万有引力与航天高考题
06 万有引力与航天高考真题分项详解(解析版)
十年高考分类汇编专题06万有引力与航天(2011-2020)目录题型一、考查万有引力定律、万有引力提供物体重力的综合类问题 ............................................ 1 题型二、考查万有引力提供卫星做圆周运动向心力的相关规律 .................................................... 6 题型三、考查飞船的变轨类问题 ...................................................................................................... 18 题型四、考查万有引力与能量结合的综合类问题 .......................................................................... 20 题型五、考查双星与三星系统的规律 .............................................................................................. 21 题型六、关于开普勒三定律的相关考查 .......................................................................................... 22 题型七、天体运动综合类大题 . (25)题型一、考查万有引力定律、万有引力提供物体重力的综合类问题1.(2020全国1).火星的质量约为地球质量的110,半径约为地球半径的12,则同一物体在火星表面与在地球表面受到的引力的比值约为( ) A. 0.2B. 0.4C. 2.0D. 2.5【考点】万有引力在非绕行问题中的应用 【答案】B【解析】设物体质量为m ,在火星表面所受引力的大小为F 1,则在火星表面有:1121M mF GR 在地球表面所受引力的大小为F 2,则在地球表面有:2222M mF GR 由题意知有:12110M M ;1212R R故联立以上公式可得:21122221140.4101F M R F M R ==⨯=。
高考物理万有引力与航天解题技巧(超强)及练习题(含答案)
最新高考物理万有引力与航天解题技巧(超强)及练习题(含答案)一、高中物理精讲专题测试万有引力与航天1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求:(1)小球抛出的初速度v o(2)该星球表面的重力加速度g (3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示)【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) 2hR t【解析】(1)小球做平抛运动,在水平方向:x=vt ,解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2,解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m ,由万有引力等于物体的重力得:mg=2Mm GR所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2);(4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得:22Mm vGmRR重力等于万有引力,即mg=2Mm GR,解得该星球的第一宇宙速度为:2hR v gRt2.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量.(引力常量为G )【答案】【解析】设两颗恒星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,角速度分别为w 1,w 2.根据题意有w 1=w 2 ① (1分)r 1+r 2=r ② (1分)根据万有引力定律和牛顿定律,有G③ (3分)G④ (3分)联立以上各式解得⑤ (2分)根据解速度与周期的关系知⑥ (2分)联立③⑤⑥式解得(3分)本题考查天体运动中的双星问题,两星球间的相互作用力提供向心力,周期和角速度相同,由万有引力提供向心力列式求解3.人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同一个高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤是从高度为h 处下落,经时间t 落到月球表面.已知引力常量为G ,月球的半径为R .(1)求月球表面的自由落体加速度大小g 月;(2)若不考虑月球自转的影响,求月球的质量M 和月球的“第一宇宙速度”大小v .【答案】(1)22h g t月(2)222hR MGt;2hR vt【解析】【分析】(1)根据自由落体的位移时间规律可以直接求出月球表面的重力加速度;(2)根据月球表面重力和万有引力相等,利用求出的重力加速度和月球半径可以求出月球的质量M ;飞行器近月飞行时,飞行器所受月球万有引力提供月球的向心力,从而求出“第一宇宙速度”大小.【详解】(1)月球表面附近的物体做自由落体运动h =12g 月t2月球表面的自由落体加速度大小g 月=22h t(2)若不考虑月球自转的影响G2Mm R=mg月月球的质量222hR M Gt=质量为m'的飞行器在月球表面附近绕月球做匀速圆周运动m ′g 月=m ′2vR月球的“第一宇宙速度”大小2hR v g R t月==【点睛】结合自由落体运动规律求月球表面的重力加速度,根据万有引力与重力相等和万有引力提供圆周运动向心力求解中心天体质量和近月飞行的速度v .4.2018年11月,我国成功发射第41颗北斗导航卫星,被称为“最强北斗”。
高考物理万有引力与航天常见题型及答题技巧及练习题(含答案)及解析
一、高中物理精讲专题测试万有引力与航天
1.一宇航员站在某质量分布均匀的星球表面上沿竖直方向以初速度v0抛出一个小球,测得小球经时间t落回抛出点,已知该星球半径为R,引力常量为G,求:
(1)该星球表面的重力加速度;
(2)该星球的密度;
(3)该星球的“第一宇宙速度”.
(1)木星的质量M;
(2)木星表面的重力加速度 .
【答案】(1) (2)
【解析】
(1)由万有引力提供向心力
可得木星质量为
(2)由木星表面万有引力等于重力:
木星的表面的重力加速度
【点睛】万有引力问题的运动,一般通过万有引力做向心力得到半径和周期、速度、角速度的关系,然后通过比较半径来求解.
8.阅读如下资料,并根据资料中有关信息回答问题
(2)黑洞密度极大,质量极大,半径很小,以最快速度传播的光都不能逃离它的引力,因此我们无法通过光学观测直接确定黑洞的存在.假定黑洞为一个质量分布均匀的球形天体.
a.因为黑洞对其他天体具有强大的引力影响,我们可以通过其他天体的运动来推测黑洞的存在.天文学家观测到,有一质量很小的恒星独自在宇宙中做周期为T,半径为r0的匀速圆周运动.由此推测,圆周轨道的中心可能有个黑洞.利用所学知识求此黑洞的质量M;
3.设地球质量为M,自转周期为T,万有引力常量为G.将地球视为半径为R、质量分布均匀的球体,不考虑空气的影响.若把一质量为m的物体放在地球表面的不同位置,由于地球自转,它对地面的压力会有所不同.
(1)若把物体放在北极的地表,求该物体对地表压力的大小F1;
(2)若把物体放在赤道的地表,求该物体对地表压力的大小F2;
2.人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同一个高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤 是从高度为h处下落,经时间t落到月球表面.已知引力常量为G,月球的半径为R.
高考物理万有引力与航天题20套(带答案)含解析
高考物理万有引力与航天题20套(带答案)含解析一、高中物理精讲专题测试万有引力与航天1.宇宙中存在一些离其他恒星较远的三星系统,通常可忽略其他星体对它们的引力作用,三星质量也相同.现已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星做囿周运动,如图甲所示;另一种是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的囿形轨道运行,如图乙所示.设这三个 星体的质量均为 m ,且两种系统中各星间的距离已在图甲、图乙中标出,引力常量为 G , 则: (1)直线三星系统中星体做囿周运动的周期为多少? (2)三角形三星系统中每颗星做囿周运动的角速度为多少?【答案】(1)345LGm233Gm L 【解析】 【分析】(1)两侧的星由另外两个星的万有引力的合力提供向心力,列式求解周期; (2)对于任意一个星体,由另外两个星体的万有引力的合力提供向心力,列式求解角速度; 【详解】(1)对两侧的任一颗星,其它两个星对它的万有引力的合力等于向心力,则:222222()(2)Gm Gm m L L L Tπ+= 345L T Gm∴=(2)三角形三星系统中星体受另外两个星体的引力作用,万有引力做向心力,对任一颗星,满足:2222cos30()cos30LGm m L ω︒=︒解得:33Gm L ω2.“天宫一号”是我国自主研发的目标飞行器,是中国空间实验室的雏形.2013年6月,“神舟十号”与“天宫一号”成功对接,6月20日3位航天员为全国中学生上了一节生动的物理课.已知“天宫一号”飞行器运行周期T ,地球半径为R ,地球表面的重力加速度为g ,“天宫一号”环绕地球做匀速圆周运动,万有引力常量为G .求:(1)地球的密度; (2)地球的第一宇宙速度v ; (3)“天宫一号”距离地球表面的高度. 【答案】(1)34gGRρπ=(2)v =h R = 【解析】(1)在地球表面重力与万有引力相等:2MmGmg R=, 地球密度:343M M R Vρπ==解得:34gGRρπ=(2)第一宇宙速度是近地卫星运行的速度,2v mg m R=v =(3)天宫一号的轨道半径r R h =+, 据万有引力提供圆周运动向心力有:()()2224MmGm R h TR h π=++,解得:h R =3.载人登月计划是我国的“探月工程”计划中实质性的目标.假设宇航员登上月球后,以初速度v 0竖直向上抛出一小球,测出小球从抛出到落回原处所需的时间为t.已知引力常量为G ,月球的半径为R ,不考虑月球自转的影响,求: (1)月球表面的重力加速度大小g 月; (2)月球的质量M ;(3)飞船贴近月球表面绕月球做匀速圆周运动的周期T .【答案】(1)02v t ;(2)202R v Gt;(3)2【解析】 【详解】(1)小球在月球表面上做竖直上抛运动,有02v t g =月月球表面的重力加速度大小02v g t=月 (2)假设月球表面一物体质量为m ,有2=MmGmg R 月 月球的质量202R v M Gt=(3)飞船贴近月球表面做匀速圆周运动,有222Mm G m R R T π⎛⎫= ⎪⎝⎭飞船贴近月球表面绕月球做匀速圆周运动的周期22RtT v π=4.“嫦娥一号”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步.已知“嫦娥一号”绕月飞行轨道近似为圆形,距月球表面高度为H ,飞行周期为T ,月球的半径为R ,引力常量为G .求:(1) “嫦娥一号”绕月飞行时的线速度大小; (2)月球的质量;(3)若发射一颗绕月球表面做匀速圆周运动的飞船,则其绕月运行的线速度应为多大. 【答案】(1)()2R H Tπ+(2)()3224R H GT π+(3)()2R H R HTRπ++ 【解析】(1)“嫦娥一号”绕月飞行时的线速度大小12π()R H v T+=. (2)设月球质量为M .“嫦娥一号”的质量为m .根据牛二定律得2224π()()R H MmG m R H T +=+解得2324π()R H M GT +=. (3)设绕月飞船运行的线速度为V ,飞船质量为0m ,则2002Mm V G m RR =又2324π()R H M GT +=.联立得()2πR H R HV TR++=5.我国发射的“嫦娥三号”登月探测器靠近月球后,经过一系列过程,在离月球表面高为h 处悬停,即相对月球静止.关闭发动机后,探测器自由下落,落到月球表面时的速度大小为v ,已知万有引力常量为G ,月球半径为R ,h R <<,忽略月球自转,求: (1)月球表面的重力加速度0g ; (2)月球的质量M ;(3)假如你站在月球表面,将某小球水平抛出,你会发现,抛出时的速度越大,小球落回到月球表面的落点就越远.所以,可以设想,如果速度足够大,小球就不再落回月球表面,它将绕月球做半径为R 的匀速圆周运动,成为月球的卫星.则这个抛出速度v 1至少为多大?