Ch2有机化合物光谱和波谱分析-2.3
有机化合物光谱和波谱分析-2.2
1.价电子类型
有机化合物的紫外—可见吸收光谱是三种电子跃迁的结果: σ键电子(单键)
有机分子 价电子类型
π键电子(不饱和键)
未成键n电子(或称非键电子, 如氧,氮,硫,卤素等)
s
H
C H
O
p
n
2.电子跃迁类型
分子轨道理论:成键轨道—反键轨道。
s*
E
K E,B
R
p*
n
p
s
当外层电子吸收紫外或可见辐射后,就从基态向激发态(反 键轨道)跃迁。主要有四种跃迁所需能量Δ Ε 大小顺序为:
溶剂极性↑ π→π*跃迁的吸 收谱带发生红移
基发态 基态
例如: 环己烷改
乙极性对n→π*跃迁谱带的影响
溶剂极性↑ n→π*跃迁的吸收 谱带发生蓝移 例如: 环己烷改 乙醇: 蓝移7nm, 水: 蓝移8nm
异亚丙基丙酮CH3COCH=C(CH3)2吸收带与溶剂极性的关系
(1) 远紫外光区: 100-200nm
(2) 近紫外光区: 200-400nm
(3)可见光区:400-800nm 可用于结构鉴定和定量分析。 电子跃迁的同时,伴随着振动转 动能级的跃迁;带状光谱。
4. 电磁波与辐射能
光: 是一种电磁波, 具有波动性和粒子性.
波动性 – 传播运动过程中突出, 表现在光的偏振, 干涉, 衍射 粒子性 – 与物质相互作用时突出, 表现在光电效 应, 光的吸收和散射
c ν= λ
ν : Hz c 8 c : 光速 (3×10 m/s) E = hν =h λ λ : m
= hcν
※ 频率与波长成反比, 即波长越长, 频率越低, 波数越小 ※ 光量子的能量(E)与波长成反比, 而与频率及波数成正比.
羰基化合物
1470.88 1359.50
1517.34
1336.49 1286.76
1421.07 1382.92
1109.70
1211.76 1170.42
1071.53 1007.27
838.89 799.97
534.94
678.70 642.60
567.56
455.35 428.75
1000
500
酰卤
▪ 配位化学中,羰基化合物指一类含有一氧化碳作为配体的化合物。 见金属羰基化合物。
▪ 无机化学中,羰基化合物可以指一类含有C=O键的化合物。如二 氧化碳,硫化羰等。
2.羰基类化合物的谱图解析
▪ 2.1羰基化合物在红外IR的吸收特点 ▪
C=O的伸缩振动出现在1850~1660cm-1范围内,常成为红外 谱图中最强的吸收,且在该范围内其他吸收带干扰的可能性较小。
80
70
Transmittance [%]
60
50
CH2变形振 动
C-Cl伸缩振动 (1000~910,峰 形宽大)
CH2对称伸缩 振动(2850)
C=O伸缩振 动(1800)
1801.98
2925,CH2反 对称伸缩振动
2854.46
3500
3000
2500
2000
1500
Wavenumber cm-1
C-O-C伸缩振动:1250 ~ 1000cm-1,有张力环酐移到 910cm-1附近。
邻苯二甲酸酐
3500
Transmittance [%]
40
50
60
70
80
90 100
3603.19
3070.70 3093.33 2930.92
有机化学有机化合物的波谱分析PPT课件
5
7.2.1分子化学键的振动和红外光谱
1.振动方程式
可把双原子分子的振动近似地看成用弹簧连接着的两个小球的 简谐振动。根据Hooke定律可得其振动频率为:
分子化学键的振动是量子化的,其能级为:
式中: υ为振动量子数(0,1,2,…);h为Planck常量;ν振为化学 键的振动频率。
第8页/共80页
8
分子由基态υ =0跃迁到激发态υ =1时吸收光的能量为:
第9页/共80页
9
分子振动频率习惯以σ表示,由(7–2)式、(7–3)式和(7–5)式得:
红外吸收峰的峰位(σ)取决于键的力常数,以及键两端所连原子的 质量m1和m2,即取决于化合物分子的结构。这是红外光谱用来测 定化合物结构的理论依据。
n≥4在 725~720 处有吸 收。
32
1300 cm-1以下区域的光谱:715 cm-1处的面外弯曲振动吸收,表明 烯烃为顺式构型。
综合以上分析,有双键吸收,无三键及甲基吸收,另一不饱 和≥4在 725~720 处有吸 收。
33
7.3核磁共振谱(NMR)
这样对测定有机化合物结构毫无意义。但实验证明,在相同频 率照射下,化学环境不同的质子在不同的磁场强度处出现吸收峰。
第20页/共80页
20
3.鉴定已知化合物
用被测物的标准试样与被测物在相同条件下测定红外光谱,若 吸收峰位置、强度和形状完全相同,可认为是同一种物质(对映异 构体除外)。若无标准试样而有标准谱图,可查阅标准谱图。
查阅时应注意被测物与标准谱图所用试样的状态、制样方法、 所用仪器的分辨率等是否相同。
第八章有机化合物的波谱分析
1H核的I=1/2,当它围绕自旋轴转动时就产生了磁场,
因质子带正电荷,根据右手定则可确定磁场方向。
氢核在外磁场中的两种取向示意图 ΔE与外磁场感应强度(B0)成正比,如下图及关系式 所示:
图 8-6 质子在外加磁场中两个能级与外磁场的关系
h E B 0 h 2
B 0 (8-4) 2
式中:γ称为磁旋比,是核的特征常数,对1H而言, 其值为2.675×108A·m2·J-1·s-1;h为Plank常量;ν无线电 波的频率。
因为只有吸收频率为ν的电磁波才能产生核磁共振, 故式(8-4)为产生核磁共振的条件。 ⑵核磁共振仪和核磁共振谱
被测样品溶解在CCl4、CDCl3、D2O等不含质子的溶 剂中,样品管在气流的吹拂下悬浮在磁铁之间并不停的旋 转,使样品均匀受到磁场作用。
化学键类型
伸 缩 振 动
