)如图,叠放在水平转台上的物体A、B、C能随转台一起以角速度ω匀速转动,A、B、C的质量分别为3m、2m、m,A与B、B和C与转台间的动摩擦因数都为μ,A和B、C离转台中心的距离分别为r、1.5r.设本题中的最大静摩擦力等于滑动摩擦力,下列说法正确的是( )A.B对A的摩擦力一定为3μmgB.B对A的摩擦力一定为3mω2rC.转台的角速度一定满足ω≤μg rD.转台的角速度一定满足ω≤2μg 3r9.未来的星际航行中,宇航员长期处于零重力状态,为缓解这种状态带来的不适,有人设想在未来的航天器上加装一段圆柱形“旋转舱”,如图所示.当旋转舱绕其轴线匀速旋转时,宇航员站在旋转舱内圆柱形侧壁上,可以受到与他站在地球表面时相同大小的支持力.为达到上述目的,下列说法正确的是( )A.旋转舱的半径越大,转动的角速度就应越大B.旋转舱的半径越大,转动的角速度就应越小C.宇航员质量越大,旋转舱的角速度就应越大D.宇航员质量越大,旋转舱的角速度就应越小10.(多选)质量为m的小球由轻绳a和b分别系于一轻质细杆的A点和B 点,如图所示,绳a与水平方向成θ角,绳b在水平方向且长为l,当轻杆绕轴AB以角速度ω匀速转动时,小球在水平面内做匀速圆周运动,则下列说法正确的是( )A.a绳的张力不可能为零B.a绳的张力随角速度的增大而增大C.当角速度ω>g cot θl,b绳将出现弹力D.若b绳突然被剪断,则a绳的弹力一定发生变化11.(多选)如图所示为赛车场的一个水平“梨形”赛道,两个弯道分别为半径R=90 m的大圆弧和r=40 m的小圆弧,直道与弯道相切.大、小圆弧圆心O、O′距离L=100 m.赛车沿弯道路线行驶时,路面对轮胎的最大径向静摩擦力是赛车重力的2.25倍.假设赛车在直道上做匀变速直线运动,在弯道上做匀速圆周运动.要使赛车不打滑,绕赛道一圈时间最短(发动机功率足够大,重力加速度g取10 m/s2,π=3.14),则赛车( )A.在绕过小圆弧弯道后加速B.在大圆弧弯道上的速率为45 m/sC.在直道上的加速度大小为5.63 m/s2D.通过小圆弧弯道的时间为5.58 s12.如图所示,M是水平放置的半径足够大的圆盘,绕过其圆心的竖直轴OO′匀速转动,规定经过圆心O点且水平向右为x轴正方向.在O点正上方距盘面高为h=5 m处有一个可间断滴水的容器,从t=0时刻开始,容器沿水平轨道向x轴正方向做初速度为零的匀加速直线运动.已知t=0时刻滴下第一滴水,以后每当前一滴水刚好落到盘面时再滴下一滴水.(取g=10 m/s2)(1)每一滴水离开容器后经过多长时间滴落到盘面上?(2)要使每一滴水在盘面上的落点都位于同一直线上,圆盘的角速度ω应为多大?(3)当圆盘的角速度为1.5 π时,第二滴水与第三滴水在盘面上落点间的距离为2 m,求容器的加速度a.《圆周运动》基础过关题参考答案1.解析:选A.P 、Q 两点都是绕地轴做匀速圆周运动,角速度相等,即ωP =ωQ ,选项A 对.根据圆周运动线速度v =ωR ,P 、Q 两点到地轴的距离不等,即P 、Q 两点圆周运动线速度大小不等,选项B 错.Q 点到地轴的距离远,圆周运动半径大,线速度大,选项C 错.P 、Q 两物体均受到万有引力和支持力作用,二者的合力是圆周运动的向心力,我们把与支持力等大反向的平衡力即万有引力的一个分力称为重力,选项D 错.2.解析:选A.若拉力突然消失,小球将沿切线Pa 做离心运动,A 正确;若拉力突然变小,小球将沿Pb 做离心运动,而拉力变大时,小球应沿Pc 做近心运动,故B 、C 、D 均错误.3.解析:选 C.汽车的速度越大,则汽车对地面的压力越小,不论汽车的行驶速度如何,驾驶员对座椅压力大小都小于他自身的重力,选项C 正确A 、B 错误;如果某时刻速度增大到使汽车对地面压力为零,则此时驾驶员会有完全失重的感觉,选项D 错误.4.解析:选B.从图中可看出,挡光时间越来越长,所以转速减小,Δt 时间内有4个挡光时间,所以Δt 时间内风轮转过的弧长为2πrn ×4,平均速率v =8πnr Δt ,B 正确.5.A .0.42 sB .0.56 sC .0.70 sD .0.84 s解析:选B.由线速度和周期关系T =2πR v 可得T P =2π×0.284π s =0.14 s ,T Q=2π×0.164π s =0.08 s ,设该时间的最小值为t ,则该t 是两个周期数值的最小公倍数,即t =0.56 s ,选项B 正确.6.解析:(1)若要小球刚好离开锥面,则小球只受到重力和细线的拉力,受力分析如图所示.小球做匀速圆周运动的轨迹圆在水平面上,故向心力水平,在水平方向运用牛顿第二定律及向心力公式得:mg tan θ=m ω20l sin θ 解得ω20=g l cos θ即ω0= g l cos θ=52 2 rad/s. (2)同理,当细线与竖直方向成60°角时,由牛顿第二定律及向心力公式得: mg tan α=m ω′2l sin α解得:ω′2=g l cos α,即ω′=g l cos α=2 5 rad/s.答案:(1)52 2 rad/s (2)2 5 rad/s解析:选AC.类比火车转弯时的运动和受力情况.当汽车的速率为v c时,汽车恰好没有向公路内外两侧滑动的趋势,说明此时汽车只受重力和支持力,这两个力的合力提供向心力,故路面一定是外高内低,构成一个斜面,A正确.当车速在低于v c的一定范围内时,车所需向心力减小,具有向内侧滑动的趋势,但不一定滑动,故B错误.同理,当车速在高于v c的一定范围内,车辆有向外侧滑动的趋势,当车速高于某个速度值时,汽车受到的摩擦力达到最大静摩擦力,汽车便会向外侧滑动,故C正确.路面结冰时,最大静摩擦力减小,v c值不变,D错误.8. (多选)解析:选BD.对A受力分析,受重力、支持力以及B对A的静摩擦力,静摩擦力提供向心力,有f=(3m)ω2r≤μ(3m)g,故选项A错误,B正确;由于A、AB整体、C受到的静摩擦力均提供向心力,故对A有(3m)ω2r≤μ(3m)g,解得ω≤μgr;对AB整体有(3m+2m)ω2r≤μ(3m+2m)g,解得ω≤μg r;对C有mω2(1.5r)≤μmg,解得ω≤2μg 3r.选项C错误,D正确.9.解析:选 B.旋转舱对宇航员的支持力提供宇航员做圆周运动的向心力,即mg=mω2r,解得ω=gr,即旋转舱的半径越大,角速度越小,而且与宇航员的质量无关,选项B正确.解析:选AC.对小球受力分析可得a 绳的弹力在竖直方向的分力平衡了小球的重力,解得T a =mg sin θ,为定值,A 正确,B 错误;当T a cos θ=m ω2l ⇒ω= g cot θl时,b 绳的弹力为零,若角速度大于该值,则b 绳将出现弹力,C 正确;由于绳b 可能没有弹力,故绳b 突然被剪断,则a 绳的弹力可能不变,D 错误.11.(多选)解析:选AB.要使赛车绕赛道一圈时间最短,则通过弯道的速度都应最大,由f =2.25mg =m v 2r 可知,通过小弯道的速度v 1=30 m/s ,通过大弯道的速度v 2=45 m/s ,故绕过小圆弧弯道后要加速,选项A 、B 正确;如图所示,由几何关系可得AB 长x =L 2-(R -r )2=50 3 m ,故在直道上的加速度a =v 22-v 212x =452-3022×503m/s 2≈6.5 m/s 2,选项C 错误;由sin θ2=x L =32可知,小圆弧对应的圆心角θ=2π3,故通过小圆弧弯道的时间t =θr v 1=2πr 3v 1=2×3.14×403×30 s =2.79 s ,选项D 错误.12.解析:(1)离开容器后,每一滴水在竖直方向上做自由落体运动,则每一滴水滴落到盘面上所用时间t =2hg =1 s.(2)要使每一滴水在盘面上的落点都位于同一直线上,则圆盘在1 s 内转过的弧度为k π,k 为不为零的正整数.。