【答案】(1)202v g h =(2)222v R M hG =(3)212v R v h= 【解析】(1)根据自由落体运动规律202v g h =,解得202v g h=(2)在月球表面,设探测器的质量为m ,万有引力等于重力,02MmGmg R=,解得月球质量222v R M hG=(3)设小球质量为'm ,抛出时的速度1v 即为小球做圆周运动的环绕速度万有引力提供向心力212''v Mm G m R R =,解得小球速度至少为212v Rv h=6.某双星系统中两个星体 A 、B 的质量都是 m ,且 A 、B 相距 L ,它们正围绕两者连线上的某一点做匀速圆周运动.实际观测该系统的周期 T 要小于按照力学理论计算出的周期理论值 T 0,且= k () ,于是有人猜测这可能是受到了一颗未发现的星体 C 的影响,并认为 C 位于双星 A 、B 的连线中点.求: (1)两个星体 A 、B 组成的双星系统周期理论值; (2)星体C 的质量.【答案】(1);(2)【解析】 【详解】(1)两星的角速度相同,根据万有引力充当向心力知:可得:两星绕连线的中点转动,则解得:(2)因为C的存在,双星的向心力由两个力的合力提供,则再结合:=k可解得:故本题答案是:(1);(2)【点睛】本题是双星问题,要抓住双星系统的条件:角速度与周期相同,再由万有引力充当向心力进行列式计算即可.7.如图所示,A是地球的同步卫星.另一卫星 B的圆形轨道位于赤道平面内.已知地球自ω,地球质量为M ,B离地心距离为r ,万有引力常量为G,O为地球中转角速度为0心,不考虑A和B之间的相互作用.(图中R、h不是已知条件)T(1)求卫星A的运行周期AT(2)求B做圆周运动的周期B(3)如卫星B绕行方向与地球自转方向相同,某时刻 A、B两卫星相距最近(O、B、A在同一直线上),则至少经过多长时间,它们再一次相距最近?【答案】(1)02A T πω=(2)2B T =3)t ∆=【解析】 【分析】 【详解】(1)A 的周期与地球自转周期相同 02A T πω=(2)设B 的质量为m , 对B 由牛顿定律:222()BGMm m r r T π= 解得:2B T = (3)A 、B 再次相距最近时B 比A 多转了一圈,则有:0()2B t ωωπ-∆=解得:t ∆=点睛:本题考查万有引力定律和圆周运动知识的综合应用能力,向心力的公式选取要根据题目提供的已知物理量或所求解的物理量选取应用;第3问是圆周运动的的追击问题,距离最近时两星转过的角度之差为2π的整数倍.8.2016年2月11日,美国“激光干涉引力波天文台”(LIGO )团队向全世界宣布发现了引力波,这个引力波来自于距离地球13亿光年之外一个双黑洞系统的合并.已知光在真空中传播的速度为c ,太阳的质量为M 0,万有引力常量为G .(1)两个黑洞的质量分别为太阳质量的26倍和39倍,合并后为太阳质量的62倍.利用所学知识,求此次合并所释放的能量.(2)黑洞密度极大,质量极大,半径很小,以最快速度传播的光都不能逃离它的引力,因此我们无法通过光学观测直接确定黑洞的存在.假定黑洞为一个质量分布均匀的球形天体.a .因为黑洞对其他天体具有强大的引力影响,我们可以通过其他天体的运动来推测黑洞的存在.天文学家观测到,有一质量很小的恒星独自在宇宙中做周期为T ,半径为r 0的匀速圆周运动.由此推测,圆周轨道的中心可能有个黑洞.利用所学知识求此黑洞的质量M ;b .严格解决黑洞问题需要利用广义相对论的知识,但早在相对论提出之前就有人利用牛顿力学体系预言过黑洞的存在.我们知道,在牛顿体系中,当两个质量分别为m 1、m 2的质点相距为r 时也会具有势能,称之为引力势能,其大小为12p m m E Gr=-(规定无穷远处势能为零).请你利用所学知识,推测质量为M′的黑洞,之所以能够成为“黑”洞,其半径R 最大不能超过多少?【答案】(1)3M 0c 2(2)2324r M GTπ=;22GM R c '= 【解析】 【分析】 【详解】(1)合并后的质量亏损000(2639)623m M M M ∆=+-=根据爱因斯坦质能方程2E mc ∆=∆得合并所释放的能量203E M c ∆=(2)a .小恒星绕黑洞做匀速圆周运动,设小恒星质量为m 根据万有引力定律和牛顿第二定律20202Mm G m r r T π⎛⎫= ⎪⎝⎭解得23024r M GTπ= b .设质量为m 的物体,从黑洞表面至无穷远处;根据能量守恒定律2102Mm mv G R ⎛⎫+-= ⎪⎝⎭ 解得22GM R v '=因为连光都不能逃离,有v =c 所以黑洞的半径最大不能超过22GM R c'=9.某宇航员乘坐载人飞船登上月球后,在月球上以大小为v 0的速度竖直向上抛出一物体(视为质点),测得物体上升的最大高度为h ,已知月球的半径为R ,引力常量为G 。
高考物理万有引力与航天题20套(带答案)含解析
高考物理万有引力与航天题20套(带答案)含解析一、高中物理精讲专题测试万有引力与航天1.据每日邮报2014年4月18日报道,美国国家航空航天局目前宣布首次在太阳系外发现“类地”行星.假如宇航员乘坐宇宙飞船到达该行星,进行科学观测:该行星自转周期为T ;宇航员在该行星“北极”距该行星地面附近h 处自由释放-个小球(引力视为恒力),落地时间为.t 已知该行星半径为R ,万有引力常量为G ,求:()1该行星的第一宇宙速度; ()2该行星的平均密度.【答案】(()231 2?2hGt R π. 【解析】 【分析】根据自由落体运动求出星球表面的重力加速度,再根据万有引力提供圆周运动向心力,求出质量与运动的周期,再利用MVρ=,从而即可求解. 【详解】()1根据自由落体运动求得星球表面的重力加速度212h gt =解得:22h g t=则由2v mg m R=求得:星球的第一宇宙速度v ==()2由222Mm hG mg m Rt==有:222hR M Gt= 所以星球的密度232M h V Gt R ρπ== 【点睛】本题关键是通过自由落体运动求出星球表面的重力加速度,再根据万有引力提供圆周运动向心力和万有引力等于重力求解.2.中国计划在2017年实现返回式月球软着陆器对月球进行科学探测,宇航员在月球上着陆后,自高h 处以初速度v 0水平抛出一小球,测出水平射程为L (这时月球表面可以看作是平坦的),已知月球半径为R ,万有引力常量为G ,求: (1)月球表面处的重力加速度及月球的质量M 月;(2)如果要在月球上发射一颗绕月球运行的卫星,所需的最小发射速度为多大? (3)当着陆器绕距月球表面高H 的轨道上运动时,着陆器环绕月球运动的周期是多少?【答案】(1)22022hV R M GL =(2)02V hR L (3)0()2()L R H R H T RV hπ++=【解析】 【详解】(1)由平抛运动的规律可得:212h gt =0L v t =2022hv g L=由2GMmmg R= 22022hv RM GL= (2)012v GMv RG hR R L===(3)万有引力提供向心力,则()()222GMmm R H T R H π⎛⎫=+ ⎪⎝⎭+解得:()()2L R H R H T Rv hπ++=3.人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同一个高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤是从高度为h 处下落,经时间t 落到月球表面.已知引力常量为G ,月球的半径为R . (1)求月球表面的自由落体加速度大小g 月;(2)若不考虑月球自转的影响,求月球的质量M 和月球的“第一宇宙速度”大小v .【答案】(1)22h g t =月 (2)222hR M Gt=;2hRv t= 【解析】【分析】(1)根据自由落体的位移时间规律可以直接求出月球表面的重力加速度;(2)根据月球表面重力和万有引力相等,利用求出的重力加速度和月球半径可以求出月球的质量M ; 飞行器近月飞行时,飞行器所受月球万有引力提供月球的向心力,从而求出“第一宇宙速度”大小. 【详解】(1)月球表面附近的物体做自由落体运动 h =12g 月t 2 月球表面的自由落体加速度大小 g 月=22h t (2)若不考虑月球自转的影响 G 2MmR =mg 月 月球的质量 222hR M Gt= 质量为m'的飞行器在月球表面附近绕月球做匀速圆周运动m ′g 月=m ′2v R月球的“第一宇宙速度”大小 2hRv g R 月== 【点睛】结合自由落体运动规律求月球表面的重力加速度,根据万有引力与重力相等和万有引力提供圆周运动向心力求解中心天体质量和近月飞行的速度v .4.如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程可以筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽略不计),经过轨道上P 点时点火加速,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地点为圆轨道Ⅰ上的P 点,远地点为同步圆轨道Ⅲ上的Q 点.到达远地点Q 时再次点火加速,进入同步轨道Ⅲ.已知引力常量为G ,地球质量为M ,地球半径为R ,飞船质量为m ,同步轨道距地面高度为h .当卫星距离地心的距离为r 时,地球与卫星组成的系统的引力势能为p GMmE r=-(取无穷远处的引力势能为零),忽略地球自转和喷气后飞船质量的変化,问:(1)在近地轨道Ⅰ上运行时,飞船的动能是多少?(2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能相互转化.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为1v ,则经过Q 点时的速率2v 多大?(3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器可以到达离地心无穷远处),则探测器离开飞船时的速度3v (相对于地心)至少是多少?(探测器离开地球的过程中只有引力做功,动能转化为引力势能)【答案】(1)2GMm R (23【解析】 【分析】(1)万有引力提供向心力,求出速度,然后根据动能公式进行求解; (2)根据能量守恒进行求解即可;(3)将小探测器射出,并使它能脱离地球引力范围,动能全部用来克服引力做功转化为势能; 【详解】(1)在近地轨道(离地高度忽略不计)Ⅰ上运行时,在万有引力作用下做匀速圆周运动即:22mM v G m R R=则飞船的动能为2122k GMmE mv R==; (2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能相互转化.由能量守恒可知动能的减少量等于势能的増加量:221211()22GMm GMmmv mv R h R-=--+ 若飞船在椭圆轨道上运行,经过P 点时速率为1v ,则经过Q 点时速率为:2v = (3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器离地心的距离无穷远),动能全部用来克服引力做功转化为势能 即:2312Mm Gmv R =则探测器离开飞船时的速度(相对于地心)至少是:3v =. 【点睛】本题考查了万有引力定律的应用,知道万有引力提供向心力,同时注意应用能量守恒定律进行求解.5.“嫦娥一号”在西昌卫星发射中心发射升空,准确进入预定轨道.随后,“嫦娥一号”经过变轨和制动成功进入环月轨道.如图所示,阴影部分表示月球,设想飞船在圆形轨道Ⅰ上作匀速圆周运动,在圆轨道Ⅰ上飞行n 圈所用时间为t ,到达A 点时经过暂短的点火变速,进入椭圆轨道Ⅱ,在到达轨道Ⅱ近月点B 点时再次点火变速,进入近月圆形轨道Ⅲ,而后飞船在轨道Ⅲ上绕月球作匀速圆周运动,在圆轨道Ⅲ上飞行n 圈所用时间为.不考虑其它星体对飞船的影响,求:(1)月球的平均密度是多少?(2)如果在Ⅰ、Ⅲ轨道上有两只飞船,它们绕月球飞行方向相同,某时刻两飞船相距最近(两飞船在月球球心的同侧,且两飞船与月球球心在同一直线上),则经过多长时间,他们又会相距最近?【答案】(1)22192n Gt π;(2)1237mt t m n (,,)==⋯ 【解析】试题分析:(1)在圆轨道Ⅲ上的周期:38tT n=,由万有引力提供向心力有:222Mm G m R R T π⎛⎫= ⎪⎝⎭又:343M R ρπ=,联立得:22233192n GT Gt ππρ==. (2)设飞船在轨道I 上的角速度为1ω、在轨道III 上的角速度为3ω,有:112T πω= 所以332T πω=设飞飞船再经过t 时间相距最近,有:312t t m ωωπ''=﹣所以有:1237mtt m n(,,)==⋯. 考点:人造卫星的加速度、周期和轨道的关系【名师点睛】本题主要考查万有引力定律的应用,开普勒定律的应用.同时根据万有引力提供向心力列式计算.6.2016年2月11日,美国“激光干涉引力波天文台”(LIGO )团队向全世界宣布发现了引力波,这个引力波来自于距离地球13亿光年之外一个双黑洞系统的合并.已知光在真空中传播的速度为c ,太阳的质量为M 0,万有引力常量为G .(1)两个黑洞的质量分别为太阳质量的26倍和39倍,合并后为太阳质量的62倍.利用所学知识,求此次合并所释放的能量.(2)黑洞密度极大,质量极大,半径很小,以最快速度传播的光都不能逃离它的引力,因此我们无法通过光学观测直接确定黑洞的存在.假定黑洞为一个质量分布均匀的球形天体.a .