-N-H sp C-H sp2 C-H sp3 C-H sp2 C-O sp3 C-O
化学键类型
特征频率/cm-1(化合物类型) 1680~1620(烯烃) 1750~1710(醛、酮) 1725~1700(羧酸) 1850~1800,1790~1740(酸酐) 1815~1770(酰卤) 1750~1730(酯) 1700~1680(酰胺) 1690~1640(亚胺、肟) 1550~1535,1370~1345(硝基化合物) 2200~2100(不对称炔烃) 2280~2240(腈)
低场
高场
外加磁场 B0
因而,质子核磁共振的条件应为:
B实 B 0(1 ) 2 2
(8-6)
对质子化学位移产生主要影响的屏蔽效应有两种: ①核外成键电子的电子云密度对所研究的质子产生的 屏蔽作用,即局部屏蔽效应。 ②分子中其它质子或基团的核外电子对所研究的质子 产生的屏蔽作用,即远程屏蔽效应(磁各向异性效应)。 综上所述,不同化学环境的质子,受到不同程度的屏 蔽效应,因而在核磁共振谱的不同位置出现吸收峰,这种 峰位置上的差异称为化学位移。
Ch2有机化合物光谱和波谱分析-2.4
§2.4核磁共振氢谱 nuclear magnetic resonance,NMR
一:什么是化学位移chemical shift
一:什么是化学位移chemical shift
1、化学位移: chemical shift
核磁共振光谱(Nuclear Magnetic Resonance
H=3.2~4.0ppm H=2.2~3.2ppm H=1.8ppm
H=2.1ppm
H=2~3ppm
(2)烯烃
端烯质子:H=4.8~5.0ppm 内烯质子:H=5.1~5.7ppm 与烯基,芳基共轭:H=4~7ppm
(3)芳香烃
芳烃质子:H=6.5~8.0ppm 供电子基团取代-OR,-NR2 时:H=6.5~7.0ppm 吸电子基团取代-COCH3,-CN,-NO2 时:H=7.2~8.0ppm
(4)峰的裂分数:相邻碳原子上质子数; (5)偶合常数(J):确定化合物构型。
不足之处:
仅能确定质子(氢谱)。
案例:谱图解析与结构(1)确定
化合物 C10H12O2 2 2 5
3
8
7
6
5
4
3
2
1
0
谱图解析与结构确定步骤
UN =1+10+1/2(-12)=5
δ 3.0和δ 4.30三重峰和三重峰
O—CH2CH2—相互偶合峰 δ 2.1单峰三个氢,—CH3峰 结构中有氧原子,可能具有: δ 7.3芳环上氢,单峰烷基单取代
用频率为兆赫数量级的、波长很长、能量很低的电磁波照 射分子,这种电磁波能与暴露在强磁场中的磁性核相互作用, 引起磁性核在外磁场中发生磁能级的共振跃迁而产生吸收信 号。 可见核磁共振波谱和可见-紫外光谱、红外吸收光谱一样,都 是微观粒子吸收不同能量的电磁波后在不同能级上的跃迁。
有机化合物波谱分析课程设计
有机化合物波谱分析课程设计1. 背景和目的有机化合物是一类含有碳元素并通常与氢元素和其他元素形成化学结构的化合物。
有机化合物波谱分析是化学学科中的基础实验技能之一,具有很高的实用性和重要性。
本课程的目的是培养学生对有机化合物波谱分析的理论知识和实验操作技能,使学生能够成功地进行有机化合物波谱分析实验及数据分析。
2. 教学内容本课程设计主要包括以下几个方面:2.1 有机化合物波谱分析原理•红外光谱•核磁共振光谱•质谱2.2 仪器及设备•红外光谱仪•核磁共振光谱仪•质谱仪•一些常用的有机化合物实验室通用设备2.3 实验操作技能红外光谱仪、核磁共振光谱仪和质谱仪的实验操作技能及数据的采集和处理。
2.4 数据分析对实验结果进行分析和解释。
3. 实验安排3.1 实验1:红外光谱仪实验实验目的:掌握红外光谱的基本原理与实验操作技能,了解红外光谱的应用领域和适用范围。
实验步骤:•选择合适的样品,进行样品的制备和处理;•开启红外光谱仪,进行仪器的预热和校对;•采集红外光谱图像和数据;•对数据进行分析和解释。
3.2 实验2:核磁共振光谱仪实验实验目的:掌握核磁共振光谱的基本原理与实验操作技能,熟练运用核磁共振光谱仪进行实验,并对实验结果进行分析和解释。
实验步骤:•制备样品或使用现有的标准样品;•开启核磁共振光谱仪,进行数据采集;•对数据进行处理和分析。
3.3 实验3:质谱仪实验实验目的:掌握质谱的基本原理,熟练操作质谱仪进行质谱图像和数据采集,并对实验结果进行分析和解释。
实验步骤:•制备或准备样品;•开启质谱仪,进行样品分析;•对数据进行分析和解释。
4. 教学评分•实验报告(30%):实验报告应该详细描述实验设计、操作和结果,并包括数据的处理和分析方法。
•期末考试(60%):期末考试包括理论知识和实验操作技能方面的考核。
•实验室表现(10%):包括实验室操作能力、实验室卫生、仪器设备保养等方面。
5. 总结通过本课程的学习,学生将建立起对有机化合物波谱分析方面的理论知识和实验操作技能,并能够成功地进行相关实验及数据分析,具备较高的就业竞争力和实用性。
波谱分析第二章有机化合物紫外光谱解析
羰基吸收峰受取代基影响显著位移
醛酮均在270 —300nm有R吸收带,但略有差别。 酮: 270 —280nm, 醛: 280—300nm附近 酮比醛多一个烃基,由于超共轭效应π轨道能级降低, π*轨道能级升高, n→π* 跃迁需要较高的能量。
n→ * /nm n→π* /nm
到π*轨道,完成 n→π*跃迁。
→* 跃迁在120—130nm之间产生吸收 π→π* 跃迁在 —160 nm左右产生吸收
n→* 跃迁在 —180 nm左右产生吸收
孤立羰基化合物研究最多的是 n→π* 跃迁,谱带吸收在 270—300nm附近。低强度的宽谱带。 (=10~20)
