实验十二 电子束偏转与聚焦
电子束的偏转与聚焦现象实验报告
竭诚为您提供优质文档/双击可除电子束的偏转与聚焦现象实验报告篇一:电子束的偏转与聚焦(北京科技大学物理实验报告)北京科技大学实验报告实验名称:电子束的偏转与聚焦实验目的、实验原理(见预习报告)实验数据及数据分析(数据及图见附页)A.电偏转的观测由图1、2、3、5可以清楚得看出,当阳极电压uz不变时,偏转电压随偏转量的增大线性变化。
第4张图可以看出,我测量的第五组数据是有问题的。
所以,我就放弃了第五组数据,作出了图5。
然后我分析了一下不同阳极电压下偏转电压随偏转量变化快慢。
显然,斜率即电偏转灵敏度,分别为:0.105,0.0915,0.082,0.0753,斜率是随着阳极电压的增大而减小的。
为了清晰明了,我把两者的关系用图表示出来上图说明阳极电压与图1,2,3,5的电偏转灵敏度之间几乎是成线性变化的。
阳极电压的增大导致了初速度的增加,而初速度越大偏转就越难,因而偏转灵敏度越小。
偏转距离De和偏转电压ud是成线性变化的。
至于De 与阳极电压uz的关系,根据图1,2,3,5中的公式,可以知道,当偏转电压ud为10V时,Dz分别为:1.025,0.912,0.785,0.744,所以根据下图可知:当偏转电压相同时,随着阳极电压的增大,偏转量增减少。
b磁偏转的观测图6,7,8是磁偏转观测部分的图。
这三张图说明了,偏转电流与偏转量是成一次函数关系变化的。
下图表示的是图6,7,8的斜率即磁偏转灵敏度与阳极电压的关系:显然,三个数据几乎是在一条直线上,所以磁偏灵敏度是和阳极电压成线性的。
并且随着阳极电压的增大磁偏灵敏度减小。
阳极电压增大导致电子速度的增大,电子就越不容易被偏转。
当uz不变时,Dm随着偏转电流I的增大而增大;当I 不变时,Dm随着uz的变大而减小,如图:(取I为100mA为基点)c电聚焦的观测由于聚焦是一种直观的感受,所以何时真正地聚焦了就属于自己的感觉了。
由图9可以看出,各个数据之间的相关程度R2=0.9812,相关性较低。
电子束的偏转与聚焦实验报告
电子束的偏转与聚焦实验报告实验目的:本实验旨在通过对电子束的偏转与聚焦进行实验,探究电子束在磁场和电场的作用下的运动规律,以及了解电子束的聚焦效果。
实验仪器和材料:1. 电子束偏转与聚焦实验仪。
2. 电子枪。
3. 磁场调节装置。
4. 电场调节装置。
5. 示波器。
6. 直流电源。
7. 磁铁。
8. 透镜。
9. 电子束测量屏。
10. 电子束测量尺。
11. 实验台。
实验原理:电子束在磁场中的偏转原理,根据洛伦兹力的作用规律,电子束在磁场中受到的洛伦兹力会使其产生偏转运动,且偏转的程度与电子的速度、磁场强度和磁场方向有关。
电子束在电场中的聚焦原理,电子束在电场中会受到电场力的作用,根据电场力的方向和大小,可以调节电子束的聚焦效果,使其能够准确地聚焦在特定的位置上。
实验步骤:1. 将电子枪和磁场调节装置连接好,并设置合适的电压和磁场强度。
2. 调节示波器,观察电子束在磁场中的偏转情况,并记录相关数据。
3. 调节电场调节装置,观察电子束在电场中的聚焦效果,并记录相关数据。
4. 通过调节磁场和电场的参数,探究电子束的偏转和聚焦规律,并进行数据分析。
实验结果与分析:经过实验我们发现,当磁场强度增大时,电子束的偏转角度也随之增大;当电场强度增大时,电子束的聚焦效果也随之增强。
这与理论预期相符合,说明电子束在磁场和电场中的运动规律与理论模型相符。
