概率论 第1章习题详解
概率论第一章习题参考解答
概论论与数理统计习题参考解答习题一8. 掷3枚硬币, 求出现3个正面的概率.解: 设事件A ={出现3个正面}基本事件总数n =23, 有利于A 的基本事件数n A =1, 即A 为一基本事件, 则125.08121)(3====n n A P A . 9. 10把钥匙中有3把能打开门, 今任取两把, 求能打开门的概率.解: 设事件A ={能打开门}, 则A 为不能打开门基本事件总数210C n =, 有利于A 的基本事件数27C n A =,467.0157910212167)(21027==⨯⨯⋅⨯⨯==C C A P 因此, 533.0467.01)(1)(=-=-=A P A P .10. 一部四卷的文集随便放在书架上, 问恰好各卷自左向右或自右向左的卷号为1,2,3,4的概率是多少?解: 设A ={能打开门},基本事件总数2412344=⨯⨯⨯==P n ,有利于A 的基本事件数为2=A n ,因此, 0833.0121)(===n n A P A . 11. 100个产品中有3个次品,任取5个, 求其次品数分别为0,1,2,3的概率.解: 设A i 为取到i 个次品, i =0,1,2,3,基本事件总数5100C n =, 有利于A i 的基本事件数为3,2,1,0,5973==-i C C n i i i则00006.09833512196979697989910054321)(006.0983359532195969739697989910054321)(138.09833209495432194959697396979899100543213)(856.0334920314719969798991009394959697)(51002973351003972322510049711510059700=⨯⨯==⨯⨯⋅⨯⨯⨯⨯⨯⨯⨯⨯====⨯⨯=⨯⨯⨯⨯⨯⋅⨯⨯⨯⨯⨯⨯⨯⨯====⨯⨯⨯=⨯⨯⨯⨯⨯⨯⨯⋅⨯⨯⨯⨯⨯⨯⨯⨯=⨯===⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯⨯⨯===C C n n A P C C C n n A P C C n n A P C C n n A P12. N 个产品中有N 1个次品, 从中任取n 个(1≤n ≤N 1≤N ), 求其中有k (k ≤n )个次品的概率. 解: 设A k 为有k 个次品的概率, k =0,1,2,…,n ,基本事件总数n N C m =, 有利于事件A k 的基本事件数kn N N k N k C C m --=11,k =0,1,2,…,n ,因此, n k C C C m m A P n N k n N N k N k k ,,1,0,)(11 ===-- 13. 一个袋内有5个红球, 3个白球, 2个黑球, 计算任取3个球恰为一红, 一白, 一黑的概率. 解: 设A 为任取三个球恰为一红一白一黑的事件,则基本事件总数310C n =, 有利于A 的基本事件数为121315C C C n A =, 则25.0412358910321)(310121315==⨯⨯⨯⨯⨯⨯⨯===C C C C n n A P A 14. 两封信随机地投入四个邮筒, 求前两个邮筒内没有信的概率以及第一个邮筒内只有一封信的概率.解: 设A 为前两个邮筒没有信的事件, B 为第一个邮筒内只有一封信的事件,则基本事件总数1644=⨯=n ,有利于A 的基本事件数422=⨯=A n ,有利于B 的基本事件数632=⨯=B n , 则25.041164)(====n n A P A 375.083166)(====n n B P B .15. 一批产品中, 一, 二, 三等品率分别为0.8, 0.16, 0.04, 若规定一, 二等品为合格品, 求产品的合格率.解: 设事件A 1为一等品, A 2为二等品, B 为合格品, 则P (A 1)=0.8, P (A 2)=0.16,B =A 1+A 2, 且A 1与A 2互不相容, 根据加法法则有P (B )=P (A 1)+P (A 2)=0.8+0.16=0.9616. 袋内装有两个5分, 三个2分, 五个一分的硬币, 任意取出5个, 求总数超过一角的概率. 解: 假设B 为总数超过一角,A 1为5个中有两个5分, A 2为5个中有一个5分三个2分一个1分,A 3为5个中有一个5分两个2分两个1分, 则B =A 1+A 2+A 3, 而A 1,A 2,A 3互不相容, 基本事件总数252762354321678910510=⨯⨯⨯=⨯⨯⨯⨯⨯⨯⨯⨯==C n 设有利于A 1,A 2,A 3的基本事件数为n 1,n 2,n 3,则5.0252126252601056)(,60214532,1052,563216782523123153312238221==++==⨯⨯⨯⨯===⨯===⨯⨯⨯⨯==B P C C C n C C C n C C n 17. 求习题11中次品数不超过一个的概率.解: 设A i 为取到i 个次品, i =0,1,2,3, B 为次品数不超过一个,则B =A 0+A 1, A 0与A 1互不相容, 则根据11题的计算结果有P (B )=P (A 0)+P (A 1)=0.856+0.138=0.99419. 由长期统计资料得知, 某一地区在4月份下雨(记作事件A )的概率为4/15, 刮风(用B 表示)的概率为7/15, 既刮风又下雨的概率为1/10, 求P (A |B ), P (B |A ), P (A +B ).解: 根据题意有P (A )=4/15, P (B )=7/15, P (AB )=1/10, 则633.03019303814101154157)()()()(275.08315/410/1)())|(214.014315/710/1)()()|(==-+=-+=-+=+========AB P B P A P B A P A P PAB A B P B P AB P B A P 20. 为防止意外, 在矿内同时设有两种报警系统A 与B , 每种系统单独使用时, 其有效的概率系统A 为0.92, 系统B 为0.93, 在A 失灵的条件下, B 有效的概率为0.85, 求(1) 发生意外时, 这两个报警系统至少有一个有效的概率(2) B 失灵的条件下, A 有效的概率解: 设A 为系统A 有效, B 为系统B 有效, 则根据题意有P (A )=0.92, P (B )=0.93, 85.0)|(=A B P(1) 两个系统至少一个有效的事件为A +B , 其对立事件为两个系统都失效, 即B A B A =+, 而15.085.01)|(1)|(=-=-=A B P A B P , 则988.0012.01)(1)(012.015.008.015.0)92.01()|()()(=-=-=+=⨯=⨯-==B A P B A P A B P A P B A P(2) B 失灵条件下A 有效的概率为)|(B A P , 则 829.093.01012.01)()(1)|(1)|(=--=-=-=B P B A P B A P B A P 21. 10个考签中有4个难签, 3人参加抽签考试, 不重复地抽取, 每人一次, 甲先, 乙次, 丙最后, 证明3人抽到难签的概率相等.证: 设事件A ,B ,C 表示甲,乙,丙各抽到难签, 显然P (A )=4/10,而由903095106)|()()(902496104)|()()(902494106)|()()(901293104)|()()(=⨯===⨯===⨯===⨯==A B P A P B A P A B P A P B A P A B P A P B A P A B P A P AB P 由于A 与A 互不相容,且构成完备事件组, 因此B A AB B +=可分解为两个互不相容事件的并, 则有1049036902412)()()(==+=+=B A P AB P B P 又因B A B A B A AB ,,,之间两两互不相容且构成完备事件组, 因此有C B A C B A BC A ABC C +++=分解为四个互不相容的事件的并,且720120849030)|()()(72072839024)|()()(72072839024)|()()(72024829012)|()()(=⨯===⨯===⨯===⨯==B A C P B A P C B A P B A C P B A P C B A P B A C P B A P BC A P AB C P AB P ABC P则104720288720120727224()()()()(==+++=+++=CB A PC B A P BC A P ABC P C P 因此有P (A )=P (B )=P (C ), 证毕.22. 用3个机床加工同一种零件, 零件由各机床加工的概率分别为0.5, 0.3, 0.2, 各机床加工的零件为合格品的概率分别等于0.94, 0.9, 0.95, 求全部产品中的合格率.解: 设A 1,A 2,A 3零件由第1,2,3个机床加工, B 为产品合格,A 1,A 2,A 3构成完备事件组.则根据题意有P (A 1)=0.5, P (A 2)=0.3, P (A 3)=0.2,P (B |A 1)=0.94, P (B |A 2)=0.9, P (B |A 3)=0.95,由全概率公式得全部产品的合格率P (B )为93.095.02.09.03.094.05.0)|()()(31=⨯+⨯+⨯==∑=i i i A B P A P B P23. 12个乒乓球中有9个新的3个旧的, 第一次比赛取出了3个, 用完后放回去, 第二次比赛又取出3个, 求第二次取到的3个球中有2个新球的概率.解: 设A 0,A 1,A 2,A 3为第一次比赛取到了0,1,2,3个新球, A 0,A 1,A 2,A 3构成完备事件组. 设B 为第二次取到的3个球中有2个新球. 则有22962156101112321)|(,552132101112789321)(,442152167101112321)|(,55272101112389321)(,552842178101112321)|(,2202710111239321)(,552732189101112321)|(,2201101112321)(3121626331239331215272312132923121428131223191312132********=⋅⨯⨯⋅⨯⨯⨯⨯===⨯⨯⨯⨯⨯⨯⨯⨯⨯===⋅⨯⨯⋅⨯⨯⨯⨯===⨯⨯⨯⨯⨯⨯⨯⨯===⋅⨯⨯⋅⨯⨯⨯⨯===⨯⨯⨯⨯⨯⨯===⋅⨯⨯⋅⨯⨯⨯⨯===⨯⨯⨯⨯==C C C A B P C C A P C C C A B P C C C A P C C C A B P C C C A P C C C A B P C C A P 根据全概率公式有455.01562.02341.00625.00022.022955214421552755282202755272201)|()()(30=+++=⋅+⋅+⋅+⋅==∑=i i i A B P A P B P 24. 某商店收进甲厂生产的产品30箱, 乙厂生产的同种产品20箱, 甲厂每箱100个, 废品率为0.06, 乙厂每箱装120个, 废品率是0.05, 求:(1)任取一箱, 从中任取一个为废品的概率;(2)若将所有产品开箱混放, 求任取一个为废品的概率.解: (1) 设B 为任取一箱, 从中任取一个为废品的事件.设A 为取到甲厂的箱, 则A 与A 构成完备事件组056.005.04.006.06.0)|()()|()()(05.0)|(,06.0)|(4.05020)(,6.05030)(=⨯+⨯=+=======A B P A P A B P A P B P A B P A B P A P A P(2) 设B 为开箱混放后任取一个为废品的事件.则甲厂产品的总数为30×100=3000个, 其中废品总数为3000×0.06=180个,乙厂产品的总数为20×120=2400个, 其中废品总数为2400×0.05=120个,因此...055555555.0540030024003000120180)(==++=B P 25. 一个机床有1/3的时间加工零件A , 其余时间加工零件B , 加工零件A 时, 停机的概率是0.3, 加工零件B 时, 停机的概率是0.4, 求这个机床停机的概率.解: 设C 为加工零件A 的事件, 则C 为加工零件B 的事件, C 与C 构成完备事件组. 设D 为停机事件, 则根据题意有P (C )=1/3, P (C )=2/3,P (D |C )=0.3, P (D |C )=0.4,根据全概率公司有367.04.0323.031)|()()|()()(=⨯+⨯=+=C D P C P C D P C P D P 26. 甲, 乙两部机器制造大量的同一种机器零件, 根据长期资料总结, 甲机器制造出的零件废品率为1%, 乙机器制造出的废品率为2%, 现有同一机器制造的一批零件, 估计这一批零件是乙机器制造的可能性比它们是甲机器制造的可能性大一倍, 今从该批零件中任意取出一件, 经检查恰好是废品, 试由此检查结果计算这批零件为甲机器制造的概率.解: 设A 为零件由甲机器制造, 则A 为零件由乙机器制造, A 与A 构成完备事件组. 由P (A +A )=P (A )+P (A )=1并由题意知P (A )=2P (A ),得P (A )=1/3, P (A )=2/3.设B 为零件为废品, 则由题意知P (B |A )=0.01, P (B |A )=0.02,则根据贝叶斯公式, 任抽一件检查为废品条件下零件由甲机器制造的概率为2.005.001.002.03201.03101.031)|()()|()()|()()|(==⨯+⨯⨯==+=A B P A P A B P A P A B P A P B A P 27. 有两个口袋, 甲袋中盛有两个白球, 一个黑球, 乙袋中盛有一个白球两个黑球. 由甲袋中任取一个球放入乙袋, 再从乙袋中取出一个球, 求取到白球的概率.解: 设事件A 为从甲袋中取出的是白球, 则A 为从甲袋中取出的是黑球, A 与A 构成完备事件组. 设事件B 为从乙袋中取到的是白球.则P (A )=2/3, P (A )=1/3,P (B |A )=2/4=1/2, P (B |A )=1/4,则根据全概率公式有417.012541312132)|()()|()()(==⨯+⨯=+=A B P A P A B P A P B P28. 上题中若发现从乙袋中取出的是白球, 问从甲袋中取出放入乙袋的球, 黑白哪种颜色可能性大?解: 事件假设如上题, 而现在要求的是在事件B 已经发生条件下, 事件A 和A 发生的条件概率P (A |B )和P (A |B )哪个大, 可以套用贝叶斯公式进行计算, 而计算时分母为P (B )已上题算出为0.417, 因此2.0417.04131)()|()()|(8.0417.02132)()|()()|(=⨯===⨯==B P A B P A P B A P B P A B P A P B A PP (A |B )>P (A |B ), 因此在乙袋取出的是白球的情况下, 甲袋放入乙袋的球是白球的可能性大.29. 假设有3箱同种型号的零件, 里面分别装有50件, 30件和40件, 而一等品分别有20件, 12件及24件. 现在任选一箱从中随机地先后各抽取一个零件(第一次取到的零件不放回). 试求先取出的零件是一等品的概率; 并计算两次都取出一等品的概率.解: 称这三箱分别为甲,乙,丙箱, 假设A 1,A 2,A 3分别为取到甲,乙,丙箱的事件, 则A 1,A 2,A 3构成完备事件组.易知P (A 1)=P (A 2)=P (A 3)=1/3.设B 为先取出的是一等品的事件. 则6.04024)|(,4.03012)|(,4.05020)|(321======A B P A B P A B P 根据全概率公式有 467.036.04.04.0)|()()(31=++==∑=i i i A B P A P B P 设C 为两次都取到一等品的事件, 则38.039402324)|(1517.029301112)|(1551.049501920)|(240224323021222502201=⨯⨯===⨯⨯===⨯⨯==C C A C P C C A C P C C A C P 根据全概率公式有22.033538.01517.01551.0)|()()(31=++==∑=i i i A C P A P C P 30. 发报台分别以概率0.6和0.4发出信号“·”和“—”。
概率论第1章的基本概念习题及答案
第一章随机变量习题一_______ 系 ____ 班姓名 ________ 学号________1、写出下列随机试验的样本空间(1)同时掷三颗骰子,记录三颗骰子点数之和11 =〈3,4, ,18(2)生产产品直到有10件正品为止,记录生产产品的总件数= 「10 ,11 , 1(3)对某工厂出厂的产品进行检验,合格的记上“正品”,不合格的记上“次品”,如连续查出2个次品就停止,或检查4个产品就停止检查,记录检查的结果。
用“0” 表示次品,用“ 1”表示正品。
门={ 00,100 , 0100 , 0101 , 0110,1100,1010,1011, 0111 ,1101 ,1110,1111 }⑷在单位圆内任意取一点,记录它的坐标门={(x,y)|x2 y 2 :: 1}(5)将一尺长的木棍折成三段,观察各段的长度1 1 ={(x ,y , z ) | x 0, y 0,z 0, x y z = 1}其中x,y,z分别表示第一、二、三段的长度(6 ) .10 只产品中有3只次品,每次从其中取一只(取后不放回),直到将3只次品都取出,写出抽取次数的基本空间U =“在(6 ) 中,改写有放回抽取”写出抽取次数的基本空间U =解:(1 ) U = { e3 ,e4 ,, e10 。
}其中ei 表示“抽取i 次”的事件。
i = 3 、4、10(2 ) U = { e3 ,e4 ,, }其中e i 表示“抽取i 次”的事件。