R带位置的变化对溶剂很敏感
CH3Cl CH3OH CH3NH2
σ→σ* 164-154
150 173
n →σ* 174 183 213
σ*
E
n σ
波谱分析第二章有机化合物紫外光 谱解析
2.烯类化合物
单烯烃: σ→σ* 和π→π* 两种跃迁。
ΔΕπ→π*<ΔΕσ→σ* , 吸收带在200nm左右。
λmax/nm εmax CH2=CH2 π→π* 162 ~104 CH3CH=CHCH3 π→π* 178 ~104 环己烯 π→π* 176 ~104
λmax =114+5×10+11×(48.0-1.7×11)-16.5×2=453.3nm εmax =1.74 × 104× 11=19.1× 104
波谱分析第二章有机化合物紫外光 谱解析
3.羰基化合物
(1)饱和羰基化合物: →* 、 π→π* 、 n→* 、 n→π*四种跃迁; 常常在发生π→π* 跃迁的同时,n 电子亦被激发而跃迁
有机化合物波谱分析
化学键伸缩振动频率只与化学键有关,是化学键的一个特征常数;
化学键的伸缩振动是在不停进行的,有三个显著特点:
伸缩振动能是量子化的,不连续的,因此就形成了 不同的能级。
单击此处添加大标题内容
伸缩振动的能级差 ,相当于红外光的能量 因此,用红外光照射有机样品时,化学键就会吸收一份能 量,实现振动能级的要跃迁。即: ν=ν。 即意味着:化学键以多大的频率振动就吸收多大频率的光, 在此频率处就形成一个吸收峰(表现为吸收带)。
4000-1400cm-1区域又叫官能团区. 该区域出现的吸 收峰,较为稀疏,容易辨认. 1400-400cm-1区域又叫指纹区. 这一区域主要是: C-C、C-N、C-O 等单键和各种弯曲振动的 吸收峰,其特点是谱带密集、难以辨认。(p299页表8-2)
1000 700 500 Y Y O单键 H面内弯曲振动 H弯曲振动
8.1 分子吸收光谱和分子结构
微粒性:可用光量子的能量来描述:
按量子力学,其关系为:
1
与E,v 成反比,即 ↓,v↑(每秒的振动次数↑),E↑。
3
2
在分子光谱中,根据电磁波的波长 ()划分为几个不同的区域,如下图所示:
上式表明:分子吸收电磁波,从低能级跃迁到高能级,其吸收光的频率与吸收能量的关系。
注意:
只有偶极矩(μ)发生变化的,才能有红外吸收。 如:H2、O2、N2 电荷分布均匀,振动不能引起红外吸收。 H―C≡C―H、R―C≡C―R,其C≡C(三键)振动 也不能引起红外吸收。 化学键极性越强,振动时偶极矩变化越大,吸收峰越强.
分子的振动方式
1
伸缩振动:
2
伸缩振动的特征及规律
吸收峰
有机化学:有机化合物的波谱分析
每一种波长的电磁波辐射时都伴随着产生能 量,而且该能量是量子化的。
二、分子吸收光谱
分子吸收辐射,会引起原子的转动、振动,或 激发电子从低能级跃迁到高能级。但分子吸收辐射 并非都是有效的,它们须遵循量子化,即电磁波辐 射的能量恰好等于两个能级之间的能量差(Δ Ε )
时,分子吸收才是有效的。
E h
傅立叶变换近红外(FT-NIR)光谱仪
智能傅立叶红外(Nicolet 380)光谱仪
智能傅立叶红外(Nicolet 5700-8700)光谱仪
红外光谱法的优点
1、气态、液态、固态样品均可进行测定。
2、每种有机化合物均有红外吸收,故从IR谱图
中可获得丰富的信息;
3、相对核磁、质谱而言,红外光谱仪价格低廉,
1050cm-1
O CH3 C OCH=CH2
图7-21 乙酸乙烯酯的红外光谱图 IR:3100, 1760, 1650, 1440, 1380, 1220, 1150cm-1
O CH3CH2 C NH2
图7-22 丙酰胺的红外光谱图 IR:3360, 3200, 2920, 2860, 1660, 1470, 1420, 1300, 1150cm-1
O CH3
图7-17 2-甲基-2-环戊烯酮的红外光谱图 IR:2920, 2860, 1700, 1640, 1450, 1410, 1380, 1330, 1070cm-1
Cl CO2H
图7-18 2-氯苯甲酸的红外光谱图 IR:2920, 2870, 1695, 1600, 1460, 1410, 1380, 745cm-1
-CN ~2240 -CC~2220
苯环 ~1600 三键 累积双键
C-OH 酚 伯 叔仲 ~1460
Ch有机化合物光谱和波谱分析精讲
§2.3红外吸收光谱法
infrared absorption spec-troscopy,IR
一、认识红外光谱
1、认识红外光谱图
纵坐标为吸收强度,多以透光率(T)表示(即 横坐标为波长λ( m )和波数1/λ 单位:cm-1
1 104 (cm ) (cm) ( m)
在此基础上,再仔细归属指纹区的有关谱带,综合分析,
提出化合物的可能结构。 必要时查阅标图谱或与其他谱(1H NMR,13C NMR,MS )配合,确证其结构。
1、了解样品来源及测试方法
要求样品纯度98%以上
尽可能地从下面几个方面详尽了解样品的情况:
N个原子组成分子,每个原子在空间具三个自由度
分子振动自由度 3N (平动自由度 转动自由度)
分子自由度 平动自由度 转动自由度 振动自由度 3N
非线性分子: F 3N 6
• • •
注: 振动自由度反映吸收峰数量 并非每个振动都产生基频峰 吸收峰数常少于振动自由度数
③振动偶合( vibrational coupling ):当分子中两个或两