结论:通过本次实验,我们深入了解了电子束在磁场和电场中的偏转与聚焦规律,实验结果与理论模型吻合,验证了电子束在外加电场和磁场作用下的运动规律。
同时,我们也了解到了电子束的偏转和聚焦对于电子束技术应用的重要性,为进一步研究和应用电子束技术提供了重要的实验基础。
总结:电子束的偏转与聚焦实验是一项重要的实验内容,通过本次实验,我们对电子束在磁场和电场中的运动规律有了更深入的了解,这对于电子束技术的研究和应用具有重要的意义。
希望通过今后的实验和研究,能够进一步探索电子束技术的潜力,为其在各个领域的应用提供更多的可能性。
实验十二-电子束偏转与聚焦上课讲义
v无关。故只要电子的轴向速度相同,经过
整数周期后会聚焦于荧光屏上的一点,这就 是磁聚焦。
电子作螺旋运动的螺距:
hvZT
2mvZ
Be
六. 电子荷质比测量
从前面的谈论可知,电子的轴向速度 v Z 由加速
电压决定(电子离开阴极时的初速度相对来说很 小,可以忽略),固有
即有
1 2
mvZ 2
eU2
vZ
e 2mU2
五:磁聚焦原理:
在示波管外套一个同轴的螺线管,当给 螺线管通以稳恒直流电时,其内部形成一个 轴向磁场。若螺线管足够长,则可认为内部 为匀强磁场。
电子进入匀强磁场后,将会以轴向速度 作匀速直线运动。同时以径向速度 作匀速圆 周运动。其合运动是一个螺旋线运动。
由于匀速圆周运动周期 T 2m 与
可出现一条横线。
19、示波管后靠背:用来接通示波管,可将示波管插入使用。 20、8SJ31J示波管。 21、磁偏转线圈:用来做磁偏转实验。 22、螺线管线圈:用来做磁聚焦实验。 23、换向开关:用以改变偏转线圈电流方向来控制磁偏转的方
向(向上、向下)。
24、0~2A输出插座:用来接通标准螺线管励磁电流。
当电流通过钨丝阴极K被加热后,筒端的钡 与锶氧化物涂层内的自由电子获得较高的动能, 从表面逸出。因为第一加速阳极A具有(相对阴 极K)很高的电压(如1000伏),在K-G-A1之间 形成强电场,故从阴极逸出的电子在电场中的加 速运动,穿过G的小孔(直径约1mm),以高速穿 过G2、A1及A2筒内的限制孔,形成一束电子射线, 电子最后打到荧光屏上,这上面涂有一满层的特 殊荧光物质,在电子的轰击下发出可见光。
实验十二-电子束偏转与聚焦
HLD-EB-IV型电子束实验仪
电子束的偏转与聚焦实验报告精编版
南昌大学物理实验报告课程名称:普通物理实验(2)实验名称:电子束的偏转与聚焦学院:专业班级:学生姓名:学号:实验地点:座位号:实验时间:一、实验目的:1、了解示波管的构造和工作原理。
2、定量分析电子束在匀强电场作用下的偏转情况和在均匀磁场作用下的偏转情况。
3、学会规范使用数字多用表。
4、学会磁聚焦法测量电子比荷的方法。
二、实验仪器:EB—Ⅲ电子束实验仪、直流稳压电源30V,2A、数字多用表。
三、实验原理:1、示波管的结构示波管又称为阴极射线管,其密封在高真空的玻璃壳之中,它的构造如图1所示,主要包括三个部分:前端为荧光屏,(S,其用来将电子束的动能变为光),中间为偏转系统(Y:垂直偏转板,X:水平偏转板),后端为电子枪(K:阴极,G:栅极,A1:聚焦阳极,A2:第二阳极,A3:前加速阳极)。
灯丝H用6.3V交流供电,其作用是将阴极加热,使阴极发射电子,电子受阳极的作用而加速。
2、电聚焦原理电子射线束的聚焦是电子束管必须解决的问题。
在示波管中,阴极被加热发射电子,电子受阳极产生的正电场作用而加速运动,同时又受栅极产生的负电场作用只有一部分电子能够通过栅极小孔而飞向阳极。