高一物理《圆周运动》六套练习题附答案

高一物理《圆周运动》六套练习题附答案

高一物理《圆周运动》六套练习题附答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN- 2 -匀速圆周运动练习1.一质点做圆周运动,速度处处不为零,则:①任何时刻质点所受的合力一定不为零,②任何时刻质点的加速度一定不为零,③质点速度的大小一定不断变化,④质点速度的方向一定不断变化其中正确的是( )A .①②③B .①②④C .①③④D .②③④2.火车轨道在转弯处外轨高于内轨,其高度差由转弯半径与火车速度确定.若在某转弯处规定行驶速度为v ,则下列说法中正确的是( )①当以速度v 通过此弯路时,火车重力与轨道支持力的合力提供向心力 ②当以速度v 通过此弯路时,火车重力、轨道支持力和外轨对轮缘弹力的合力提供向心力 ③当速度大于v 时,轮缘挤压外轨 ④当速度小于v 时,轮缘挤压外轨A.①③B.①④C.②③D.②④3.如图所示,在皮带传动装置中,主动轮A 和从动轮B 半径不等,皮带与轮之间无相对滑动,则下列说法中正确的是( )A .两轮的角速度相等B .两轮边缘的线速度大小相等C .两轮边缘的向心加速度大小相等D .两轮转动的周期相同4.用细线拴着一个小球,在光滑水平面上作匀速圆周运动,下列说法正确的是( )A .小球线速度大小一定时,线越长越容易断B .小球线速度大小一定时,线越短越容易断C .小球角速度一定时,线越长越容易断D .小球角速度一定时,线越短越容易断5.长度为0.5m 的轻质细杆OA ,A 端有一质量为3kg 的小球,以O 点为圆心,在竖直平面内做圆周运动,如图所示,小球通过最高点时的速度为2m/s ,取g=10m/s 2,则此时轻杆OA 将( ) A .受到6.0N 的拉力 B .受到6.0N 的压力 C .受到24N 的拉力 D .受到24N 的压力6.滑块相对静止于转盘的水平面上,随盘一起旋转时所需向心力的来源是( )A .滑块的重力B .盘面对滑块的弹力AB- 3 -C .盘面对滑块的静摩擦力D .以上三个力的合力 7.如图所示,固定的锥形漏斗内壁是光滑的,内壁上有两个质量相等的小球A 和B ,在各自不同的水平面做匀速圆周运动,以下说法正确的是( )A.V A >V BB.ωA >ωBC.a A >a BD.压力N A >N B 8.一个电子钟的秒针角速度为( )A .πrad/sB .2πrad/sC .60πrad/s D .30πrad/s9.甲、乙、丙三个物体,甲放在广州,乙放在上海,丙放在北京.当它们随地球一起转动时,则( )A .甲的角速度最大、乙的线速度最小B .丙的角速度最小、甲的线速度最大C .三个物体的角速度、周期和线速度都相等D .三个物体的角速度、周期一样,丙的线速度最小10.如图所示,细杆的一端与小球相连,可绕过O 点的水平轴自由转动,现给小球一初速度,使它做圆周运动,图中a 、b 分别表示小球轨道的最低点和最高点。

《圆周运动》练习题 (附解析)

《圆周运动》练习题 (附解析)

在圆周运动中,最常见和最简单的是匀速圆周运动(因为速度是矢量,所以匀速圆周运动实际上是指匀速率圆周运动)。

一、选择题1.下列有关洗衣机中脱水筒的脱水原理的说法正确的是( )A.水滴受离心力作用而背离圆心方向甩出B.水滴受到向心力,由于惯性沿切线方向甩出C.水滴受到的离心力大于它受到的向心力,而沿切线方向甩出D.水滴与衣服间的附着力小于它所需要的向心力,于是水滴沿切线方向甩出2.关于铁道转弯处内外铁轨间的高度关系,下列说法中正确的是( )A.内、外轨一样高,以防列车倾倒造成翻车事故B.因为列车在转弯处有向内倾倒的可能,故一般使内轨高于外轨,以防列车翻倒C.外轨比内轨略高,这样可以使列车顺利转弯,减少车轮与铁轨的挤压D.以上说法均不正确3.在世界一级方程式锦标赛中,赛车在水平路面上转弯时,常常在弯道上冲出跑道,其原因是( )A.是由于赛车行驶到弯道时,运动员未能及时转动方向盘造成的B.是由于赛车行驶到弯道时,没有及时加速造成的C.是由于赛车行驶到弯道时,没有及时减速造成D.是由于在弯道处汽车受到的摩擦力比在直道上小造成的4.在光滑的轨道上,小球滑下经过圆弧部分的最高点A时,恰好不脱离轨道,此时小球受到的作用力是( )A.重力、弹力和向心力B.重力和弹力C.重力和向心力D.重力5.用长为L的细绳拴着质量为m的小球在竖直平面内做圆周运动,正确的说法是( )A.小球在圆周最高点时所受的向心力一定为重力B.小球在最高点时绳子的拉力有可能为零C.若小球刚好能在竖直平面内做圆周运动,则其在最高点的速率为0D.小球过最低点时绳子的拉力一定大于小球的重力6.在高速公路的拐弯处,路面建造得外高内低,即当车向右拐弯时,司机左侧的路面比右侧的要高一些,路面与水平面间的夹角为θ,设拐弯路段是半径为R的圆弧,要使车速为v时车轮与路面之间的横向(即垂直于前进方向)摩擦力等于零,θ应等于( )A.sin θ=B.tan θ=C.sin 2θ=D.cot θ=7.长为l的轻杆,一端固定一个小球,另一端固定在光滑的水平轴上,使小球在竖直面内做圆周运动,关于最高点的速度v,下列说法正确的是( )A.v的极小值为B.v由零逐渐增大,向心力也增大C.当v由逐渐增大时,杆对小球的弹力逐渐增大D.当v由逐渐减小时,杆对小球的弹力逐渐增大二、非选择题8.一根长l=0.625 m的细绳,一端拴一质量m=0.4 kg 的小球,使其在竖直平面内绕绳的另一端做圆周运动,g取10 m/s2,求:(1)小球通过最高点时的最小速度;(2)若小球以速度v=3.0 m/s通过圆周最高点时,绳对小球的拉力多大?若此时绳突然断了,小球将如何运动?参考答案1.D [根据离心运动的特点知,水滴的离心现象是由于水滴与衣服间的附着力小于水滴运动所需要的向心力,即提供的向心力不足,所以水滴沿切线方向甩出,正确选项为D.]2.C [铁道转弯处外轨比内轨略高,从而使支持力的水平方向分力可提供一部分向心力,以减少车轮与铁轨的挤压避免事故发生,C对,A、B、D错.]3.C [赛车在水平弯道上行驶时,摩擦力提供向心力,而且速度越大,需要的向心力越大,如不及时减速,当摩擦力不足以提供向心力时,赛车就会做离心运动,冲出跑道,故C正确.]4.D [小球在最高点恰好不脱离轨道时,小球受轨道的弹力为零,而重力恰好提供向心力,向心力并不是小球受到的力,而是根据力的作用效果命名的,故D正确,A、B、C均错误.]5.BD [设在最高点小球受的拉力为F1,最低点受到的拉力为F2,当在最高点v1>时,则F1+mg=m,即向心力由拉力F1与mg的合力提供,A错;当v1=时,F1=0,B对;v1=为球经过最高点的最小速度,即小球在最高点的速率不可能为0,C错;在最低点,F2-mg=m,F2=mg+m,所以经最低点时,小球受到绳子的拉力一定大于它的重力,D对.]6.B[当车轮与路面的横向摩擦力等于零时,汽车受力如图所示,则有:Nsin θ=m,Ncos θ=mg,解得:tan θ=,故B正确.]7.BCD [由于是轻杆,即使小球在最高点速度为零,小球也不会掉下来,因此v 的极小值是零;v由零逐渐增大,由F=可知,F也增大,B对;当v=时,F==mg,此时杆恰对小球无作用力,向心力只由其自身重力来提供;当v由增大时,则=mg+F′F′=m-mg,杆对球的力为拉力,且逐渐增大;当v由减小时,杆对球为支持力.此时,mg-F′=,F′=mg-,支持力F′逐渐增大,杆对球的拉力、支持力都为弹力,所以C、D也对,故选B、C、D.]8.(1)2.5 m/s(2)1.76 N 平抛运动解析(1)小球通过圆周最高点时,受到的重力G=mg必须全部作为向心力F向,否则重力G中的多余部分将把小球拉进圆内,而不能实现沿竖直圆周运动.所以小球通过圆周最高点的条件应为F向≥mg,当F向=mg时,即小球受到的重力刚好全部作为通过圆周最高点的向心力,绳对小球恰好没有力的作用,此时小球的速度就是通过圆周最高点的最小速度v0,由向心力公式有:mg=m解得:G=mg=mv0== m/s=2.5 m/s.(2)小球通过圆周最高点时,若速度v大于最小速度v0,所需的向心力F向将大于重力G,这时绳对小球要施加拉力F,如图所示,此时有F+mg=m解得:F=m-mg=(0.4×-0.4×10) N=1.76 N若在最高点时绳子突然断了,则提供的向心力mg小于需要的向心力m,小球将沿切线方向飞出做离心运动(实际上是平抛运动).。

(完整版)圆周运动基础练习题(含答案)

(完整版)圆周运动基础练习题(含答案)

圆周运动练习题1.下列关于做匀速圆周运动的物体所受的向心力的说法中,正确的是 (选C )A .物体除其他的力外还要受到—个向心力的作用 C .向心力是一个恒力B .物体所受的合外力提供向心力 D .向心力的大小—直在变化2.关于匀速圆周运动的角速度与线速度,下列说法中正确的是(选BC )A .半径一定,角速度与线速度成反比B .半径一定,角速度与线速度成正比C .线速度一定,角速度与半径成反比D .角速度一定,线速度与半径成正比3.正常走动的钟表,其时针和分针都在做匀速转动,下列关系中正确的是 (选B)A .时针和分针的角速度相同B .分针角速度是时针角速度的12倍C .时针和分针的周期相同D .分针的周期是时针周期的12倍4.A 、B 两个质点,分别做匀速圆周运动,在相同的时间内它们通过的路程之比s A ∶s B =2∶3,转过的角度之比ϕA ∶ϕB =3∶2,则下列说法正确的是(选BC )A .它们的半径之比R A ∶RB =2∶3 B .它们的半径之比R A ∶R B =4∶9C .它们的周期之比T A ∶T B =2∶3D .它们的周期之比T A ∶T B =3∶25. 如图所示的圆锥摆中,摆球A 在水平面上作匀速圆周运动,关于A 的受力情况,下列说法中正确的是(选C )A .摆球A 受重力、拉力和向心力的作用;B .摆球A 受拉力和向心力的作用;C .摆球A 受拉力和重力的作用;D .摆球A 受重力和向心力的作用。