因为黑洞对其他天体具有强大的引力影响,我们可以通过其他天体的运动来推测黑洞的存在.天文学家观测到,有一质量很小的恒星独自在宇宙中做周期为T ,半径为r 0的匀速圆周运动.由此推测,圆周轨道的中心可能有个黑洞.利用所学知识求此黑洞的质量M ;b .严格解决黑洞问题需要利用广义相对论的知识,但早在相对论提出之前就有人利用牛顿力学体系预言过黑洞的存在.我们知道,在牛顿体系中,当两个质量分别为m 1、m 2的质点相距为r 时也会具有势能,称之为引力势能,其大小为12p m m E Gr=-(规定无穷远处势能为零).请你利用所学知识,推测质量为M′的黑洞,之所以能够成为“黑”洞,其半径R 最大不能超过多少?【答案】(1)3M 0c 2(2)23024r M GT π=;22GM R c '=【解析】 【分析】 【详解】(1)合并后的质量亏损000(2639)623m M M M ∆=+-=根据爱因斯坦质能方程2E mc ∆=∆得合并所释放的能量203E M c ∆=(2)a .小恒星绕黑洞做匀速圆周运动,设小恒星质量为m 根据万有引力定律和牛顿第二定律20202Mm G m r r T π⎛⎫= ⎪⎝⎭解得23024r M GT π=b .设质量为m 的物体,从黑洞表面至无穷远处;根据能量守恒定律2102Mm mv G R ⎛⎫+-= ⎪⎝⎭解得22GM R v '=因为连光都不能逃离,有v =c 所以黑洞的半径最大不能超过22GM R c '=7.“嫦娥一号”探月卫星在空中的运动可简化为如图5所示的过程,卫星由地面发射后,经过发射轨道进入停泊轨道,在停泊轨道经过调速后进入地月转移轨道,再次调速后进入工作轨道.已知卫星在停泊轨道和工作轨道运行的半径分别为R 和R 1,地球半径为r ,月球半径为r 1,地球表面重力加速度为g ,月球表面重力加速度为.求: (1)卫星在停泊轨道上运行的线速度大小; (2)卫星在工作轨道上运行的周期.【答案】(1) (2)【解析】(1)卫星停泊轨道是绕地球运行时,根据万有引力提供向心力:解得:卫星在停泊轨道上运行的线速度;物体在地球表面上,有,得到黄金代换,代入解得; (2)卫星在工作轨道是绕月球运行,根据万有引力提供向心力有,在月球表面上,有,得,联立解得:卫星在工作轨道上运行的周期.8.宇航员王亚平在“天宫一号”飞船内进行了我国首次太空授课.若已知飞船绕地球做匀速圆周运动的周期为T ,地球半径为R ,地球表面重力加速度g ,求: (1)地球的第一宇宙速度v ; (2)飞船离地面的高度h . 【答案】(1)v gR =(2)22324gR T h R π= 【解析】 【详解】(1)根据2v mg m R=得地球的第一宇宙速度为:v gR =.(2)根据万有引力提供向心力有:()2224()Mm G m R h R h Tπ=++, 又2GM gR =, 解得:22324gR T h R π=- .9.我国首颗量子科学实验卫星于2016年8月16日1点40分成功发射。
2024届高考物理一轮复习 万有引力与航天专题分析(真题)
2024届高考物理一轮复习 万有引力与航天专题分析(真题)一、单选题1.(2023·湖北·统考高考真题)2022年12月8日,地球恰好运行到火星和太阳之间,且三者几乎排成一条直线,此现象被称为“火星冲日”。
火星和地球几乎在同一平面内沿同一方向绕太阳做圆周运动,火星与地球的公转轨道半径之比约为3:2,如图所示。
根据以上信息可以得出( ) A .火星与地球绕太阳运动的周期之比约为278: B .当火星与地球相距最远时,两者的相对速度最大 C .火星与地球表面的自由落体加速度大小之比约为94: D .下一次“火星冲日”将出现在2023年12月8日之前2.(2023·山西·统考高考真题)2023年5月,世界现役运输能力最大的货运飞船天舟六号,携带约5800kg 的物资进入距离地面约400km (小于地球同步卫星与地面的距离)的轨道,顺利对接中国空间站后近似做匀速圆周运动。
对接后,这批物资( ) A .质量比静止在地面上时小 B .所受合力比静止在地面上时小C .所受地球引力比静止在地面上时大D .做圆周运动的角速度大小比地球自转角速度大3.(2023·浙江·统考高考真题)木星的卫星中,木卫一、木卫二、木卫三做圆周运动的周期之比为1:2:4。
木卫三周期为T ,公转轨道半径是月球绕地球轨道半径r 的n 倍。
月球绕地球公转周期为0T ,则( ) A .木卫一轨道半径为16nr B .木卫二轨道半径为2nrC .周期T 与T 0之比为32nD .木星质量与地球质量之比为2302T n T4.(2023·山东·统考高考真题)牛顿认为物体落地是由于地球对物体的吸引,这种吸引力可能与天体间(如地球与月球)的引力具有相同的性质、且都满足2MmF r ∝。
已知地月之间的距离r 大约是地球半径的60倍,地球表面的重力加速度为g ,根据牛顿的猜想,月球绕地球公转的周期为( ) A .30πr gB .30πg rC .120πr gD .120πg r5.(2023·北京·统考高考真题)在太空实验室中可以利用匀速圆周运动测量小球质量。
高考物理万有引力与航天试题(有答案和解析)
高考物理万有引力与航天试题(有答案和解析)一、高中物理精讲专题测试万有引力与航天1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示)【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) t【解析】(1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2, 解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2MmGR 所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得: 22Mm v G m R R=重力等于万有引力,即mg=2MmGR,解得该星球的第一宇宙速度为:v ==2.经过逾6 个月的飞行,质量为40kg 的洞察号火星探测器终于在北京时间2018 年11 月27 日03:56在火星安全着陆。
着陆器到达距火星表面高度800m 时速度为60m/s ,在着陆器底部的火箭助推器作用下开始做匀减速直线运动;当高度下降到距火星表面100m 时速度减为10m/s 。
该过程探测器沿竖直方向运动,不计探测器质量的变化及火星表面的大气阻力,已知火星的质量和半径分别为地球的十分之一和二分之一,地球表面的重力加速度为g = 10m/s 2。
求:(1)火星表面重力加速度的大小; (2)火箭助推器对洞察号作用力的大小.【答案】(1)2=4m/s g 火 (2)F =260N 【解析】 【分析】火星表面或地球表面的万有引力等于重力,列式可求解火星表面的重力加速度;根据运动公式求解下落的加速度,然后根据牛顿第二定律求解火箭助推器对洞察号作用力. 【详解】(1)设火星表面的重力加速度为g 火,则2=M m Gmg r火火火2=M mGmg r 地地解得g 火=0.4g=4m/s 2(2)着陆下降的高度:h=h 1-h 2=700m ,设该过程的加速度为a ,则v 22-v 12=2ah 由牛顿第二定律:mg 火-F=ma 解得F=260N3.我国发射的“嫦娥三号”登月探测器靠近月球后,经过一系列过程,在离月球表面高为h 处悬停,即相对月球静止.关闭发动机后,探测器自由下落,落到月球表面时的速度大小为v ,已知万有引力常量为G ,月球半径为R ,h R <<,忽略月球自转,求: (1)月球表面的重力加速度0g ; (2)月球的质量M ;(3)假如你站在月球表面,将某小球水平抛出,你会发现,抛出时的速度越大,小球落回到月球表面的落点就越远.所以,可以设想,如果速度足够大,小球就不再落回月球表面,它将绕月球做半径为R 的匀速圆周运动,成为月球的卫星.则这个抛出速度v 1至少为多大?【答案】(1)202v g h =(2)222v R M hG =(3)1v =【解析】(1)根据自由落体运动规律202v g h =,解得202v g h=(2)在月球表面,设探测器的质量为m ,万有引力等于重力,02MmGmg R=,解得月球质量222v R M hG=(3)设小球质量为'm ,抛出时的速度1v 即为小球做圆周运动的环绕速度万有引力提供向心力212''v Mm G m R R =,解得小球速度至少为1v =4.某行星表面的重力加速度为g ,行星的质量为M ,现在该行星表面上有一宇航员站在地面上,以初速度0v 竖直向上扔小石子,已知万有引力常量为G .不考虑阻力和行星自转的因素,求: (1)行星的半径R ;(2)小石子能上升的最大高度. 【答案】(1)R = (2)202v h g =【解析】(1)对行星表面的某物体,有:2GMmmg R=-得:R =(2)小石子在行星表面作竖直上抛运动,规定竖直向下的方向为正方向,有:2002v gh =-+得:202v h g=5.侦察卫星在通过地球两极上空的圆轨道上运行,它的运行轨道距地面高为h ,要使卫星在一天的时间内将地面上赤道各处在日照条件下的情况全部都拍摄下来,卫星在通过赤道上空时,卫星上的摄影像机至少应拍地面上赤道圆周的弧长是多少?设地球半径为R ,地面处的重力加速度为g ,地球自转的周期为T .【答案】l =【解析】 【分析】 【详解】设卫星周期为1T ,那么:22214()()Mm m R h G R h T π+=+, ① 又2MmGmg R=, ② 由①②得1T =设卫星上的摄像机至少能拍摄地面上赤道圆周的弧长为l ,地球自转周期为T ,要使卫星在一天(地球自转周期)的时间内将赤道各处的情况全都拍摄下来,则12TlR T π⋅=. 所以23124()RT h R l T Tgππ+==. 【点睛】摄像机只要将地球的赤道拍摄全,便能将地面各处全部拍摄下来;根据万有引力提供向心力和万有引力等于重力求出卫星周期;由地球自转角速度求出卫星绕行地球一周的时间内,地球转过的圆心角,再根据弧长与圆心角的关系求解.6.利用万有引力定律可以测量天体的质量. (1)测地球的质量英国物理学家卡文迪许,在实验室里巧妙地利用扭秤装置,比较精确地测量出了引力常量的数值,他把自己的实验说成是“称量地球的质量”.已知地球表面重力加速度为g ,地球半径为R ,引力常量为G .若忽略地球自转的影响,求地球的质量. (2)测“双星系统”的总质量所谓“双星系统”,是指在相互间引力的作用下,绕连线上某点O 做匀速圆周运动的两个星球A 和B ,如图所示.已知A 、B 间距离为L ,A 、B 绕O 点运动的周期均为T ,引力常量为G ,求A 、B 的总质量.(3)测月球的质量若忽略其它星球的影响,可以将月球和地球看成“双星系统”.已知月球的公转周期为T 1,月球、地球球心间的距离为L 1.你还可以利用(1)、(2)中提供的信息,求月球的质量.【答案】(1)2gR G ;(2)2324L GT π;(3)2321214L gR GT G π-. 【解析】 【详解】(1)设地球的质量为M ,地球表面某物体质量为m ,忽略地球自转的影响,则有2Mm G mg R =解得:M =2gR G; (2)设A 的质量为M 1,A 到O 的距离为r 1,设B 的质量为M 2,B 到O 的距离为r 2, 根据万有引力提供向心力公式得:2121122()M M G M r L Tπ=, 2122222()M M GM r L T π=, 又因为L =r 1+r 2解得:231224L M M GTπ+=; (3)设月球质量为M 3,由(2)可知,2313214L M M GT π+=由(1)可知,M =2gR G解得:23213214L gR M GT Gπ=-7.我国首颗量子科学实验卫星于2016年8月16日1点40分成功发射。
专题6 万有引力与航天(解析版)
专题6 万有引力与航天一.选择题1. (2021新高考福建)两位科学家因为在银河系中心发现了一个超大质量的致密天体而获得了2020年诺贝尔物理学奖.他们对一颗靠近银河系中心的恒星2S 的位置变化进行了持续观测,记录到的2S 的椭圆轨道如图所示.图中O 为椭圆的一个焦点,椭圆偏心率(离心率)约为0.87.P 、Q 分别为轨道的远银心点和近银心点,Q 与O 的距离约为120AU (太阳到地球的距离为1AU ),2S 的运行周期约为16年.假设2S 的运动轨迹主要受银河系中心致密天体的万有引力影响,根据上述数据及日常的天文知识,可以推出A.2S 与银河系中心致密天体的质量之比B.银河系中心致密天体与太阳的质量之比C.2S 在P 点与Q 点的速度大小之比D.2S 在P 点与Q 点的加速度大小之比【答案】B D【解析】设银河系中心超大质量的致密天体质量为M 银心,恒星2S 绕银河系中心(银心)做椭圆轨道运动的椭圆半长轴为a ,半焦距为c ,根据题述Q 与O 的距离约为120AU ,可得a-c=120AU ,又有椭圆偏心率(离心率)约为c/a=0.87.联立可以解得a 和c ,设想恒星S2绕银心做半径为a 的匀速圆周运动,由开普勒第三定律可知周期也为TS2,因此G 22S M m a 银心=mS2a (22S T π)2,对地球围绕太阳运动,有G 2M m r 太阳地=m 地a (12T π)2,而a=120r ,TS2=16T1,联立可解得银河系中心致密天体与太阳的质量之比,不能得出2S 与银河系中心致密天体的质量之比,选项A 错误B 正确;由于远银心点和近银心点轨迹的曲率半径相同,设为ρ,恒星S2在远银心点,由万有引力提供向心力,G()22S M m a c +银心=mS22Pv ρ,在近银心点由万有引力提供向心力,G()22S M m a c -银心=mS22Qv ρ,联立可解得2S 在P 点与Q 点的速度大小之比为P Qv v =a ca c -+,选项C 正确;在远银心点和近银心点,由万有引力定律和牛顿第二定律,分别有G()22S M m a c +银心=mS2aP ,G()22S M m a c -银心=mS2aQ ,联立可解得2S 在P 点与Q 点的加速度大小之比为P Qa a =()()22a c a c -+,选项D 正确。