i = 3 、4、2、互不相容事件与对立事件的区别何在?说出下列各对事件的关系⑴〔x-aZ:与|x-a|八互不相容(2) x 20与x空20对立事件(3) x 20与x叮8 互不相容(4) x 20与x乞22相容事件(5)20个产品全是合格品与20个产品中只有一个废品互不相容(6)20个产品全是合格品与20个产品中至少有一个废品对立事件解:互不相容:AB「;对立事件:(1)AB「且A - B =门3、设A,B,C 为三事件,用A,B,C 的运算关系表示下列各事件7、设一个工人生产了四个零件,A i 表示事件“他生产的第i 个零件是正 品” (i =123,4),用人,2,宀,4的运算关系表达下列事件•(1)没有一个产品是次品; ⑴ B 1 =几人2人3人4⑵ 至少有一个产品是次品;(2) B 2二A - A 2 - A s - A 4二人人2人傀 (3)只有一个产品是次品;(3) B 3 =几人人代2人人人代1 AAAA t^ AAAA⑴A 发生,B 与C 不发生- ABC (2)A 与B 都发生,而C 不发生-ABC(3)A,B,C 中至少有一个发生 A_. B_. C (4)A,B,C 都发生-ABC(5)A,B,C 都不发生-ABC (6)A,B,C 中不多于一个发生-ABAC 一 BC(7)A,B,C 中不多于两个发生-(8)A,B,C 4、盒内装有 到的球的号码为偶数” 中至少有两个发生- AB _ AC BC10个球,分别编有1- 10的号码,现从中任取一球,设事件 A 表示“取 ,事件B 表示“取到的球的号码为奇数”,事件C 表示“取到 的球的号码小于5”,试说明下列运算分别表示什么事件.A B(1) 必然事件AB不可能事件C取到的球的号码不小于51或2或3或4或6或8或10AC 2 或 4ACB C 6或8或105、指出下列命题中哪些成立, (8)哪些不成立BC2 或4或5或6或7或8或9或10(1) A B = AB B 成立 ⑵AB =A B 不成立(3) A B C = A B C 不成立(4)(AB)(AB)二 成立⑸若A B ,则A 二AB 成立 ⑹若AB 「•,且C A ,则BC = '成立 ⑺若A B ,则B A 成立(8)若B A ,则A B = A 成立(4) 至少有三个产品不是次品B^A 1A 2A 3A^ AA 2A 3A 4 一 AA 2A 3A 4 A 1A>A 3A^ AA 2A 3A 4 8•设E 、F 、G 是三个随机事件,试利用事件的运算性质化简下列各式(1)E M''J EF (2) E F /〔E F 丁 [E F ( 3) E F F G解:(1)原式=E E E F E F F F = E (2)原式=E F fl :i.E F i 〕:i E F = F E F = F E(3) 原式=E F E G F F F G = F E G 9、设代B 是两事件且P(A) =0.6, P (B) =0.7,问(1)在什么条件下P( AB )取到最大值,最大值是多少? (2)在什么条件下P(AB )取到最小值,最小值是多少? 解:(1) A - B, P(AB) = 0.6(2) A _ B = S, P(AB) = 0.310. 设事件A ,B ,C 分别表示开关a ,b ,c 闭合,D 表示灯亮, 则可用事件 A, B, C 表示:(1) D = AB C ; (2) D = A B C 。
《概率论与数理统计》第01章习题解答
第一章 随机事件及其概率第1章1、解:(1){}2,3,4,5,6,7S = (2){} ,4,3,2=S (3){} ,,,TTH TH H S =(4){}6,5,4,3,2,1,,T T T T T T HT HH S =2、设A , B 是两个事件,已知81)(,21)(,41)(===AB P B P A P ,求)(B A P ,)(B A P ,)(AB P ,)])([(AB B A P 解:81)(,21)(,41)(===AB P B P A P ∴)()()()(AB P B P A P B A P -+= 85812141=-+=)()()(AB P B P B A P -=838121=-=87811)(1)(=-=-=AB P AB P)])([(AB B A P )]()[(AB B A P -=)()(AB P B A P -= )(B A AB ⊂218185=-=3、解:用A 表示事件“取到的三位数不包含数字1”2518900998900)(191918=⨯⨯==C C C A P 4、在仅由0,1,2,3,4,5组成且每个数字至多出现一次的全体三位数字中,任取一个三位数,(1)该数是奇数的概率;(2)求该数大于330的概率。
解:用A 表示事件“取到的三位数是奇数”,用B 表示事件“取到的三位数大于330”(1) 455443)(2515141413⨯⨯⨯⨯==A C C C C A P =0.48 2) 455421452)(251514122512⨯⨯⨯⨯+⨯⨯=+=A C C C A C B P =0.48 5、袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的概率(1)4只中恰有2只白球,1只红球,1只黑球; (2)4只中至少有2只红球; (3)4只中没有白球解:用A 表示事件“4只中恰有2只白球,1只红球,1只黑球”(1)412131425)(C C C C A P ==495120=338(2)用B 表示事件“4只中至少有2只红球”16567)(4124418342824=++=C C C C C C B P 或4124838141)(C C C C B P +-==16567495201= (3)用C 表示事件“4只中没有白球”99749535)(41247===C C C P 6、解:用A 表示事件“某一特定的销售点得到k 张提货单”nkn k n MM C A P --=)1()( 7、解:用A 表示事件“3只球至少有1只配对”,B 表示事件“没有配对”(1)3212313)(=⨯⨯+=A P 或321231121)(=⨯⨯⨯⨯-=A P (2)31123112)(=⨯⨯⨯⨯=B P 8、(1)设1.0)(,3.0)(,5.0)(===AB P B P A P ,求(),(),(),(),P A B P B A P A B P A A B(),()P AB A B P A AB ;(2)袋中有6只白球,5只红球每次在袋中任取一只球,若取到白球,放回,并放入1只白球,若取到红球不放回也不再放回另外的球,连续取球四次,求第一、二次取到白球且第三、四次取到红球的概率。
第一章概率论解析答案 习题解答
第一章概率论解析答案习题解答第一章概率论解析答案习题解答第一章随机事件与概率i教学基本要求1.理解随机现象和随机实验,理解样本空间的概念,理解随机事件的概念,掌握事件之间的关系和操作;2、了解概率的统计定义、古典定义、几何定义和公理化定义,会计算简单的古典概率和几何概率,理解概率的基本性质;3.了解条件概率,了解概率的乘法公式、全概率公式和贝叶斯公式,并能用它们解决简单问题;4、理解事件的独立性概念.二、解决问题a组1.填写以下随机试验的样本空间(1)抛掷两颗骰子,观察两次点数之和;(2)连续抛掷一枚硬币,直至出现正面为止;(3)某路口一天通过的机动车车辆数;(4)某城市一天的用电量.解决方案:(1)??{2,3,?,12};(2)记抛掷出现反面为“0”,出现正面为“1”,则??{(1),(0,1),(0,0,1),?};(3)??{0,1,2,?};(4)??{t|t?0}.2.设a、B和C为三个事件。
试着表达以下事件:(1)a、B和C全部或全部发生;(2)至少出现a、B和C中的一种;(3)出现的a、B和C不超过两个解:(1)(abc)?(abc);(2)a?b?c;(3)abc或a?b?c.3.在一次击球中,将a记为“打2到4圈”,B记为“打3到5圈”,C记为“打5到7圈”。
写出以下事件:(1)AB;(2) a?b、(3)a(b?c);(4)abc。
解:(1)ab为“命中5环”;(2) a?B是“打0到1环或3到10环”;1(3) A(B?C)是“打0到2圈或5到10圈”;(4) ABC是“打2到4环”4、任取两正整数,求它们的和为偶数的概率?解:记取出偶数为“0”,取出奇数为“1”,则其出现的可能性相同,于是任取两个整数的样本空间为??{(0,0),(0,1),(1,0),(1,1)}.设a为“取出的两个正整数之和为偶数”,则A.{(0,0),(1,1)},那么p(a)?1.25. 从52张牌中取出4张牌,计算以下事件的概率:(1)全是黑桃;(2)同花;(3)没有两张同一花色;(4)同色?解决方案:有C52种可能的方法从52张卡中选择4张卡4c13(1)设a为“全是黑桃”,则a有c种取法,于是p(a)?4;C52413(2)将B设置为“同一朵花”,那么B有4c413种方法,所以44c13p(b)?4;C52134(3)将C设置为“没有两种颜色相同”,那么C有13种方法,那么p(C)呢?4.c52442c26(4)设d为“同色”,则d有2c种取法,于是p(d)?4.C524266。
《概率论》第一章习题(A)参考答案
第一章习题(A )参考答案(注:有些题可能存在多种解法,希望同学能够多动脑思考,不要将思维局限于参考答案。
)4.解:(1)()1()0.7P B P B =-= ,()()()()0.4P AB P A P B P A B ∴=+-⋃=;(2)()()()()0.3P B A P B AB P B P AB -=-=-= ; (3)()()1()0.2P AB P A B P A B =⋃=-⋃= 。
5.解:从8个球中任取2个,共有2887282!n C ⨯===种取法。
设事件A 表示取到的两个球颜色相同,可分成两种情况:取到白球;取到黑球。
完成事件A 共有22535432132!2!m C C ⨯⨯=+=+=种取法,则根据古典概型的概率计算公式,可求得13()28m P A n ==。
6.解:考虑将两组分别记为甲组和乙组,则分配球队的时候,先将10支球队分到甲组,再将剩下的10支球队分到乙组,共有101010201020n C C C ==种分法。
对于最强的两队,先取一支强队分到甲组,接着再从其余18支稍弱的球队中取9支分到甲组,这样甲组就有一支最强队及9支稍弱的队,最后将剩下的10支球队分到乙组,这样共有19218m C C =种分法。
则最强的两队被分到不同组内的概率为192181020100.526319===≈C C m p n C 。
7.解:将12个球随意放入3个盒子中,对于每个球,都可以从3个盒子中选一个盒子放球进去,因此共有123n =种放法。
设事件A 表示第一个盒子中有3个球,先从12个球中取出3个球放进第一个盒子,剩下的9个球随意放进其余两个盒子中,对于这9个球,每个都可以从其余两个盒子中选一个盒子放球进去,因此完成事件A 共有39122m C =⨯种方法,则第一个盒子中有3个球的概率为3912122()0.2123C m P A n ⨯==≈。
8.解:由于每颗骰子有6个不同的点数,因此同时掷4颗均匀骰子共有46n =种不同的结果。
概率论~第一章习题参考答案与提示
第一章 随机事件与概率习题参考答案与提示1. 设为三个事件,试用表示下列事件,并指出其中哪两个事件是互逆事件:C B A 、、C B A 、、(1)仅有一个事件发生; (2)至少有两个事件发生;(3)三个事件都发生; (4)至多有两个事件发生;(5)三个事件都不发生; (6)恰好两个事件发生。
分析:依题意,即利用事件之间的运算关系,将所给事件通过事件表示出来。
C B A 、、 解:(1)仅有一个事件发生相当于事件C B A C B A C B A 、、有一个发生,即可表示成C B A C B A C B A ∪∪;类似地其余事件可分别表为(2)或AC BC AB ∪∪ABC B A BC A C AB ∪∪∪;(3);(4)ABC ABC 或C B A ∪∪;(5)C B A ;(6)B A BC A C AB ∪∪或。
ABC AC BC AB −∪∪ 由上讨论知,(3)与(4)所表示的事件是互逆的。
2.如果表示一个沿着数轴随机运动的质点位置,试说明下列事件的包含、互不相容等关系:x {}20|≤=x x A {}3|>=x x B {}9|<=x x C{}5|−<=x x D{}9|≥=x x E 解:(1)包含关系: 、 A C D ⊂⊂B E ⊂ 。
(2)互不相容关系:C 与E (也互逆)、B 与、D E 与。
D 3.写出下列随机事件的样本空间:(1)将一枚硬币掷三次,观察出现H (正面)和T (反面)的情况;(2)连续掷三颗骰子,直到6点出现时停止, 记录掷骰子的次数;(3)连续掷三颗骰子,记录三颗骰子点数之和;(4)生产产品直到有10件正品时停止,记录生产产品的总数。
提示与答案:(1);{}TTT TTH THT HTT THH HTH HHT HHH ,,,,,,,=Ω(2); {,2,1=Ω}(3);{}18,,4,3 =Ω(4)。
{} ,11,10=Ω4.设对于事件有C B A 、、=)(A P 4/1)()(==C P B P , ,8/1)(=AC P0)()(==BC P AB P ,求至少出现一个的概率。
大学概率论第一章答案
习题1-21. 选择题(1) 设随机事件A ,B 满足关系A B ⊃,则下列表述正确的是( ).(A) 若A 发生, 则B 必发生. (B) A , B 同时发生.(C) 若A 发生, 则B 必不发生. (D) 若A 不发生,则B 一定不发生.解 根据事件的包含关系, 考虑对立事件, 本题应选(D).(2) 设A 表示“甲种商品畅销, 乙种商品滞销”, 其对立事件A 表示( ).(A) 甲种商品滞销, 乙种商品畅销. (B) 甲种商品畅销, 乙种商品畅销.(C) 甲种商品滞销, 乙种商品滞销.(D) 甲种商品滞销, 或者乙种商品畅销.解 设B 表示“甲种商品畅销”,C 表示“乙种商品滞销”,根据公式B C B C =I U ,本题应选(D).2. 写出下列各题中随机事件的样本空间:(1) 一袋中有5只球, 其中有3只白球和2只黑球, 从袋中任意取一球, 观察其颜色;(2) 从(1)的袋中不放回任意取两次球, 每次取出一个, 观察其颜色;(3) 从(1)的袋中不放回任意取3只球, 记录取到的黑球个数;(4) 生产产品直到有10件正品为止, 记录生产产品的总件数.解 (1) {黑球,白球}; (2) {黑黑,黑白,白黑,白白}; (3) {0,1,2};(4) 设在生产第10件正品前共生产了n 件不合格品,则样本空间为{10}.|0,1,2,n n +=L 3. 设A, B, C 是三个随机事件, 试以A, B, C 的运算关系来表示下列各事件:(1) 仅有A 发生;(2) A , B , C 中至少有一个发生;(3) A , B , C 中恰有一个发生;(4) A , B , C 中最多有一个发生;(5) A , B , C 都不发生;(6) A 不发生, B , C 中至少有一个发生.解 (1) ABC ; (2) ; (3) A B C U U ABC ABC ABC U U ; (4) ABC ABC ABC ABC U U U ; (5) ABC ; (6) ()A B C U .4. 事件A i 表示某射手第i 次(i =1, 2, 3)击中目标, 试用文字叙述下列事件:(1) A 1∪A 2; (2)A 1∪A 2∪A 3; (3)3A ; (4) A 2-A 3; (5)2A A U 3; (6)12A A . 解 (1) 射手第一次或第二次击中目标;(2) 射手三次射击中至少击中目标;(3) 射手第三次没有击中目标;(4) 射手第二次击中目标,但是第三次没有击中目标;(5) 射手第二次和第三次都没有击中目标;(6) 射手第一次或第二次没有击中目标.习题1-31. 选择题(1) 设A, B 为任二事件, 则下列关系正确的是( ).(A)()()()P A B P A P B −=−. (B)()()()P A B P A P B =+U .(C)()()()P AB P A P B =. (D)()()()P A P AB P AB =+.解 由文氏图易知本题应选(D).(2) 若两个事件A 和B 同时出现的概率P (AB )=0, 则下列结论正确的是( ).(A) A 和B 互不相容. (B) AB 是不可能事件.(C) AB 未必是不可能事件. (D) P (A )=0或P (B )=0.解 本题答案应选(C).2. 设P (AB )=P (AB ), 且P (A )=p ,求P (B ).解 因 ()1()1()()()()P AB P A B P A P B P AB P AB =−=−−+=U ,故. 于是()()1P A P B +=()1.P B p =−3. 已知()0.4P A =,,()0.3P B =()0P A B .4=U , 求()P AB .解 由公式()()()()P A B P A P B P AB =+−U 知()0.P AB 3=. 于是()()()0.1P AB P A P AB =−=..34. 设A , B 为随机事件,,()0.7P A =()0P A B −=, 求()P AB .解 由公式()()(P A B P A P AB )−=−可知,()0.4P AB =. 于是()0.6P AB =.5. 已知1()()()4P A P B P C ===,()0P AB =, 1()()12P AC P BC ==, 求A , B , C 全不发生的概率.解 因为,所以=0, 即有=0.ABC AB ⊂0()P ABC P AB ≤≤()()P ABC 由概率一般加法公式得()()()()()()()()7.12P A B C P A P B P C P AB P AC P BC P ABC =++−−−+=U U 由对立事件的概率性质知A ,B , C 全不发生的概率是5()()1()12P ABC P A B C P A B C ==−U U U U =.习题1-41. 选择题 在5件产品中, 有3件一等品和2件二等品. 若从中任取2件, 那么以0.7为概率的事件是( ).(A) 都不是一等品. (B) 恰有1件一等品.(C) 至少有1件一等品. (D) 至多有1件一等品.解 至多有一件一等品包括恰有一件一等品和没有一等品, 其中只含有一件一等品的概率为113225C C C ×, 没有一等品的概率为023225C C C ×, 将两者加起即为0.7.答案为(D ).2. 从由45件正品、5件次品组成的产品中任取3件. 求: (1) 恰有1件次品的概率; (2) 恰有2件次品的概率; (3) 至少有1件次品的概率; (4) 至多有1件次品的概率; (5) 至少有2件次品的概率.解 (1) 恰有1件次品的概率是12545350C C C ;(2) 恰有2件次品的概率是21545350C C C ; (3 )至少有1件次品的概率是1-03545350C C C ; (4) 至多有1件次品的概率是03545350C C C +12545350C C C ; (5) 至少有2件次品的概率是21545350C C C +30545350C C C . 3. 袋中有9个球, 其中有4个白球和5个黑球. 现从中任取两个球. 求:(1) 两个球均为白球的概率;(2) 两个球中一个是白的, 另一个是黑的概率;(3)至少有一个黑球的概率.解 从9个球中取出2个球的取法有种,两个球都是白球的取法有种,一黑一白的取法有种,由古典概率的公式知道29C 24C 1154C C (1) 两球都是白球的概率是2924C C ; (2) 两球中一黑一白的概率是115429C C C ; (3) 至少有一个黑球的概率是12924C C −. 习题1-51. 选择题(1) 设随机事件A , B 满足P (A |B )=1, 则下列结论正确的是( )(A) A 是必然事件. (B) B 是必然事件.(C) AB B =. (D)()(P AB P B )=.解 由条件概率定义可知选(D).(2) 设A , B 为两个随机事件, 且0()P A 1<<, 则下列命题正确的是( ).(A) 若((P AB P A =), 则A , B 互斥.(B) 若()P B A 1=, 则()0P AB =.(C) 若()()P AB P AB +1=, 则A , B 为对立事件.(D) 若(|)1P B A =, 则B 为必然事件.