6.汽车甲和汽车乙质量相等,以相等速度率沿同一水平弯道做匀速圆周运动,甲车在乙车的外侧.两车沿半径方向受到的摩擦力分别为F f 甲和F f 乙,以下说法正确的是(选A )A . F f 甲小于F f 乙B . F f 甲等于F f 乙C . F f 甲大于F f 乙D . F f 甲和F f 乙大小均与汽车速率无关7.一辆卡车在丘陵地匀速行驶,地形如图所示,由于轮胎太旧,途中爆胎,爆胎可能性最大的地段应是(选D )A .a 处B .b 处C .c 处D .d 处8.游客乘坐过山车,在圆弧轨道最低点处获得的向心加速度达到20 m/s 2,g 取10 m/s 2,那么在此位置座椅对游客的作用力相当于游客重力的 (选C )A .1倍B .2 倍C .3倍D .4倍9.一汽车通过拱形桥顶点时速度为10 m/s ,车对桥顶的压力为车重的43,如果要使汽车在桥顶对桥面没有压力,车速至少为(选B )A .15 m/sB .20 m/sC .25 m/sD .30 m/s 10.如图所示,轻杆的一端有一个小球,另一端有光滑的固定轴O ,现给球一初速度,使球和杆一起绕O 轴在竖直面内转动,不计空气阻力,用F 表示球到达最高点时杆对小球的作用力,则F (选D ) A.一定是拉力 B.一定是推力 C.一定等于零D.可能是拉力,可能是推力,也可能等于零 (第5题)(第15题)11.飞机在飞越太平洋上空的过程中,如果保持飞行速度的大小和距离海平面的高度不变,则以下说法中正确的是(选C)A.飞机做的是匀速直线运动B.飞机上的乘客对座椅的压力略大于地球对乘客的引力C.飞机上的乘客对座椅的压力略小于地球对乘客的引力D.飞机上的乘客对座椅的压力为零12.一滑雪者连同他的滑雪板质量为70kg ,他滑到凹形的坡底时的速度是20m/s ,坡底的圆弧半径是50m ,则在坡底时雪地对滑雪板的支持力是多少?1260N13.质量为m 的小球,用一条绳子系在竖直平面内做圆周运动,小球到达最高点时的速度为v ,到达最低点时的速变为24v gR ,则两位置处绳子所受的张力之差是多少?6mg14.汽车沿半径为R = 100m 的圆跑道行驶,设跑道的路面是水平的,路面作用于车的最大静摩擦力是车重的101,要使汽车不致冲出圆跑道,车速最大不能超过多少?10s m /。

圆周运动大全(附答案)

圆周运动大全(附答案)

圆周运动练习题1班别姓名学号一.单项选择题1.关于作匀速圆周运动的物体的向心加速度,下列说法正确的是:()A.向心加速度的大小和方向都不变B.向心加速度的大小和方向都不断变化C.向心加速度的大小不变,方向不断变化D.向心加速度的大小不断变化,方向不变2.对于做匀速圆周运动的质点,下列说法正确的是:()A.根据公式a=v2/r,可知其向心加速度a与半径r成反比B.根据公式a=ω2r,可知其向心加速度a与半径r成正比C.根据公式ω=v/r,可知其角速度ω与半径r成反比D.根据公式ω=2πn,可知其角速度ω与转数n成正比3.机械手表的时针、分针、秒针的角速度之比为()A.1:60:360B.1:12:360C.1:12:720D.1:60:72004.甲、乙两个物体分别放在广州和北京,它们随地球一起转动时,下面说法正确的是()A.甲的线速度大,乙的角速度小B.甲的线速度大,乙的角速度大C.甲和乙的线速度相等D.甲和乙的角速度相等5.一个做匀速圆周运动的物体,如果半径不变,而速率增加到原来速率的三倍,其向心力增加了64牛顿,那么物体原来受到的向心力的大小是()A.16NB.12NC.8ND.6N6.同一辆汽车以同样大小的速度先后开上平直的桥和凸形桥,在桥的中央处有()A.车对两种桥面的压力一样大B.车对平直桥面的压力大C.车对凸形桥面的压力大D.无法判断7.火车在水平轨道上转弯时,若转弯处内外轨道一样高,则火车转弯时:()A.对外轨产生向外的挤压作用B.对内轨产生向外的挤压作用C.对外轨产生向内的挤压作用D.对内轨产生向内的挤压作用8.如图所示,用细绳系着一个小球,使小球在水平面内做匀速圆周运动,不计空气阻力,关于小球受力说法正确的是()A.只受重力B.只受拉力C.受重力、拉力和向心力D.受重力和拉力.钟表上时针、分针都在做圆周运动 A .分针角速度是时针的12倍 B .时针转速是分针的1/60 C .若分针长度是时针的1.5倍,则端点线速度是时针的1.5倍 D .分针角速度是时针的60倍10.如图,一物块以1m/s 的初速度沿曲面由A 处下滑,到达较低的B 点时速度恰好也是1m/s ,如果此物块以2m/s 的初速度仍由A 处下滑,则它达到B 点时的速度A .等于2m/sB .小于2m/sC .大于2m/sD .以上三种情况都有可能11.如图所示,一水平平台可绕竖直轴转动,平台上有a 、b 、c 三个物体,其质量之比m a ︰m b ︰m c =2︰1︰1,它们到转轴的距离之比r a ︰r b ︰r c =1︰1︰2,三物块与平台间的动摩擦因数相同,且最大静摩擦力均与其压力成正比,当平台转动的角速度逐渐增大时,物块将会产生滑动,以下判断正确的是 A .a 先滑B .b 先滑C .c 先滑D .a 、c 同时滑12.一个小球在竖直环内至少做N 次圆周运动,当它第(N -2)次经过环的最低点时,速度是7m/s ;第(N -1)次经过环的最低点时,速度是5m/s ,则小球在第N 次经过环的最低点时的速度一定满足 ( ) A .v >1m/s B .v =1m/s C .v <1m/s D .v =3m/s13.甲、乙两球分别以半径R 1、R 2做匀速圆周运动,M 甲=2M 乙,圆半径R 甲=R 乙/3,甲球每分钟转30周,乙球每分钟转20周,则甲、乙两球所需向心力大小之比为 A .2:3 B .3:2 C .3:1 D .3:414.在质量为M 的电动机的飞轮上,固定着一个质量为m 的重物,重物到转轴的距离为r ,如图所示,为了使放在地面上的电动机不会跳起,电动机飞轮的角速度不能超过A .g mr m M +B .g mr m M +C .g mr m M -D .mrMg二.多项选择题15.一质点做圆周运动,速度处处不为零,则 ( ) A.任何时刻质点所受的合力一定不为零 C.质点速度的大小一定不断地变化 B.任何时刻质点的加速度一定不为零D.质点速度地方向一定不断地变化ωm16.如图,小物体m 与圆盘保持相对静止,随盘一起做匀速圆周运动,则物体的受力情况是:( )A .受重力、支持力、静摩擦力和向心力的作用B .摩擦力的方向始终指向圆心OC .重力和支持力是一对平衡力D .摩擦力是使物体做匀速圆周运动的向心力17.图中所示为一皮带传动装置,右轮的半径为r ,a 是它边缘 上的一点。

高中物理圆周运动基础练习题(含答案)

高中物理圆周运动基础练习题(含答案)
A.绳的拉力
B.重力和绳拉力的合力
C.重力和绳拉力的合力沿绳方向的分力
D.绳的拉力和重力沿绳方向分力的合力
9.如图所示,长为L的悬线固定在O点,在O点正下方 处有一钉子C,把悬线另一端的小球m拉到跟悬点在同一水平面上无初速度释放,小球运动到悬点正下方时悬线碰到钉子,则小球的( )
A.线速度突然增大为原来的2倍
高中物理圆周运动基础练习题(含答案)
一、单选题
1.如图一辆质量为500kg的汽车静止在一座半径为50m的圆弧形拱桥顶部。(取g=10m/s2)如果汽车以6m/s的速度经过拱桥的顶部,则汽车对圆弧形拱桥的压力是多大( )
A.360NB.4640N
C.5360ND.5000N
2.自行车大小齿轮的示意图如图所示,大齿轮半径为2r,B点位于大齿轮边缘上,C点在大齿轮上且到轮心的距离为r,小齿轮半径为r,A是其边缘上的一点。在齿轮转动的过程中,下列说法正确的是()
(1)小球通过最高点速度为 时,小球对杆的作用力大小是多少,是压力还是拉力;
(2)小球通过最低点时杆对球的作用力为 ,小球的速度大小是多少。
12.如图所示,长l1=1m、倾角θ=37°的斜直轨道与长 的水平轨道平滑连接。可视为质点的物块从倾斜轨道上端A点由静止释放,从C点水平抛出,抛出点距离水平地面的高度h=0.45m,落地点离C端的水平距离为s=0.3m。已知物块与斜轨道间的动摩擦因数μ=0.5,重力加速度g取 , , 。求:
根据
可知A、B两点的角速度之比为
故AB错误;
C.B、C两点在同一轮子上,则角速度相等,根据
可知B、C两点的线速度之比为
故C正确;
D.A、C两点的角速度之比为
根据
由于A、C两点的半径相等,则A、C两点的向心加速度之比为

【物理】物理生活中的圆周运动题20套(带答案)含解析

【物理】物理生活中的圆周运动题20套(带答案)含解析

【物理】物理生活中的圆周运动题20套(带答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,作用一段时间后撤去。

铁球继续运动,到达水平桌面边缘A 点飞出,恰好落到竖直圆弧轨道BCD 的B 端沿切线进入圆弧轨道,碰撞过程速度不变,且铁球恰好能通过圆弧轨道的最高点D .已知∠BOC =37°,A 、B 、C 、D 四点在同一竖直平面内,水平桌面离B 端的竖直高度H =0.45m ,圆弧轨道半径R =0.5m ,C 点为圆弧轨道的最低点,求:(取sin37°=0.6,cos37°=0.8)(1)铁球运动到圆弧轨道最高点D 点时的速度大小v D ;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小F C ;(计算结果保留两位有效数字) (3)铁球运动到B 点时的速度大小v B ; (4)水平推力F 作用的时间t 。

【答案】(1)铁球运动到圆弧轨道最高点D 5;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小为6.3N ;(3)铁球运动到B 点时的速度大小是5m/s ; (4)水平推力F 作用的时间是0.6s 。