个以上相同的基团与同一个原子连接时,其振动吸收带常发 生分裂,形成双峰,这种现象称为振动偶合。有伸缩振动偶 合、弯曲振动偶合、伸缩与弯曲振动偶合三类。例如: (CH3)2CH—中的两个甲基相连在同一碳上,其δ 振动频率,是由弯曲振动偶合引起的。 ④费米共振(Fermi resonance):当强度很弱的倍频带或合 频带位于某一强基频吸收带附近时,弱的倍频带或合频带和 基频带之间发生偶合,使得倍频带或合频带加强,而基频带
②合频(组频)带(combination tone):也是弱吸收带,出
有机化合物波谱解析第三版教学设计 (2)
有机化合物波谱解析第三版教学设计引言有机化合物波谱解析是有机化学分析的重要内容。
只有深入理解波谱解析原理,才能正确地分析有机分子的结构。
在有机化学教学中,波谱解析课程的重要性不言而喻。
本文介绍了有机化合物波谱解析第三版的教学设计。
教学目标1.掌握质谱分析原理和技术方法;2.掌握红外光谱和紫外光谱原理及其应用;3.学会通过波谱解析方法推断并分析有机分子的结构。
教学内容1. 质谱分析1.1 基本原理1.2 典型离子源1.3 典型质谱图解析2. 红外光谱和紫外光谱2.1 红外光谱基本原理2.2 红外光谱谱图解析2.3 紫外光谱基本原理2.4 紫外光谱谱图解析3. 综合应用3.1 通过不同波谱数据解析有机分子的结构3.2 应用波谱解析技术解决有机分析问题教学方法本节课程采用课堂讲授与实验相结合的教学方法。
其中,实验环节是教学中的重要组成部分,能够增强学生学习的兴趣和掌握实际操作技巧。
具体实验内容包括:1.质谱分析实验,学生可通过实验操作了解质谱分析原理和技术方法;2.红外光谱实验,学生可通过实验了解红外光谱和紫外光谱谱图的特征;3.利用波谱解析方法解决实际有机分析问题。
教学过程1. 质谱分析部分1.1 质谱分析原理和技术方法的讲授1.2 展示典型质谱图,讲解质谱图的特征1.3 分组讨论质谱图的解析方法1.4 实验室进行质谱分析实验2. 红外光谱和紫外光谱部分2.1 红外光谱基本原理的讲授2.2 展示典型红外光谱图,讲解红外光谱图的特征2.3 紫外光谱基本原理的讲授2.4 展示典型紫外光谱图,讲解紫外光谱图的特征2.5 分组讨论典型红外光谱和紫外光谱图的解析方法2.6 实验室进行红外光谱实验3. 综合应用部分3.1 展示不同波谱数据的解析,推断有机分子结构3.2 学生分组进行有机分析问题的解决,通过波谱解析方法推断有机分子结构教学评估采用成绩评分和作业评估相结合的方式对学生进行评估。
其中,成绩评分主要包括:1.平时成绩:参与度、作业完成情况、实验报告评分等;2.考试成绩:闭卷考试,考查理论知识和波谱解析实验操作能力。
Ch2有机化合物光谱和波谱分析-2.6
因此该化合物为3-甲基-2-戊酮。
磁等性H核之间不发生自旋裂分。如CH3—CH3只 有一个单峰。 4、谱图解析
( 1)
一张谱图可以向我们提供关于有机分子结构的如下信息
1. 由吸收峰的组数,可以判断有几种不同类型的H 核; 2. 由峰的强度(峰面积或积分曲线高度),可以判 断各类H的相对数目; 3.由峰的裂分数目,可以判断相邻H核的数目; 4. 由峰的化学位移(δ 值),可以判断各类型H所
3 2 2
试推断该化合物的结构。 解: 由分子式可知,该化合物是一个饱和化合物;
由谱图可知: (1) 有三组吸收峰,说明有三种不同类型的 H 核;
(2) 该化合物有七个氢,有积分曲线的阶高可知a、b、
c各组吸收峰的质子数分别为3、2、2;
(3) 由化学位移值可知:Ha 的共振信号在高场区,其
屏蔽效应最大,该氢核离Cl原子最远;而 Hc 的屏蔽效应
每组吸收峰内各峰之间的距离,称为偶合常数, 以Jab表示。下标ab表示相互偶合的磁不等性H核的种 类。 Jab Jab
偶合常数的单位用Hz表示。偶合常数的大小与外 加磁场强度、使用仪器的频率无关。 值得注意的是: 自旋偶合与相互作用的两个H核的相对位置有关,
当相隔单键数≤3时,可以发生自旋偶合,相隔三个以 上单键,J 值趋于0,即不发生偶合。
经元素分析确定实验式; 有条件时可有MS谱测定相对分子量,确定分子式; 根据分子式计算不饱和度,其经验公式为: Ω = 1 + n4 + 1 / 2(n3 – n1)
式中:Ω —代表不饱和度;n1、n3、n4分别代表分
子中一价、三价和四价原子的数目。
双键和饱和环状结构的Ω 为1、三键为2、苯环为4。 2.按鉴定已知化合物的程序解析谱图。 谱图解析示例:
有机化合物波谱分析(课堂PPT)
不同能量的电磁波能引起物质不同运动状态的变化,促 使一定能态的基态跃迁至激发态,在连续的电磁波谱上出现 吸收信号。
3
高能辐射区 光学光谱区
γ 射线 x 射线 紫外光 可见光 红外光
引起原子核的裂变
短
使内层电子逸出轨道
引起原子和分子外层价电子跃迁 引起分子振动和转动状态变化
波长
波谱区
微波 引起单电子自旋改变烯Βιβλιοθήκη 类型各类烯烃的特征吸收位置表
v=C–H/cm-1
vC=C/cm-1
RHC=CH2 R1R2C=CH2 R1HC=CHR2(Z)
3100~3000(m) 3100~3000(m) 3100~3000(m)
R1HC=CHR2(E) 3100~3000(m)
R1R2C=CHR3
3100~3000(m)
面外弯曲γ:包括面外摇摆和蜷曲。 面外摇摆ω
蜷曲τ
14
变形振动δ :包括对称变形振动和不对称变形振动。 对称的变形振动δs
不对称的变形振动δas
15
8.1.2 烃类化合物的IR谱图解析
8.1.2.1 烷烃
烷烃的IR谱应关注三个吸收段的情况: (1) C–H伸缩振动(vC–H):3000~2800cm-1;
形判断化合物的官能团,确定化合物类别。 红外光谱产生必要条件 分子在振、转过程中的净偶极矩的变化不为0,即分子产生
红外活性振动过程中:
Δμ ≠ 0
8
8.1.1 分子的振动和红外光谱