解 由条件概率的定义知选(B ).2. 从1,2,3,4中任取一个数, 记为X , 再从1,2,…,X 中任取一个数, 记为Y ,求P {Y =2}.解 解 P {Y =2}=P {X =1}P {Y =2|X =1}+P {X =2}P {Y =2|X =2}+P {X =3}P {Y =2|X =3}+P {X =4}P {Y =2|X =4}=41×(0+21+31+41)=4813. 3. 甲、乙、丙三人同时对某飞机进行射击, 三人击中的概率分别为0.4, 0.5, 0.7. 飞机被一人击中而被击落的概率为0.2, 被两人击中而被击落的概率为0.6, 若三人都击中, 飞机必定被击落. 求该飞机被击落的概率.解 目标被击落是由于三人射击的结果, 但它显然不能看作三人射击的和事件. 因此这属于全概率类型. 设A 表示“飞机在一次三人射击中被击落”, 则表示“恰有i 发击中目标”. (0,1,2,3i B i =)i B 为互斥的完备事件组. 于是没有击中目标概率为,0()0.60.50.30.09P B =××=恰有一发击中目标概率为1()0.40.50.30.60.50.30.60.50.70.36P B =××+××+××=,恰有两发击中目标概率为2()0.40.50.30.60.50.70.40.50.70.41P B =××+××+××=,恰有三发击中目标概率为3()0.40.50.70.14P B =××=.又已知 012(|)0,(|)0.2,(|)0.6,(|)1P A B P A B P A B P A B 3====,所以由全概率公式得到30()()(|)0.360.20.410.60.1410.458.i i i P A P B P A B ===×+×+×=∑4. 在三个箱子中, 第一箱装有4个黑球, 1个白球; 第二箱装有3个黑球, 3个白球; 第三箱装有3个黑球, 5个白球. 现任取一箱, 再从该箱中任取一球.(1) 求取出的球是白球的概率;(2) 若取出的为白球, 求该球属于第二箱的概率.解 (1)以A 表示“取得球是白球”,表示“取得球来至第i 个箱子”,i =1,2,3. i H 则P ()=i H 13, i =1,2,3, 1211(|),(|),(|)52P A H P A H P A H ==358=. 由全概率公式知P (A )=112233()(|)()(|)()(|)P H P A H P H P A H P H P A H ++=12053. (2) 由贝叶斯公式知 P ()=2|H A 222()()(|)20()()53P AH P H P A H P A P A == 5. 某厂甲、乙、丙三个车间生产同一种产品, 其产量分别占全厂总产量的40%, 38%, 22%, 经检验知各车间的次品率分别为0.04, 0.03, 0.05. 现从该种产品中任意取一件进行检查.(1) 求这件产品是次品的概率;(2) 已知抽得的一件是次品, 问此产品来自甲、乙、丙各车间的概率分别是多少?解 设A 表示“取到的是一件次品”, i B (i =1, 2, 3)分别表示“所取到的产品来自甲、乙、丙工厂”. 易知, 123,,B B B 是样本空间S 的一个划分, 且122()0.4,()0.38,()0.22P B P B P B ===,,.12(|)0.04,(|)0.03P A B P A B ==3(|)0.05P A B =(1) 由全概率公式可得112233()(|)()(|)()(|)()P A P A B P B P A B P B P A B P B =++0.40.040.380.030.220.050.0384.=×+×+×=. (2) 由贝叶斯公式可得111(|)()0.40.045(|)()0.038412P A B P B P B A P A ×===, 222(|)()0.380.0319(|)()0.038464P A B P B P B A P A ×===, 333(|)()0.220.0555(|)()0.0384192P A B P B P B A P A ×===. 习题1-61. 选择题(1) 设随机事件A 与B 互不相容, 且有P (A )>0, P (B )>0, 则下列关系成立的是( ).(A) A , B 相互独立. (B) A , B 不相互独立.(C) A , B 互为对立事件. (D) A , B 不互为对立事件.解 用反证法, 本题应选(B).(2) 设事件A 与B 独立, 则下面的说法中错误的是( ).(A) A 与B 独立. (B) A 与B 独立. (C) ()((P AB P A P B =). (D) A 与B 一定互斥.解 因事件A 与B 独立, 故A B 与,A 与B 及A 与B 也相互独立. 因此本题应选(D).(3) 设事件A 与 B 相互独立, 且0<P (B )<1, 则下列说法错误的是( ).(A) . (B) (|)()P A B P A =()()()P AB P A P B =.(C) A 与B 一定互斥. (D).()()()()()P A B P A P B P A P B =+−U 解 因事件A 与B 独立, 故A B 与也相互独立, 于是(B)是正确的. 再由条件概率及一般加法概率公式可知(A)和(D)也是正确的. 从而本题应选(C).2. 设三事件A , B 和C 两两独立, 满足条件:,ABC =∅1()()()2P A P B P C ==<, 且9()16P A B C =U U ,求.()P A 解 根据一般加法公式有()()()()()()()()P A B C P A P B P C P AC P AB P BC P ABC =++−−−+U U . 由题设可知 A , B 和C 两两相互独立, ,ABC =∅ 1()()()2P A P B P C ==<,因此有 2()()()[()],()()0,P AB P AC P BC P A P ABC P ====∅= 从而 29()3()3[()]16P A B C P A P A =−=U U , 于是3()4P A =或1()4P A =, 再根据题设1()2P A <, 故1()4P A =. 3. 甲、乙两人各自向同一目标射击, 已知甲命中目标的概率为 0.7, 乙命中目标的概率为0.8. 求:(1) 甲、乙两人同时命中目标的概率;(2) 恰有一人命中目标的概率;(3) 目标被命中的概率.解 甲、乙两人各自向同一目标射击应看作相互独立事件. 于是(1) ()()()0.70.80.56;P AB P A P B ==×= (2) ()()0.70.20.30.80.38;P AB P AB +=×+×=(3) ()()()()()0.70.80.560.94.P A B P A P B P A P B =+−=+−=U总 习 题 一1. 选择题:设是三个相互独立的随机事件, 且0(,,A B C )P C 1<<, 则在下列给定的四对事件中不相互独立的是( ).(A)A B U 与C . (B)AC 与C . (C) A B −与C . (D) AB 与C .解 由于A , B , C 是三个相互独立的随机事件, 故其中任意两个事件的和、差、交、并与另一个事件或其逆是相互独立的, 根据这一性质知(A), (C), (D)三项中的两事件是相互独立的, 因而均为干扰项, 只有选项(B)正确..2. 一批产品由95件正品和5件次品组成, 先后从中抽取两件, 第一次取出后不再放回.求: (1) 第一次抽得正品且第二次抽得次品的概率; (2) 抽得一件为正品, 一件为次品的概率.解 (1) 第一次抽得正品且第二次抽得次品的概率为9551910099396×=×. (1) 抽得一件为正品,一件为次品的概率为95559519.10099198×+×=× 3. 设有一箱同类型的产品是由三家工厂生产的. 已知其中有21的产品是第一家工厂生产的, 其它二厂各生产41. 又知第一、第二家工厂生产的产品中有2%是次品, 第三家工厂生产的产品中有4%是次品. 现从此箱中任取一件 产品, 求取到的是次品的概率.解 从此箱中任取一件产品, 必然是这三个厂中某一家工厂的产品. 设 A ={取到的产品是次品}, B i ={取到的产品属于第i 家工厂生产}, i =1, 2, 3. 由于B i B j =(i ≠j, i , j =1, 2, 3)且B ∅1∪B 2∪B 3=S , 所以B 1, B 2, B 3是S 的一个划分. 又 P (B 1)=21, P (B 2) =41, P (B 3)=41, P (A | B 1)=1002, P (A | B 2)=1002, P (A | B 3)=1004, 由全概率公式得P (A )=P (B 1)P (A |B 1)+P (B 2)P (A |B 2)+P (B 3)P (A | B 3)=100441100241100221×+×+×=0.025. 4. 某厂自动生产设备在生产前须进行调整. 假定调整良好时, 合格品为90%; 如果调整不成功, 则合格品有30%. 若调整成功的概率为75%, 某日调整后试生产, 发现第一个产品合格. 问设备被调整好的概率是多少?解 设A ={设备调整成功}, B ={产品合格}. 则全概率公式得到()()(|)()(|0.750.90.250.30.75P B P A P B A P A P B A =+=×+×=.由贝叶斯公式可得()0.750.9(|)0.9()0.75()(|)()P AB P A B P B P A P B A P B ×====. 5. 将两份信息分别编码为A 和B 传递出去. 接收站收到时, A 被误收作B 的概率为0.02, 而B 被误收作A 的概率为0.01, 信息A 与信息B 传送的频繁程度为2:1. 若接收站收到的信息是A , 问原发信息是A 的概率是多少?解 以D 表示事件“将信息A 传递出去”,以D 表示事件“将信息B 传递出去”,以R 表示事件“接收到信息A ”,以R 表示事件“接收到信息B ”.已知21()0.02,()0.01,(),()33P R D P R D P D P D ====. 由贝叶斯公式知()()()196()()197()()()()P R D P D P DR P D R P R P R D P D P R D P D ===+.。
概率论与数理统计第一章习题及答案
概率论与数理统计习题 第一章 概率论的基本概念习题1-1 设C B A ,,为三事件,用C B A ,,的运算关系表示下列各事件.(1)A 发生,B 与C 不发生, (2)A 与B 都发生,而C 不发生,(3)C B A ,,中至少有一个发生,(4)C B A ,,都发生,(5)C B A ,,都不发生, (6)C B A ,,中不多于一个发生, (7)C B A ,,中不多于两个发生, (8)C B A ,,中至少有两个发生,解(1)A 发生,B 与C 不发生表示为C B A 或A - (AB+AC )或A - (B ∪C ) (2)A ,B 都发生,而C 不发生表示为C AB 或AB -ABC 或AB -C (3)A ,B ,C 中至少有一个发生表示为A+B+C (4)A ,B ,C 都发生,表示为ABC(5)A ,B ,C 都不发生,表示为C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生,相当于C A C B B A ,,中至少有一个发生。
故 表示为:C A C B B A ++。
(7)A ,B ,C 中不多于二个发生相当于C B A ,,中至少有一个发生。
故表示为ABC C B A 或++(8)A ,B ,C 中至少有二个发生。
相当于AB ,BC ,AC 中至少有一个发生。
故表示为AB +BC +AC习题1-2 设B A ,为两事件且6.0)(=A P ,7.0)(=B P ,问(1)在什么条件下)(AB P 取得最大值,最大值是多少?(2)在什么条件下)(AB P 取得最小值,最小值是多少?解 由P (A ) = 0.6,P (B ) = 0.7即知AB ≠φ,(否则AB = φ依互斥事件加法定理, P (A ∪B )=P (A )+P (B )=0.6+0.7=1.3>1与P (A ∪B )≤1矛盾).从而由加法定理得P (AB )=P (A )+P (B )-P (A ∪B )(*)(1)从0≤P (AB )≤P (A )知,当AB =A ,即A ∩B 时P (AB )取到最大值,最大值为 P (AB )=P (A )=0.6,(2)从(*)式知,当A ∪B=S 时,P (AB )取最小值,最小值为 P (AB )=0.6+0.7-1=0.3 。
(整理)概率论第一章 习题解答
00第一章 随机事件与概率I 教学基本要求1、了解随机现象与随机试验,了解样本空间的概念,理解随机事件的概念,掌握事件之间的关系与运算;2、了解概率的统计定义、古典定义、几何定义和公理化定义,会计算简单的古典概率和几何概率,理解概率的基本性质;3、了解条件概率,理解概率的乘法公式、全概率公式、贝叶斯公式,会用它们解决较简单的问题;4、理解事件的独立性概念.II 习题解答A 组1、写出下列随机试验的样本空间(1) 抛掷两颗骰子,观察两次点数之和; (2) 连续抛掷一枚硬币,直至出现正面为止; (3) 某路口一天通过的机动车车辆数; (4) 某城市一天的用电量.解:(1) {2,3,,12}Ω=;(2) 记抛掷出现反面为“0”,出现正面为“1”,则{(1),(0,1),(0,0,1),}Ω=;(3) {0,1,2,}Ω=;(4) {|0}t t Ω=≥.2、设A 、B 、C 为三个事件,试表示下列事件: (1) A 、B 、C 都发生或都不发生; (2) A 、B 、C 中至少有一个发生; (3) A 、B 、C 中不多于两个发生.解:(1) ()()ABC ABC ;(2) AB C ;(3) ABC 或ABC .3、在一次射击中,记事件A 为“命中2至4环”、B 为“命中3至5环”、C 为“命中5至7环”,写出下列事件:(1) AB ;(2) AB ;(3) ()A BC ;(4) ABC .解:(1) AB 为“命中5环”; (2) A B 为“命中0至1环或3至10环”;(3) ()A B C 为“命中0至2环或5至10环”;(4) ABC 为“命中2至4环”.4、任取两正整数,求它们的和为偶数的概率?解:记取出偶数为“0”,取出奇数为“1”,则其出现的可能性相同,于是任取两个整数的样本空间为{(0,0),(0,1),(1,0),(1,1)}Ω=.设A 为“取出的两个正整数之和为偶数”,则{(0,0),(1,1)}A =,从而1()2p A =. 5、从一副52张的扑克中任取4张,求下列事件的概率:(1) 全是黑桃;(2) 同花;(3) 没有两张同一花色;(4) 同色?解:从52张扑克中任取4张,有452C 种等可能取法.(1) 设A 为“全是黑桃”,则A 有413C 种取法,于是413452()C p A C =;(2) 设B 为“同花”,则B 有4134C 种取法,于是4134524()C p B C =;(3) 设C 为“没有两张同一花色”,则C 有413种取法,于是445213()p C C =;(4) 设D 为“同色”,则D 有4262C 种取法,于是4264522()C p D C =.6、把12枚硬币任意投入三个盒中,求第一只盒子中没有硬币的概率?解:把12枚硬币任意投入三个盒中,有123种等可能结果,记A 为“第一个盒中没有硬币”,则A 有122种结果,于是122()()3p A =.7、甲袋中有5个白球和3个黑球,乙袋中有4个白球和6个黑球,从两个袋中各任取一球,求取到的两个球同色的概率?解:从两个袋中各任取一球,有11810C C ⨯种等可能取法,记A 为“取到的两个球同色”,则A 有11115436C C C C⨯+⨯种取法,于是111154361181019()40C C C C p A C C ⨯+⨯==⨯. 8、把10本书任意放在书架上,求其中指定的三本书放在一起的概率?解:把10本书任意放在书架上,有10!种等可能放法,记A 为“指定的三本书放在一起”,则A 有3!8!⨯种放法,于是3!8!1()10!15p A ⨯==. 9、5个人在第一层进入十一层楼的电梯,假若每个人以相同的概率走出任一层(从第二层开始),求5个人在不同楼层走出的概率?解:5个人从第二层开始走出电梯,有510种等可能结果,记A 为“5个人在不同楼层走出”,则A 有510P 种结果,于是5105()10P p A =.10、n 个人随机地围一圆桌而坐,求甲乙两人相邻而坐的概率?解:设甲已坐好,只考虑乙的坐法,则乙有1n -种坐法,记A 为“甲乙两人相邻而坐”,则A 有2种坐法,于是2()1p A n =-. 11、甲乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内到达的时间是可能的,若甲船的停泊时间为一小时,乙船的停泊时间为两小时,求它们中任何一艘都不需要等候码头空出的概率?解:设x 、y 分别为甲、乙两艘轮船到达码头的时间,则{(,)|0,24}x y x y Ω=≤≤,其面积224S Ω=,记A 为“它们中任何一艘都不需要等候码头空出”,于是{(,)|12}A x y y x x y =-≥-≥或,其面积221(2322)2A S =+,从而2222322()0.879224A S p A S Ω+===⨯.12、在区间(0,1)中随机地取两个数,求事件“两数之和小于6/5”的概率?解:设x 、y 分别为取出的两个数,则{(,)|0,1}x y x y Ω=≤≤,其面积1S Ω=,记A 为“两数之和小于6/5”,于是6{(,)|}5A x y x y =+<,其面积2141()25A S =-,从而17()0.6825A S p A S Ω===. 13、设0a >,有任意两数x 、y ,且0,x y a <<.试求24a xy <的概率?解:由题意知{(,)|0,}x y x y a Ω=<<,其面积2S a Ω=,记2{(,)|}4a A x y xy =<,则其面积244422223ln 4()()(1)444a a axa aaA a S a dy dx a a dx a x =-=--=-+⎰⎰⎰从而3ln 4()10.596644A S p A S Ω==-+=. 14、从0、1、2、…、9这十个数字中任选三个不同的数字,试求下列事件的概率:(1) 1A 为“三个数字中不含0和5”; (2) 2A 为“三个数字中不含0或5”; (3) 3A 为“三个数字中含0但不含5”?解:记A 为“三个数字不含0”、B 为“三个数字不含5”,则393107()10C p A C ==、393107()10C p B C ==、383107()15C p AB C ==于是有(1) 17()()15p A p AB ==; (2) 27714()()()()()2101515p A p AB p A p B p AB ==+-=⨯-=; (3) 3777()()()()101530p A p AB p B p AB ==-=-=. 15、某工厂的一个车间有男工7人、女工4人,现要选出3个代表,求选出的3个代表中至少有1个女工的概率?