【解析】 【详解】(1)小球恰好通过D 点时,重力提供向心力,由牛顿第二定律可得:2Dmv mg R=可得:D 5m /s v =(2)小球在C 点受到的支持力与重力的合力提供向心力,则:2Cmv F mg R-=代入数据可得:F =6.3N由牛顿第三定律可知,小球对轨道的压力:F C =F =6.3N(3)小球从A 点到B 点的过程中做平抛运动,根据平抛运动规律有:2y 2gh v = 得:v y =3m/s小球沿切线进入圆弧轨道,则:35m/s 370.6y B v v sin ===︒(4)小球从A 点到B 点的过程中做平抛运动,水平方向的分速度不变,可得:3750.84/A B v v cos m s =︒=⨯=小球在水平面上做加速运动时:1F mg ma μ-=可得:218/a m s =小球做减速运动时:2mg ma μ=可得:222/a m s =-由运动学的公式可知最大速度:1m v a t =;22A m v v a t -= 又:222m m A v v vx t t +=⋅+⋅ 联立可得:0.6t s =2.如图所示,带有14光滑圆弧的小车A 的半径为R ,静止在光滑水平面上.滑块C 置于木板B 的右端,A 、B 、C 的质量均为m ,A 、B 底面厚度相同.现B 、C 以相同的速度向右匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高处.则:(已知重力加速度为g ) (1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【答案】(1)023v gR =(2)123gRv =253gR v =【解析】本题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为v 0,AB 相碰过程中动量守恒,设碰后AB 总体速度u ,由02mv mu =,解得02v u =C 滑到最高点的过程: 023mv mu mu +='222011123222mv mu mu mgR +⋅=+'⋅ 解得023v gR =(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有01222mv mu mv mv +=+22220121111222222mv mu mv mv +⋅=+⋅解得:123gRv =,253gR v =3.如图所示,水平传送带AB 长L=4m ,以v 0=3m/s 的速度顺时针转动,半径为R=0.5m 的光滑半圆轨道BCD 与传动带平滑相接于B 点,将质量为m=1kg 的小滑块轻轻放在传送带的左端.已,知小滑块与传送带之间的动摩擦因数为μ=0.3,取g=10m/s 2,求:(1)滑块滑到B 点时对半圆轨道的压力大小;(2)若要使滑块能滑到半圆轨道的最高点,滑块在传送带最左端的初速度最少为多大. 【答案】(1)28N.(2)7m/s 【解析】 【分析】(1)物块在传送带上先加速运动,后匀速,根据牛顿第二定律求解在B 点时对轨道的压力;(2)滑块到达最高点时的临界条件是重力等于向心力,从而求解到达D 点的临界速度,根据机械能守恒定律求解在B 点的速度;根据牛顿第二定律和运动公式求解A 点的初速度. 【详解】(1)滑块在传送带上运动的加速度为a=μg=3m/s 2;则加速到与传送带共速的时间01v t s a == 运动的距离:211.52x at m ==, 以后物块随传送带匀速运动到B 点,到达B 点时,由牛顿第二定律:2v F mg m R-= 解得F=28N ,即滑块滑到B 点时对半圆轨道的压力大小28N.(2)若要使滑块能滑到半圆轨道的最高点,则在最高点的速度满足:mg=m 2Dv R解得v D 5; 由B 到D ,由动能定理:2211222B D mv mv mg R =+⋅ 解得v B =5m/s>v 0可见,滑块从左端到右端做减速运动,加速度为a=3m/s 2,根据v B 2=v A 2-2aL 解得v A =7m/s4.如图所示,一滑板放置在光滑的水平地面上,右侧紧贴竖直墙壁,滑板由圆心为O 、半径为R 的四分之一光滑圆弧轨道和水平轨道两部分组成,且两轨道在B 点平滑连接,整个系统处于同一竖直平面内.现有一可视为质点的小物块从A 点正上方P 点处由静止释放,落到A 点的瞬间垂直于轨道方向的分速度立即变为零,之后沿圆弧轨道AB 继续下滑,最终小物块恰好滑至轨道末端C 点处.已知滑板的质量是小物块质量的3倍,小物块滑至B 点时对轨道的压力为其重力的3倍,OA 与竖直方向的夹角为θ=60°,小物块与水平轨道间的动摩擦因数为μ=0.3,重力加速度g 取102/m s ,不考虑空气阻力作用,求:(1)水平轨道BC 的长度L ; (2)P 点到A 点的距离h . 【答案】(1)2.5R (2)23R 【解析】 【分析】(1)物块从A 到B 的过程中滑板静止不动,先根据物块在B 点的受力情况求解B 点的速度;滑块向左滑动时,滑板向左也滑动,根据动量守恒和能量关系列式可求解水平部分的长度;(2)从P 到A 列出能量关系;在A 点沿轨道切向方向和垂直轨道方向分解速度;根据机械能守恒列出从A 到B 的方程;联立求解h . 【详解】(1)在B 点时,由牛顿第二定律:2BB v N mg m R-=,其中N B =3mg ;解得2B v gR =从B 点向C 点滑动的过程中,系统的动量守恒,则(3)B mv m m v =+; 由能量关系可知:2211(3)22B mgL mv m m v μ=-+ 联立解得:L=2.5R ;(2)从P 到A 点,由机械能守恒:mgh=12mv A 2; 在A 点:01sin 60A A v v =,从A 点到B 点:202111(1cos60)22A B mv mgR mv +-= 联立解得h=23R5.如图所示,A 、B 两球质量均为m ,用一长为l 的轻绳相连,A 球中间有孔套在光滑的足够长的水平横杆上,两球处于静止状态.现给B 球水平向右的初速度v 0,经一段时间后B 球第一次到达最高点,此时小球位于水平横杆下方l /2处.(忽略轻绳形变)求:(1)B 球刚开始运动时,绳子对小球B 的拉力大小T ; (2)B 球第一次到达最高点时,A 球的速度大小v 1;(3)从开始到B 球第一次到达最高点的过程中,轻绳对B 球做的功W .【答案】(1)mg+m 20v l (2)2012v gl v -=(3)204mgl mv - 【解析】 【详解】(1)B 球刚开始运动时,A 球静止,所以B 球做圆周运动对B 球:T-mg =m 2v l得:T =mg +m 20v l(2)B 球第一次到达最高点时,A 、B 速度大小、方向均相同,均为v 1以A 、B 系统为研究对象,以水平横杆为零势能参考平面,从开始到B 球第一次到达最高点,根据机械能守恒定律,2220111112222l mv mgl mv mv mg -=+- 得:2012v gl v -=(3)从开始到B 球第一次到达最高点的过程,对B 球应用动能定理 W -mg221011222l mv mv =- 得:W =204mgl mv -6.如图所示为某款弹射游戏示意图,光滑水平台面上固定发射器、竖直光滑圆轨道和粗糙斜面AB ,竖直面BC 和竖直靶板MN .通过轻质拉杆将发射器的弹簧压缩一定距离后释放,滑块从O 点弹出并从E 点进人圆轨道,绕转一周后继续在平直轨道上前进,从A 点沿斜面AB 向上运动,滑块从B 点射向靶板目标(滑块从水平面滑上斜面时不计能量损失).已知滑块质量5m g =,斜面倾角37θ=︒,斜面长25L cm =,滑块与斜面AB 之间的动摩擦因数0.5μ=,竖直面BC 与靶板MN 间距离为d ,B 点离靶板上10环中心点P 的竖直距离20h cm =,忽略空气阻力,滑块可视为质点.已知sin370.6,37cos 0.8︒︒==,取210/g m s =,求:(1)若要使滑块恰好能够到达B 点,则圆轨道允许的最大半径为多大?(2)在另一次弹射中发现滑块恰能水平击中靶板上的P 点,则此次滑块被弹射前弹簧被压缩到最短时的弹性势能为多大? (结果保留三位有效数字)(3)若MN 板可沿水平方向左右移动靠近或远高斜面,以保证滑块从B 点出射后均能水平击中靶板.以B 点为坐标原点,建立水平竖直坐标系(如图) ,则滑块水平击中靶板位置坐标(),x y 应满足什么条件?【答案】(1)0.1R m = (2) 24.0310J p E -=⨯ (3)38y x =,或38y x =,或83x y = 【解析】 【详解】(1)设圆轨道允许的半径最大值为R 在圆轨道最高点:2mv mg R= 要使滑块恰好能到达B 点,即:0B v =从圆轨道最高点至B 点的过程:21sin 2cos 02mgL mgR mgL mv θμθ-+-=-代入数据可得0.1R m =(2)滑块恰能水平击中靶板上的P 点,B 到P 运动的逆过程为平抛运动 从P 到B :2h t g=y gt =v3sin y v v θ=代入数据可得:10m/s 3B v =从弹射至点的过程:21sin cos 02B Ep mgL mgL mv θμθ--=- 代入数据可得:24.0310J Ep -=⨯(3)同理根据平抛规律可知:1tan 372y x =︒ 即38y x = 或38y x = 或83x y =7.过山车是游乐场中常见的设施.下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,B 、C 、D 分别是三个圆形轨道的最低点,B 、C 间距与C 、D 间距相等,半径1 2.0m R =、2 1.4m R =.一个质量为 1.0m =kg 的小球(视为质点),从轨道的左侧A 点以012.0m/s v =的初速度沿轨道向右运动,A 、B 间距1 6.0L =m .小球与水平轨道间的动摩擦因数0.2μ=,圆形轨道是光滑的.假设水平轨道足够长,圆形轨道间不相互重叠,如果小球恰能通过第二圆形轨道.如果要使小球不能脱离轨道,试求在第三个圆形轨道的设计中,半径3R 应满足的条件.(重力加速度取210m/s g =,计算结果保留小数点后一位数字.)【答案】300.4R m <≤或 31.027.9m R m ≤≤ 【解析】 【分析】 【详解】设小球在第二个圆轨道的最高点的速度为v 2,由题意222v mg m R =①()22122011222mg L L mgR mv mv μ-+-=- ② 由①②得 12.5L m = ③要保证小球不脱离轨道,可分两种情况进行讨论:I .轨道半径较小时,小球恰能通过第三个圆轨道,设在最高点的速度为v 3,应满足233v mg m R = ④()221330112222mg L L mgR mv mv μ-+-=- ⑤ 由④⑤得30.4R m = ⑥II .轨道半径较大时,小球上升的最大高度为R 3,根据动能定理()213012202mg L L mgR mv μ-+-=- ⑦解得 3 1.0R m = ⑧为了保证圆轨道不重叠,R 3最大值应满足()()2222332R R L R R +=+- ⑨解得:R 3=27.9m ⑩综合I 、II ,要使小球不脱离轨道,则第三个圆轨道的半径须满足下面的条件300.4R m <≤或 31.027.9m R m ≤≤ ⑾【点睛】本题为力学综合题,要注意正确选取研究过程,运用动能定理解题.动能定理的优点在于适用任何运动包括曲线运动.知道小球恰能通过圆形轨道的含义以及要使小球不能脱离轨道的含义.8.光滑水平面上放着质量m A =1kg 的物块A 与质量m B =2kg 的物块B ,A 与B 均可视为质点,A 靠在竖直墙壁上,A 、B 间夹一个被压缩的轻弹簧(弹簧与A 、B 均不拴接),在A 、B 间系一轻质细绳,细绳长度大于弹簧的自然长度,用手挡住B 不动,此时弹簧弹性势能E P =49J 。