8.1.1.1 振动方程式
√ √ 1
v振 动 =2 π
μ K=2 1 π Km 11+m 12
√ 1
σ=2πc
K
m 11+
有机化合物波谱解析
3. 紫外吸收光谱表示法及常用术语
发色团: 最有用的紫外—可见光谱是由π→π*和n→π*跃迁产生的
。这两种跃迁均要求有机物分子中含有不饱和基团。这类含 有π键的不饱和基团称为生色团。简单的生色团由双键或叁键 体系组成,如乙烯基、羰基、亚硝基、偶氮基—N=N—、乙 炔基、腈基—C㆔N等。 助色团:
有一些含有n电子的基团(如—OH、—OR、—NH2、— NHR、—X等),它们本身没有生色功能(不能吸收λ>200nm的 光),但当它们与生色团相连时,就会发生n—π共轭作用,增 强生色团的生色能力(吸收波长向长波方向移动,且吸收强度 增加),这样的基团称为助色团。
②不同浓度的同一种物质,其吸收曲
线形状相似λmax不变。而对于不同物质, 它们的吸收曲线形状和λmax则不同。
(Lambert-Beer定律) ③吸收曲线可以提供物质的结构信息,并作为物质定性分 析的依据之一。
讨论:
④不同浓度的同一种物质,在某一定波长下吸光度 A 有差异,在λmax处吸光度A 的差异最大。此特性可作为
红移与蓝移
(1)20世纪中期以前,经典化学分析阶段
样品制备
分离纯化
物理常数相对 分子质量测定
元素分析 分子式测定
溶解度分组 分类实验
衍生物制备 降解合 成
HO
O
HO H
M o rp h 分离得纯品; 1925年提出吗啡分子结构; 1952~1956年吗啡全合成;
历时一个半世纪!!
A. 两个原子p轨道沿x轴以“头碰头”形式发生重叠时 ,产生一个成键分子轨道(σp)和一个反键分子轨道 (σp*).
B. 两个原子p轨道垂直于x轴以“肩并肩”形式发生重 叠时,产生一个成键分子轨道(πp)和一个反键分子轨 道(π p*).
有机化合物波谱分析
有机化合物波谱分析首先是红外光谱(IR)。
红外光谱是通过测量有机化合物在不同波长的红外光下吸收或散射的强度,来确定化合物中基团的种类和取代位置。
红外光谱仪可以测量有机化合物在红外光谱范围内的吸收频率和强度。
每个有机化合物都有独特的红外光谱图谱,这些图谱可以用来识别和鉴定化合物。
在红外光谱中,常见的吸收峰对应于不同的化学键和官能团,如C-H拉伸振动、O-H伸缩振动、C=O伸缩振动等。
其次是质谱(MS)。
质谱是一种测量分子的质量和分子结构的方法。
通过质谱仪,可以将有机化合物分子转化为带电粒子,然后测量这些带电粒子的质量和相对丰度。
质谱的主要结果是质谱图,其中质谱图的横坐标表示有机化合物的质量,纵坐标表示相对丰度。
通过质谱图,可以确定有机化合物的分子量和分子式。
此外,还可以通过分析质谱图中的碎片峰来推测有机化合物的结构和分子间的连接方式。
最后是核磁共振(NMR)。
核磁共振是一种通过测量有机分子中核自旋的性质来确定化合物结构的方法。
核磁共振谱仪可以测量有机化合物中不同核自旋的共振频率。
有机化合物中常见的核磁共振谱有氢谱(1HNMR)和碳谱(13CNMR)。
通过分析核磁共振谱图,可以确定有机化合物中不同氢原子或碳原子的化学位移、耦合常数和相对丰度。
这些信息可以用来推断有机分子的结构和取代位置。
综上所述,有机化合物的波谱分析是一种重要的方法,可以用于确定有机化合物的结构和组成。
红外光谱、质谱和核磁共振谱可以提供有机化合物的不同信息,互相补充,为化学家提供了强有力的工具来解析有机化合物的结构和性质。
通过熟练掌握这些波谱分析技术,化学家可以更准确地确定和鉴定有机化合物,推动有机化学的发展。
有机化合物波谱分析
CH3
第三十三页,课件共76页
第三十四页,课件共76页
作业一:p.315~316,习题(二)、(三)
第三十五页,课件共76页
第三十六页,课件共76页
1945年,以F. Bloch和E. M. Purcell为首的两个研究小组分别观测 到水、石蜡中质子的核磁共振信号(nuclear magnetic resonance,NMR), 为此他们二人荣获1952年Nobel物理奖。
射射线线引引起原子核的裂变紫外光可可见光红外光光引引起分子振动和转动状态变化微波波引引起单电子自旋改变无线电波波引引起磁性核的自旋改变高能辐射区光学光谱区波谱区引起原子和分子外层价电子跃迁x射射线线使使内层电子逸出轨道波长长短文档仅供参考如有不当之处请联系本人改正
有机化合物波谱分析
第一页,课件共76页
(2) 苯环骨架呼吸振动(vC=C(Ar)):1600、1580、1500、1450cm-1
附近经常出现2~4个吸收谱带,这组谱带与vC–H(Ar)一起作为判断化合物有 无芳环的主要依据。
(3) =C–H面外变形振动吸收(γC–H(Ar)):900~690cm-1(s),依此区域吸收 峰的数目可判断苯环上取代的情况。
变形振动δ :包括对称变形振动和不对称变形振动。 对称的变形振动δs
不对称的变形振动δas
第十五页,课件共76页
8.1.2 烃类化合物的IR谱图解析
8.1.2.1 烷烃
烷烃的IR谱应关注三个吸收段的情况: (1) C–H伸缩振动(vC–H):3000~2800cm-1;
不对称(as):~2960cm-1(s)
δC–H
CH2剪切(δ):~1460cm-1(s)
(3) CH2平面摇摆(ρ):780~720cm-1(m) 。 (CH2)n,n≥4时,~720cm-1
2-3 红外光谱
2.3 红外光谱红外光是一种波长大于可见光的电磁波,波长在800nm~1000μm ,通常又把这个区域分为三个部分,即近红外区(12500~4000cm -1)、中红外区(4000~400cm -1)和远红外区(400~10cm -1)。