万有引力与航天专题(2024高考真题及解析)
万有引力与航天专题1.[2024·安徽卷] 2024年3月20日,我国探月工程四期鹊桥二号中继星成功发射升空.当抵达距离月球表面某高度时,鹊桥二号开始进行近月制动,并顺利进入捕获轨道运行,如图所示,轨道的半长轴约为51 900 km.后经多次轨道调整,进入冻结轨道运行,轨道的半长轴约为9900 km,周期约为24 h.则鹊桥二号在捕获轨道运行时()A.周期约为144 hB.近月点的速度大于远月点的速度C.近月点的速度小于在冻结轨道运行时近月点的速度D.近月点的加速度大于在冻结轨道运行时近月点的加速度1.B[解析] 冻结轨道和捕获轨道的中心天体是月球,根据开普勒第三定律得T12R13=T22R23,整理得T2=T1√R23R13≈288 h,A错误;根据开普勒第二定律得,鹊桥二号在捕获轨道运行时在近月点的速度大于在远月点的速度,B正确;在近月点从捕获轨道到冻结轨道变轨时,鹊桥二号需要减速进行近月制动,故鹊桥二号在捕获轨道近月点的速度大于在冻结轨道运行时近月点的速度,C错误;在两轨道的近月点所受的万有引力相同,根据牛顿第二定律可知,在捕获轨道运行时近月点的加速度等于在冻结轨道运行时近月点的加速度,D错误.2.[2024·北京卷] 科学家根据天文观测提出宇宙膨胀模型:在宇宙大尺度上,所有的宇宙物质(星体等)在做彼此远离运动,且质量始终均匀分布,在宇宙中所有位置观测的结果都一样.以某一点O为观测点,以质量为m的小星体(记为P)为观测对象.当前P到O点的距离为r0,宇宙的密度为ρ0.(1)求小星体P远离到2r0处时宇宙的密度ρ;(2)以O点为球心,以小星体P到O点的距离为半径建立球面.P受到的万有引力相当于球内质量集中于O点对P的引力.已知质量为m1和m2、距离为R的两个质点间的引力势能E p=-G m1m2R,G为引力常量.仅考虑万有引力和P远离O点的径向运动.①求小星体P从r0处远离到2r0处的过程中动能的变化量ΔE k;②宇宙中各星体远离观测点的速率v满足哈勃定律v=Hr,其中r为星体到观测点的距离,H为哈勃系数.H与时间t有关但与r无关,分析说明H随t增大还是减小.2.(1)18ρ0 (2)①-23G πρ0m r 02 ②H 随t 增大而减小[解析] (1)在宇宙中所有位置观测的结果都一样,则小星体P 运动前后距离O 点半径为r 0和2r 0的球内质量相同,即ρ0·43πr 03=ρ·43π(2r 0)3解得小星体P 远离到2r 0处时宇宙的密度ρ=18ρ0(2)①此球内的质量M =ρ0·43πr 03 P 从r 0处远离到2r 0处,由能量守恒定律得 动能的变化量ΔE k =-G Mmr 0-(-GMm 2r 0)=-23G πρ0m r 02 ②由①知星体的速度随r 0增大而减小,星体到观测点距离越大运动时间t 越长,由v =Hr知,H 减小,故H 随t 增大而减小3.[2024·甘肃卷] 小杰想在离地表一定高度的天宫实验室内,通过测量以下物理量得到天宫实验室轨道处的重力加速度,可行的是 ( ) A .用弹簧测力计测出已知质量的砝码所受的重力 B .测量单摆摆线长度、摆球半径以及摆动周期 C .从高处释放一个重物,测量其下落高度和时间D .测量天宫实验室绕地球做匀速圆周运动的周期和轨道半径3.D [解析] 在天宫实验室内,物体处于完全失重状态,重力提供了物体绕地球做匀速圆周运动的向心力,故A 、B 、C 中的实验均无法得到天宫实验室轨道处的重力加速度;物体所受的万有引力提供物体绕地球做匀速圆周运动的向心力,有mg =G Mm r 2=m 4π2T 2r ,整理得轨道处的重力加速度为g =4π2T 2r ,故通过测量天宫实验室绕地球做匀速圆周运动的周期和轨道半径可行,D 正确.4.(多选)[2024·广东卷] 如图所示,探测器及其保护背罩通过弹性轻绳连接降落伞,在接近某行星表面时以60 m/s 的速度竖直匀速下落.此时启动“背罩分离”,探测器与背罩断开连接,背罩与降落伞保持连接.已知探测器质量为1000 kg,背罩质量为50 kg,该行星的质量和半径分别为地球的110和12.地球表面重力加速度大小g 取10 m/s 2.忽略大气对探测器和背罩的阻力.下列说法正确的有 ( )A .该行星表面的重力加速度大小为4 m/s 2B .该行星的第一宇宙速度为7.9 km/sC .“背罩分离”后瞬间,背罩的加速度大小为80 m/s 2D .“背罩分离”后瞬间,探测器所受重力对其做功的功率为30 kW4.AC [解析] 设地球的质量为M ,半径为R ,行星的质量为M',半径为R',在星球表面可近似认为物体所受重力等于其所受万有引力,有GMm R2=mg ,可得GM =gR 2,同理,在该行星表面有GM'=g'R'2,联立得该星球表面的重力加速度g'=M 'R 2MR '2g =110×22×10 m/s 2=4 m/s 2,A 正确;地球的第一宇宙速度v =√GMR=7.9 km/s,则该行星的第一宇宙速度v'=√GM 'R '=√15×GM R =√15×7.9 km/s,B 错误;探测器及其保护背罩通过弹性轻绳连接降落伞,在接近某行星表面时以v =60 m/s 的速度竖直匀速下落,此时背罩受到降落伞的拉力F =(m 探+m 背)g'=4200 N,“背罩分离”后瞬间,由牛顿第二定律有F -m 背g'=m 背a ,解得背罩的加速度大小为a =80 m/s 2,C 正确;“背罩分离”后瞬间,探测器所受重力对其做功的功率为P =m 探g'v =1000×4×60 W=2.4×105 W=240 kW,D 错误.5.[2024·广西卷] 潮汐现象出现的原因之一是在地球的不同位置海水受到月球的引力不相同.图中a 、b 和c 处单位质量的海水受月球引力大小在( )A .a 处最大B .b 处最大C .c 处最大D .a 、c 处相等,b 处最小5.A [解析] 根据万有引力公式F =G Mm R 2,可知图中a 处单位质量的海水受到月球的引力最大,故选A .6.[2024·海南卷] 神舟十七号载人飞船返回舱于2024年4月30日在东风着陆场成功着陆,在飞船返回至离地面十几公里时打开主伞飞船快速减速,返回舱速度大大减小,在减速过程中()A.返回舱处于超重状态B.返回舱处于失重状态C.主伞的拉力不做功D.重力对返回舱做负功6.A[解析] 返回舱在减速过程中,加速度竖直向上,处于超重状态,故A正确,B错误;主伞的拉力与返回舱运动方向相反,对返回舱做负功,故C错误;返回舱的重力与返回舱运动方向相同,重力对返回舱做正功,故D错误.7.[2024·海南卷] 嫦娥六号进入环月圆轨道,周期为T,轨道高度与月球半径之比为k,引力常量为G,则月球的平均密度为 ()A.3π(1+k)3GT2k3B.3πGT2C.π(1+k)3GT2k D.3πGT2(1+k)37.D[解析] 设月球半径为R,质量为M,对嫦娥六号,根据万有引力提供向心力得G Mm [(k+1)R]2=m4π2T2·(k+1)R,月球的体积V=43πR3,月球的平均密度ρ=MV,联立可得ρ=3πGT2(1+k)3,故选D.8.(多选)[2024·河北卷] 2024年3月20日,“鹊桥二号”中继星成功发射升空,为“嫦娥六号”在月球背面的探月任务提供地月间中继通讯.“鹊桥二号”采用周期为24 h的环月椭圆冻结轨道(如图所示),近月点A距月心约为2.0×103 km,远月点B距月心约为1.8×104 km,CD 为椭圆轨道的短轴,下列说法正确的是()A.“鹊桥二号”从C经B到D的运动时间为12 hB.“鹊桥二号”在A、B两点的加速度大小之比约为81∶1C.“鹊桥二号”在C、D两点的速度方向垂直于其与月心的连线D.“鹊桥二号”在地球表面附近的发射速度大于7.9 km/s且小于11.2 km/s8.BD[解析] “鹊桥二号”围绕月球沿椭圆轨道运动,根据开普勒第二定律可知,在近地点A处的速度最大,在远地点B处的速度最小,则从C→B→D的平均速率小于从D→A→C 的平均速率,所以从C→B→D的运动时间大于半个周期,即大于12 h,A错误;在A点,根据牛顿第二定律有G Mm(r OA)2=ma A,在B点,根据牛顿第二定律有G Mm(r OB)2=ma B,联立解得“鹊桥二号”在A、B两点的加速度大小之比约为a A∶a B=81∶1,B正确;物体做曲线运动时速度方向沿该点的切线方向,所以“鹊桥二号”在C、D两点的速度方向不垂直于其与月心的连线,C错误;“鹊桥二号”发射后围绕月球沿椭圆轨道运动,并未脱离地球引力束缚,所以“鹊桥二号”在地球表面附近的发射速度大于7.9 km/s且小于11.2 km/s,D正确.9.[2024·湖北卷] 太空碎片会对航天器带来危害.设空间站在地球附近沿逆时针方向做匀速圆周运动,如图中实线所示.为了避开碎片,空间站在P点向图中箭头所指径向方向极短时间喷射气体,使空间站获得一定的反冲速度,从而实现变轨.变轨后的轨道如图中虚线所示,其半长轴大于原轨道半径.则()A.空间站变轨前、后在P点的加速度相同B.空间站变轨后的运动周期比变轨前的小C.空间站变轨后在P点的速度比变轨前的小D.空间站变轨前的速度比变轨后在近地点的大9.A[解析] 空间站在P点变轨前、后所受到的万有引力不变,根据牛顿第二定律可知F 万=ma加,则空间站变轨前、后在P点的加速度相同,故A正确;空间站的圆轨道运动可以看作特殊的椭圆轨道运动,因为变轨后其轨道半长轴大于原轨道半径,根据开普勒第三定律可知a 2T2=k,则空间站变轨后的运动周期比变轨前的大,故B错误;变轨后在P点获得方向沿径向指向地球的反冲速度,与原来做圆周运动的速度合成,合速度大于原来的速度,故C错误;由于空间站变轨后在P点的速度比变轨前的大,但变轨后在P点的速度比同一轨道上在近地点的速度小,所以空间站变轨前的速度比变轨后在近地点的小,故D错误.10.(多选)[2024·湖南卷] 2024年5月3日,“嫦娥六号”探测器顺利进入地月转移轨道,正式开启月球之旅.相较于“嫦娥四号”和“嫦娥五号”,本次的主要任务是登陆月球背面进行月壤采集,并通过升空器将月壤转移至绕月运行的返回舱,返回舱再通过返回轨道返回地球.设返回舱绕月运行的轨道为圆轨道,半径近似为月球半径.已知月球表面重力加速度约为地球表面的16,月球半径约为地球半径的14.关于返回舱在该绕月轨道上的运动,下列说法正确的是( )A .其相对于月球的速度大于地球第一宇宙速度B .其相对于月球的速度小于地球第一宇宙速度C .其绕月飞行周期约为地球上近地圆轨道卫星周期的√23倍 D .其绕月飞行周期约为地球上近地圆轨道卫星周期的√32倍10.BD [解析] 返回舱绕月运行的轨道为圆轨道,半径近似为月球半径,则由万有引力提供向心力,有GM 月m r 月2=mv 月2r 月,根据在月球表面万有引力和重力的关系有GM 月m r 月2=mg 月,联立解得v 月=√g 月r 月,由于第一宇宙速度为近地卫星的环绕速度,同理可得v 地=√g 地r 地,则v 月v 地=√g 月g 地·r 月r 地=√16×14=√612,所以v 月<v 地,故A 错误,B 正确;根据线速度和周期的关系有T =2πv ·r ,则T 月T 地=r 月r 地·v 地v 月=14×√6=√32,故C 错误,D 正确.11.[2024·江西卷] “嫦娥六号”探测器于2024年5月8日进入环月轨道,后续经调整环月轨道高度和倾角,实施月球背面软着陆.当探测器的轨道半径从r 1调整到r 2时(两轨道均可视为圆形轨道),其动能和周期从E k1、T 1分别变为E k2、T 2.下列选项正确的是 ( )A .E k1E k2=r 2r 1,T 1T 2=√r 13√r 2B .E k1E k2=r 1r 2,T 1T 2=√r 13√r 2C .E k1E k2=r 2r 1,T 1T 2=√r 23√r 1D .E k1E k2=r 1r 2,T 1T 2=√r 23√r 1311.A [解析] 探测器环月运行,由万有引力提供向心力有G Mmr 2=m v 2r ,得v 2=GMr,其中M 为月球质量,m 为“嫦娥六号”质量,动能E k =12mv 2,则E k1E k2=r2r 1,B 、D错误;同理,由G Mm r 2=m 4π2T2r得T =√4π2r 3GM ,则T 1T 2=√r 13r 23,A 正确,C 错误.12.[2024·辽宁卷] 如图甲所示,将一弹簧振子竖直悬挂,以小球的平衡位置为坐标原点O ,竖直向上为正方向,建立x 轴.若将小球从弹簧原长处由静止释放,其在地球与某球状天体表面做简谐运动的图像如图乙所示(不考虑自转影响).