解:设A 为“选出的3个代表中至少有1个女工”,则373117()33C p A C ==726()1()13333p A p A ⇒=-=-=. 16、从数字1、2、…、9中重复地取n 次,求n 次所取数字的乘积能被10整除的概率?解:记A 为“至少取到一次5”、B 为“至少取到一次偶数”,则8()9n n p A =、5()9n n p B =、4()9nn p AB =于是,所求概率为854()1()1()()()1999n n nn n n p AB p AB p A p B p AB =-=--+=--+.17、已知事件A 、B 满足()()p AB p AB =,记()p A p =,求()p B ?解:由()()()1()1()()()p AB p AB p AB p A B p A p B p AB ===-=--+1()()0p A p B ⇒--= ()1()1p B p A p ⇒=-=-.18、已知()0.7p A =,()0.3p AB =-,求()p AB ?解:由()()()0.3p A B p A p AB =-=-和()0.7p A =()0.4p AB ⇒=()1()0.6p AB p AB ⇒=-=.19、设1()()2p A p B ==,试证:()()p AB p AB =. 证明:由1()()2p A p B ==()1()1()()()()p AB p AB p A p B p AB p AB ⇒=-=--+=.20、某班级在一次考试中数学不及格的学生占15%,英语不及格的学生占5%,这两门课都不及格的学生占3%.(1) 已知一个学生数学不及格,他英语也不及格的概率是多少; (2) 已知一个学生英语不及格,他数学也不及格的概率是多少? 解:记A 为“数学不及格”、B 为“英语不及格”,则()0.15p A =、()0.05p B =、()0.03p AB =(1) ()0.03(|)0.2()0.15p AB p B A p A ===; (2) ()0.03(|)0.6()0.05p AB p A B p B ===. 21、掷两颗骰子,以A 记事件“两颗点数之和为10”,以B 记事件“第一颗点数小于第二颗点数”,求(|)p A B 和(|)p B A ?解:掷两颗骰子的样本空间为(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)⎧⎫⎪⎪⎪⎪⎪⎪Ω=⎨⎬⎪⎪⎪⎪⎪⎪⎩⎭由于{(4,6),(5A =、(1,2)(1,3)(1,4)(1,5)(1,6)(2,3)(2,4)(2,5)(2,6)(3,4)(3,5)(3,6)(4,5)(4,6)(5,6)B ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭、{(4,6)}AB =,于是3()36p A =、15()36p B =、1()36p AB =()1(|)()15p AB p A B p B ⇒==、()1(|)()3p AB p B A p A ⇒==. 22、设10件产品中有4件不合格品,从中任取二件,已知其中一件是不合格品,求另一件也是不合格的概率?解:记i A 为“第i 次取出不合格品”(1,2)i =,B 为“有一件不合格品”,C 为“另一件也是不合格品”,则121212()()()B A A A A A A =,于是1212124664432()()()()1091091093p B p A A p A A p A A ⨯⨯⨯=++=++=⨯⨯⨯ 432()10915p BC ⨯==⨯ ()1(|)()5p BC p C B p B ⇒==. 23、已知()0.3p A =、()0.4p B =、()0.5p AB =,求(|)p B AB ?解:由()0.3p A =、()0.4p B =、()0.5p AB =()()()()0.70.60.50.8p A B p A p B p AB ⇒=+-=+-=再由()()()0.7()0.5p AB p A p AB p AB =-=-=()0.2p AB ⇒= 从而(())()0.21(|)()()0.84p B A B p AB p B AB p A B p A B ====.24、两台车床加工固焊零件,第一台出次品的概率是0.03,第二台出次品的概率为0.06,加工出来的零件放在一起且已知第一台加工的零件比第二台加工的零件多一倍.(1) 求任取一个零件是合格品的概率;(2) 如果取出的零件是不合格品,求它是由第二台车床加工的概率? 解:记A 为“取到第一台车床加工的零件”、B 为“取到合格品”,则2()3p A =、(|)0.97p B A =、(|)0.94p B A = (1) 21()()(|)()(|)0.970.940.9633p B p A p B A p A p B A =+=⨯+⨯=;(2) 10.06()()(|)13(|)()1()0.042p AB p A p B A p A B p B p B ⨯====-. 25、已知男人中有5%是色盲患者,女人中有0.25%是色盲患者,现从男女人数相等的人群中随机挑选一人,发现恰好是色盲患者,问此人是男人的概率是多少?解:记A 为“选到色盲患者”、B 为“选到男人”,则1()2p B =、(|)5%p A B =、(|)0.25%p A B = 于是,所求概率为()(|)0.50.05(|)0.9524()(|)()(|)0.50.050.50.0025p B p A B p B A p B p A B p B p A B ⨯===+⨯+⨯.26、证明:()(|)1()p B p B A p A ≥-,其中()0p A >. 证明:由于()()()()()()1()()p AB p A p B p AB p A p B p A p B =+-≥+-=-()()()()(|)1()()()p AB p A p B p B p B A p A p A p A -=≥=-. 27、设A 、B 为任意两个事件,且A B ⊂、()0p B >,证明:()(|)p A p A B ≤.证明:由A B ⊂得()()(|)()()()p AB p A p A B p A p B p B ==≥. 28、甲乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.7,已知目标被击中,求它是甲击中的概率?解:记A 为“目标被击中”、1B 为“甲击中目标”、2B 为“乙击中目标”,则121212()()()()()0.60.70.60.70.88p A p B B p B p B p B B ==+-=+-⨯=再由1B A ⊂可得所求概率为111()()0.6(|)0.682()()0.88p B A p B p B A p A p A ====.29、设电路由A 、B 、C 三个元件组成,若元件A 、B 、C 发生故障的概率分别是0.3、0.2、0.2,各元件独立工作,求下列三种情况下电路发生故障的概率.(1) A 、B 、C 三个元件串连; (2) A 、B 、C 三个元件并联; (3) B 与C 并联后再与A 串联?解:记A 、B 、C 分别表示元件A 、B 、C 发生故障. (1) 所求概率为()1()1()()()10.70.80.80.552p A B C p ABC p A p B p C =-=-=-⨯⨯=;(2) 所求概率为()()()()0.30.20.20.012p ABC p A p B p C ==⨯⨯=;(3) 所求概率为(())()()()()()()()()()p A BC p A p BC p ABC p A p B p C p A p B p C =+-=+-0.30.20.20.30.20.20.328=+⨯-⨯⨯=.30、若()0.4p A =、()0.7p AB =,在下列情况下求()p B .(1) A 、B 不相容; (2) A 、B 独立; (3) A B ⊂?解:(1) 由于A 、B 不相容,从而()()()p AB p A p B =+,于是()()()0.70.40.3p B p A B p A =-=-=;(2) 由于A 、B 独立,从而()()()()()p AB p A p B p A p B =+-,于是0.70.4()0.4()p B p B =+- ()0.5p B ⇒=;(3) 由于A B ⊂,从而AB B =,于是()()0.7p B p A B ==.B 组1、一个书架上有6本数学书和4本物理书,求指定的3本数学书放在一起的概率?解:6本数学书和4本物理书在书架上有10!种等可能放法,记A 为“指定的3本数学书放在一起”,则A 有3!8!⨯种放法,于是3!8!1()10!15p A ⨯==. 2、设有n 个人,每个人都等可能地被分配到N 个房间中的任一间去住()n N ≤,求下列事件的概率.(1) 指定的n 间房间里各有一个住; (2) 恰有n 间房各住一人?解:将n 个人分配到N 个房间中去住,有nN 种等可能分法.(1) 记A 为“指定的n 间房间里各有一个住”,则A 有!n 种分法,于是!()nn p A N =; (2) 记B 为“恰有n 间房各住一人”,则B 有!nNC n 种分法,于是!()n N nC n p B N =.3、公安人员在某地发现一具尸体,经分析认为凶手还在该地的概率为0.4,乘车外逃的概率为0.5,自首的概率为0.1,现派人追捕,在该地抓到凶手的概率为0.9,若外逃则抓到凶手的概率为0.5,问此次凶手在该地或外逃被抓到的概率是多少?解:记1A 为“凶手还在该地”、2A 为“凶手已乘车外逃”、B 为“凶手被抓到”,则1()0.4p A =、2()0.5p A =、1(|)0.9p B A =、2(|)0.5p B A =,于是所求概率为12121122(()())()()()(|)()(|)p A B A B p A B p A B p A p B A p A p B A =+=+0.40.90.50.50.61=⨯+⨯=.4、有两箱零件,第一箱装50件,其中10件是一等品;第二箱装30件,其中18件是一等品,现从两箱中任取一箱,然后从该箱中先后取出两个零件,试求在第一次取到一等品的条件下,第二次取出的零件仍是一等品的概率?解:记i A 为“第i 次取到一等品”、B 为“取到第一箱”,则111110118()()(|)()(|)0.4250230p A p B p A B p B p A B =+=⨯+⨯= 121212()()(()|)()(()|)p A A p B p A A B p B p A A B =+1109118170.194232504923029⨯⨯=⨯+⨯=⨯⨯ 于是12211()0.19423(|)0.4856()0.4p A A p A A p A ===.5、掷均匀硬币n m +次,已知至少出现一次正面,求第一次正面出现在第n 次实验的概率?解:记A 为“至少出现一次正面”、B 为“第一次正面出现在第n 次实验”,则0()1()1(0.5)1(0.5)n m n m n m p A p A C +++=-=-=- 1()0.5(0.5)(0.5)n n p B -=⨯=再由B A ⊂可得所求概率为()()(0.5)(|)()()1(0.5)nn m p AB p B p B A p A p A +===-.6、甲、乙、丙三人进行比赛,规定每局两个人比赛,胜者再与第三人比,依次循环,直至有一人连胜二局为止,此人即为冠军,假设每次比赛双方取胜的概率均为0.5,若甲、乙两人先比,求甲得冠军的概率?解:记A 为“甲得冠军”;i A 、i B 、i C 分别为“第i 局中甲、乙、丙获胜”,则121234512345678()[()()()]p A p A A p AC B A A p AC B A C B A A =++++12341234567[()()]p B C A A p B C A B C A A ++25847(0.50.50.5)(0.50.5)=++++++24330.50.5510.510.514=+=--.7、乒乓球单打比赛采用五局三胜制,甲、乙两名运动员在每局比赛中获胜的概率各为0.6和0.4,当比赛进行完二局时,甲以2:0领先,求在以后的比赛中甲获胜的概率?解:记B 为“甲获胜”、i A 为“甲在第i 局比赛中获胜”,由于甲以2:0领先,因而334345()()B A A A A A A =334345()()()()()()()p B p A p A p A p A p A p A ⇒=++20.60.40.60.40.60.936=+⨯+⨯=.8、保险公司把被保险人分为“谨慎”、“一般”、“冒失”三类,统计资料表明上述三种人在一年中发生事故的概率分别是0.05、0.15、0.3;如果“谨慎”的被保险人占20%,“一般”的被保险人占50%,“冒失”的被保险人占30%,现知某保险人在一年内发生了事故,则他是属“谨慎”客户的概率是多少?解:记1A 为“谨慎客户”、2A 为“一般客户”、3A 为“冒失客户”、B 为“保险人在一年内发生事故”,则1()0.2p A =、2()0.5p A =、3()0.3p A =、1(|)0.05p B A =、2(|)0.15p B A =、3(|)0.3p B A =,于是11131()(|)0.20.052(|)0.20.050.50.150.30.335()(|)iii p A p B A p A B p A p B A =⨯===⨯+⨯+⨯∑.。
概率论第一章随机事件及其概率答案
概率论第一章随机事件及其概率答案2(总12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2概率论与数理统计练习题系 专业 班 姓名 学号第一章 随机事件及其概率(一)一.选择题1.对掷一粒骰子的试验,在概率论中将“出现奇数点”称为 [ C ](A )不可能事件 (B )必然事件 (C )随机事件 (D )样本事件2.下面各组事件中,互为对立事件的有 [ B ](A )1A ={抽到的三个产品全是合格品} 2A ={抽到的三个产品全是废品}(B )1B ={抽到的三个产品全是合格品} 2B ={抽到的三个产品中至少有一个废品}(C )1C ={抽到的三个产品中合格品不少于2个} 2C ={抽到的三个产品中废品不多于2个}(D )1D ={抽到的三个产品中有2个合格品} 2D ={抽到的三个产品中有2个废品}3.下列事件与事件A B -不等价的是 [ C ](A )A AB - (B )()A B B ⋃- (C )AB (D )AB4.甲、乙两人进行射击,A 、B 分别表示甲、乙射中目标,则A B ⋃表示 [ C ](A )二人都没射中 (B )二人都射中(C )二人没有都射着 (D )至少一个射中5.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对应事件A 为. [ D ](A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”;(C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销6.设{|},{|02},{|13}x x A x x B x x Ω=-∞<<+∞=≤<=≤<,则AB 表示 [ A ]3(A ){|01}x x ≤< (B ){|01}x x <<(C ){|12}x x ≤< (D ){|0}{|1}x x x x -∞<<⋃≤<+∞7.在事件A ,B ,C 中,A 和B 至少有一个发生而C 不发生的事件可表示为[ A ](A )C A C B ; (B )C AB ;(C )C AB C B A BC A ; (D )A B C .8、设随机事件,A B 满足()0P AB =,则 [ D ](A ),A B 互为对立事件 (B) ,A B 互不相容(C) AB 一定为不可能事件 (D) AB 不一定为不可能事件二、填空题1.若事件A ,B 满足AB φ=,则称A 与B 互斥或互不相容 。
概率论与数理统计第一章习题及答案【范本模板】
概率论与数理统计习题 第一章 概率论的基本概念习题1-1 设C B A ,,为三事件,用C B A ,,的运算关系表示下列各事件.(1)A 发生,B 与C 不发生,(2)A 与B 都发生,而C 不发生,(3)C B A ,,中至少有一个发生,(4)C B A ,,都发生,(5)C B A ,,都不发生, (6)C B A ,,中不多于一个发生, (7)C B A ,,中不多于两个发生, (8)C B A ,,中至少有两个发生,解(1)A 发生,B 与C 不发生表示为C B A 或A - (AB+AC )或A - (B ∪C ) (2)A ,B 都发生,而C 不发生表示为C AB 或AB -ABC 或AB -C (3)A ,B ,C 中至少有一个发生表示为A+B+C (4)A ,B ,C 都发生,表示为ABC(5)A ,B ,C 都不发生,表示为C B A 或S - (A+B+C )或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生,相当于C A C B B A ,,中至少有一个发生。
故 表示为:C A C B B A ++。
(7)A ,B ,C 中不多于二个发生相当于C B A ,,中至少有一个发生。
故表示为ABC C B A 或++(8)A,B ,C 中至少有二个发生.相当于AB ,BC ,AC 中至少有一个发生.故表示为AB +BC +AC习题1-2 设B A ,为两事件且6.0)(=A P ,7.0)(=B P ,问(1)在什么条件下)(AB P 取得最大值,最大值是多少?(2)在什么条件下)(AB P 取得最小值,最小值是多少?解 由P (A ) = 0.6,P (B ) = 0。
7即知AB ≠φ,(否则AB = φ依互斥事件加法定理, P (A ∪B )=P (A )+P (B )=0。
6+0。
7=1.3〉1与P (A ∪B )≤1矛盾).从而由加法定理得P (AB )=P (A )+P (B )-P (A ∪B )(*)(1)从0≤P (AB )≤P (A )知,当AB =A ,即A ∩B 时P (AB )取到最大值,最大值为 P (AB )=P (A )=0。
第一章概率论习题解答
教 案概率论与数理统计(Probability Theory and Mathematical Statistics )Exercise 1.1 向指定目标射三枪,观察射中目标的情况。
用1A 、2A 、3A 分别表示事件“第1、2、3枪击中目标”,试用1A 、2A 、3A 表示以下各事件:(1)只击中第一枪;(2)只击中一枪;(3)三枪都没击中;(4)至少击中一枪。
Solution (1)事件“只击中第一枪”,意味着第二枪不中,第三枪也不中。
所以,可以表示成 1A 32A A 。
(2)事件“只击中一枪”,并不指定哪一枪击中。
三个事件“只击中第一枪”、“只击中第二枪”、“只击中第三枪”中,任意一个发生,都意味着事件“只击中一枪”发生。