高中物理必修二第六章圆周运动经典大题例题(带答案)

高中物理必修二第六章圆周运动经典大题例题(带答案)

高中物理必修二第六章圆周运动经典大题例题单选题1、离心现象在生活中很常见,比如市内公共汽车在到达路口转弯前,车内广播中就要播放录音:“乘客们请注意,车辆将转弯,请拉好扶手”。

这样做可以()A.使乘客避免车辆转弯时可能向前倾倒发生危险B.使乘客避免车辆转弯时可能向后倾倒发生危险C.使乘客避免车辆转弯时可能向转弯的内侧倾倒发生危险D.使乘客避免车辆转弯时可能向转弯的外侧倾倒发生危险答案:D车辆转弯时,如果乘客不能拉好扶手,乘客将做离心运动,向外侧倾倒发生危险。

故选D。

2、如图所示,半径为R的光滑半圆形轨道放在竖直平面内,AB连线为竖直直径,一小球以某一速度冲上轨道,运动到最高点B时对轨道的压力等于重力的2倍。

则小球落地点C到轨道入口A点的距离为()A.2√3R B.3R C.√6R D.2R答案:A在最高点时,根据牛顿第二定律3mg=m v2 R通过B点后做平抛运动2R=12gt2x=vt 解得水平位移x=2√3R故选A。

3、已知某处弯道铁轨是一段圆弧,转弯半径为R,重力加速度为g,列车转弯过程中倾角(车厢底面与水平面夹角)为θ,则列车在这样的轨道上转弯行驶的安全速度(轨道不受侧向挤压)为()A.√gRsinθB.√gRcosθC.√gRtanθD.√gR答案:C受力分析如图所示当内外轨道不受侧向挤压时,列车受到的重力和轨道支持力的合力充当向心力,有F n=mg tan θ,F n=m v2R解得v=√gR tanθ故选C。

4、做匀速圆周运动的物体,它的加速度大小必定与()A.线速度的平方成正比B.角速度的平方成正比C.运动半径成正比D.线速度和角速度的乘积成正比答案:DA.根据a=v2 r可知只有运动半径一定时,加速度大小才与线速度的平方成正比,A错误;B.根据a=ω2r可知只有运动半径一定时,加速度大小才与角速度的平方成正比,B错误;C.根据,a=ω2ra=v2r当线速度一定时,加速度大小与运动半径成反比;当角速度一定时,加速度大小与运动半径成正比,C错误;D.根据a=ω2r,v=ωr联立可得a=vω可知加速度大小与线速度和角速度的乘积成正比,D正确。

圆周运动经典习题(附答案详解).

圆周运动经典习题(附答案详解).

1. 在观看双人花样滑冰表演时,观众有时会看到女运动员被男运动员拉着离开冰面在空中做水平方向的匀速圆周运动.已知通过目测估计拉住女运动员的男运动员的手臂和水平冰面的夹角约为45°,重力加速度为g =10 m/s 2,若已知女运动员的体重为35 k g ,据此可估算该女运动员( ) A .受到的拉力约为350 2 N B .受到的拉力约为350 N C .向心加速度约为10 m/s 2 D .向心加速度约为10 2 m/s 2图4-2-112.中央电视台《今日说法》栏目最近报道了一起发生在湖南长沙某区湘府路上的离奇交通事故.家住公路拐弯处的张先生和李先生家在三个月内连续遭遇了七次大卡车侧翻在自家门口的场面,第八次有辆卡车冲进李先生家,造成三死一伤和房屋严重损毁的血腥惨案.经公安部门和交通部门协力调查,画出的现场示意图如图4-2-12所示.交警根据图示作出以下判断,你认为正确的是( ) A .由图可知汽车在拐弯时发生侧翻是因为车做离心运动 B .由图可知汽车在拐弯时发生侧翻是因为车做向心运动 C .公路在设计上可能内(东)高外(西)低D .公路在设计上可能外(西)高内(东)低图4-2-123.如图4-2-13所示,质量为m 的小球置于正方体的光滑盒子中,盒子的边长略大于球的直径.某同学拿着该盒子在竖直平面内做半径为R 的匀速圆周运动,已知重力加速度为g ,空气阻力不计,要使在最高点时盒子与小球之间恰好无作用力,则( )A .该盒子做匀速圆周运动的周期一定小于2πRgB .该盒子做匀速圆周运动的周期一定等于2πRgC .盒子在最低点时盒子与小球之间的作用力大小可能小于2mgD .盒子在最低点时盒子与小球之间的作用力大小可能大于2mg图4-2-134.图示所示, 为某一皮带传动装置.主动轮的半径为r 1,从动轮的半径为r 2.已知主动轮做顺时针转动,转速为n ,转动过程中皮带不打滑.下列说法正确的是( ) A .从动轮做顺时针转动 B .从动轮做逆时针转动C .从动轮的转速为r 1r 2nD .从动轮的转速为r 2r 1n5.质量为m 的石块从半径为R 的半球形的碗口下滑到碗的最低点的过程中,如果摩擦力的作用使得石块的速度大小不变,如图4-2-17所示,那么( ) A .因为速率不变,所以石块的加速度为零 B .石块下滑过程中受的合外力越来越大 C .石块下滑过程中受的摩擦力大小不变D .石块下滑过程中的加速度大小不变,方向始终指向球心图4-2-176.2008年4月28日凌晨,山东境内发生两列列车相撞事故,造成了大量人员伤亡和财产损失.引发事故的主要原因是其中一列列车转弯时超速行驶.如图4-2-18所示,是一种新型高速列车,当它转弯时,车厢会自动倾斜,提供转弯需要的向心力;假设这种新型列车以360 k m/h 的速度在水平面内转弯,弯道半径为1.5 k m ,则质量为75 k g 的乘客在列车转弯过程中所受到的合外力为( ) A .500 N B .1 000 N C .500 2 N D .0图4-2-187.如图4-2-19甲所示,一根细线上端固定在S 点,下端连一小铁球A ,让小铁球在水平面内做匀速圆周运动,此装置构成一圆锥摆(不计空气阻力).下列说法中正确的是( ) A .小球做匀速圆周运动时,受到重力、绳子的拉力和向心力作用B .小球做匀速圆周运动时的角速度一定大于 gl(l 为摆长)C .另有一个圆锥摆,摆长更大一点,两者悬点相同,如图4-2-19乙所示,如果改变两小球的角速度,使两者恰好在同一水平面内做匀速圆周运动,则B 球的角速度大于A 球的角速度D .如果两个小球的质量相等,则在图乙中两条细线受到的拉力相等图4-2-198.汽车甲和汽车乙质量相等,以相等速率沿同一水平弯道做匀速圆周运动,甲车在乙车的外侧.两车沿半径方向受到的摩擦力分别为Ff 甲和Ff 乙.以下说法正确的是( ) A .Ff 甲小于Ff 乙 B .Ff 甲等于Ff 乙 C .Ff 甲大于Ff 乙 D .Ff 甲和Ff 乙大小均与汽车速率无关9. 在高速公路的拐弯处,通常路面都是外高内低.如图4-2-20所示,在某路段汽车向左拐弯,司机左侧的路面比右侧的路面低一些.汽车的运动可看作是做半径为R 的圆周运动.设内外路面高度差为h ,路基的水平宽度为d ,路面的宽度为L .已知重力加速度为g .要使车轮与路面之间的横向摩擦力(即垂直于前进方向)等于零,则汽车转弯时的车速应等于( )A. gRhL B.gRhd C.gRLh D.gRdh10.如图4-2-24所示,一个竖直放置的圆锥筒可绕其中心OO′转动,筒内壁粗糙,筒口半径和筒高分别为R和H,筒内壁A点的高度为筒高的一半.内壁上有一质量为m的小物块随圆锥筒一起做匀速转动,则下列说法正确的是()A.小物块所受合外力指向O点B.当转动角速度ω=2gHR时,小物块不受摩擦力作用C.当转动角速度ω> 2gHR时,小物块受摩擦力沿AO方向D.当转动角速度ω< 2gHR时,小物块受摩擦力沿AO方向图4-2-2411. 如图4-2-25所示,一水平光滑、距地面高为h、边长为a的正方形MNPQ桌面上,用长为L的不可伸长的轻绳连接质量分别为m A、m B的A、B两小球,两小球在绳子拉力的作用下,绕绳子上的某点O以不同的线速度做匀速圆周运动,圆心O与桌面中心重合,已知m A=0.5 k g,L=1.2 m,L AO=0.8 m,a=2.1 m,h=1.25 m,A球的速度大小v A=0.4 m/s,重力加速度g取10 m/s2,求:(1)绳子上的拉力F以及B球的质量m B;(2)若当绳子与MN平行时突然断开,则经过1.5 s两球的水平距离;(与地面撞击后。

物理生活中的圆周运动题20套(带答案)

物理生活中的圆周运动题20套(带答案)