设地球、该天体的平均密度分别为ρ1和ρ2,地球半径是该天体半径的n 倍,ρ1ρ2的值为 ( )A .2nB .n 2C .2n D .12n12.C [解析] 设地球表面的重力加速度为g ,球状天体表面的重力加速度为g',弹簧的劲度系数为k ,根据简谐运动的对称性有k ·4A -mg =mg ,k ·2A -mg'=mg',解得gg '=2,设球状天体的半径为R ,则地球的半径为nR ,在地球表面有G ρ1·43π(nR )3·m(nR )2=mg ,在球状天体表面有G ρ2·43πR 3·mR 2=mg',联立解得ρ1ρ2=2n,故C 正确.13.[2024·全国甲卷] 2024年5月,“嫦娥六号”探测器发射成功,开启了人类首次从月球背面采样返回之旅.将采得的样品带回地球,飞行器需经过月面起飞、环月飞行、月地转移等过程.月球表面自由落体加速度约为地球表面自由落体加速度的16.下列说法正确的是 ( )A .在环月飞行时,样品所受合力为零B .若将样品放置在月球正面,它对月球表面压力等于零C .样品在不同过程中受到的引力不同,所以质量也不同D .样品放置在月球背面时对月球的压力比放置在地球表面时对地球的压力小13.D [解析] 在环月飞行时,样品所受合力提供所需的向心力,不为零,故A 错误;若将样品放置在月球正面,则它处于平衡状态,它对月球表面压力大小等于它在月球表面的重力大小,由于月球表面自由落体加速度约为地球表面自由落体加速度的16,则样品在地球表面的重力大于在月球表面的重力,所以样品放置在月球背面时对月球的压力比放置在地球表面时对地球的压力小,故B 错误,D 正确;样品在不同过程中受到的引力不同,但样品的质量不变,故C 错误.14.[2024·山东卷] “鹊桥二号”中继星环绕月球运行,其24小时椭圆轨道的半长轴为a.已知地球同步卫星的轨道半径为r ,则月球与地球质量之比可表示为 ( )A .√r 3a 3 B .√a 3r3C .r 3a3 D .a 3r314.D [解析] “鹊桥二号”中继星环绕月球运动的24小时椭圆轨道的半长轴为a ,则其24小时圆轨道的半径也为a ,由万有引力提供向心力得G M 月m 中a 2=m 中(2πT )2a ,对地球同步卫星,由万有引力提供向心力得GM 地m 同r 2=m 同(2πT )2r ,联立解得M 月M 地=a 3r 3,D 正确.15.[2024·新课标卷] 天文学家发现,在太阳系外的一颗红矮星有两颗行星绕其运行,其中行星GJ1002c 的轨道近似为圆,轨道半径约为日地距离的0.07倍,周期约为0.06年,则这颗红矮星的质量约为太阳质量的 ( ) A .0.001倍 B .0.1倍 C .10倍 D .1000倍15.B [解析] 设红矮星的质量为M 1,行星GJ1002c 的质量为m 1,轨道半径为r 1,运动周期为T 1;太阳的质量为M 2,地球的质量为m 2,日地距离为r 2,地球运动的周期为T 2;根据万有引力定律提供向心力有GM 1m 1r 12=m 14π2T 12r 1,G M 2m 2r 22=m 24π2T 22r 2,联立可得M 1M 2=(r 1r 2)3·(T 2T 1)2,由于行星GJ1002c 的轨道半径约为日地距离的0.07倍,周期约为0.06年,可得M 1M 2≈0.0730.062≈0.1,选B 正确.16.[2024·浙江6月选考] 与地球公转轨道“外切”的小行星甲和“内切”的小行星乙的公转轨道如图所示,假设这些小行星与地球的公转轨道都在同一平面内,地球的公转半径为R ,小行星甲的远日点到太阳的距离为R 1,小行星乙的近日点到太阳的距离为 R 2,则 ( )A .小行星甲在远日点的速度大于近日点的速度B .小行星乙在远日点的加速度小于地球公转加速度C .小行星甲与乙的运行周期之比T1T 2=√R 13R 23D .甲、乙两行星从远日点到近日点的时间之比t 1t 2=√(R 1+R)3(R 2+R)316.D [解析] 由开普勒第二定律知小行星甲在远日点的速度小于在近日点的速度,A 错误;小行星乙在远日点到太阳的距离与地球到太阳的距离相等,由G Mmr 2=ma 可知,小行星乙在远日点的加速度和地球公转加速度大小相等,B 错误;根据开普勒第三定律有(R 1+R 2)3T 12=(R 2+R 2)3T 22,解得T 1T 2=√(R 1+R)3(R 2+R)3,C错误;甲、乙两行星从远日点到近日点的时间之比t 1t 2=T 12T 22=√(R 1+R)3(R 2+R)3,D 正确.。
高考物理新力学知识点之万有引力与航天经典测试题含答案解析
高考物理新力学知识点之万有引力与航天经典测试题含答案解析一、选择题1.“北斗”卫星导航定位系统由5颗同步卫星和30颗非静止轨道卫星组成。
则( ) A .5颗同步卫星中质量小的卫星的高度比质量大的卫星的高度要低 B .5颗同步卫星的周期小于轨道在地球表面附近的卫星的周期 C .5颗同步卫星离地面的高度都相同D .5颗同步卫星运行的线速度介于第一和第二宇宙速度之间2.设宇宙中某一小行星自转较快,但仍可近似看作质量分布均匀的球体,半径为R .宇航员用弹簧测力计称量一个相对自己静止的小物体的重量,第一次在极点处,弹簧测力计的读数为F 1=F 0;第二次在赤道处,弹簧测力计的读数为F 2=02F .假设第三次在赤道平面内深度为2R的隧道底部,示数为F 3;第四次在距行星表面高度为R 处绕行星做匀速圆周运动的人造卫星中,示数为F 4.已知均匀球壳对壳内物体的引力为零,则以下判断正确的是( )A .F 3=04F ,F 4=04F B .F 3=04F,F 4=0C .F 3=0154F ,F 4=0 D .F 3=04F ,F 4=4F 3.一人造地球卫星绕地球做匀速圆周运动,假如该卫星变轨后仍做匀速圆周运动,动能增大为原来的4倍,不考虑卫星质量的变化,则变轨前后卫星的( ) A .向心加速度大小之比为1∶4 B .轨道半径之比为4∶1 C .周期之比为4∶1D .角速度大小之比为1∶24.由于地球自转和离心运动,地球并不是一个绝对的球形(图中虚线所示),而是赤道部分凸起、两极凹下的椭球形(图中实线所示),A 点为地表上地理纬度为 的一点,在A 点有一静止在水平地面上的物体m ,设地球对物体的万有引力仍然可看做是质量全部集中于地心O 处的质点对物体的引力,地球质量为M ,地球自转周期为T ,地心O 到A 点距离为R ,关于水平地面对该物体支持力的说法正确的是( )A .支持力的方向沿OA 方向向上B .支持力的方向垂直于水平地面向上C .支持力的大小等于2GMmR D .支持力的大小等于222cos GMm m R R T πθ⎛⎫- ⎪⎝⎭5.如图所示,一颗人造卫星原来在椭圆轨道1绕地球E 运行,在P 点变轨后进入轨道2做匀速圆周运动.下列说法正确的是: ( )A .不论在轨道1还是轨道2运行,卫星在P 点的速度都相同B .不论在轨道1还是轨道2运行,卫星在P 点的加速度都相同C .卫星在轨道1的任何位置都具有相同加速度D .卫星在轨道2的任何位置都具有相同动量(动量P =mv ,v 为瞬时速度)6.中国北斗卫星导航系统(BDS)是中国自行研制的全球卫星导航系统,是继美国全球定位系统(GPS)、俄罗斯格洛纳斯卫星导航系统(GLONASS)之后第三个成熟的卫星导航系统。
专题08 万有引力定律与航天——历年高考物理真题精选之黄金30题(解析版)
历年高考物理真题精选之黄金30题专题08 万有引力定律与航天一、单选题1.(2021·江苏·高考真题)我国航天人发扬“两弹一星”精神砥砺前行,从“东方红一号”到“北斗”不断创造奇迹。
“北斗”第49颗卫星的发射迈出组网的关键一步。
该卫星绕地球做圆周运动,运动周期与地球自转周期相同,轨道平面与地球赤道平面成一定夹角。
该卫星( )A .运动速度大于第一宇宙速度B .运动速度小于第一宇宙速度C .轨道半径大于“静止”在赤道上空的同步卫星D .轨道半径小于“静止”在赤道上空的同步卫星【答案】 B【解析】AB .第一宇宙速度是指绕地球表面做圆周运动的速度,是环绕地球做圆周运动的所有卫星的最大环绕速度,该卫星的运转半径远大于地球的半径,可知运行线速度小于第一宇宙速度,选项A 错误B 正确;CD .根据2224Mm G m r r T π=可知r 因为该卫星的运动周期与地球自转周期相同,等于“静止”在赤道上空的同步卫星的周期,可知该卫星的轨道半径等于“静止”在赤道上空的同步卫星的轨道半径,选项CD 错误。
故选B 。
2.(2021·山东·高考真题)从“玉兔”登月到“祝融”探火,我国星际探测事业实现了由地月系到行星际的跨越。
已知火星质量约为月球的9倍,半径约为月球的2倍,“祝融”火星车的质量约为“玉兔”月球车的2倍。
在着陆前,“祝融”和“玉兔”都会经历一个由着陆平台支撑的悬停过程。
悬停时,“祝融”与“玉兔”所受陆平台的作用力大小之比为( )A .9∶1B .9∶2C .36∶1D .72∶1【答案】 B【解析】悬停时所受平台的作用力等于万有引力,根据2mMF G R = 可得22299=:=2=22M m M m F G G F R R ⨯月祝融祝融火玉兔月玉兔火故选B 。
3.(2021·广东·高考真题)2021年4月,我国自主研发的空间站“天和”核心舱成功发射并入轨运行,若核心舱绕地球的运行可视为匀速圆周运动,已知引力常量,由下列物理量能计算出地球质量的是( )A .核心舱的质量和绕地半径B .核心舱的质量和绕地周期C .核心舱的绕地角速度和绕地周期D .核心舱的绕地线速度和绕地半径【答案】 D【解析】根据核心舱做圆周运动的向心力由地球的万有引力提供,可得222224Mm v πG m m ωr m r r r T ===可得2232324v r r r M G G GT ωπ===可知已知核心舱的质量和绕地半径、已知核心舱的质量和绕地周期以及已知核心舱的角速度和绕地周期,都不能求解地球的质量;若已知核心舱的绕地线速度和绕地半径可求解地球的质量。
高中物理《万有引力与航天》练习题(附答案解析)
高中物理《万有引力与航天》练习题(附答案解析)学校:___________姓名:___________班级:_________一、单选题1.如图所示,两球间的距离为r ,两球的质量分布均匀,质量大小分别为m 1、m 2,半径大小分别为r 1、r 2,则两球间的万有引力大小为( )A .122m m Gr B .2212221m m G r r r ++C .12212()m m G r r +D .12212()m m Gr r r ++2.2021年5月15日,我国首次火星探测任务天问一号探测器在火星乌托邦平原南部预选着陆区成功软着陆。
用h 表示着陆器与火星表面的距离,用F 表示它所受的火星引力大小,则在着陆器从火星上空向火星表面软着陆的过程中,能够描述F 随h 变化关系的大致图像是( )A .B .C .D .3.发现万有引力定律和测出引力常量的科学家分别是( ) A .牛顿、卡文迪许 B .开普勒、卡文迪许 C .开普勒、库仑D .牛顿、库仑4.经典力学有一定的局限性。
当物体以下列速度运动时,经典力学不再适用的是( ) A .32.910m/s -⨯ B .02.910m/s ⨯ C .42.910m/s ⨯ D .82.910m/s ⨯5.有a 、b 、c 、d 四颗地球卫星,a 还未发射,在地球赤道上随地球一起转动,b 在近地轨道做匀速圆周运动,c 是地球同步卫星,d 是高空探测卫星,各卫星排列位置如图所示。
关于这四颗卫星,下列说法正确的是( )A .a 的向心加速度等于重力加速度g B .c 在4 h 内转过的圆心角是6C .在相同时间内,这四颗卫星中b 转过的弧长最长D .d 做圆周运动的周期有可能是20小时6.2019年10月28日发生了天王星冲日现象,即太阳、地球、天王星处于同一直线,此时是观察天王星的最佳时间。
已知日地距离为0R ,天王星和地球的公转周期分别为T 和0T ,则天王星与太阳的距离为( )A 0B 0C 0D 07.如图所示,两颗人造卫星绕地球逆时针运动,卫星1、卫星2分别沿圆轨道、椭圆轨道运动,圆的半径与椭圆的半长轴相等,两轨道相交于A 、B 两点,某时刻两卫星与地球在同一直线上,如图所示,下列说法中正确的是( )A .两卫星在图示位置的速度v 1<v 2B .两卫星在A 处的加速度大小不相等C .两颗卫星可能在A 或B 点处相遇D .两卫星永远不可能相遇8.我们的银河系的恒星中大约四分之一是双星。
高考物理万有引力与航天真题汇编(含答案)含解析