同时,因为上述三个事件互不相容,所以,可以表示成 123A A A +321A A A +321A A A .(3)事件“三枪都没击中”,就是事件“第一、二、三枪都未击中”,所以,可以表示成 123A A A .(4)事件“至少击中一枪”,就是事件“第一、二、三枪至少有一次击中”,所以,可以表示成 321A A A 或 123A A A +321A A A +321A A A +1A 32A A +321A A A +321A A A + 321A A A .Exercise 1.2 设事件B A ,的概率分别为21,31 .在下列三种情况下分别求)(A B P 的值:(1)A 与B 互斥;(2);B A ⊂ (3)81)(=AB P .Solution 由性质(5),)(A B P =)()(AB P B P -.(1) 因为A 与B 互斥,所以φ=AB ,)(A B P =)()(AB P B P -=P(B)=21 (2) 因为;B A ⊂所以)(A B P =)()(AB P B P -=)()(A P B P -=613121=-(3) )(A B P =)()(AB P B P -=838121=- Exercise 1.3 一袋中有8个大小形状相同的球,其中5个黑色球,三个白色球。
概率论与数理统计习题及答案----第1章习题详解
概率论与数理统计习题及答案习题一1. 略.见教材习题参考答案.2.设A,B,C为三个事件,试用A,B,C的运算关系式表示下列事件:(1)A发生,B,C都不发生;(2)A与B发生,C不发生;(3)A,B,C都发生;(4)A,B,C至少有一个发生;(5)A,B,C都不发生;(6)A,B,C不都发生;(7)A,B,C至多有2个发生;(8)A,B,C至少有2个发生.【解】(1)A BC(2)AB C(3)ABC(4)A∪B∪C=AB C∪A B C∪A BC∪A BC∪A B C∪AB C∪ABC=ABC(6) ABC(5) ABC=A B C(7) A BC∪A B C∪AB C∪AB C∪A BC∪A B C∪ABC=ABC=A∪B∪C(8) AB∪BC∪CA=AB C∪A B C∪A BC∪ABC3. 略.见教材习题参考答案4.设A,B为随机事件,且P(A)=0.7,P(A-B)=0.3,求P(AB).【解】P(AB)=1-P(AB)=1-[P(A)-P(A-B)]=1-[0.7-0.3]=0.65.设A,B是两事件,且P(A)=0.6,P(B)=0.7,求:(1)在什么条件下P(AB)取到最大值?(2)在什么条件下P(AB)取到最小值?【解】(1)当AB=A时,P(AB)取到最大值为0.6.(2)当A∪B=Ω时,P(AB)取到最小值为0.3.6.设A,B,C为三事件,且P(A)=P(B)=1/4,P(C)=1/3且P(AB)=P(BC)=0,P(AC)=1/12,求A,B,C至少有一事件发生的概率.【解】P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC)=14+14+13-112=347. 从52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少? 【解】 p =5332131313131352C C C C /C8. 对一个五人学习小组考虑生日问题: (1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率; (3) 求五个人的生日不都在星期日的概率. 【解】(1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P (A 1)=517=(17)5(亦可用独立性求解,下同) (2) 设A 2={五个人生日都不在星期日},有利事件数为65,故P (A 2)=5567=(67)5(3) 设A 3={五个人的生日不都在星期日}P (A 3)=1-P (A 1)=1-(17)59. 略.见教材习题参考答案.10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n <N ).试求其中恰有m 件(m ≤M )正品(记为A )的概率.如果: (1) n 件是同时取出的;(2) n 件是无放回逐件取出的; (3) n 件是有放回逐件取出的. 【解】(1) P (A )=C C /C m n m nM N M N --(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有P nN 种,n 次抽取中有m次为正品的组合数为C mn 种.对于固定的一种正品与次品的抽取次序,从M 件正品中取m 件的排列数有P m M 种,从N -M 件次品中取n -m 件的排列数为P n mN M --种,故P (A )=C P PP m m n mn M N M n N--由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成P (A )=C C C m n mM N Mn N--可以看出,用第二种方法简便得多.(3) 由于是有放回的抽取,每次都有N 种取法,故所有可能的取法总数为N n 种,n次抽取中有m 次为正品的组合数为C mn 种,对于固定的一种正、次品的抽取次序,m 次取得正品,都有M 种取法,共有M m 种取法,n -m 次取得次品,每次都有N -M 种取法,共有(N -M )n -m 种取法,故()C ()/m m n m nnP A M N M N -=- 此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为MN,则取得m 件正品的概率为()C 1m n mm n M M P A N N -⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭11. 略.见教材习题参考答案.12. 50只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太弱.每个部件用3只铆钉.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少? 【解】设A ={发生一个部件强度太弱}133103501()C C /C 1960P A ==13. 一个袋内装有大小相同的7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率. 【解】 设A i ={恰有i 个白球}(i =2,3),显然A 2与A 3互斥.213434233377C C C 184(),()C 35C 35P A P A ====故 232322()()()35P A A P A P A =+=14. 有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求:(1) 两粒都发芽的概率; (2) 至少有一粒发芽的概率; (3) 恰有一粒发芽的概率.【解】设A i ={第i 批种子中的一粒发芽},(i =1,2)(1) 1212()()()0.70.80.56P A A P A P A ==⨯= (2) 12()0.70.80.70.80.94P A A =+-⨯= (3) 2112()0.80.30.20.70.38P A A A A =⨯+⨯=15. 掷一枚均匀硬币直到出现3次正面才停止.(1) 问正好在第6次停止的概率;(2) 问正好在第6次停止的情况下,第5次也是出现正面的概率.【解】(1) 223151115(()22232p C ==(2) 1342111C ()()22245/325p == 16. 甲、乙两个篮球运动员,投篮命中率分别为0.7及0.6,每人各投了3次,求二人进球数相等的概率.【解】 设A i ={甲进i 球},i =0,1,2,3,B i ={乙进i 球},i =0,1,2,3,则33312123330()(0.3)(0.4)C 0.7(0.3)C 0.6(0.4)i i i P A B ==+⨯⨯+ 22223333C (0.7)0.3C (0.6)0.4+(0.7)(0.6)⨯=0.3207617. 从5双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率.【解】 4111152222410C C C C C 131C 21p =-= 18. 某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:(1) 在下雨条件下下雪的概率;(2) 这天下雨或下雪的概率. 【解】 设A ={下雨},B ={下雪}.(1) ()0.1()0.2()0.5P AB p B A P A === (2) ()()()()0.30.50.10.7p A B P A P B P AB =+-=+-=19. 已知一个家庭有3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).【解】 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故()6/86()()7/87P AB P B A P A === 或在缩减样本空间中求,此时样本点总数为7.6()7P B A =20. 已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).【解】 设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.50.05200.50.050.50.002521⨯==⨯+⨯ 21. 两人约定上午9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.题21图题22图【解】设两人到达时刻为x,y,则0≤x,y≤60.事件“一人要等另一人半小时以上”等价于|x-y|>30.如图阴影部分所示.22301604P==22. 从(0,1)中随机地取两个数,求:(1)两个数之和小于65的概率;(2)两个数之积小于14的概率.【解】设两数为x,y,则0<x,y<1.(1)x+y<65.11441725510.68125p=-==(2) xy=<14.1111244111d d ln242xp x y⎛⎫=-=+⎪⎝⎭⎰⎰23. 设P(A)=0.3,P(B)=0.4,P(A B)=0.5,求P(B|A∪B)【解】()()()()()()()()P AB P A P ABP B A BP A B P A P B P AB-==+-0.70.510.70.60.54-==+-24. 在一个盒中装有15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.【解】 设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新球}由全概率公式,有3()()()i i i P B P B A P A ==∑33123213336996896796333333331515151515151515C C C C C C C C C C C C C C C C C C =∙+∙+∙+∙0.089=25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问: (1)考试及格的学生有多大可能是不努力学习的人? (2)考试不及格的学生有多大可能是努力学习的人? 【解】设A ={被调查学生是努力学习的},则A ={被调查学生是不努力学习的}.由题意知P(A )=0.8,P (A )=0.2,又设B ={被调查学生考试及格}.由题意知P (B |A )=0.9,P (B |A )=0.9,故由贝叶斯公式知(1)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.20.110.027020.80.90.20.137⨯===⨯+⨯即考试及格的学生中不努力学习的学生仅占2.702% (2) ()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.80.140.30770.80.10.20.913⨯===⨯+⨯即考试不及格的学生中努力学习的学生占30.77%.26. 将两信息分别编码为A 和B 传递出来,接收站收到时,A 被误收作B 的概率为0.02,而B 被误收作A 的概率为0.01.信息A 与B 传递的频繁程度为2∶1.若接收站收到的信息是A ,试问原发信息是A 的概率是多少?【解】 设A ={原发信息是A },则={原发信息是B }C ={收到信息是A },则={收到信息是B } 由贝叶斯公式,得()()()()()()()P A P C A P A C P A P C A P A P C A =+2/30.980.994922/30.981/30.01⨯==⨯+⨯27. 在已有两个球的箱子中再放一白球,然后任意取出一球,若发现这球为白球,试求箱子中原有一白球的概率(箱中原有什么球是等可能的颜色只有黑、白两种) 【解】设A i ={箱中原有i 个白球}(i =0,1,2),由题设条件知P (A i )=13,i =0,1,2.又设B ={抽出一球为白球}.由贝叶斯公式知111120()()()()()()()i i i P B A P A P A B P A B P B P B A P A ===∑2/31/311/31/32/31/311/33⨯==⨯+⨯+⨯28. 某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.【解】 设A ={产品确为合格品},B ={产品被认为是合格品}由贝叶斯公式得()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.960.980.9980.960.980.040.05⨯==⨯+⨯29. 某保险公司把被保险人分为三类:“谨慎的”,“一般的”,“冒失的”.统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.30;如果“谨慎的”被保险人占20%,“一般的”占50%,“冒失的”占30%,现知某被保险人在一年内出了事故,则他是“谨慎的”的概率是多少?【解】 设A ={该客户是“谨慎的”},B ={该客户是“一般的”},C ={该客户是“冒失的”},D ={该客户在一年内出了事故} 则由贝叶斯公式得()()(|)(|)()()(|)()(|)()(|)P AD P A P D A P A D P D P A P D A P B P D B P C P D C ==++ 0.20.050.0570.20.050.50.150.30.3⨯==⨯+⨯+⨯30. 加工某一零件需要经过四道工序,设第一、二、三、四道工序的次品率分别为0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率. 【解】设A i ={第i 道工序出次品}(i =1,2,3,4).412341()1()i i P A P A A A A ==-12341()()()()P A P A P A P A =-10.980.970.950.970.124=-⨯⨯⨯= 31. 设每次射击的命中率为0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9?【解】设必须进行n 次独立射击.1(0.8)0.9n -≥即为 (0.8)0.1n≤ 故 n ≥11 至少必须进行11次独立射击.32. 证明:若P (A |B )=P (A |B ),则A ,B 相互独立.【证】 (|)(|)P A B P A B =即()()()()P AB P AB P B P B =亦即 ()()()()P AB P B P AB P B =()[1()][()()]()P AB P B P A P AB P B -=-因此 ()()()P AB P A P B = 故A 与B 相互独立.33. 三人独立地破译一个密码,他们能破译的概率分别为15,13,14,求将此密码破译出的概率.【解】 设A i ={第i 人能破译}(i =1,2,3),则31231231()1()1()()()i i P A P A A A P A P A P A ==-=-42310.6534=-⨯⨯= 34. 甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率. 【解】设A ={飞机被击落},B i ={恰有i 人击中飞机},i =0,1,2,3由全概率公式,得3()(|)()i i i P A P A B P B ==∑=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7 =0.45835. 已知某种疾病患者的痊愈率为25%,为试验一种新药是否有效,把它给10个病人服用,且规定若10个病人中至少有四人治好则认为这种药有效,反之则认为无效,求: (1) 虽然新药有效,且把治愈率提高到35%,但通过试验被否定的概率.(2) 新药完全无效,但通过试验被认为有效的概率. 【解】(1) 310110C(0.35)(0.65)0.5138k k k k p -===∑(2) 10102104C(0.25)(0.75)0.2241kk k k p -===∑36. 一架升降机开始时有6位乘客,并等可能地停于十层楼的每一层.试求下列事件的概率:(1) A =“某指定的一层有两位乘客离开”;(2) B =“没有两位及两位以上的乘客在同一层离开”; (3) C =“恰有两位乘客在同一层离开”; (4) D =“至少有两位乘客在同一层离开”.【解】 由于每位乘客均可在10层楼中的任一层离开,故所有可能结果为106种.(1) 2466C 9()10P A =,也可由6重贝努里模型: 224619()C ()()1010P A =(2) 6个人在十层中任意六层离开,故6106P ()10P B =(3) 由于没有规定在哪一层离开,故可在十层中的任一层离开,有110C 种可能结果,再从六人中选二人在该层离开,有26C 种离开方式.其余4人中不能再有两人同时离开的情况,因此可包含以下三种离开方式:①4人中有3个人在同一层离开,另一人在其余8层中任一层离开,共有131948C C C 种可能结果;②4人同时离开,有19C 种可能结果;③4个人都不在同一层离开,有49P 种可能结果,故1213114610694899()C C (C C C C P )/10P C =++(4) D=B .故6106P ()1()110P D P B =-=-37. n 个朋友随机地围绕圆桌而坐,求下列事件的概率: (1) 甲、乙两人坐在一起,且乙坐在甲的左边的概率; (2) 甲、乙、丙三人坐在一起的概率;(3) 如果n 个人并排坐在长桌的一边,求上述事件的概率. 【解】 (1) 111p n =-(2) 23!(3)!,3(1)!n p n n -=>-(3) 12(1)!13!(2)!;,3!!n n p p n n n n --''===≥ 38. 将线段[0,a ]任意折成三折,试求这三折线段能构成三角形的概率【解】 设这三段长分别为x ,y ,a -x -y .