栅极G的电压一般要比阴极K 的电压低20~100V,由阴极发射电子,受到栅极与阴极间减速电场的作用,初速度小的电子被阻挡,而那些初速度大的电子可以通过栅极射向荧光屏。
所以调节栅极电压的高低可以控制射向荧光屏的电子数,从而控制荧光屏上的辉度。
当栅极上的电压负到一定的程度时,可使电子射线截止,辉度为0。
加速电极的电压比阴极电位高几百伏至上千伏。
前加速阳极,聚焦阳极和第二阳极是由同轴的金属圆筒组成。
由于各电极上的电压不同,在它们之间形成了弯曲的等势面、电场线。
这样就使电子束的路径发生弯曲,这类似光线通过透镜那样产生了会聚和发散,这种电器组合称为电子透镜。
改变电极间的电压分布,可以改变等势面的弯曲程度,从而达到电子束的聚焦。
3、电偏转原理在示波管中,电子从被加热的阴极K 逸出后,由于受到阳极电场的加速作用,使电子获得沿示波管轴向的动能。
电子束的偏转与聚焦实验报告
南昌大学物理实验报告课程名称:普通物理实验(2)实验名称:电子束的偏转与聚焦学院:专业班级:学生姓名:学号:实验地点:座位号:实验时间:一、实验目的:1、了解示波管的构造和工作原理。
2、定量分析电子束在匀强电场作用下的偏转情况和在均匀磁场作用下的偏转情况。
3、学会规范使用数字多用表。
4、学会磁聚焦法测量电子比荷的方法。
二、实验仪器:EB—Ⅲ电子束实验仪、直流稳压电源30V,2A、数字多用表。
三、实验原理:1、示波管的结构示波管又称为阴极射线管,其密封在高真空的玻璃壳之中,它的构造如图1所示,主要包括三个部分:前端为荧光屏,(S,其用来将电子束的动能变为光),中间为偏转系统(Y:垂直偏转板,X:水平偏转板),后端为电子枪(K:阴极,G:栅极,A1:聚焦阳极,A2:第二阳极,A3:前加速阳极)。
灯丝H用6.3V交流供电,其作用是将阴极加热,使阴极发射电子,电子受阳极的作用而加速。
2、电聚焦原理电子射线束的聚焦是电子束管必须解决的问题。
在示波管中,阴极被加热发射电子,电子受阳极产生的正电场作用而加速运动,同时又受栅极产生的负电场作用只有一部分电子能够通过栅极小孔而飞向阳极。
栅极G的电压一般要比阴极K 的电压低20~100V,由阴极发射电子,受到栅极与阴极间减速电场的作用,初速度小的电子被阻挡,而那些初速度大的电子可以通过栅极射向荧光屏。
所以调节栅极电压的高低可以控制射向荧光屏的电子数,从而控制荧光屏上的辉度。
当栅极上的电压负到一定的程度时,可使电子射线截止,辉度为0。
加速电极的电压比阴极电位高几百伏至上千伏。
前加速阳极,聚焦阳极和第二阳极是由同轴的金属圆筒组成。
由于各电极上的电压不同,在它们之间形成了弯曲的等势面、电场线。
这样就使电子束的路径发生弯曲,这类似光线通过透镜那样产生了会聚和发散,这种电器组合称为电子透镜。
改变电极间的电压分布,可以改变等势面的弯曲程度,从而达到电子束的聚焦。
3、电偏转原理在示波管中,电子从被加热的阴极K 逸出后,由于受到阳极电场的加速作用,使电子获得沿示波管轴向的动能。
电子束的偏转和聚焦现象实验报告
南昌大学物理实验报告课程名称:大学物理实验(下)_____________ 实验名称:电子束的偏转和聚焦现象学院:信息工程学院专业班级:学生姓名:学号:实验地点:基础实验大楼B213 座位号:实验时间:第11周星期三下午三点四十五分_______一、实验目的:1、了解示波管的基本结构和工作原理;2、定量分析电子束在匀强电场作用下的偏转情况和在均匀磁场作用下的偏转情况;3、学会规范使用数字万用表;4、学会磁聚焦原理测量电子的荷质比的方法。