物理生活中的圆周运动题20套(带答案)一、高中物理精讲专题测试生活中的圆周运动1.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离【答案】(1)160N (2)2 【解析】 【详解】(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =12mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:2Bv N mg m R-=联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:2Dv mg m R=可得:v D =2m/s设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,2R =12gt 2解得:x =0.8m则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x ==2.如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =0.45m 的圆环剪去左上角127°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离为R ,P 点到桌面右侧边缘的水平距离为1.5R .若用质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,用同种材料、质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x =4t ﹣2t 2,物块从D 点飞离桌面后恰好由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为m 2的物块在D 点的速度;(2)判断质量为m 2=0.2kg 的物块能否沿圆轨道到达M 点:(3)质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中克服摩擦力做的功. 【答案】(1)2.25m/s (2)不能沿圆轨道到达M 点 (3)2.7J 【解析】 【详解】(1)设物块由D 点以初速度v D 做平抛运动,落到P 点时其竖直方向分速度为:v y 22100.45gR =⨯⨯m/s =3m/sy Dv v =tan53°43=所以:v D =2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg =m 2v R,解得:v 32gR ==m/s 物块到达P 的速度:22223 2.25P D y v v v =+=+=3.75m/s若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:()22222111cos5322M P m v m v m g R =-⋅+︒ 可得:20.3375M v =-,这显然是不可能的,所以物块不能到达M 点(3)由题意知x =4t -2t 2,物块在桌面上过B 点后初速度v B =4m/s ,加速度为:24m/s a =则物块和桌面的摩擦力:22m g m a μ= 可得物块和桌面的摩擦系数: 0.4μ=质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:p 10BC E m gx μ-=质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:2p 2212BC B E m gx m v μ-=可得,2m BC x = 在这过程中摩擦力做功:12 1.6J BC W m gx μ=-=-由动能定理,B 到D 的过程中摩擦力做的功:W 2222201122D m v m v =- 代入数据可得:W 2=-1.1J质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功12 2.7J W W W =+=-即克服摩擦力做功为2.7 J .3.如图所示,水平转盘可绕竖直中心轴转动,盘上放着A 、B 两个物块,转盘中心O 处固定一力传感器,它们之间用细线连接.已知1kg A B m m ==两组线长均为0.25m L =.细线能承受的最大拉力均为8m F N =.A 与转盘间的动摩擦因数为10.5μ=,B 与转盘间的动摩擦因数为20.1μ=,且可认为最大静摩擦力等于滑动摩擦力,两物块和力传感器均视为质点,转盘静止时细线刚好伸直,传感器的读数为零.当转盘以不同的角速度勾速转动时,传感器上就会显示相应的读数F ,g 取210m/s .求:(1)当AB 间细线的拉力为零时,物块B 能随转盘做匀速转动的最大角速度; (2)随着转盘角速度增加,OA 间细线刚好产生张力时转盘的角速度;(3)试通过计算写出传感器读数F 随转盘角速度ω变化的函数关系式,并在图乙的坐标系中作出2F ω-图象.【答案】(1)12/rad s ω= (2)222/rad s ω= (3)2252/m rad s ω=【解析】对于B ,由B 与转盘表面间最大静摩擦力提供向心力,由向心力公式有:2212B B m g m L μω=代入数据计算得出:12/rad s ω=(2)随着转盘角速度增加,OA 间细线中刚好产生张力时,设AB 间细线产生的张力为T ,有:212A A m g T m L μω-=2222B B T m g m L μω+=代入数据计算得出:222/rad s ω= (3)①当2228/rad s ω≤时,0F =②当2228/rad s ω≥,且AB 细线未拉断时,有:21A A F m g T m L μω+-=222B B T m g m L μω+=8T N ≤所以:2364F ω=-;222228/18/rad s rad s ω≤≤ ③当218ω>时,细线AB 断了,此时A 受到的静摩擦力提供A 所需的向心力,则有:21A A m g m w L μ≥所以:2222218/20/rad s rad s ω<≤时,0F =当22220/rad s ω>时,有21A A F m g m L μω+=8F N ≤所以:2154F ω=-;2222220/52/rad s rad s ω<≤若8m F F N ==时,角速度为:22252/m rad s ω=做出2F ω-的图象如图所示;点睛:此题是水平转盘的圆周运动问题,解决本题的关键正确地确定研究对象,搞清向心力的来源,结合临界条件,通过牛顿第二定律进行求解.4.如图所示,光滑水平面AB 与竖直面内的半圆形导轨在B 点相接,导轨半径为R .一个质量为m 的物体将弹簧压缩至A 点后由静止释放,在弹力作用下物体获得某一向右速度后脱离弹簧,当它经过B 点进入导轨瞬间对导轨的压力为其重力的7倍,之后向上运动恰能完成半个圆周运动到达C 点.试求:(1)弹簧开始时的弹性势能.(2)物体从B 点运动至C 点克服阻力做的功. (3)物体离开C 点后落回水平面时的速度大小. 【答案】(1)3mgR (2)0.5mgR (3)52mgR 【解析】试题分析:(1)物块到达B 点瞬间,根据向心力公式有:解得:弹簧对物块的弹力做的功等于物块获得的动能,所以有(2)物块恰能到达C 点,重力提供向心力,根据向心力公式有:所以:物块从B运动到C,根据动能定理有:解得:(3)从C点落回水平面,机械能守恒,则:考点:本题考查向心力,动能定理,机械能守恒定律点评:本题学生会分析物块在B点的向心力,能熟练运用动能定理,机械能守恒定律解相关问题.5.如图所示,一质量为m的小球C用轻绳悬挂在O点,小球下方有一质量为2m的平板车B静止在光滑水平地面上,小球的位置比车板略高,一质量为m的物块A以大小为v0的初速度向左滑上平板车,此时A、C间的距离为d,一段时间后,物块A与小球C发生碰撞,碰撞时两者的速度互换,且碰撞时间极短,已知物块与平板车间的动摩擦因数为μ,重力加速度为g,若A碰C之前物块与平板车已达共同速度,求:(1)A、C间的距离d与v0之间满足的关系式;(2)要使碰后小球C能绕O点做完整的圆周运动,轻绳的长度l应满足什么条件?【答案】(1);(2)【解析】(1)A碰C前与平板车速度达到相等,设整个过程A的位移是x,由动量守恒定律得由动能定理得:解得满足的条件是(2)物块A与小球C发生碰撞,碰撞时两者的速度互换,C以速度v开始做完整的圆周运动,由机械能守恒定律得小球经过最高点时,有解得【名师点睛】A 碰C 前与平板车速度达到相等,由动量守恒定律列出等式;A 减速的最大距离为d ,由动能定理列出等式,联立求解。

(物理)物理生活中的圆周运动题20套(带答案)及解析

(物理)物理生活中的圆周运动题20套(带答案)及解析

(物理)物理生活中的圆周运动题20套(带答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.光滑水平面AB 与竖直面内的圆形导轨在B 点连接,导轨半径R =0.5 m ,一个质量m =2 kg 的小球在A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能Ep =49 J ,如图所示.放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C ,g 取10 m/s 2.求:(1)小球脱离弹簧时的速度大小; (2)小球从B 到C 克服阻力做的功;(3)小球离开C 点后落回水平面时的动能大小. 【答案】(1)7/m s (2)24J (3)25J 【解析】 【分析】 【详解】(1)根据机械能守恒定律 E p =211m ?2v ① v 12Epm=7m/s ② (2)由动能定理得-mg ·2R -W f =22211122mv mv - ③ 小球恰能通过最高点,故22v mg m R= ④ 由②③④得W f =24 J(3)根据动能定理:22122k mg R E mv =-解得:25k E J =故本题答案是:(1)7/m s (2)24J (3)25J 【点睛】(1)在小球脱离弹簧的过程中只有弹簧弹力做功,根据弹力做功与弹性势能变化的关系和动能定理可以求出小球的脱离弹簧时的速度v;(2)小球从B 到C 的过程中只有重力和阻力做功,根据小球恰好能通过最高点的条件得到小球在最高点时的速度,从而根据动能定理求解从B 至C 过程中小球克服阻力做的功; (3)小球离开C 点后做平抛运动,只有重力做功,根据动能定理求小球落地时的动能大小2.如图所示,用绝缘细绳系带正电小球在竖直平面内运动,已知绳长为L ,重力加速度g ,小球半径不计,质量为m ,电荷q .不加电场时,小球在最低点绳的拉力是球重的9倍。

(1)求小球在最低点时的速度大小;(2)如果在小球通过最低点时,突然在空间产生竖直向下的匀强电场,若使小球在后面的运动中,绳出现松软状态,求电场强度可能的大小。

圆周运动典型例题50道

圆周运动典型例题50道

圆周运动典型例题50道1. 一质点绕一个定半径圆轨道做匀速圆周运动,已知质点每秒的线速度为8 m/s,求质点的角速度。

答案:2 rad/s2. 一个自行车轮子的半径为0.5 m,自行车轮子的角速度为5 rad/s,求自行车轮子的线速度。

答案:2.5 m/s3. 一个半径为2 m的圆盘以每分钟180转的角速度旋转,求圆盘上一点的线速度。

答案:376.99 m/min4. 一个转速为1200 rpm的转盘半径为0.1 m,求转盘上一点的线速度。

答案:125.66 m/s5. 一个半径为3 m的汽车轮胎正在行驶,已知轮胎转速为100 rpm,求汽车轮胎的线速度。

答案:31.42 m/s6. 一个质点以半径为4 m的圆轨道做匀速圆周运动,已知质点的线速度为10 m/s,求质点的角速度。

答案:2.5 rad/s7. 一个自行车轮子的半径为0.2 m,自行车轮子的线速度为3 m/s,求自行车轮子的角速度。

答案:15 rad/s8. 一个半径为5 m的圆盘上一点的线速度为20 m/s,求圆盘的角速度。

答案:4 rad/s9. 一个转盘上一点的线速度为10 m/s,转盘的半径为2 m,求转盘的角速度。

答案:5 rad/s10. 一个汽车轮胎的线速度为20 m/s,轮胎半径为2 m,求汽车轮胎的角速度。

答案:10 rad/s11. 一个半径为3 m的旋转半球的角速度为2 rad/s,求旋转半球上一点的线速度。

答案:6 m/s12. 一个旋转圆环的半径为1 m,旋转圆环的线速度为10 m/s,求旋转圆环的角速度。

答案:10 rad/s13. 一个直径为10 cm的转盘上一点的线速度为5 m/s,求转盘的角速度。

答案:10 rad/s14. 一个转速为500 rpm的圆盘上一点的线速度为4 m/s,求圆盘的半径。

答案:0.51 m15. 一个半径为2 m的转盘上一点的线速度为8 m/s,求转盘的转速。

答案:60 rpm16. 一个转速为1000 rpm的汽车轮胎的线速度为5 m/s,求汽车轮胎的半径。

圆周运动练习题(打印版)