则基本事件集为由0<x <a ,0<y <a ,0<a -x -y <a 所构成的图形,有利事件集为由()()x y a x y x a x y y y a x y x+>--⎡⎢+-->⎢⎢+-->⎣ 构成的图形,即02022a x a y ax y a ⎡<<⎢⎢⎢<<⎢⎢⎢<+<⎢⎣ 如图阴影部分所示,故所求概率为14p =. 39. 某人有n 把钥匙,其中只有一把能开他的门.他逐个将它们去试开(抽样是无放回的).证明试开k 次(k =1,2,…,n )才能把门打开的概率与k 无关.【证】 11P 1,1,2,,P k n k n p k n n--=== 40.把一个表面涂有颜色的立方体等分为一千个小立方体,在这些小立方体中,随机地取出一个,试求它有i 面涂有颜色的概率P (A i )(i =0,1,2,3). 【解】 设A i ={小立方体有i 面涂有颜色},i =0,1,2,3.在1千个小立方体中,只有位于原立方体的角上的小立方体是三面有色的,这样的小立方体共有8个.只有位于原立方体的棱上(除去八个角外)的小立方体是两面涂色的,这样的小立方体共有12×8=96个.同理,原立方体的六个面上(除去棱)的小立方体是一面涂色的,共有8×8×6=384个.其余1000-(8+96+384)=512个内部的小立方体是无色的,故所求概率为01512384()0.512,()0.38410001000P A P A ====, 24968()0.096,()0.00810001000P A P A ====.41.对任意的随机事件A ,B ,C ,试证P (AB )+P (AC )-P (BC )≤P (A ). 【证】 ()[()]()P A P A B C P AB AC ≥= ()()()P AB P AC P ABC =+-()()()P AB P AC P BC ≥+-42. 将3个球随机地放入4个杯子中去,求杯中球的最大个数分别为1,2,3的概率. 【解】 设i A ={杯中球的最大个数为i },i =1,2,3.将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故3413C 3!3()48P A ==而杯中球的最大个数为3,即三个球全放入一个杯中,故1433C 1()416P A ==因此 213319()1()()181616P A P A P A =--=--= 或 12143323C C C 9()416P A ==43. 将一枚均匀硬币掷2n 次,求出现正面次数多于反面次数的概率.【解】掷2n 次硬币,可能出现:A ={正面次数多于反面次数},B ={正面次数少于反面次数},C ={正面次数等于反面次数},A ,B ,C 两两互斥.可用对称性来解决.由于硬币是均匀的,故P (A )=P (B ).所以1()()2P C P A -=由2n 重贝努里试验中正面出现n 次的概率为211()()(22n n nn P C C =故 2211()[1C ]22nn n P A =-44. 掷n 次均匀硬币,求出现正面次数多于反面次数的概率.【解】设A ={出现正面次数多于反面次数},B ={出现反面次数多于正面次数},由对称性知P (A )=P (B )(1) 当n 为奇数时,正、反面次数不会相等.由P (A )+P (B )=1得P (A )=P (B )=0.5(2) 当n 为偶数时,由上题知211()[1C (]22nn n P A =-45. 设甲掷均匀硬币n +1次,乙掷n 次,求甲掷出正面次数多于乙掷出正面次数的概率.【解】 令甲正=甲掷出的正面次数,甲反=甲掷出的反面次数.乙正=乙掷出的正面次数,乙反=乙掷出的反面次数. 显然有>正正(甲乙)=(甲正≤乙正)=(n +1-甲反≤n -乙反)=(甲反≥1+乙反)=(甲反>乙反)由对称性知P (甲正>乙正)=P (甲反>乙反) 因此P (甲正>乙正)=1246. 证明“确定的原则”(Sure -thing ):若P (A |C )≥P (B |C ),P (A |)≥P (B |),则P (A )≥P (B ).【证】由P (A |C )≥P (B |C ),得()(),()()P AC P BC P C P C ≥即有 ()()P AC P BC ≥ 同理由 (|)(|),P A C P B C ≥ 得 ()(),P AC P BC ≥故 ()()()()()()P A P AC P AC P BC P BC P B =+≥+= 47.一列火车共有n 节车厢,有k (k ≥n )个旅客上火车并随意地选择车厢.求每一节车厢内至少有一个旅客的概率.【解】 设A i ={第i 节车厢是空的},(i =1,…,n ),则121(1)1()(12()(1)1()(1)n k ki k ki j ki i i n P A n nP A A nn P A A A n--==-=--=-其中i 1,i 2,…,i n -1是1,2,…,n 中的任n -1个. 显然n 节车厢全空的概率是零,于是2112111122111111123111()(1)C (12()C (11()C (10()(1)n n nk ki ni k i j ni j nn kn i i i n i i i nn nn i ni S P A n n n S P A A n n S P A A A nS P A S S S S --=≤<≤--≤<<≤+===-=-==--==-==-+-+-∑∑∑121121C (1C (1)(1)C (1k k n n kn n n n n n n--=---++--故所求概率为121121()1C (1)C (1nk i i n n i P A n n =-=--+--+ 111(1)C (1)n n k nn n+---- 48.设随机试验中,某一事件A 出现的概率为ε>0.试证明:不论ε>0如何小,只要不断地独立地重复做此试验,则A 迟早会出现的概率为1. 【证】在前n 次试验中,A 至少出现一次的概率为1(1)1()n n ε--→→∞49.袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均印有国徽).在袋中任取一只,将它投掷r 次,已知每次都得到国徽.试问这只硬币是正品的概率是多少? 【解】设A ={投掷硬币r 次都得到国徽}B ={这只硬币为正品} 由题知 (),()m nP B P B m n m n==++ 1(|),(|)12r P A B P A B ==则由贝叶斯公式知()()(|)(|)()()(|)()(|)P AB P B P A B P B A P A P B P A B P B P A B ==+ 121212rrr m m m n m nm n m n m n+==++++ 50.巴拿赫(Banach )火柴盒问题:某数学家有甲、乙两盒火柴,每盒有N 根火柴,每次用火柴时他在两盒中任取一盒并从中任取一根.试求他首次发现一盒空时另一盒恰有r 根的概率是多少?第一次用完一盒火柴时(不是发现空)而另一盒恰有r 根的概率又有多少? 【解】以B 1、B 2记火柴取自不同两盒的事件,则有121()()2P B P B ==.(1)发现一盒已空,另一盒恰剩r 根,说明已取了2n -r 次,设n 次取自B 1盒(已空),n -r 次取自B 2盒,第2n -r +1次拿起B 1,发现已空。
概率论第一章习题解答(全)
10 9 8 120 ; 3 2 1
事件 A 所包含基本事件数(即 5 固定,再从 6,7,8,9,10 这 5 个数中任选 2 个) :
C52
5 4 10 2
事件 B 所包含的基本事件数(即 5 固定,再从 1,2,3,4 这 4 个数中任选 2 个) :
故
43 6 2 10 1 6 1 P ( A) ; P( B) 120 12 120 20
1 1 1 1 1 1 1 17 ; 2 3 5 10 15 20 30 20 17 3 (ⅳ) P ( ABC ) P ( A B C ) 1 P ( A B C ) 1 ; 20 20
(ⅴ) 且 因为 ABC ( A B )C ( s ( A B ))C C ( AC BC )
P ( ABC ) P (( A B )C ) P (C ) P ( AC ) P ( BC ) 1 1 1 7 5 15 20 60
(ⅵ)
因为
P ( AB C ) P ( AB ) P (C ) P ( ABC )
已知 P ( AB )
4 7 , P ( ABC ) ,故 15 60
而 故
ABC AB , P ( AB ) 0 ,所以
P ( ABC ) 0
P ( A B C ) P ( A) P ( B ) P (C ) P ( AB ) P ( AC ) P ( BC ) P ( ABC ) 1 1 1 1 5互不相容,所以 AB , AB A , P ( AB ) P ( A) (ⅱ)因为 A A( B B ) AB AB ,且 AB AB , 所以
概率论与数理统计第1章习题详解
一、习题详解:1.1 写出下列随机试验的样本空间:(1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数; 解:连续5 次都命中,至少要投5次以上,故}{ ,7,6,51=Ω; (2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和; 解:}{12,11,4,3,22 =Ω; (3) 观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{ ,2,1,03=Ω;(4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故: ()}{;51,4≤≤=Ωj i j i (5) 检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{216,T y x T y x ≤≤=Ω;(7) 在单位圆内任取两点, 观察这两点的距离; 解:}{207 x x =Ω;(8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度. 解:()}{l y x y x y x =+=Ω,0,0,8 ;1.2 设A ,B ,C 为三事件, 用A;B;C 的运算关系表示下列各事件: (1) A 与B 都发生, 但C 不发生; C AB ;(2) A 发生, 且B 与C 至少有一个发生;)(C B A ⋃; (3) A,B,C 中至少有一个发生; C B A ⋃⋃; (4) A,B,C 中恰有一个发生;C B A C B A C B A ⋃⋃; (5) A,B,C 中至少有两个发生; BC AC AB ⋃⋃;(6) A,B,C 中至多有一个发生;C B C A B A ⋃⋃; (7) A;B;C 中至多有两个发生;ABC ; (8) A,B,C 中恰有两个发生.C AB C B A BC A ⋃⋃ ; 注意:此类题目答案一般不唯一,有不同的表示方式。
概率论与数理统计第一章习题参考答案
1第一章 随机事件及其概率1.解:(1){}67,5,4,3,2=S (2){} ,4,3,2=S (3){} ,,,TTH TH H S =(4){}6,5,4,3,2,1,,T T T T T T HT HH S = 2.解:81)(,21)(,41)(===AB P B P A P\)()()()(AB P B P A P B A P -+= 85812141=-+=)()()(AB P B P B A P -==838121=-= 87811)(1)(=-=-=AB P AB P)])([(AB B A P )]()[(AB B A P -=)()(AB P B A P -= )(B A AB Ì 218185=-=3.解:用A 表示事件“取到的三位数不包含数字1” 2518900998900)(191918=´´==C C C A P4、解:用A 表示事件“取到的三位数是奇数”,用B 表示事件“取到的三位数大于330330””(1)455443)(2515141413´´´´==A C C C C A P =0.482)455421452)(251514122512´´´´+´´=+=A C C C A C B P =0.485、解:用A 表示事件“表示事件“44只中恰有2只白球,只白球,11只红球,只红球,11只黑球”, 用B 表示事件“表示事件“44只中至少有2只红球”, 用C 表示事件“表示事件“44只中没有只白球”只中没有只白球” (1)412131425)(C C C C A P ==495120=338(2)4124838141)(C C C C B P +-==16567495201= 或16567)(4124418342824=++=C C C C C C B P(3)99749535)(41247===CC C P6.解:用A 表示事件“某一特定的销售点得到k 张提货单”张提货单” nkn k n MM C A P --=)1()(7、解:用A 表示事件“表示事件“33只球至少有1只配对”,用B 表示事件“没有配对”表示事件“没有配对” (1)3212313)(=´´+=A P 或321231121)(=´´´´-=A P(2)31123112)(=´´´´=B P8、解、解 1.0)(,3.0)(,5.0)(===AB P B P A P(1)313.01.0)()()(===B P AB P B A P ,515.01.0)()()(===A P AB P A B P7.01.03.05.0)()()()(=-+=-+=AB P B P A P B A P)()()()()()]([)(B A P AB P B A P AB A P B A P B A A P B A A P ===757.05.0==717.01.0)()()()])([()(====B A P AB P B A P B A AB P B A AB P1)()()()]([)(===AB P AB P AB P AB A P AB A P(2)设{}次取到白球第i A i = 4,3,2,1=i则)()()()()(32142131214321A A A A P A A A P A A P A P A A A A P =0408.020592840124135127116==´´´=9、解: 用A 表示事件表示事件“取到的两只球中至少有“取到的两只球中至少有1只红球”,用B 表示事件表示事件“两只都是红球”“两只都是红球”方法1651)(2422=-=C C A P ,61)(2422==C C B P ,61)()(==B P AB P516561)()()(===A P AB P A B P方法2 在减缩样本空间中计算在减缩样本空间中计算在减缩样本空间中计算 51)(=A B P1010、解:、解:A 表示事件“一病人以为自己得了癌症”,用B 表示事件“病人确实得了癌症”表示事件“病人确实得了癌症” 由已知得,%40)(%,10)(%,45)(%,5)(====B A P B A P B A P AB P (1)B A AB B A AB A 与,=互斥互斥5.045.005.0)()()()(=+=+==\B A P AB P B A AB P A P同理同理15.01.005.0)()()()(=+=+==B A P AB P B A AB P B P (2)1.05.005.0)()()(===A P AB P A B P(3)2.05.01.0)()()(,5.05.01)(1)(====-=-=A P B A P A B P A P A P(4)17985.045.0)()()(,85.015.01)(1)(====-=-=B P B A P B A P B P B P(5)3115.005.0)()()(===B P AB P B A P1111、解:用、解:用A 表示事件“任取6张,排列结果为ginger ginger””92401)(61113131222==A A A A A A P1212、、解:用A 表示事件“A 该种疾病具有症状”,用B 表示事件“B 该种疾病具有症状”由已知2.0)(=B A P3.0)(=B A P 1.0)(=AB P (1),B A AB B A B A S=且B A AB B A B A ,,,互斥互斥()6.01.03.02.0)()()(=++=++=\AB P B A P B A P B A P4.06.01)(1)()(=-=-==B A P B A P B A P ()()()4.0)(1=---=AB P B A P B A P B A P(2)()()()6.01.03.02.0)(=++=++=AB P B A P B A P AB B A B A P(3)B A AB B =, B A AB ,互斥互斥4.03.01.0)()()()(=+=+==B A P AB P B A AB P B P )()()(])[()(B P AB P B P B AB P B AB P ==414.01.0==1313、解:用、解:用i A 表示事件“讯号由第i 条通讯线输入”,,4,3,2,1=i B 表示“讯号无误差地被接受”接受”;2.0)(,1.0)(,3.0)(,4.0)(4321====A P A P A P A P9998.0)(1=A B P ,9999.0)(2=A B P ,,9997.0)(3=A B P 9996.0)(4=A B P 由全概率公式得由全概率公式得9996.02.09997.01.09999.03.09998.04.0)()()(41´+´+´+´==å=ii iA B P A P B P99978.0=1414、、解:用A 表示事件“确实患有关节炎的人”,用B 表示事件“检验患有关节炎的人”由已知由已知1.0)(=A P ,85.0)(=A B P ,04.0)(=A B P , 则9.0)(=A P ,85.0)(=A B P ,96.0)(=A B P , 由贝叶斯公式得由贝叶斯公式得 017.096.09.015.01.015.01.0)()()()()()()(=´+´´=+=A B P A P A B P A P A B P A P B A P1515、解:用、解:用A 表示事件“程序交与打字机A 打字”,B 表示事件“程序交与打字机B 打字”, C 表示事件“程序交与打字机C 打字”;D 表示事件“程序因计算机发生故障被打坏”坏”由已知得由已知得6.0)(=A P ,3.0)(=B P ,1.0)(=C P ; 01.0)(=A D P ,05.0)(=B D P ,04.0)(=C D P由贝叶斯公式得由贝叶斯公式得)()()()()()()()()(C D P C P B D P B P A D P A P A D P A P D A P ++=24.025604.01.005.03.001.06.001.06.0==´+´+´´=)()()()()()()()()(C D P C P B D P B P A D P A P B D P B P D B P ++=6.05304.01.005.03.001.06.005030==´+´+´´=)()()()()()()()()(C D P C P B D P B P A D