其中最常用的是中红外区,大多数化合物的化学键振动能级的跃迁发生在这一区域,在此区域出现的光谱为分子振动光谱,即红外光谱。
2.3.1 红外光谱的基本原理2.3.1.1 红外吸收分子作为整体来看是呈电中性的,但构成分子的各原子的电负性各不相同,分子因此可显示不同的极性,其极性大小可用偶极矩μ来衡量。
偶极矩μ是分子中负电荷量的大小(q )与正负电荷中心距离(d )的乘积,即μ=q ·d (2-6)图2-15 H 2O 和HCl 分子的偶极矩分子内原子不停地在振动,在振动过程中q 是不变的,而正负电荷的中心距离d 会发生改变,因此分子的偶极矩也发生变化。
对称分子由于正负电荷中心重叠,d =0,因此对称双原子分子中原子振动不会引起偶极矩的变化。
用一定频率的红外光照射分子,如果分子中某个基团的振动频率和它一样,则二者就会产生共振,光的能量通过分子偶极矩的变化而传递给分子,分子中某个基团就吸收了一定频率的红外光。
分子就由原来的基态振动能级跃迁到能量较高的激发态振动能级,产生红外光谱。
这就说明并非所有的振动都能引起红外吸收,只有引起偶极矩变化的振动,才能产生共振吸收。
对于完全对称的分子如N 2、H 2、O 2等就不会产生红外吸收光谱。
2.3.1.2 分子振动方程式分子中的原子以平衡点为中心,以非常小的振幅(与原子核之间的距离相比)作周期性的振动,即所谓简谐振动。
这种分子振动的模型,可用弹簧模型来描述,把两个原子看成质量分别为m 1和m 2的刚性小球,化学键好似一根无质量的弹簧,如图2-16所示。
按照这一模型,双原子分子的简谐振动应符合虎克定律,振动频率v 可用下式表示:BA B A m m m m k kv +==πμπ2121 (2-7) 式中:v 为振动频率;k 为化学键力常数,即为两个原子由平衡位置伸长0.1nm 后的恢复力,在有机化合物中,单键的k 值为(4~6)×102N/m ,双键的k 值为(8~10)×102N/m ,三键的k 值为(12~15)×102N/m ;μ为折合质量,即BA BA m m m m +=μ其中,m A 、m B 分别为化学键两端原子A 与B 的质量。
有机化合物的波谱分析
第七章 有机化合物的波谱分析(一) 概述研究或鉴定一个有机化合物的结构,需对该化合物进行结构表征。
其基本程序如下: 分离提纯→物理常数测定→元素分析→确定分子式→确定其可能的构造式(结构表征)。
(参见P11-12)(1) 结构表征的方法传统方法:(化学法)①元素定性、定量分析及相对分子质量测定分子式; ②官能团试验及衍生物制备分子中所含官能团及部分结构片断; ③将部分结构片断拼凑完整结构; ④查阅文献,对照标准样,验证分析结果。
特点:需要较多试样(半微量分析,用样量为10-100mg ),大量的时间(吗啡碱,1805-1952年),熟练的实验技巧,高超的智慧和坚韧不拔的精神。
缺点:①分子有时重排,导致错误结论;②*C 及-C =C -的构型确定困难。
波谱法:①质谱(最好用元素分析仪验证)分子式; ②各种谱图(UV 、IR 、NMR 、MS )官能团及部分结构片断; ③拼凑完整结构; ④标准谱图确认。
特点:样品用量少(<30mg ),不损坏样品(质谱除外),分析速度快,对*C 及-C =C -的构型确定比较方便。
光谱法已成为有机结构分析的常规方法。
但是化学方法仍不可少,它与光谱法相辅相成,相互补充,互为佐证。
(2) 波谱过程波谱过程可表示为:有机分子+电磁波光谱分子运动:平动、振动、转动、核外电子运动等量子化的每个分子中只能存在一定数量的转??(能量变化不连续)动、振动、电子跃迁能级电子跃迁电磁波波长越短,频率越快,能量越高。
200nm400nm800nm红外光微波、电视波200-800nm:引起电子运动能级跃迁,得到紫外及可见光谱;2.5-15μm:引起分子振、转能级跃迁,得到红外光谱;60-600MHz:核在外加磁场中取向能级跃迁,得到核磁共振谱。
(3) 不饱和度(U)不饱和度亦称为分子中的环加双键数、缺氢指数、双键等价值等。
其定义为:当一个化合物衍变为相应的烃后,与其同碳的饱和开链烃比较,每缺少2个氢为1个不饱和度。
有机化合物的波谱分析方法
五、有机化合物的波谱分析方法仪器分析技术的发展,特别是波谱技术的发展,能为鉴定有机化合物和确定其结构提供非常有价值的信息。
波谱方法具有分析速度快,用量少等优点,已在国内外获得了广泛的应用。
本部分简要介绍了紫外、红外、核磁、质谱这四大谱图的原理和应用。
实验二十一紫外-可见光光谱一、实验目的了解紫外-可见光光谱。
二、基本原理1. 基本概念有机化合物的紫外-可见光光谱是由于分子中价电子的跃迁所形成的。
紫外-可见光是电磁波中波长为100~800nm范围的波段。
分子在入射光的作用下,其电子从一个能级(E′)跃迁到另一个能级(E″),就要吸收光子的能量,所吸收光的频率ν决定于两个能级间的能量差,即E″-E′=hνh为普朗克常数(h = 6.626×10-34J·s)。
可见,产生跃迁的两个能级间隔愈小,吸收光的频率愈小,波长愈长;反之,两个能级间的间隔愈大,吸收光的频率愈大,波长愈短。
实际上,分子吸收能量是相当复杂的过程。
分子的内部运动包括有转动、振动、和电子的运动。
分子的能级近似地就由转动能级、振动能级和电子能级所构成。
一般分子的转动能级间隔约在0.05eV以下,振动能级间隔约为0.05~1eV,电子能级间隔约为1~20eV。
当电子能级改变时,转动能级和振动能级都要发生改变,也要吸收光子能量。
所以,由于电子跃迁所形成的电子光谱是相当复杂的,如果仪器的分辨力不够,许多谱线密集在一起就形成谱带。