高考物理万有引力与航天真题汇编( 含答案 ) 含分析一、高中物理精讲专题测试万有引力与航天1.“天宫一号”是我国自主研发的目标飞翔器,是中国空间实验室的雏形.2013 年 6 月,“神舟十号”与“天宫一号”成功对接, 6 月 20 日 3 位航天员为全国中学生上了一节生动的物理课.已知“天宫一号”飞翔器运转周期T,地球半径为R,地球表面的重力加快度为g,“天宫一号”围绕地球做匀速圆周运动,万有引力常量为G.求:(1)地球的密度;(2)地球的第一宇宙速度v;(3)天“宫一号”距离地球表面的高度.【答案】 (1)3g(2)v gR (3)h3gT2 R2R 4 GR42【分析】(1)在地球表面重力与万有引力相等:Mmmg ,GR2M M地球密度:V 4 R33解得:3g4 GR(2)第一宇宙速度是近地卫星运转的速度,mg m v2R v gR(3)天宫一号的轨道半径 r R h,Mm h 42据万有引力供给圆周运动向心力有:G2 m R2,R h T解得:h3gT 2 R2R242.一宇航员站在某质量散布平均的星球表面上沿竖直方向以初速度v0抛出一个小球,测得小球经时间t 落回抛出点,已知该星球半径为R,引力常量为G,求:(1)该星球表面的重力加快度;(2)该星球的密度;(3)该星球的“第一宇宙速度”.【答案】 (1) g 2v0(2)3v0(3)2v0 R t2πRGtvt【分析】(1) 依据竖直上抛运动规律可知,小球上抛运动时间2v 0 tg可得星球表面重力加快度 : g2v 0 .tGMm(2)星球表面的小球所受重力等于星球对小球的吸引力,则有:mgR 2gR 22v 0 R 2 得: MGtG 4 R 3由于 V3M 3v 0 则有:2πRGtV(3)重力供给向心力,故该星球的第一宇宙速度mg m v 2RvgR2v 0Rt【点睛 】此题主要抓住在星球表面重力与万有引力相等和万有引力供给圆周运动向心力,掌握竖直上抛运动规律是正确解题的重点.3. 人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同 一个高度由静止同时开释,两者几乎同时落地.若羽毛和铁锤 是从高度为 h 处着落,经时间 t 落到月球表面.已知引力常量为G ,月球的半径为 R .(1)求月球表面的自由落体加快度大小g 月;(2)若不考虑月球自转的影响,求月球的质量 M 和月球的 “第一宇宙速度 ”大小 v .【答案】( 1) g 月2h 2hR 2 2hRt 2 (2)MGt 2; vt【分析】 【剖析】( 1)依据自由落体的位移时间规律能够直接求出月球表面的重力加快度;( 2)依据月球表面重力和万有引力相等,利用求出的重力加快度和月球半径能够求出月球的质量 M ; 飞翔器近月飞翔时,飞翔器所受月球万有引力供给月球的向心力,进而求出“第一宇宙速度”大小.【详解】(1)月球表面邻近的物体做自由落体运动h =1g 月 t 22月球表面的自由落体加快度大小g 月=2ht 2(2)若不考虑月球自转的影响GMm2 =mg 月R月球的质量 M =2hR 22Gt质量为 m' 的飞翔器在月球表面邻近绕月球做匀速圆周运动m ′g v 2月= m ′R2hR 月球的 “第一宇宙速度 ”大小 v = g 月R =t【点睛】联合自由落体运动规律求月球表面的重力加快度,依据万有引力与重力相等和万有引力提 供圆周运动向心力争解中心天体质量和近月飞翔的速度v .4. 宇航员在某星球表面以初速度 v 0 竖直向上抛出一个物体,物体上涨的最大高度为h.已知该星球的半径为R ,且物体只受该星球的引力作用.求:(1)该星球表面的重力加快度;(2)从这个星球上发射卫星的第一宇宙速度 .【答案】 (1)v 02(2) v 0R2h2h【分析】此题考察竖直上抛运动和星球第一宇宙速度的计算.(1) 设该星球表面的重力加快度为 g ′,物体做竖直上抛运动,则 v 02 2g h 解得,该星球表面的重力加快度 gv 022h(2) 卫星切近星球表面运转,则 mg mv 2R解得:星球上发射卫星的第一宇宙速度Rvg R v2h5. 宇航员站在一星球表面上的某高处,沿水平方向抛出一小球.经过时间 t ,小球落到星 球表面,测得抛出点与落地址之间的距离为L .若抛出时的初速度增大到 2 倍,则抛出点与落地址之间的距离为3L .已知两落地址在同一水平面上,该星球的半径为R ,万有引力常量为 G ,求该星球的质量 M .2 3LR 2【答案】 M23Gt【分析】 【详解】两次平抛运动,竖直方向h1 gt2 ,水平方向 x v 0t ,依据勾股定理可得:2L 2h 2 ( v 0 t)2 ,抛出速度变成2 倍: (3L)2 h 2 (2v 0t )2 ,联立解得:h1 L ,3g2L,在星球表面:Mm,解得: M2LR 2 3t 2G R2mg 3t 2G6.2016 年 2 月 11 日,美国 “激光干预引力波天文台 ”(LIGO )团队向全球宣告发现了引力波,这个引力波来自于距离地球13 亿光年以外一个双黑洞系统的归并.已知光在真空中流传的速度为 c ,太阳的质量为 M 0 ,万有引力常量为G .(1)两个黑洞的质量分别为太阳质量的26 倍和 39 倍,归并后为太阳质量的 62 倍.利用所学知识,求此次归并所开释的能量.( 2)黑洞密度极大,质量极大,半径很小,以最迅速度流传的光都不可以逃离它的引力,所以我们没法经过光学观察直接确立黑洞的存在.假设黑洞为一个质量散布平均的球形天体.a .由于黑洞对其余天体拥有强盛的引力影响,我们能够经过其余天体的运动来推断黑洞的存在.天文学家观察到,有一质量很小的恒星单独在宇宙中做周期为T ,半径为 r 0 的匀速圆周运动.由此推断,圆周轨道的中心可能有个黑洞.利用所学知识求此黑洞的质量 M ;b .严格解决黑洞问题需要利用广义相对论的知识,但早在相对论提出以前就有人利用牛顿 力学系统预知过黑洞的存在.我们知道,在牛顿系统中,当两个质量分别为 m 1 、 m 2 的质点相距为 r 时也会拥有势能,称之为引力势能,其大小为E pGm 1m2(规定无量远处r势能为零).请你利用所学知识,推断质量为 M ′的黑洞,之所以能够成为 “黑 ”洞,其半径R 最大不可以超出多少?24 2r 0 32GM13M 02=【答案】() c2 ; R2( ) McGT【分析】【剖析】【详解】(1)归并后的质量损失m (2639)M 0 62M 0 3M 0依据爱因斯坦质能方程E mc 2得归并所开释的能量E 3M 0c 2(2) a .小恒星绕黑洞做匀速圆周运动,设小恒星质量为m依据万有引力定律和牛顿第二定律G Mmm22r 0r 02T解得M4 2 r 03GT 2b .设质量为 m 的物体,从黑洞表面至无量远处;依据能量守恒定律1 mv 2G Mm2R解得2GMRv 2由于连光都不可以逃离,有 v =c 所以黑洞的半径最大不可以超出2GM Rc 27. 木星在太阳系的八大行星中质量最大, “木卫 1”是木星的一颗卫星,若已知“木卫 1”绕木星公转半径为 r ,公转周期为 T ,万有引力常量为 G ,木星的半径为 R ,求(1)木星的质量 M ;(2)木星表面的重力加快度 g 0 . 【答案】( 1) 4 2r 3(2)4 2r 3 GT 2T 2R 2【分析】(1)由万有引力供给向心力G Mmm( 2 )2 rr 2T42r3可得木星质量为 M2GT(2)由木星表面万有引力等于重力: GMmm g 0R 2木星的表面的重力加快度g 042 r3T 2 R 2【点睛 】万有引力问题的运动,一般经过万有引力做向心力获得半径和周期、速度、角速度的关系,而后经过比较半径来求解.8.2003 年 10 月 15 日,我国神舟五号载人飞船成功发射.标记着我国的航天事业发展到 了一个很高的水平.飞船在绕地球飞翔的第 5 圈进行变轨,由本来的椭圆轨道变成距地面高度为 h 的圆形轨道.已知地球半径为R ,地面处的重力加快度为g ,引力常量为 G ,求:(1)地球的质量;(2)飞船在上述圆形轨道上运转的周期T .gR 2(R h)3 【答案】 (1) M(2)T 2GgR 2【分析】【详解】(1)依据在地面重力和万有引力相等,则有GMmmgR 2gR 2解得: MG(2)设神舟五号飞船圆轨道的半径为r ,则据题意有:rR hMm2 飞船在轨道上飞翔时,万有引力供给向心力有:Gm 4πr2T 2r( R h)3解得:T2πgR 29. 在某一星球上,宇航员在距离地面 h 高度处以初速度v 0 沿水平方向抛出一个小球,小球落到星球表面时与抛出点的水平距离为 x ,已知该星球的半径为 R ,引力常量为 G ,求:(1)该星球表面的重力加快度 g ;(2)该星球的质量 M ;(3)该星球的第一宇宙速度 v 。
万有引力与航天 训练题——2023届高考物理一轮复习(word版含答案)
万有引力与航天 训练题一、选择题(本题共15个小题,每题5分,共75分)1、2021年4月,我国自主研发的空间站“天和”核心舱成功发射并入轨运行。
若核心舱绕地球的运行可视为匀速圆周运动,已知引力常量,由下列物理量能计算出地球质量的是( )A.核心舱的质量和绕地半径B.核心舱的质量和绕地周期C.核心舱的绕地角速度和绕地周期D.核心舱的绕地线速度和绕地半径2、2021年6月17日,神舟十二号载人飞船顺利将聂海胜、刘伯明、汤洪波3名航天员送入太空,随后与天和核心舱(空间站)进行对接,标志着中国人首次进入自己的空间站。
如图所示,若空间站在距地球表面高约430 km 的轨道上做匀速圆周运动,已知引力常量为11226.6710N m /kg G -=⋅ ⨯,地球半径约为6400 km ,则下列说法正确的是( )A.空间站的运行速度大于7.9 km/sB.空间站里所有物体的加速度均为零C.位于低轨道的飞船需减速才能与高轨道的空间站实现对接D.若已知空间站的运行周期,则可以估算出地球的平均密度3、如图甲所示,太阳系中有一颗“躺着”自转的蓝色“冷行星”——天王星,其周围存在着环状物质。
为了测定环状物质是天王星的组成部分,还是环绕该行星的卫星群,假设“中国天眼”对其做了精确的观测,发现环状物质线速度的二次方2v 与其到行星中心的距离的倒数1r - 关系如图乙所示。
已知天王星的半径为0r ,引力常量为G ,以下说法正确的是( )A.环状物质是天王星的组成部分B.天王星的自转周期为002πr v C.21v r --关系图像的斜率等于天王星的质量 D.天王星表面的重力加速度为200v r 4、假设在某星球上,一宇航员从距地面不太高的H 处以水平速度0v 抛出一小球,小球落地时在水平方向上发生的位移为s 。
已知该星球的半径为R ,且可看成球体,引力常量为G 。
忽略小球在运动过程中受到的阻力及星球自转的影响。
下列说法中正确的是( )A.B.该星球的质量为2202Hv R GsC.该星球的平均密度为20232πHv Gs RD.距该星球表面足够高的h 处的重力加速度为22022()h Hv R h s + 5、2020年1月,天文学界公布了一系列最新的天文学进展。
高考物理万有引力与航天题20套(带答案)含解析
高考物理万有引力与航天题20套(带答案)含解析一、高中物理精讲专题测试万有引力与航天1.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少?(3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远? 【答案】(1)2,16(2)速度之比为2【解析】【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解;解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2MmGmg R = a 卫星2224aGMm m R R T π=解得2a T =b 卫星2224·4(4)bGMm m R R T π=解得16b T = (2)卫星做匀速圆周运动,F F =引向,a 卫星22a mv GMm R R=解得a v =b 卫星b 卫星22(4)4Mm v G m R R=解得v b =所以 2abV V =(3)最远的条件22a bT T πππ-= 解得87R t gπ=2.人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同一个高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤是从高度为h 处下落,经时间t 落到月球表面.已知引力常量为G ,月球的半径为R . (1)求月球表面的自由落体加速度大小g 月;(2)若不考虑月球自转的影响,求月球的质量M 和月球的“第一宇宙速度”大小v .【答案】(1)22h g t =月 (2)222hR M Gt =;2hRv =【解析】 【分析】(1)根据自由落体的位移时间规律可以直接求出月球表面的重力加速度;(2)根据月球表面重力和万有引力相等,利用求出的重力加速度和月球半径可以求出月球的质量M ; 飞行器近月飞行时,飞行器所受月球万有引力提供月球的向心力,从而求出“第一宇宙速度”大小. 【详解】(1)月球表面附近的物体做自由落体运动 h =12g 月t 2 月球表面的自由落体加速度大小 g 月=22h t (2)若不考虑月球自转的影响 G 2MmR =mg 月 月球的质量 222hR M Gt =质量为m'的飞行器在月球表面附近绕月球做匀速圆周运动m ′g 月=m ′2v R月球的“第一宇宙速度”大小 2hRv g R 月==【点睛】结合自由落体运动规律求月球表面的重力加速度,根据万有引力与重力相等和万有引力提供圆周运动向心力求解中心天体质量和近月飞行的速度v .3.设地球质量为M ,自转周期为T ,万有引力常量为G .将地球视为半径为R 、质量分布均匀的球体,不考虑空气的影响.若把一质量为m 的物体放在地球表面的不同位置,由于地球自转,它对地面的压力会有所不同.(1)若把物体放在北极的地表,求该物体对地表压力的大小F 1; (2)若把物体放在赤道的地表,求该物体对地表压力的大小F 2;(3)假设要发射一颗卫星,要求卫星定位于第(2)问所述物体的上方,且与物体间距离始终不变,请说明该卫星的轨道特点并求出卫星距地面的高度h .【答案】(1)2GMm R (2)22224Mm F G m R R T π=-(3)2324GMT h R π=- 【解析】 【详解】(1) 物体放在北极的地表,根据万有引力等于重力可得:2MmG mg R = 物体相对地心是静止的则有:1F mg =,因此有:12MmF GR = (2)放在赤道表面的物体相对地心做圆周运动,根据牛顿第二定律:22224Mm GF mR RTπ-=解得: 22224Mm F G m R R Tπ=-(3)为满足题目要求,该卫星的轨道平面必须在赤道平面内,且做圆周运动的周期等于地球自转周期T以卫星为研究对象,根据牛顿第二定律:2224()()Mm GmR h R h Tπ=++解得卫星距地面的高度为:2324GMTh R π=-4.宇航员在某星球表面以初速度2.0m/s 水平抛出一小球,通过传感器得到如图所示的运动轨迹,图中O 为抛出点。