P A P C D P C P D A P ++=16.025604.01.005.03.001.06.004.01.0==´+´+´´=1616、解:用、解:用A 表示事件“收到可信讯息”,B 表示事件“由密码钥匙传送讯息”表示事件“由密码钥匙传送讯息”由已知得由已知得 95.0)(=A P ,05.0)(=A P ,1)(=A B P ,001.0)(=A B P由贝叶斯公式得由贝叶斯公式得999947.0001.005.0195.0195.0)()()()()()()(»´+´´=+=A B P A P A B P A P A B P A P B A P1717、解:用、解:用A 表示事件“第一次得H ”,B 表示事件“第二次得H ”, C 表示事件“两次得同一面”表示事件“两次得同一面”则,21)(,21)(==B P A P ,21211)(2=+=C P ,4121)(2==AB P ,4121)(2==BC P ,4121)(2==AC P )()()(),()()(),()()(C P A P AC P C P B P BC P B P A P AB P ===\C B A ,,\两两独立两两独立而41)(=ABC P ,)()()()(C P B P A P ABC P ¹C B A ,,\不是相互独立的不是相互独立的1818、解:用、解:用A 表示事件“运动员A 进球”,B 表示事件“运动员B 进球”, C 表示事件“运动员C 进球”,由已知得由已知得5.0)(=A P ,7.0)(=B P ,6.0)(=C P 则5.0)(=A P ,3.0)(=B P ,4.0)(=C P (1){})(C B A C B A C B A P P =恰有一人进球)()()(C B A P C B A P C B A P ++= (C B A C B A C B A ,,互斥)互斥) )()()()()()()()()(C P B P A P C P B P A P C P B P A P ++=相互独立)C B A ,,(29.06.03.05.04.07.05.04.03.05.0=´´+´´+´´=(2){})(C B A BC A C AB P P =恰有二人进球)()()(C B A P BC A P C AB P ++= (C B A BC A C AB ,,互斥)互斥) )()()()()()()()()(C P B P A P C P B P A P C P B P A P ++= 相互独立)C B A ,,(44.06.03.05.06.07.05.04.07.05.0=´´+´´+´´= (3){})(C B A P P =至少有一人进球)(1C B A P -= )(1C B A P -=)()()(1C P B P A P -=相互独立)C B A ,,( 4.03.05.01´´-=94.0= 1919、解:用、解:用i A 表示事件“第i 个供血者具有+-RHA 血型”, ,3,2,1=iB 表示事件“病人得救”表示事件“病人得救”,4321321211A A A A A A A A A A B=4321321211,,,A A A A A A A A A A 互斥,i A ( ,3,2,1=i )相互独立)相互独立 ()()(1P A P B P +=\+)21A A )()(4321321A A A A P A A A P +8704.04.06.04.06.04.06.04.032=´+´+´+=2020、解:设、解:设i A 表示事件“可靠元件i ” i=1,2,3,4,5 ,B 表示事件“系统可靠”由已知得p A P i =)(1,2,3,4,5)(i = 54321,,,,A A A A A 相互独立相互独立法1:54321A A A A A B =)()(54321A A A A A P B P =\()()()()()()542154332154321A A A A P A A A P A A A P A A P A P A A P ---++=()54321A A A A A P +543322p p p p p p p +---++= ()相互独立54321,,,,A A A A A543222p p p p p +--+=法2:)(1)(54321A A A A A P B P -=)()()(154321A A P A P A A P -= ()相互独立54321,,,,A A A A A()()]1][1)][(1[154321A A P A P A A P ----=()()()]1][1)][()(1[154321A P A P A P A P A P ----=()相互独立54321,,,,A A A A A()()()221111pp p----=543222p p p p p +--+=2121、解:令、解:令A :“产品真含杂质”,A :“产品真不含杂质”“产品真不含杂质” 则4.0)(=A P ,6.0)(=A P2.08.0)|(223´´=C A B P 9.01.0)|(223´´=C A B P \)()|()()|()(A P A B P A P A B P B P +=6.09.01.04.02.08.0223223´´´+´´´=C C\)()|()()|()()|()()()|(A P A B P A P A B P A P A B P B P AB P B A P +==905.028325660901********.02.08.0223223223»=´´´+´´´´´´=C C C第二章习题答案 1、{}()4.04.011´-==-k k Y Pk=1,2,… 2、用个阀门开表示第i A i))()()()()(())((}0{32321321A P A P A P A P A P A A A P X P -+=== 072.0)2.02.02.02.0(2.0=´-+=23213218.02.0)04.02.02.0(8.0])([}1{´+-+===A A A A A A P X P416.0=512.08.0)(}2{3321====A A A P X P 3、()2.0,15~b X{}kkk C k X P -´==15158.02.0 k=0,1,2,……,15(1){}2501.08.02.03123315=´==C X P(2){}8329.08.02.08.02.01214115150015=´-´-=³C C X P(3){}6129.08.02.08.02.08.02.031123315132215141115=´+´+´=££C C C X P(4){}0611.08.02.01551515=´-=>å=-k kkk C X P4、用X 表示5个元件中正常工作的个数个元件中正常工作的个数9914.09.01.09.01.09.0)3(54452335=+´+´=³C C X P5、设X={}件产品的次品数8000 则X~b(8000,0.001)由于n 很大,P 很小,所以利用)8(p 近似地~X {}3134.0!8768==<å=-k k k eX P6、(1)X~p (10){}{}0487.09513.01!101151151510=-=-=£-=>\å=-k k k eX P X P (2)∵ X~p ( l ) {}{}!01010210ll --==-=>=\e X P X P{}210==\X P21=\-le7.02ln ==\l {}{}1558.08442.01!7.0111217.0=-=-=£-=³\å=-k k k eX P X P或{}{}{}2ln 2121!12ln 21110122ln -=--==-=-=³-e X P X P X P 7、)1( )2(~p X 1353.0!02}0{22====--e e X P )2( 00145.0)1()(24245=-=--eeC p)3( 52)!2(å¥=-=k kk e p8、(1) 由33)(11312k x k dx kx dx x f ====òò¥+¥- 3=\k(2){}()2713331331231====£òò¥-xdx x dx x f X P(3)64764181321412141321412=-===þýüîí죣òxdx x X P(4)271927813)(321323132232=-====þýüîíì>òò¥+xdx x dx x f X P9、方程有实根04522=-++X Xt t ,则,则 0)45(4)2(2³--=D X X 得.14£³X X 或 有实根的概率有实根的概率937.0003.0003.0}14{104212=+=£³òòdx x dx x X X P10、)1( 005.01|100}1{200110200200122»-=-==<---òeedx ex X P x x)2(=>}52{X P 0|100200525220020052222»-=-=-¥--¥òeedx exx x)3( 25158.0}20{}26{}20|26{200202002622==>>=>>--ee X P X P X X P 11、解:、解: (1){}()275271942789827194491)(12132121=+--=÷øöçèæ-=-==>òò¥+x x dx x dx x f X P(2)Y~b(10,275){}kk kC k Y P -÷øöçèæ´÷øöçèæ==10102722275k=0,1,2,……,10(3){}2998.027*******2210=÷øöçèæ´÷øöçèæ==C Y P{}{}{}1012=-=-=³Y P Y P Y P 5778.027222752722275191110100210=÷øöçèæ÷øöçèæ-÷øöçèæ´÷øöçèæ-=C C 12(1)由()()òòò++==-+¥¥-10012.02.01dy cy dy dy y f24.0)22.0(2.01201c y c y y +=++=-2.1=\c ()ïîïíì£<+£<-=\其它102.12.0012.0y yy y f ()()ïïïïîïïïïíì³+<£++<£--<==òòòòòò--¥-¥-12.12.0102.12.02.0012.010)()(100011y dyy y dy y dy y dt y dtdt t f y F y yyyYïïîïïíì³<£++<£-+-<=11102.02.06.0012.02.0102y y y y y y y{}()()25.02.05.06.05.02.02.005.05.002=-´+´+=-=££F F Y P {}()774.01.06.01.02.02.011.011.02=´-´--=-=>F Y P {}()55.05.06.05.02.02.015.015.02=´-´+-=-=>F Y P{}{}{}{}{}7106.0774.055.01.05.01.01.0,5.01.05.0==>>=>>>=>>\Y P Y P Y P Y Y P Y Y P(2) ()()ïïïîïïïíì³<£+<£<==òòòò¥-41428812081002200x x dtt dt x dt x dt t f x F xxxïïïîïïïíì³<£<£<=4142162081002x x x x xx{}()()167811691331=-=-=££F F X P{}()16933==£F X P{}{}{}9716916733131==£££=£³\X P X P X X P 13、解:{}111,-´===n nj Y i X Pn j i j i ,¼¼=¹,2,1,,{}0,===i Y i X P 当n=3时,(X ,Y )联合分布律为)联合分布律为14、)1(2.0}1,1{===Y X P ,}1,1{}0,1{}1,0{}0,0{}1,1{==+==+==+===££Y X P Y X P Y X P Y X P Y X P42.020.004.008.010.0=+++= )2( 90.010.01}0,0{1=-===-Y X P)3(}2,2{}1,1{}0,0{}{==+==+====Y X P Y X P Y X P Y X P60.030.020.010.0=++= }0,2{}1,1{}2,0{}2{==+==+====+Y X P Y X P Y X P Y X P28.002.020.006.0=++= 15、()()()88104242c ee cdxdy ce dx x f yx y x =-×-===+¥-+¥-+¥+¥+-+¥¥-òòò8=\c{}()()()4402042228,2-+¥-+¥-+¥+-+¥>=-×-===>òòòòe ee dy edxdxdy y x f X P yyxx y x xY X 1 2 31 0 1/6 1/62 1/6 0 1/6 31/6 1/6 0D :xy x ££¥<£00{}()òò>=>yx dxdy y x f Y X P ,()()dx e e dy edxx yx xy x 0402042028-+¥-+-+¥-×==òòò()ò¥++¥----=÷øöçèæ-=+-=2626323122x x xxe e dx eeD :xy x -££££101{}()dy edxY X P xyx òò-+-=<+10421081 ()()òò------=-=1422101042222dx eedx eex xx yx()()22104221----=--=e e ex x16、(1)61)2(122=-=òdx x x s , îíìÎ=其他,0),(,6),(G y x y x f(2)îíì<<==ò其他,010,36)(2222x x dy x f x xXïïïîïïíì<£-=<<-==òò其他,0121),1(66210),2(66),(12y y yY y y dx y y y dx y x f17、(1)Y X0 1 2 P{X=x i } 0 0.10 0.08 0.06 0.24 1 0.04 0.20 0.14 0.38 20.02 0.06 0.300.38 P{Y=y i } 0.16 0.34 0.501(2)D :+¥<£+¥<£y x x 0或:yx y <£+¥<£00()()ïîïíì£>==\òò+¥-¥+¥-00,x x dye dy y xf x f xy Xîíì£>=-00x x e x()()ïîïíì£>==òò-¥+¥-00,0y y dxe dx y xf y f yy Yîíì£>=--00y y ye y22、(1)Y 1 Y 2 -11-14222qq q =×()q q-124222qq q =×()q q-12()21q -()q q-1214222qq q =×()q q-124222qq q =×且{}{}{}{}1,10,01,121212121==+==+-=-===Y Y P Y Y P Y Y P Y YP()12234142222+-=+-+=q qqqq(2){}10.00,0===Y X P{}{}0384.000==×=Y P X P 又 {}0,0==Y X P {}{}00=×=¹Y P X P∴X 与Y 不相互独立不相互独立23、()1,0~U X ()ïîïíì<<=其它2108y yy f Y且X 与Y 相互独立相互独立则()()()ïîïíì<<<<=×=其它0210,108,y x yy f x f y x f Y XD :1210<£<£x y y32|)384()8(8}{21032212=-=-==>òòò>y y dy y y ydxdy Y X P yx24X-2-11 3 k p51 61 51151301112+=X Y 52 1 2 10Y 12 510k p5115161+513011即Y 12 5 10 k p5130751301125、U=|X|,当0)|(|)()(0=£=£=<y X P y Y P y F y U时,1)(2)()()()|(|)()(0-F =--=££-=£=£=³y y F y F y X y P y X P y Y P y F y X X U 时,当故ïîïíì<³==-0,00,2)(||22y y e y f X U y U p的概率概率密度函数为26、(1)X Y =,当0)()()(0=£=£=<y X P y Y P y F y Y 时,)()()()()(022y F y X P y X P y Y P y F y X Y =£=£=£=³时,当故 ïîïíì<³==-0,00,2)(2y y ye y f X Y y Y 的概率概率密度函数为(2))21(+=X Y ,当0)21()()(0=£+=£=£y X P y Y P y F y Y 时,1)(1)12()12()21()()(01=³-=-£=£+=£=>>y F y y F y X P y X P y Y P y F y Y X Y 时,当时,当故 ïîïíì>>=+=其他的概率概率密度函数为,001,21)(21y y f X Y Y(3)2X Y =,当0)()()(02=£=£=£y X P y Y P y F y Y 时,)()()()()()(02y F y F y X y P y XP y Y P y F y X X Y --=££-=£=£=>时,当故 ïîïíì£>==-0,00,21)(22y y e yy f X Y y Y p 的概率概率密度函数为27、()()ïîïíì<<+=其它201381x x x f X()()p p 4,02,02Î=ÞÎx y x 当y 0£时,()0=y F Yp 40<<y (){}þýüîí죣-=£=p p p y X yP y X P y F Y2()()òò+==-pppyyyx dx x dx x f 01381p 4³y()()113812=+=þýüîí죣-=òdx x y X yP y F Y p p时当p 4,0¹¹\y y ()()ïîïíì><<<×÷÷øöççèæ+×==pp p p 4,0040211381'y y y y yy F y f Y Y()ïîïíì<<+=\其它40161163p p p y yy f Y28、因为X 与 Y 相互独立,且服从正态分布),0(2s N2222221)()(),(sp sy x Y X ey f x f y x f +-==由知,22Y XZ+=0)(0=£z f z Z 时,当时,当0>z òò----=xxx z x z Z z F 2222)(2222221spsy x e+-dydx=2222220202121sspq p sz r zedr rd e---=òòïîïíì³=-其他,0,)()2(222z ez z f z Z ss29、ïîïíì<<-=其他,011,21)(x x f X))1arctan()1(arctan(21)1(21)()()(112--+=+=-=òò+-¥¥-z z dy y dy y f y z f z f z z Y X Z pp30、0)(0=£z f z Z时,当时当0>z2)()()(2302)(z e dy ye edy y f y z f z f zyzyz YX Zll