电子光谱一般包括一系列谱带系;不同的谱带系相当于不同的电子跃迁,每个谱带是由于振动能级的改变所形成,谱带内所包含的谱线是由于转动能级的改变所形成的。
如果吸收光谱是以吸收曲线(以吸收强度对波长作图所得到的曲线)表示,吸收曲线将呈现一些峰和谷。
每个峰峦相当于谱带,在某些情况下,这些谱带或多或少地表现出明显的齿状结构,这就是所谓振动结构。
关于吸收光谱的吸收强度,在实验上可用Lambet-Beer定律来描述。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合理的结构。
7、确证解析结果 按以下几种方法验证
(1)设法获得纯样品,绘制其光谱图进行对照,但必须考
虑到样品的处理技术与测量条件是否相同。
(2)若不能获得纯样品时,可与标准光谱图进行对照。当
谱图上的特征吸收带位置、形状及强度相一致时,可以完全 确证。当然,两图绝对吻合不可能,但各特征吸收带的相对 强度的顺序是不变的。 常见的标准红外光谱图集有Sadtler红外谱图集、Coblentz
l
及
(2)谱线增加的原因 大多数为基频谱带,还可有如下频带
①倍频(泛频)带(over tone):出现在强的基频带频率的 大约两倍处(实际上比两倍低),一般都是弱吸收带(强度 为基频的 1/10 或 1/100 )。例如 C=O 伸缩振动频率: 1700cm-1 , 倍频带:3400cm-1处,和—OH的伸缩振动吸收带重叠。
面内变形(=C-H)1400-1420 cm-1 (弱) 面外变形(=C-H) 1000-700 cm-1 (有价值)
R1 H R1 R2 R1 R2 C C R4
610-700 cm-1(强) 2:1375-1225 cm-1 (弱)H C C源自R2 C C R3 R3总结
ⅰ 分界线1660cm-1 ⅱ 顺强,反弱
ⅲ 四取代(不与O,N等相连)无υ
ⅳ 端烯的强度强
(C=C)峰
ⅴ共轭使υ
-1 下降 20-30 cm (C=C)
H C C R R1 C C R2
υ υ
C C
2140-2100cm-1 (弱) 2260-2190 cm-1 (弱)
C C
3)C-H 变形振动(1000-700 cm-1 )
1
I 100 I0
)自下而上
从0~100。吸收强度越低,透光率越大,当无吸收时,曲线在图的最上部。
可以用峰数,峰位,峰形,峰强来描述
峰强:Vs(Very strong):很强;s(strong):强; m(medium):中强;w(weak):弱。 峰形:表示形状的为宽峰、尖峰、肩峰、双峰等类型
③振动偶合( vibrational coupling ):当分子中两个或两
个以上相同的基团与同一个原子连接时,其振动吸收带常发 生分裂,形成双峰,这种现象称为振动偶合。有伸缩振动偶 合、弯曲振动偶合、伸缩与弯曲振动偶合三类。例如: (CH3)2CH—中的两个甲基相连在同一碳上,其δ 振动频率,是由弯曲振动偶合引起的。 ④费米共振(Fermi resonance):当强度很弱的倍频带或合 频带位于某一强基频吸收带附近时,弱的倍频带或合频带和 基频带之间发生偶合,使得倍频带或合频带加强,而基频带
和度,并结合红外光谱,对剩余部分的结构做适当的估计
在判断存在某基团时,要尽可能地找出其各种相关吸收带,切不可仅
根据某一谱带即下该基团存在的结论。
同理,在判断某种基团不存在时也要特别小心,因为某种基团的特征 振动可能是非红外活性的,也可能因为分子结构的原因,其特征吸收变 得极弱。
6、提出结构式 如果分子中的所有结构碎片都成为已知(分子中的所有原 子和不饱和度均已用完),那么就可以推导出分子的结构式 。在推导结构式时,应把各种可能的结构式都推导出来,然 后根据样品的各种物理的、化学的性质以及红外光谱排除不
C H H C H C CH2 C H
3080 cm-1
3030 cm-1 3080 cm-1 3030 cm-1 3300 cm-1 3080-3030 cm-1
C H 变形
振动
3000
cm-1
2900-2800 cm-1
2)C=C 伸缩振动(1680-1630 cm-1 ) υ H R
反式烯
1
n6,n5, n4 , n3 , n1 分别为分子中六价,五价,……,一 价元素数目。
作用: 由分子的不饱和度可以推断分子中含有双键,三键, 环,芳环的数目,验证谱图解析的正确性。 例: C9H8O2 UN = (2 +29 – 8 )/ 2 = 6
3、从特征频率区中确定主要官能团取代基
与一定结构单元相联系的、在一定范围内出现的化学键 振动频率——基团特征频率(特征峰); 例: 2800 3000 cm-1 —CH3 特征峰; 1600 1850 cm-1 — C=O 特征峰; 基团所处化学环境不同,特征峰出现位置变化:
(C=C)
H
C C R2 C C R3 H R3 C C R4
R2 C C H H C C H H C C H
三取代烯 四取代烯
R1 R2 R1 R2
1680-1665 cm-1
弱,尖 分界线
顺式烯 乙烯基烯 亚乙烯基烯
R1 H R1 H R1 R2
1660cm-1
1660-1630cm-1
中强,尖
2.5~15.4μm的中红外区应用最广
104 (cm ) ( m)
1
由
可知,2.5~15.4μm波长范围对应于4000cm-
1~650cm-1。大多数有机化合物及许多无机化合物的化学键振 动均落在这一区域 。
3、红外吸收光谱产生的条件condition of Infrared absorption spectroscopy
应用:有机化合物的结构解析。 定性:基团的特征吸收频率; 定量:特征峰的强度;
2、为什么红外光谱图纵坐标的范围为4000~400 cm-1?