高考物理万有引力与航天解题技巧分析及练习题(含答案)
高考物理万有引力与航天解题技巧分析及练习题(含答案)一、高中物理精讲专题测试万有引力与航天1.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少?(3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远? 【答案】(1)2,16(2)速度之比为2【解析】【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解;解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2MmGmg R = a 卫星2224aGMm m R R T π=解得2a T =b 卫星2224·4(4)bGMm m R R T π=解得16b T = (2)卫星做匀速圆周运动,F F =引向,a 卫星22a mv GMm R R=解得a v =b 卫星b 卫星22(4)4Mm v G m R R=解得v b =所以 2abV V =(3)最远的条件22a bT T πππ-= 解得87R t gπ=2.宇航员在某星球表面以初速度2.0m/s 水平抛出一小球,通过传感器得到如图所示的运动轨迹,图中O 为抛出点。
若该星球半径为4000km ,引力常量G =6.67×10﹣11N•m 2•kg ﹣2.试求:(1)该行星表面处的重力加速度的大小g 行; (2)该行星的第一宇宙速度的大小v ;(3)该行星的质量M 的大小(保留1位有效数字)。
【答案】(1)4m/s 2(2)4km/s(3)1×1024kg 【解析】 【详解】(1)由平抛运动的分位移公式,有:x =v 0t y =12g 行t 2 联立解得:t =1s g 行=4m/s 2;(2)第一宇宙速度是近地卫星的运行速度,在星球表面重力与万有引力相等,据万有引力提供向心力有:22mM v G mg m R R行== 可得第一宇宙速度为:34400010m/s 4.0km/s v g R =⨯⨯=行=(3)据2mMGmg R行= 可得:23224114400010kg 110kg 6(.)6710g R M G -⨯⨯==≈⨯⨯行3.“嫦娥一号”在西昌卫星发射中心发射升空,准确进入预定轨道.随后,“嫦娥一号”经过变轨和制动成功进入环月轨道.如图所示,阴影部分表示月球,设想飞船在圆形轨道Ⅰ上作匀速圆周运动,在圆轨道Ⅰ上飞行n 圈所用时间为t ,到达A 点时经过暂短的点火变速,进入椭圆轨道Ⅱ,在到达轨道Ⅱ近月点B 点时再次点火变速,进入近月圆形轨道Ⅲ,而后飞船在轨道Ⅲ上绕月球作匀速圆周运动,在圆轨道Ⅲ上飞行n 圈所用时间为.不考虑其它星体对飞船的影响,求:(1)月球的平均密度是多少?(2)如果在Ⅰ、Ⅲ轨道上有两只飞船,它们绕月球飞行方向相同,某时刻两飞船相距最近(两飞船在月球球心的同侧,且两飞船与月球球心在同一直线上),则经过多长时间,他们又会相距最近?【答案】(1)22192n Gtπ;(2)1237mt t m n (,,)==⋯ 【解析】试题分析:(1)在圆轨道Ⅲ上的周期:38tT n=,由万有引力提供向心力有:222Mm G m R R T π⎛⎫= ⎪⎝⎭又:343M R ρπ=,联立得:22233192n GT Gt ππρ==. (2)设飞船在轨道I 上的角速度为1ω、在轨道III 上的角速度为3ω,有:112T πω= 所以332T πω=设飞飞船再经过t 时间相距最近,有:312t t m ωωπ''=﹣所以有:1237mtt m n(,,)==⋯. 考点:人造卫星的加速度、周期和轨道的关系【名师点睛】本题主要考查万有引力定律的应用,开普勒定律的应用.同时根据万有引力提供向心力列式计算.4.“嫦娥一号”探月卫星在空中的运动可简化为如图5所示的过程,卫星由地面发射后,经过发射轨道进入停泊轨道,在停泊轨道经过调速后进入地月转移轨道,再次调速后进入工作轨道.已知卫星在停泊轨道和工作轨道运行的半径分别为R和R1,地球半径为r,月球半径为r1,地球表面重力加速度为g,月球表面重力加速度为.求:(1)卫星在停泊轨道上运行的线速度大小;(2)卫星在工作轨道上运行的周期.【答案】(1) (2)【解析】(1)卫星停泊轨道是绕地球运行时,根据万有引力提供向心力:解得:卫星在停泊轨道上运行的线速度;物体在地球表面上,有,得到黄金代换,代入解得;(2)卫星在工作轨道是绕月球运行,根据万有引力提供向心力有,在月球表面上,有,得,联立解得:卫星在工作轨道上运行的周期.5.根据我国航天规划,未来某个时候将会在月球上建立基地,若从该基地发射一颗绕月卫星,该卫星绕月球做匀速圆周运动时距月球表面的高度为h,绕月球做圆周运动的周期为T,月球半径为R,引力常量为G.求:(1)月球的密度ρ;(2)在月球上发射绕月卫星所需的最小速度v.【答案】(1)3233()R hGT Rπ+(2()2R h R hT Rπ++【解析】【详解】(1)万有引力提供向心力,由牛顿第二定律得:G 2()Mm R h =+m 224Tπ(R +h ), 解得月球的质量为:2324()R h M GTπ+=; 则月球的密度为:3233()M R h V GT R πρ+==; (2)万有引力提供向心力,由牛顿第二定律得:G 2Mm R =m 2v R,解得:v =6.2003年10月15日,我国神舟五号载人飞船成功发射.标志着我国的航天事业发展到了一个很高的水平.飞船在绕地球飞行的第5圈进行变轨,由原来的椭圆轨道变为距地面高度为h 的圆形轨道.已知地球半径为R ,地面处的重力加速度为g ,引力常量为G ,求: (1)地球的质量;(2)飞船在上述圆形轨道上运行的周期T .【答案】(1)GgR M 2=(2)2T =【解析】 【详解】(1)根据在地面重力和万有引力相等,则有2MmGmg R= 解得:GgR M 2=(2)设神舟五号飞船圆轨道的半径为r ,则据题意有:r R h =+飞船在轨道上飞行时,万有引力提供向心力有:2224πMm G m r r T=解得:2T =7.宇航员来到某星球表面做了如下实验:将一小钢球以v 0的初速度竖直向上抛出,测得小钢球上升离抛出点的最大高度为h (h 远小于星球半径),该星球为密度均匀的球体,引力常量为G ,求:(1)求该星球表面的重力加速度;(2)若该星球的半径R ,忽略星球的自转,求该星球的密度.【答案】(1)(2)【解析】(1)根据速度-位移公式得:,得(2)在星球表面附近的重力等于万有引力,有及联立解得星球密度8.已知火星半径为R ,火星表面重力加速度为g ,万有引力常量为G ,某人造卫星绕火星做匀速圆周运动,其轨道离火星表面高度等于火星半径R ,忽略火星自转的影响。
高考物理真题分类汇编万有引力
高考物理真题分类汇编-万有引力、航天一、选择题1. (2013·福建高考)设太阳质量为M,某行星绕太阳公转周期为T,轨道可视作半径为r 的圆。
已知万有引力常量为G,则描述该行星运动的上述物理量满足 ( )A.GM=2324r T πB.GM=2224r T π C.GM=2234r T π D.GM=324r T π【解题指南】解答本题时应理解以下两点: (1)建立行星绕太阳做匀速圆周运动模型。
(2)太阳对行星的万有引力提供行星绕太阳做匀速圆周运动的向心力。
【解析】选A 。
设行星质量为m,据2224Mm G m r r T π=得GM=2324r T π,故选A 。
2. (2013·广东高考)如图,甲、乙两颗卫星以相同的轨道半径分别绕质量为M 和2M 的行星做匀速圆周运动,下列说法正确的是 ( ) A.甲的向心加速度比乙的小 B.甲的运行周期比乙的小 C.甲的角速度比乙的大 D.甲的线速度比乙的大【解题指南】甲、乙两卫星分别绕两个不同的中心天体做匀速圆周运动,万有引力提供向心力,根据F 万=F向,得出卫星的向心加速度、周期、角速度、线速度与中心天体质量的关系,从而得出甲、乙两卫星各个物理量的大小关系。
【解析】选A 。
甲、乙两卫星分别绕质量为M 和2M 的行星做匀速圆周运动,万有引力提供各自做匀速圆周运动的向心力。
由牛顿第二定律G 2mM r =ma=m 224T πr=m ω2r=m 2v r ,可得a=2GM r ,T=2π3r GM,ω=3GM r ,v=GMr。
由已知条件可得a 甲<a 乙,T 甲>T 乙,ω甲<ω乙,v 甲<v 乙,故正确选项为A 。
3. (2013·山东高考)双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动。
研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化。
最新高考物理万有引力与航天题20套(带答案)
最新高考物理万有引力与航天题20套(带答案)一、高中物理精讲专题测试万有引力与航天1.“嫦娥一号”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步.已知“嫦娥一号”绕月飞行轨道近似为圆形,距月球表面高度为H ,飞行周期为T ,月球的半径为R ,引力常量为G .求:(1) “嫦娥一号”绕月飞行时的线速度大小; (2)月球的质量;(3)若发射一颗绕月球表面做匀速圆周运动的飞船,则其绕月运行的线速度应为多大. 【答案】(1)()2R H Tπ+(2)()3224R H GT π+(3)()2R H R HTRπ++ 【解析】(1)“嫦娥一号”绕月飞行时的线速度大小12π()R H v T+=. (2)设月球质量为M .“嫦娥一号”的质量为m .根据牛二定律得2224π()()R H MmG m R H T +=+解得2324π()R H M GT +=. (3)设绕月飞船运行的线速度为V ,飞船质量为0m ,则2002Mm V G m RR =又2324π()R H M GT +=. 联立得()2πR H R HV TR++=2.宇航员站在某质量分布均匀的星球表面一斜坡上P 点,沿水平方向以初速度v 0抛出一个小球,测得小球经时间t 落到斜坡另一点Q 上,斜坡的倾角α,已知该星球的半径为R ,引力常量为G ,求该星球的密度(已知球的体积公式是V=43πR 3).【答案】03tan 2V RGt απ【解析】试题分析:平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,根据平抛运动的规律求出星球表面的重力加速度.根据万有引力等于重力求出星球的质量,结合密度的公式求出星球的密度.设该星球表现的重力加速度为g ,根据平抛运动规律: 水平方向:0x v t = 竖直方向:212y gt =平抛位移与水平方向的夹角的正切值2012tan gt y x v tα== 得:02tan v g tα=设该星球质量M ,对该星球表现质量为m 1的物体有112GMm m g R =,解得GgR M 2= 由343V R π=,得:03tan 2v M V RGt αρπ==3.木星在太阳系的八大行星中质量最大,“木卫1”是木星的一颗卫星,若已知“木卫1”绕木星公转半径为r ,公转周期为T ,万有引力常量为G ,木星的半径为R ,求 (1)木星的质量M ;(2)木星表面的重力加速度0g .【答案】(1)2324r GT π (2)23224r T Rπ 【解析】(1)由万有引力提供向心力222()Mm Gm r r Tπ= 可得木星质量为2324r M GTπ= (2)由木星表面万有引力等于重力:02Mm Gm g R''=木星的表面的重力加速度230224r g T Rπ=【点睛】万有引力问题的运动,一般通过万有引力做向心力得到半径和周期、速度、角速度的关系,然后通过比较半径来求解.4.双星系统一般都远离其他天体,由两颗距离较近的星体组成,在它们之间万有引力的相互作用下,绕中心连线上的某点做周期相同的匀速圆周运动。
10年万有引力与航天高考题
10年高考直接应用(天津卷)6.探测器绕月球做匀速圆周运动,变轨后在周期较小的轨道上仍做匀速圆周运动,则变轨后与变轨前相比A.轨道半径变小B.向心加速度变小C.线速度变小D.角速度变小 答案:A(上海物理)15. 月球绕地球做匀速圆周运动的向心加速度大小为a ,设月球表面的重力加速度大小为1g ,在月球绕地球运行的轨道处由地球引力产生的加速度大小为2g ,则(A )1g a = (B )2g a = (C )12g g a += (D )21g g a -=解析:根据月球绕地球做匀速圆周运动的向心力由地球引力提供,选B 。