l l l l ----¥¥-==-=òò31、îíì<<=其他,010,1)(x x f X , íì<<=其他,010,1)(y y f Y ,ïïîïïí죣-=<£==-=òòò-¥¥-其他,021,210,)()()(110z zY X Z z z dy z z dy dy y f y z f z f32 解(1)()()îíì£>=ïîïíì£>==---¥+¥-òò00030023,3203x x e x x dye dy y xf x fxxX()()ïîïí죣=ïîïí죣==òò¥+-¥+¥-其它其它20212023,03y y dx e dx y x f y f xY(2)()()îíì>-£=ïîïíì>£==--¥-òò100030303x e x x dt e x dt t f x F xx txX X()()ïïîïïíì³<£<=ïïîïïíì³<£<==òò¥-21202121202100y y yy y y dt y dt t f y F y yY Y ()(){}()()Z F Z F Z Y X P Z FY X ×=£=\,max max ()ïïîïïíì³-<£-<=--21201210033z e z z ez Z z(3)()÷øöçèæ-=þýüîíìì£<211121max max F F Z P ()21121121233×÷÷øöççèæ---=--e e 233412141--+-=ee33、(1)ïîïíì<<=其他率密度为)上服从均匀分布,概,在(,00,1)(10l x lx f X X(2)两个小段均服从上的均匀分布),0(l ,ïîïíì<<=其他,010,1)(1x lx f X),m i n (21X X Y =, 2)1(1)(ly y F Y --=ïîïíì<<-=其他,00,)(2)(2l y l y l y f Y 34、(1)U 的可能取值是0,1,2,31201}2,3{}1,3{}0,3{}3{12029}2,1{}2,0{}2,2{}1,2{}0,2{}2{32}1,1{}0,1{}1,0{}1{121}0,0{}0{===+==+=======+==+==+==+=======+==+=========Y X P Y X P Y X P U P Y X P Y X P Y X P Y X P Y X P U P Y X P Y X P y X P U P Y X P U P U 0 1 2 3 P12132120291201(2) V 的可能取值为0,1,2}2{4013}1,3{}1,2{}2,1{}1,1{}1{4027}0,3{}0,2{}0,1{}2,0{}1,0{}0,0{}0{=====+==+==+=======+==+==+==+==+====V P Y X P Y X P Y X P Y X P V P Y X P Y X P Y X P Y X P Y X P Y X P V PV 0 1 2 P40274013(3) W 的可能取值是0,1,2,3,4,5 0}5{}4{121}2,1{}1,2{}0,3{}3{125}2,0{}1,1{}0,2{}2{125}1,0{}0,1{}1{121}0,0{}0{=======+==+=======+==+=======+=========W P W P Y X P Y X P Y X P W P Y X P Y X P Y X P W P Y X P Y X P W P Y X P W PW 0 1 2 3 P121125125121概率统计第三章习题解答1、52}7{,51}6{}5{}4{========X P X P X P X P529)(=X E2、2914}7{,296}6{,295}5{,294}4{========Y P Y P Y P Y P29175)(=Y E 3、设X 为取到的电视机中包含的次品数,为取到的电视机中包含的次品数, 2,1,0,}{3123102===-k CC C k X P kkX 0 1 2 p k 221222922121)(=X E4、设X 为所得分数为所得分数 5,4,3,2,1,61}{===k k X P 12,11,10,9,8,7,361}{===k k X P1249)(=X E5、(1)由}6{}5{===X P X P ,则,则l l l l --=e e !6!565 解出6=l ,故6)(==l X E(2)由于åå¥=-¥=--=-11212211)1(66)1(k k k k kkkpp 不是绝对收敛,则)(X E 不存在。
概率论第一章习题解答
概率论第一章习题解答一、填空题:1.设,()0.1,()0.5,A B P A P B ⊂==则()P AB = ,()P A B = , ()P A B = 。
分析:()(,)0.1;A P B P AB A ==⊂()()0.5;P A B P B ==()()()1()0.9P A B P A B P AB P AB ===-=2.设在全部产品中有2%是废品,而合格品中有85%是一级品,则任抽出一个产品是一级品的概率为 。
分析:设A 为抽正品事件,B 为抽一级品事件,则条件知()1()0.98P A P A =-=,()0.85P B A =,所求为()()()0.980.850.833P B P A P B A ==⨯=;3.设A ,B ,C 为三事件且P(A)=P(B)=P(C)=41,81)(,0)()(===AC P BC P AB P ,则A,B,C 中至少有一个发生的概率为 .分析:,()()0,()0ABC AB P ABC P AB P ABC ⊆≤=∴= 所求即为5()()()()()()()()8P A B C P A P B P C P AB P BC P AC P ABC =++---+=; 4.一批产品共有10个正品和2个次品,不放回的抽取两次,则第二次取到次品的概率 为 .分析:第二次取到次品的概率为112111211C C ⨯或者为111110*********C C C C +=⨯ 5. 设A ,B 为两事件, ()0.4,()0.7,P A P A B == 当A ,B 不相容时, ()P B = 当A ,B 相互独立时, ()P B = 。
分析: (1)当A ,B 不相容时, ()0P AB =;()()()()P A B P A P B P AB =+- 由;则()()()()0.3P B P A B P A P AB =⋃-+=;(2)当A ,B 相互独立时, ()()()()()()()P AB P A P B P A B P A P B P AB =⎧⎨=+-⎩ ;则()(()(()))P A B P A P P P B B A =+- 由,代入求得()0.5P B =二.、选择题2.每次试验成功的概率为p (0< p <1),进行重复试验,直到第10次试验才取得4次成功的概率为( )。
《概率论与数理统计》第一章-习题及答案
《概率论与数理统计》第一章习题及答案习题1.11. 将一枚匀整的硬币抛两次,事务C,分别表示“第一次出现A,B正面”,“两次出现同一面”,“至少有一次出现正面”。
试写出样本空间及事务C,中的样本点。
A,B解:{=Ω(正,正),〔正,反〕,〔反,正〕,〔反,反〕} {=A(正,正),〔正,反〕};{=B〔正,正〕,〔反,反〕} {=C(正,正),〔正,反〕,〔反,正〕}2. 在掷两颗骰子的试验中,事务D,,分别表示“点数之和为A,BC偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。
试写出样本空间及事务D-+,-,,中AB-,ABCABCBCA的样本点。
解:{})6,6(,=Ω;),2,6(),1,6(,),2,1(),1,1(),6,2(,),2,2(),1,2(),6,1(,{})1,3(),2,2(),3,1(),1,1(AB;={})1,2(),2,1(),6,6(),4,6(),2,6(,+BA;=),5,1(),3,1(),1,1(A;C=Φ{})2,2(),1,1(BC;={})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(BA-DC-=-3. 以C,分别表示某城市居民订阅日报、晚报和体育报。
试用A,B,表示以下事务:A,BC〔1〕只订阅日报;〔2〕只订日报和晚报;〔3〕只订一种报; 〔4〕正好订两种报; 〔5〕至少订阅一种报; 〔6〕不订阅任何报; 〔7〕至多订阅一种报; 〔8〕三种报纸都订阅; 〔9〕三种报纸不全订阅。
解:〔1〕C B A ; 〔2〕C AB ;〔3〕C B A C B A C B A ++; 〔4〕BC A C B A C AB ++;〔5〕C B A ++; 〔6〕C B A ;〔7〕C B A C B A C B A C B A +++或C B C A B A ++ 〔8〕ABC ; 〔9〕C B A ++4. 甲、乙、丙三人各射击一次,事务321,,A A A 分别表示甲、乙、丙射中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P( B) P( B Ai ) P( Ai )
i 0
3
2 3 2 1 C3 C3 C1 C8 C9 C6 C3 C3 C3 6 9 9 C6 7 9 6 3 3 3 3 3 3 3 3 C15 C15 C15 C15 C15 C15 C15 C15
0.089
m nm Cm n PM PN M P(A)= n PN
m nm m n m n m n
由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成 P(A)=
nm Cm M CN M Cn N
可以看出,用第二种方法简便得多. (3) 由于是有放回的抽取,每次都有 N 种取法,故所有可能的取法总数为 Nn 种,n 次抽取中有 m 次为正品的组合数为 C n 种, 对于固定的一种正、 次品的抽取次序,
(1) 两个数之和小于 【解】 设两数为 x,y,则 0<x,y<1. (1) x+y<
6 . 5
1 4 4 17 p1 1 2 5 5 0.68 1 25 1 (2) xy=< . 4
1 1 1 1 p2 1 1 dx 1 dy ln 2 4x 4 4 2
P( A) P( B A) P( AB) P( B) P( A) P( B A) P( A) P( B A)
0.2 0.1 1 0.02702 0.8 0.9 0.2 0.1 37
即考试及格的学生中不努力学习的学生仅占 2.702% (2)
P( A B)
P( A) P( B A) P( AB) P( B) P( A) P( B A) P( A) P( B A)
1 1 =( )5 5 7 7
(亦可用独立性求解,下同)
(2) 设 A2={五个人生日都不在星期日},有利事件数为 65,故 P(A2)=
65 6 5 =( ) 75 7
1 5 ) 7
(3) 设 A3={五个人的生日不都在星期日} P(A3)=1P(A1)=1(
9.略.见教材习题参考答案. 10.一批产品共 N 件,其中 M 件正品.从中随机地取出 n 件(n<N).试求其中恰有 m 件(m ≤M)正品(记为 A)的概率.如果: (1) n 件是同时取出的; (2) n 件是无放回逐件取出的; (3) n 件是有放回逐件取出的. 【解】 (1) P(A)= CM CN M / C N (2) 由于是无放回逐件取出,可用排列法计算.样本点总数有 PN 种,n 次抽取中有 m 次为正品的组合数为 C n 种.对于固定的一种正品与次品的抽取次序,从 M 件正 品中取 m 件的排列数有 PM 种,从 NM 件次品中取 nm 件的排列数为 PN M 种, 故
【解】 设 Ai={甲进 i 球},i=0,1,2,3,Bi={乙进 i 球},i=0,1,2,3,则
2 1 2 P( Ai Bi 3 ) (0.3)3 (0.4)3 C1 3 0.7 (0.3) C3 0.6 (0.4) i 0 3
2 2 C3 (0.7)2 0.3C3 (0.6)2 0.4+(0.7)3 (0.6)3
2
m
m 次取得正品,都有 M 种取法,共有 Mm 种取法,nm 次取得次品,每次都有 NM 种取法,共有(NM)nm 种取法,故
m n m P( A) Cm / Nn n M (N M )
此题也可用贝努里概型,共做了 n 重贝努里试验,每次取得正品的概率为 m 件正品的概率为
M ,则取得Leabharlann N3 3 P( A) C1 10 C3 / C50
1 1960
13.一个袋内装有大小相同的 7 个球,其中 4 个是白球,3 个是黑球,从中一次抽取 3 个, 计算至少有两个是白球的概率. 【解】 设 Ai={恰有 i 个白球}(i=2,3) ,显然 A2 与 A3 互斥.
P( A2 )
1
=
1 1 1 1 3 + + = 4 4 3 12 4
7.从 52 张扑克牌中任意取出 13 张,问有 5 张黑桃,3 张红心,3 张方块,2 张梅花的概率 是多少? 【解】 p= C13C13C13C13 / C52
5 3 3 2 13
8.对一个五人学习小组考虑生日问题: (1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率; (3) 求五个人的生日不都在星期日的概率. 【解】 (1) 设 A1={五个人的生日都在星期日},基本事件总数为 75,有利事件仅 1 个,故 P(A1)=
23.设 P( A )=0.3,P(B)=0.4,P(A B )=0.5,求 P(B|A∪ B ) 【解】
P( B A B)
P( AB ) P A ( ) P AB ( ) P( A B) P( A) P( B) P( AB)
5
0.7 0.5 1 0.7 0.6 0.5 4
P( AB) 0.1 0.2 P( A) 0.5
(2) p( A B) P( A) P( B) P( AB) 0.3 0.5 0.1 0.7 19.已知一个家庭有 3 个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男 为女是等可能的). 【解】 设 A={其中一个为女孩},B={至少有一个男孩},样本点总数为 23=8,故
24.在一个盒中装有 15 个乒乓球,其中有 9 个新球,在第一次比赛中任意取出 3 个球,比 赛后放回原盒中; 第二次比赛同样任意取出 3 个球, 求第二次取出的 3 个球均为新球的 概率. 【解】 设 Ai={第一次取出的 3 个球中有 i 个新球},i=0,1,2,3.B={第二次取出的 3 球均为新 球} 由全概率公式,有
4
题 21 图 题 22 图 【解】 设两人到达时刻为 x,y,则 0≤x,y≤60.事件 “一人要等另一人半小时以上” 等价于|xy|>30. 如图阴影部分所示.
302 1 P 2 60 4
22.从(0,1)中随机地取两个数,求:
6 的概率; 5 1 (2) 两个数之积小于 的概率. 4
概率论与数理统计习题及答案
习题 一
1.略.见教材习题参考答案. 2.设 A,B,C 为三个事件,试用 A,B,C 的运算关系式表示下列事件: (1) A 发生,B,C 都不发生; (2) A 与 B 发生,C 不发生; (3) A,B,C 都发生; (4) A,B,C 至少有一个发生; (5) A,B,C 都不发生; (6) A,B,C 不都发生; (7) A,B,C 至多有 2 个发生; (8) A,B,C 至少有 2 个发生. 【解】 (1) A BC (2) AB C (3) ABC (4) A∪B∪C= AB C∪ A B C ∪A BC ∪ A BC∪A B C∪AB C ∪ABC= ABC (5) ABC = A B C (6) ABC
(7) A BC∪A B C∪AB C ∪ AB C∪A BC ∪ A B C ∪ ABC = ABC = A ∪ B ∪ C (8) AB∪BC∪CA=AB C ∪A B C∪ A BC∪ABC 3.略.见教材习题参考答案 4.设 A,B 为随机事件,且 P(A)=0.7,P(AB)=0.3,求 P( AB ). 【解】 P( AB )=1P(AB)=1[P(A)P(AB)] =1[0.70.3]=0.6 5.设 A,B 是两事件,且 P(A)=0.6,P(B)=0.7,求: (1) 在什么条件下 P(AB)取到最大值? (2) 在什么条件下 P(AB)取到最小值? 【解】 (1) 当 AB=A 时,P(AB)取到最大值为 0.6. (2) 当 A∪B=Ω 时,P(AB)取到最小值为 0.3. 6.设 A,B,C 为三事件,且 P(A)=P(B)=1/4,P(C)=1/3 且 P(AB)=P(BC)=0, P(AC)=1/12,求 A,B,C 至少有一事件发生的概率. 【解】 P(A∪B∪C)=P(A)+P(B)+P(C)P(AB)P(BC)P(AC)+P(ABC)
=0.32076 17.从 5 双不同的鞋子中任取 4 只,求这 4 只鞋子中至少有两只鞋子配成一双的概率. 【解】
p 1
4 1 1 1 C5 C1 CC 2 2 C 2 2 13 4 C10 21
18.某地某天下雪的概率为 0.3,下雨的概率为 0.5,既下雪又下雨的概率为 0.1,求: (1) 在下雨条件下下雪的概率; (2) 这天下雨或下雪的概率. 【解】 设 A={下雨},B={下雪}. (1) p( B A)
5 2 1 2 1 3 1 【解】 (1) p1 C5 ( ) ( ) 2 2 2 32
1 1 31 C1 4 ( )( ) 2 2 42 (2) p2 5 / 32 5
16.甲、乙两个篮球运动员,投篮命中率分别为 0.7 及 0.6,每人各投了 3 次,求二人进球 数相等的概率.
3
P( B A)
P( AB) 6 / 8 6 P( A) 7 / 8 7
或在缩减样本空间中求,此时样本点总数为 7.
P( B A)
6 7
20.已知 5%的男人和 0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是 男人的概率(假设男人和女人各占人数的一半). 【解】 设 A={此人是男人},B={此人是色盲},则由贝叶斯公式
P( A B)
P( A) P( B A) P( AB) P( B) P( A) P( B A) P( A) P( B A)
0.5 0.05 20 0.5 0.05 0.5 0.0025 21
21.两人约定上午 9∶00~10∶00 在公园会面,求一人要等另一人半小时以上的概率.
25. 按以往概率论考试结果分析,努力学习的学生有 90%的可能考试及格,不努力学习的学 生有 90%的可能考试不及格.据调查,学生中有 80%的人是努力学习的,试问: (1)考试及格的学生有多大可能是不努力学习的人? (2)考试不及格的学生有多大可能是努力学习的人? 【解】设 A={被调查学生是努力学习的},则 A ={被调查学生是不努力学习的}.由题意知 P (A)=0.8,P( A )=0.2,又设 B={被调查学生考试及格}.由题意知 P(B|A)=0.9,P ( B | A )=0.9,故由贝叶斯公式知 (1) P( A B)