红外光波波长位于可见光波和微波波长之间 0.75~1000μm(1μm=10-4 cm)范围。 0.75~2.5μm为近红外区 2.5~25μm为中红外区
25~1000μm为远红外区
as(CH3)1460㎝ -1
不对称 υ as(CH3) 2960㎝-1
②峰位、峰数与峰强
峰位
键的振动频率越大,吸收峰将出现在高波数区(短波长区);
反之,出现在低波数区(高波长区)。
例1 水分子 (非对称分子)
峰数
吸收。
峰数与分子自由度有关。无瞬间偶基距变化时,无红外
峰强
瞬间偶基距变化大,吸收峰强;键两端原子电负性相差越大
—CH2—CO—CH2—
—CH2—CO—O— —CH2—CO—NH—
1715 cm-1
1735 cm-1 1680 cm-1
酮
酯 酰胺
4、再根据谱带的位置、强度、宽度等特征,推测官能团可能与什么取 代基相连接。 5、从分子中减去己知基团所占用的原子,从分子的总不饱和度中扣除
已知基团占用的不饱和度。根据剩余原子的种类和数目以及剩余的不饱
1372-1368cm-1 1391-1381cm-1 1368-1366cm-1 1405-1385cm-1
1:1
1155cm-1
1170cm-1
4:5
C H3
C H3 C C H3 C H3
1195 cm-1
1:2
1372-1365cm-1
1250 cm-1
3) CH2面外变形振动—(CH2)n—,证明长碳链的存在。 n=1 770~785 cm-1 (中 ) n=2 740 ~ 750 cm-1 (中 ) n=3 730 ~740 cm-1 (中 )
②合频(组频)带(combination tone):也是弱吸收带,出
现在两个或多个基频频率之和或频率之差附近。如基频分别
为ν1和ν2的吸收带,其合频带可能出现在ν1+ν2或ν1—ν2附近。
例如一取代苯在2000 cm-1~1660cm-1有吸收带,即为δ(C—H)= (1000 cm-1~700 cm-1)的合频。
n≥ 722 cm-1 (中强 )
4) CH2和CH3的相对含量也可以由1460 cm-1和1380 cm-1的峰 强度估算强度
正二十八 烷
正庚烷
正十二 烷
1500 1400 1300cm-1 1500 1400 1300 cm-1 1500
1400 1300cm-1
2、 烯烃,炔烃
C H C H 伸缩 振动 C C C C 1)C-H 伸缩振动(> 3000 cm-1) H υ (C-H)
N个原子组成分子,每个原子在空间具三个自由度
分子振动自由度 3N (平动自由度 转动自由度)
分子自由度 平动自由度 转动自由度 振动自由度 3N
非线性分子: F 3N 6
• • •
注: 振动自由度反映吸收峰数量 并非每个振动都产生基频峰 吸收峰数常少于振动自由度数
CH2 CH3 对称伸缩2872cm-1±10 CH2不对称伸缩2926cm-1±10 CH3不对称伸缩2962cm-1±10
对称伸缩2853cm-1±10
1)由于支链的引入,使CH3的对称变形振动发生变化。 2)C—C骨架振动明显
H C C H3 C H3
C H3 C
CH3 δ
s
C—C骨架振动
1385-1380cm-1
学会谱图集、API光谱图集、DMS光谱图集。
知识拓展:各类化合物的红外光谱图
1、烷烃
(CH3,CH2,CH)(C—C,C—H ) δ CH3 CH2
as1460
3000cm-1
cm-1 cm-1 重 叠
δ s1380
δ s1465 cm-1 -(CH2)nn
CH2 r 720 cm-1(水平摇摆)
③样品的化学性质;
④元素分析结果,相对分子质量或质谱提供的分子离子峰 ,并由此求出分子式; ⑤红外光谱测定条件和制样方法及所用仪器分辩率。
2、计算不饱和度
定义: 不饱和度是指分子结构中达到饱和所缺一价元素的 “对”数。如:乙烯变成饱和烷烃需要两个氢原子,不饱和 度为1。 计算: 可按下式进行不饱和度的计算: UN= (2 + 4n6 + 3n5 + 2n4 + n3 – n1 )/ 2