本题考查万有引力定律和圆周运动。
难度:中等。
这个题出的好。
新课标卷)20.太阳系中的8大行星的轨道均可以近似看成圆轨道.下列4幅图是用来描述这些行星运动所遵从的某一规律的图像.图中坐标系的横轴是lg(/)O T T ,纵轴是lg(/)O R R ;这里T 和R 分别是行星绕太阳运行的周期和相应的圆轨道半径,O T 和0R 分别是水星绕太阳运行的周期和相应的圆轨道半径.下列4幅图中正确的是答案:B解析:根据开普勒周期定律:周期平方与轨道半径三次方正比可知23T kR =,3020kRT =两式相除后取对数,得:30322lglgR R TT =,整理得:00lg3lg2R RT T =,选项B 正确。
中心天体的质量和密度(北京卷)16.一物体静置在平均密度为ρ的球形天体表面的赤道上。
已知万有引力常量G,若由于天体自转使物体对天体表面压力恰好为零,则天体自转周期为A.124()3G πρ B.123()4G πρ C.12()G πρ D.123()G πρ答案:D安徽卷)17.为了对火星及其周围的空间环境进行探测,我国预计于2011年10月发射第一颗火星探测器“萤火一号”。
假设探测器在离火星表面高度分别为1h 和2h 的圆轨道上运动时,周期分别为1T 和2T 。
火星可视为质量分布均匀的球体,且忽略火星的自转影响,万有引力常量为G 。
五年2024_2025高考物理真题专题点拨__专题05万有引力定律与航天含解析
专题05 万有引力定律与航天【2024年】1.(2024·新课标Ⅰ)火星的质量约为地球质量的110,半径约为地球半径的12,则同一物体在火星表面与在地球表面受到的引力的比值约为( )A. 0.2B. 0.4C. 2.0D. 2.5【答案】B【解析】设物体质量为m ,则在火星表面有1121M mF GR 在地球表面有2222M mF GR 由题意知有12110M M 1212R R = 故联立以上公式可得21122221140.4101F M R F M R ==⨯=,故选B 。
2.(2024·新课标Ⅱ)若一匀称球形星体的密度为ρ,引力常量为G ,则在该星体表面旁边沿圆轨道绕其运动的卫星的周期是()D.【答案】A【解析】卫星在星体表面旁边绕其做圆周运动,则2224GMm m R R T, 343V R π= ,M Vρ=知卫星该星体表面旁边沿圆轨道绕其运动的卫星的周期T =3.(2024·新课标Ⅲ)“嫦娥四号”探测器于2024年1月在月球背面胜利着陆,着陆前曾绕月球飞行,某段时间可认为绕月做匀速圆周运动,圆周半径为月球半径的K 倍。
已知地球半径R 是月球半径的P 倍,地球质量是月球质量的Q 倍,地球表面重力加速度大小为g 。
则“嫦娥四号”绕月球做圆周运动的速率为( )A.RKgQPB.RPKgQC.RQgKPD.RPgQK【答案】D【解析】假设在地球表面和月球表面上分别放置质量为m 和m 0的两个物体,则在地球和月球表面处,分别有2Mm Gmg R =,002M m QG m g R P '=⎛⎫⎪⎝⎭解得2P g g Q'= 设嫦娥四号卫星的质量为m 1,依据万有引力供应向心力得1212Mm v QG m R R KK P P =⎛⎫ ⎪⎝⎭解得RPgv QK=,故选D 。
4.(2024·浙江卷)火星探测任务“天问一号”的标识如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
万有引力与航天高考题1.(14山东)2013年我国相继完成“神十”与“天宫”对接、“嫦娥”携“玉兔”落月两大航天工程。
某航天爱好者提出“玉兔”回家的设想:如图,将携带“玉兔”的返回系统由月球表面发射到h 高度的轨道上,与在该轨道绕月球做圆周运动的飞船对接,然后由飞船送“玉兔”返回地球。
设“玉兔”质量为m ,月球半径为R ,月面的重力加速度为月g 。
以月面为零势能面,“玉兔”在h 高度的引力势能可表示为()h R R GMmhE P +=,其中G 为引力常量,M 为月球质量。
若忽略月球的自转,从开始发射到对接完成需要对“玉兔”做的功为A .()R h h R R mg 2++月B .()R h h R R mg 2++月 C . ⎪⎪⎭⎫ ⎝⎛++R h h R R mg 22月 D .⎪⎭⎫⎝⎛++R h h R R mg 21月 【答案】D【解析】设玉兔在h 高度的速度为v ,则由22()()Mm mv G R h R h =++可知,玉兔在该轨道上的动能为:1=2()k GMmE R h +,由能的转化和守恒定律可知对玉兔做的功为:1=2()()P K GMm GMmh W E E R h R R h =++++,结合在月球表面:2=MmG mg R月,整理可知正确选项为D 。
2.(13山东20、)双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动。
研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化。
若某双星系统中两星做圆周运动的周期为T ,经过一段时间演化后,两星总质量为原来的k 倍,双星之间的距离变为原来的n 倍,则此时圆周运动的周期为( )A 、T k n 23 B 、T kn 3C 、T k n 2D 、T k n点评:双星系统向心力由彼此的万有引力提供,周期T相同,列出方程即可求解。
【解析】两恒星之间的万有引力提供各自做圆周运动的向心力,则有,又,,联立以上各式可得,故当两恒星总质量变为,两星间距变为时,圆周运动的周期变为,本题选B。
3.(12山东15.)2011年11月3日,“神州八号”飞船与“天宫一号”目标飞行器成功实施了首次交会对接。
任务完成后“天宫一号”经变轨升到更高的轨道,等待与“神州九号”交会对接。
变轨前和变轨完成后“天宫一号”的运行轨道均可视为圆轨道,对应的轨道半径分别为R1、R2,线速度大小分别为1v、2v。
则12vv等于A.3132RRB. 21RRC.2221RRD. 21RR解析:万有引力提供天宫一号圆周运动的向心力,据此列式讨论,依靠重力工作原理的实验仪器在天宫一号中将不再适用.解:万有引力提供圆周运动的向心力有:A、⇒,故A错误;B、⇒,故B正确;C、,轨道半径增加,卫星运行线速度减小,动能减小,故C错误;D、弹簧测力计是利用胡克定律F=kx制作的,在失重的环境下仍可以使用,故D错误;故选B.4.(11山东17.)甲、乙为两颗地球卫星,其中甲为地球同步卫星,乙的运行高度低于甲的运行高度,两卫星轨道均可视为圆轨道。
以下判断正确的是A.甲的周期大于乙的周期B.乙的速度大于第一宇宙速度C.甲的加速度小于乙的加速度D.甲在运行时能经过北极的正上方解析:由于卫星运行高度越大,周期越大,速度越小,所以甲的周期大于乙的周期,乙的速度小于第一宇宙速度,选项A正确B错误;卫星越高,加速度越小,甲的加速度小于乙的加速度,选项C正确;同步卫星只能运行在赤道上方特定轨道上,甲在运行时不能经过北极的正上方,选项D错误。
答案:AC5.(14新课标19.)太阳系各行星几乎在同一平面内沿同一方向绕太阳做圆周运动。
当地球恰好运行到某地外行星和太阳之间,且三者几乎排成一条直线的现象,天文学称为“行星冲日”。
据报道,2014年各行星冲日时间分别是:1月6日木星冲日;4月9日火星冲日;5月11日土星冲日;8月29日海王星冲日;10月8日天王星冲日。
已知地球及各地外行星绕太阳运动的轨道半径如下表所示,则下列判断正确的是A.各地外行星每年都会出现冲日现象B.在2015年内一定会出现木星冲日C.天王星相邻两次冲日的时间间隔为土星的一半D.地外行星中,海王星相邻两次冲日的时间间隔最短答案:BD解析:考察角追及和万有引力定律。
由引力提供向心力可知22ωmr rMm G= 相邻两次冲日的时间间隔XD t ωωπ-=2其中D ω表示的是地球的公转角速度,X ω表示的是行星的公转角速度。
将第一式中的结果代入到第二式中有332XDr GM r GMt -=π设行星的半径是地球半径的k 倍,则上式可化为1112333333-⋅=-=-=kk Y k Y r k GM r GMt DDπ上式中32Dr GM Y π=,也就是地球绕太阳公转的周期,即一年的时间。
对于火星k=1.5,Y Y Y t 25.112.15.12.15.115.15.133=-⨯⨯≈-=对于木星k=5.2,Y Y Y t 09.113.22.53.22.512.52.533=-⨯⨯≈-=至此可知,后面的行星冲日时间间隔大约都是1年,但又大于1年,因为只有∞→k 时才恰恰为一年。
6.(13新课标20.)目前,在地球周围有许多人造地球卫星绕着它转,其中一些卫星的轨道可近似为圆,且轨道半径逐渐变小。
若卫星在轨道半径逐渐变小的过程中,只受到地球引力和薄气体阻力的作用,则下列判断正确的是A.卫星的动能逐渐减小B.由于地球引力做正功,引力势能一定减小C.由于气体阻力做负功,地球引力做正功,机械能保持不变D.卫星克服气体阻力做的功小于引力势能的减小 【答案】BD【解析】卫星在轨道半径逐渐变小的过程中,做近心运动,万有引力做正功,引力势能减小,B 正确;由于稀薄气体的阻力做负功,机械能有部分转化为内能,故卫星的机械能减小,C 错误;又因为稀薄气体的阻力较小,故卫星克服气体阻力做的功小于万有引力做的功,即小于引力势能的减小,D 正确,由动能定理可知合外力做正功,卫星的动能增加,A 错误。
【考点定位】万有引力定律及功能关系7. (12新课标21.)假设地球是一半径为R 、质量分布均匀的球体。
一矿井深度为d 。
已知质量分布均匀的球壳对壳内物体的引力为零。
矿井底部和地面处的重力加速度大小之比为 A.R d -1 B. R d +1 C. 2)(R d R - D. 2)(dR R - 【答案】 A【解析】本题难度较大,关键如何认识与理解“质量分布均匀的球壳对壳内物体的引力为零”。
根据万有引力定律,在地球表面,F=mg 1=G 可得:g 1=G ①M 1=V 球=R 3②根据题意,在矿井底部,地球的有效质量为:M 2=V =(R-d )3③则F=mg2=G可得:g2=G④综上所述、联立①②③④可得g2/ g1=,答案为A。
8. (2012·北京理综)关于环绕地球运动的卫星,下列说法正确的是A.分别沿圆轨道和椭圆轨道运行的两颗卫星,不可能具有相同的周期B.沿椭圆轨道运行的一颗卫星,在轨道不同位置可能具有相同的速率C.在赤道上空运行的两颗地球同步卫星,.它们的轨道半径有可能不同D.沿不同轨道经过北京上空的两颗卫星,它们的轨道平面一定会重合【答案】:B【解析】:分别沿圆轨道和椭圆轨道运行的两颖卫星,可能具有相同的周期,选9. (2011重庆理综第21题)某行星和地球绕太阳公转的轨道均可视为圆。
每过N年,该行星会运行到日地连线的延长线上,如题21图所示。
该行星与地球的公转半径比为A.231NN+⎛⎫⎪⎝⎭B.231NN⎛⎫⎪-⎝⎭C.321NN+⎛⎫⎪⎝⎭D.321NN⎛⎫⎪-⎝⎭【解析】:由G2Mmr=mr22Tπ⎛⎫⎪⎝⎭得23Tr=24GMπ。
地球绕太阳公转2131Tr=24GMπ,某行星绕太阳公转2232Tr=24GMπ,由每过N 年,该行星会运行到日地连线的延长线上可得N-12NT T =1,联立解得21r r =231N N ⎛⎫ ⎪-⎝⎭,选项B 正确。
10(2011四川理综卷第17题)据报道,天文学家近日发现了一颗距地球40光年的“超级地球”,名为“55 Cancri e ”,该行星绕母星(中心天体)运行的周期约为地球绕太阳运行周期的1480,母星的体积约为太阳的60倍。
假设母星与太阳密度相同,“55 Cancri e ”与地球均做匀速圆周运动,则“55 Cancri e ”与地球的A.轨道半径之比约为360480 B. 轨道半径之比约为3260480 C.向心加速度之比约为3260480⨯ D. 向心加速度之比约为360480⨯11.(2010上海物理)如图,三个质点a 、b 、c 质量分别为m 1、m 2、M (M >> m 1,M >> m 2).在C 的万有引力作用下,a 、b 在同一平面内绕c 沿逆时针方向做匀速圆周运动,轨道半径之比r a :r b =1:4,则它们的周期之比T a :T b =______;从图示位置开始,在b 运动一周的过程中,a 、b 、c 共线了____次。
【解析】根据r Tm r 2224Mm G π=,得GMr T 324π=,所以T a :T b =3a r :3b r =1:8。
在b 运动一周的过程中,a 运动8周,所以a 、b 、c 共线了8次。
【答案】1:8 812. 4. (2012·广东理综物理)如图6所示,飞船从轨道1变轨至轨道2。
若飞船在两轨道上都做匀速圆周运动,不考虑质量变化,相对于在轨道1上,飞船在轨道2上的 A.动能大 B.向心加速度大 C.运行周期长 D.角速度小4【解析】:根据万有引力提供向心力可得,相对于在轨道1上,飞船在轨道2上的速度较小,动能小,角速度小,向心加速度小,运行周期长,选项CD 正确。
r b bcr aa。