圆周运动练习题(打印版)

圆周运动练习题(打印版)一、选择题1. 物体做匀速圆周运动时,下列哪个物理量是恒定不变的?- A. 线速度- B. 角速度- C. 向心加速度- D. 向心力2. 一个物体在水平面上做匀速圆周运动,下列哪个力是不做功的?- A. 重力- B. 支持力- C. 摩擦力- D. 向心力3. 一个物体在竖直平面内做匀速圆周运动,若物体的重力为mg,半径为r,那么物体的向心力大小为:- A. mg- B. 2mg- C. mg/r- D. 2mg/r二、填空题1. 物体做匀速圆周运动时,其向心加速度的大小为__________。

2. 物体做匀速圆周运动时,其角速度与周期的关系为__________。

3. 若物体在圆周运动中,半径为r,线速度为v,则其向心力的大小为__________。

三、计算题1. 一个质量为2kg的物体,以5m/s的线速度在半径为10m的圆周上做匀速圆周运动。

求物体的角速度、周期和向心加速度。

2. 一个物体在竖直平面内做匀速圆周运动,其质量为1.5kg,半径为2m。

若物体在最高点时,支持力为0,求物体的线速度。

四、简答题1. 解释为什么在圆周运动中,向心力总是指向圆心。

2. 描述物体在匀速圆周运动中,向心加速度的方向是如何变化的。

参考答案一、选择题1. B2. D3. C二、填空题1. \( \frac{v^2}{r} \)2. \( \omega = \frac{2\pi}{T} \)3. \( \frac{mv^2}{r} \)三、计算题1. 角速度 \( \omega = \frac{v}{r} = \frac{5}{10} \) rad/s = 0.5 rad/s周期 \( T = \frac{2\pi r}{v} = \frac{2\pi \times 10}{5} \) s = 4\( \pi \) s向心加速度 \( a_c = \frac{v^2}{r} = \frac{25}{10} \) m/s²= 2.5 m/s²2. 由于支持力为0,物体在最高点的向心力由重力提供,所以 \( mg = \frac{mv^2}{r} \)解得 \( v = \sqrt{gr} = \sqrt{9.8 \times 2} \) m/s ≈ 4.43 m/s四、简答题1. 向心力是物体在圆周运动中受到的力,它的作用是使物体保持在圆周路径上。

圆周运动基础练习题(含答案)

圆周运动基础练习题(含答案)

圆周疏通训练题之阳早格格创做1.下列闭于干匀速圆周疏通的物体所受的背心力的道法中,精确的是(选C )A.物体除其余的力中还要受到—个背心力的效率C.背心力是一个恒力B.物体所受的合中力提供背心力D.背心力的大小—曲正在变更2.闭于匀速圆周疏通的角速度与线速度,下列道法中精确的是(选BC)A.半径一定,角速度与线速度成反比B.半径一定,角速度与线速度成正比C.线速度一定,角速度与半径成反比D.角速度一定,线速度与半径成正比3.仄常往来的钟表,其时针战分针皆正在干匀速转化,下列闭系中精确的是(选B)A.时针战分针的角速度相共B.分针角速度是时针角速度的12倍C.时针战分针的周期相共D.分针的周期是时针周期的12倍4.A、B二个量面,分别干匀速圆周疏通,正在相共的时间内它们通过的路途之比sA∶sB=2∶3,转过的角度之比ϕA∶ϕB=3∶2,则下列道法精确的是(选BC)A.它们的半径之比RA∶RB=2∶3 B.它们的半径之比RA∶RB=4∶9C.它们的周期之比TA∶TB=2∶3 D.它们的周期之比TA∶TB=3∶25.如图所示的圆锥晃中,晃球A正在火仄里上做匀速圆周疏通,闭于A的受力情况,下列道法中精确的是(选C)A.晃球A受沉力、推力战背心力的效率;B.晃球A受推力战背心力的效率;C.晃球A受推力战沉力的效率;D.晃球A受沉力战背心力的效率.(第5题)6.汽车甲战汽车乙品量相等,以相等速度率沿共一火仄直讲干匀速圆周疏通,甲车正在乙车的中侧.二车沿半径目标受到的摩揩力分别为Ff甲战Ff乙,以下道法精确的是(选A)A. Ff甲小于Ff乙B. Ff甲等于Ff乙C. Ff甲大于Ff乙D. Ff甲战Ff乙大小均与汽车速率无闭7.一辆卡车正在丘陵天匀速止驶,天形如图所示,由于轮胎太旧,途中爆胎,爆胎大概性最大的天段应是(选D)A.a处B.b处C.c处D.d处8.游客乘坐过山车,正在圆弧轨讲最矮面处赢得的背心加(第15题)速度达到20 m/s2,g与10 m/s2,那么正在此位子座椅对于游客的效率力相称于游客沉力的(选C)A.1倍B.2 倍C.3倍D.4倍9.一汽车通过拱形桥顶面时速度为10 m/s,车对于桥顶的压3,如果要使汽车正在桥顶对于桥里不压力,车力为车沉的4速起码为(选B)A.15 m/s B.20 m/s C.25 m/s D.30 m/sD.大概是推力,大概是推力,也大概等于整11.飞机正在飞越安定洋上空的历程中,如果脆持飞止速度的大小战距离海仄里的下度稳定,则以下道法中精确的是(选C)A.飞机干的是匀速曲线疏通12.一滑雪者连共他的滑雪板品量为70kg,他滑到凸形的坡底时的速度是20m/s,坡底的圆弧半径是50m,则正在坡底时雪天对于滑雪板的收援力是几?1260N13.品量为m的小球,用一条绳子系正在横曲仄里内干圆周疏通,小球到达最下面时的速度为v,到达最矮面时的速形成2gR ,则二位子处绳子所受的弛力之好是几?4v6mg14.汽车沿半径为R = 100m的圆跑讲止驶,设跑讲的路里是1,要使汽火仄的,路里效率于车的最大静摩揩力是车沉的10车不致冲出圆跑讲,车速最大不克不迭超出几?10sm/。

完整版)匀速圆周运动经典练习题

完整版)匀速圆周运动经典练习题

完整版)匀速圆周运动经典练习题1.对于匀速圆周运动的物体,正确的说法是角速度不变,周期不变,线速度大小随半径变化而改变。

2.向心加速度描述的是向心力变化的快慢。

3.由图像可以知道,甲球运动时,线速度大小随半径变化而改变,角速度大小保持不变;乙球运动时,线速度大小保持不变,角速度大小随半径变化而改变。

4.小物体A受力情况是受重力、支持力和向心力。

5.当球第最低点P时,小球速率最大,小球加速度为重力加向心加速度的合力,小球的向心加速度保持不变,摆线上的张力保持不变。

6.小球过最高点时,杆对球的作用力一定跟小球所受重力的方向相反,此时重力大于杆对球的作用力;小球过最高点时的最小速度为√(2gR)。

7.对轨道压力的大小是3mg。

8.当火车以v的速度通过此弯路时,火车所受重力、轨道面支持力和外轨对轮缘弹力的合力提供向心力。

9.两个质量不同的小球用长度不等的细线拴在同一点,并在同一水平面内作匀速圆周运动。

根据运动学公式,运动周期与圆周半径和角速度有关,而两个小球的圆周半径和角速度不同,因此它们的运动周期不同。

根据匀速圆周运动的定义,线速度等于圆周半径乘以角速度,因此两个小球的运动线速度不同。

根据向心加速度公式,向心加速度等于圆周半径乘以角速度的平方,再除以重力加速度,因此两个小球的向心加速度不同。

答案为(A)运动周期不同,(B)运动线速度不同,(D)向心加速度不同。

10.一个大轮通过皮带拉着小轮转动,皮带和两轮之间无滑动,大轮的半径是小轮的2倍,大轮上的一点s离转动轴的距离是半径的5/20.根据匀速圆周运动的向心加速度公式,向心加速度等于圆周半径乘以角速度的平方,再除以重力加速度。

大轮上的S点和小轮上的Q点的圆周半径分别是5R/20和R,因此它们的向心加速度分别为10和40 m/s^2.答案为a_S=10m/s^2,a_Q=40 m/s^2.11.半径为r的圆筒绕竖直中心轴OO'转动,小物块A靠在圆筒的内壁上,它与圆筒的静摩擦因数为μ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 •甲、乙两物体都做匀速圆周运动,其质 量之比为1 :2 ,转动半径之比为1 : 2,在相等时间里甲转过60°乙转过45°贝陀们所受外力的合力之比为()3 .下列各种运动中,属于匀变速运动的有( )A .匀速直线运动B .匀速圆周运动 C.平抛运动 D .竖直上抛运动 A .向心力是指向圆心 方向的合力,是根据力的作用效果命名的 B .向心力可以是多个 力的合力,也可以是其中一个力或一个力 的分力 C.对稳定的圆周运动 ,向心力是一个恒力 D .向心力的效果是改 5.一物体在水平面内沿半 变质点的线速度大小 径R = 20cm 的圆形轨道 做匀速圆周运动,线速度 v = 0.2m/s , 4•关于匀速圆周运动 的向心力,下列说法正 确的是( ) s 。

m/s 2,它的周期为 那么,它的向心加速度为6.在一段半径为 R= 15m 的圆孤形水平弯道上,已知弯道路面对汽车轮胎的 最大静摩擦力等于车重的 卩=0.70倍,则汽车拐弯时的最大速度是 m/s 7.在如图所示的圆锥摆中,已知绳子 长度为L ,绳子转动过程中与 竖 直方向的夹角为 0,试求小球做圆周运动的周期。

8如图所示,质量 拉力达到F = 18 m = 1 kg 的小球用细线拴住,线长 1 = 0.5 m ,细线所受 N 时就会被拉断。

当小球从图示位置释放后摆到悬点的正下 方时,细线恰 好被拉断。

若此 时小球距水平地面的高度 h = 5 m ,重力加速 度g = 10 m/s 2,求小 处到地面上P 点的距离?求落地速度? ( P 点在悬点的正下方) 球落地 A . 1 : 4 B. 2 : 3 C . 4 : 9 D. 9 :2.如图所示,有一质量为 M 的大圆环,半径为R ,被一轻杆固定后悬挂在0点, 有两个质量为 m 的小环(可视为质点),同时从大环两侧的对称位 置由静止滑下。

两小环同时滑到大环 底部时,速度都为v ,则此时大环对轻杆的拉力大小为( )2A .(2m+2M ) gB . Mg — 2mv /R9如图所示,半径R = 0.4m的光滑半圆轨道与粗糙的水平面相切于A点,质量为1kg的小物体(可视为质点)在水平拉力F的作用下,从C点运动到A点,物体从A点进入半圆轨道的同时撤去外力F,物体沿半圆轨道通过最高点B后作平抛运动,正好落在C点,已知AC= 2m, F = 15N, g 取10m/s2,试求:物体在B点时的速度以及此时半圆轨道对物体的弹力?20.如图所示,半径为R,内径很小的光滑半圆管竖直放置,两个质以不同速率进入管内,A通过最高点C时,对管壁上部的压力为3mg, B通过最高点C 时,对管壁下部的压力为0. 75mg.求A、B两球落地点间的距离.21、如图所示,将一质量为m的摆球用长为L的细绳吊起,上端固定,使摆球在水平面内做匀速圆周运动,细绳就会沿圆锥面旋转,这样就构成了一个圆锥摆。

关于摆球的受力情况,下列说法中正确的是()A•摆球受重力、拉力和向心力的作用.0B.摆球受拉力和向心力的作用Lc.摆球受重力和拉力的作用二'D.摆球受重力和向心力的作用-22、一轻绳与水桶相连,水桶中装有水,水桶与绳一起在竖直平面内做圆周运动,如图所示,水的质量m= 0.5kg,水的重心到转轴的距离I = 50cm。

⑴若在最高点水不流出来,求桶此时的最小速率;⑵若在最高点水桶的速率v= 3m/s,求水对桶底的压力是多大。

23如图所示,一圆盘可绕一通过圆心O且垂直盘面的竖直轴转动。

在圆盘上放置一与圆盘的动摩擦因数为□,距圆心O为R的木块,随圆盘一起作匀速转动, 求转盘的最大角速度?Z—FC A量均为m的小球A、BA B)Mm Mm CB)C DC.增大到原来的四倍D .减小到原来的四分之一之比为2 : 1 , CD 两点的半径之比也为 2 : 1,则ABCD 四点的角速度 31•两个大 轮半径相等的皮带轮的结构如图所示,AB 两点的半径之比为 ___ ,这四点的线速度之比为 ______ ,向心加速度之比为置一个角度后无初速 释放。

当绳摆到竖直位置时,与钉在 0点正下方P 点的钉子相碰。

在30.汽车在水平地面上转弯,地面对车的摩擦力已达到最大值。

当汽车的A .增大到原来的二倍B .减小到原来的一半 24:两个质量不同的 平面内作匀速圆周运 小球,被长度不等的细线悬挂在同一点,动,如图所示。

则两个小球的(。

有质量 A 、运动周期相等C 、运动角速度相等 25: 一个内壁光滑的 相等的两个小球A 、 B 、运动线速度相等D 、向心加速度相等 圆锥形筒的轴线垂直水平面,圆锥筒固定 B ,分别沿着筒的内壁在水平面内作匀速圆周运动。

C 、A 球的运动周期必大于 B 球的运动周期 最大角速度不能超过()D .盹mR29.如图所 示,轻绳的上端系于天花板上的 0点,下端系有一只小球。

将 小球拉离平衡位绳与钉子相碰瞬间前后,以下物理量的大小没有发生变化的是A .小球的线速度大小B .小球的角速度大小C.小球的向心加速度大小D .小球所受拉力的大小速率加大到原来的二 倍时,若使车在地面转弯时仍不打滑,汽车的转弯半径应(并在同一水如图所示。

A 的运动半径较大,则(A 、A 球的角速度必小于B 球的角速度B 、A 球的线速度必小于 B 球的线速度 D 、A 球对筒壁的压力必大 于B 球对筒壁的压力26:半径为R 的光滑半圆球固定在水平面上,顶部有一小物体今给小物体一个水平 初速度V 0- gR,则物体将:(m 如图所示,A 、 沿球面滑至M 点;B 、 先沿球面滑至某点 N 再离开球面做斜下抛运动;C 、 按半径大于 R 的新圆弧轨道运动;D 、立即离开半圆球作 平抛运动.27.在长绳的一端系一 个质量为m 的小球,绳的长度为 L ,用绳拉着小球在竖直面内 做圆 周运动。

若小球恰能 通过最高点,则在最高点的速度为 _______________________ ;若绳能够承受的最大拉 力为7mg ,则小球到达最低点速度的不得超过 ____________ <28.在质量为M 的电动机飞轮上,固定着一个质量为 m 的重物,重物到轴mRg的距离为R ,如图所示,为了使电动机不从地面上跳起,电 动机飞轮转动的mRA. J gmRg32.如图所示,把质量为0.6 kg的物体A放在水平转盘上,A的重心到转盘中心O点的距离为0.2 m,若A与转盘间的最大静摩擦力为3 N, g= 10 m/s 2,求:(1)转盘绕中心O以3 = 2 rad / s的角速度旋转,A相对转盘静止时,转盘对A摩擦力的大小与方向。

(2)为使物体A相对转盘静止,转盘绕中心O旋转的角速度3的取值范围。

33 .质量M=1 000 kg的汽车通过圆形拱形桥时的速率恒定,拱形桥的半径R=10 m。

试求:(1)汽车在最高点对拱形桥的压力为车重的一半时,汽车的速率;(2)汽车在最高点对拱形桥的压力为零时,汽车的速率。

(重力加速度g= 10 m/s2)34.如图所示,位于竖直平面上的-圆弧轨道光滑,半径为R, OB沿竖直方向,上端A距4地面高度为H,质量为m的小球从A点由静止释放,到达B点时的速度为2gR ,最后落在地面上C点处,不计空气阻力,求:(1)小球刚运动到B点时的加速度为多大,对轨(2)小球落地点C与B点水平距离为多少。

35.—作匀速圆周运动a, 的物体,半径为R,向心加速度为A.线速度v= aRB.角速度3= a/ RC.周期T=2 R/aD.转速n=236.如图所 示,在匀速转动的圆筒内壁上紧靠着一个物 物体相对桶壁静止.则 体与圆筒一起运动, ( ) A. 物体受到4个力的作用. B. 物体所受向心力是 C. 物体所受向心力是 D. 物体所受向心力是 物体所受的重力提供的. 物体所受的弹力提供的. 物体所受的静摩擦力提供的 37. 水平匀 速转动的圆盘上的物体相对于圆盘静止,则 A .沿圆盘平面指向转轴 B .沿圆盘平面背离转轴 C.沿物体做圆周运动的轨迹的切线方向 D .无法确定 38. 质量为m 的小球在竖直平面内的圆形 轨道内侧运动,经过最高点而刚好不脱离轨 速度为V ,则当小球以2v 的速度经过最高 点时,对轨道内侧竖直向上圆盘对物体的摩擦力方向是 道时压力的大小为 () 6 a A 8 6说法 m中正确的有 A H小球通过最高点的 B C 小球在水平线曲以 D 0 B C D /r -2图2V m2 R42.如图所示,已知 块滑到圆弧最底端速 最小速度为0 以下管道中运动时,外侧管壁对小球一定有作用力 «*小球在水平线ab m的滑 ) 大小为2 rad/s大小为6m/s 大小不变 大小不变 41•如图所示,小球m 在竖直放置的光滑圆形管道内做圆周运动,下列 上管道中运动时,内侧管壁对小球一定有 作用力 s m甲“ 乙 C. Mg+mg D . Mg+ mg半圆形碗半径为R率为u,碗仍静止, 所示,经过最低点的 速度为v ,物体与轨道之 间的滑动摩擦因 数 为口,则它在最低点时所受到的摩擦力大小为_____________________ . 40.甲、乙两球做匀速 圆周运动,向心加速度 a 随半径r 变化的关系图像如图 像可知: 甲球运动时,角速度 乙球运动时,线速度 甲球运动时,线速度 乙球运动时,角速度 43. 某汽车以相同的速率v 分别通过凸形桥与凹形桥,若两桥的桥面 最高点及 最底点附近均可视为圆形,且半径均为 R ,设汽车运动到凸形桥的最高点所受 的支持力为N 1,运动到凹形桥的最底点所受的支持力为N 2,试求 N 1和N 2的比值为 44. 如图2所示,汽车在一段丘陵地匀速率行驶,由于轮胎太旧 而发生爆胎,则图中各点中最易发生爆胎的位置是在 A. a 处 B . b 处C. c 处 D . d 处45. 如图3所示,有一绳长为L ,上端固定在滚轮A 的轴上,下端挂Mg+ mg +m V2 _R小球通过最高点的最小速度为 v A. mg + m v 2 B R质量为M静止在地面上,质量为 此时地面受到碗的压力为 ( R A . 0 B . mg C . 3mg D . 5mg 39.一质量 为m 的物体,沿半径为 R 的圆形向下凹的轨道滑行,如图质量为m 的物体。

现滚轮和物体一起以速度 v 匀速向右运动,当滚轮碰到固定 挡板B 突然停止瞬间,物体 m 的速度为 _______________________ ,绳子拉力的大小为 46. A 、B 两质点分别做匀速圆 周运动,若在相同时间内,它们通过的弧长之比Sa : Sb=2: 3,而转过的角度之比$ a :© b=3 : 2,则它们的周期之比 Ta : Tb= ________ ,线速度之比va : vb= ______ &如图所示,两个相对斜面的倾角分 别为37 °和53 °在斜面顶点把两个小球以同样大小的初速度分别向左、 向右水平抛出,小球都落在斜面上。

相关文档
最新文档