二、实验原理:1、示波管的基本结构阳极电压U2:改变电子束的加速电压的大小。
聚焦电压U1:用以调节聚焦极A1上的电压以调节电极附近区域的电场分布,从而调节电子束的聚焦和散焦。
栅极电压UG(辉度):用以调节加在示波管控制栅极上的电压大小,以控制阴极发射的电子数量,从而控制荧光屏上光点的辉度。
UdX偏转电压调节:-80V~80V。
调零X:用来调节光点水平距离。
UdY偏转电压调节:-80~80V。
调零Y:用来调节光点上下距离。
2、电聚焦电子射线束的聚焦是电子束管必须解决的问题。
在示波管中,阴极被加热发射电子,电子受阳极产生的正电场作用而加速运动,同时又受栅极产生的负电场作用只有一部分电子能够通过栅极小孔而飞向阳极。
栅极 G 的电压一般要比阴极 K 的电压低 20~100V,由阴极发射电子,受到栅极与阴极间减速电场的作用,初速度小的电子被阻挡,而那些初速度大的电子可以通过栅极射向荧光屏。
所以调节栅极电压的高低可以控制射向荧光屏的电子数,从而控制荧光屏上的辉度。
当栅极上的电压负到一定的程度时,可使电子射线截止,辉度为 0。
加速电极的电压比阴极电位高几百伏至上千伏。
前加速阳极,聚焦阳极和第二阳极是由同轴的金属圆筒组成。
由于各电极上的电压不同,在它们之间形成了弯曲的等势面、电场线。
这样就使电子束的路径发生弯曲,这类似光线通过透镜那样产生了会聚和发散,这种电器组合称为电子透镜。
改变电极间的电压分布,可以改变等势面的弯曲程度,从而达到电子束的聚焦。
电子束的偏转与聚焦实验报告
电子束的偏转与聚焦实验报告Document number:NOCG-YUNOO-BUYTT-UU986-1986UT南昌大学物理实验报告课程名称:普通物理实验(2)实验名称:电子束的偏转与聚焦学院:专业班级:学生姓名:学号:实验地点:座位号:实验时间:一、实验目的:1、了解示波管的构造和工作原理。
2、定量分析电子束在匀强电场作用下的偏转情况和在均匀磁场作用下的偏转情况。
3、学会规范使用数字多用表。
4、学会磁聚焦法测量电子比荷的方法。
二、实验仪器:EB—Ⅲ电子束实验仪、直流稳压电源30V,2A、数字多用表。
三、实验原理:1、示波管的结构示波管又称为阴极射线管,其密封在高真空的玻璃壳之中,它的构造如图1所示,主要包括三个部分:前端为荧光屏,(S,其用来将电子束的动能变为光),中间为偏转系统(Y:垂直偏转板,X:水平偏转板),后端为电子枪(K:阴极,G:栅极,A1:聚焦阳极,A2:第二阳极,A3:前加速阳极)。
灯丝H用交流供电,其作用是将阴极加热,使阴极发射电子,电子受阳极的作用而加速。
2、电聚焦原理电子射线束的聚焦是电子束管必须解决的问题。
在示波管中,阴极被加热发射电子,电子受阳极产生的正电场作用而加速运动,同时又受栅极产生的负电场作用只有一部分电子能够通过栅极小孔而飞向阳极。
栅极G的电压一般要比阴极K的电压低20~100V,由阴极发射电子,受到栅极与阴极间减速电场的作用,初速度小的电子被阻挡,而那些初速度大的电子可以通过栅极射向荧光屏。
所以调节栅极电压的高低可以控制射向荧光屏的电子数,从而控制荧光屏上的辉度。
当栅极上的电压负到一定的程度时,可使电子射线截止,辉度为0。
加速电极的电压比阴极电位高几百伏至上千伏。
前加速阳极,聚焦阳极和第二阳极是由同轴的金属圆筒组成。
由于各电极上的电压不同,在它们之间形成了弯曲的等势面、电场线。
这样就使电子束的路径发生弯曲,这类似光线通过透镜那样产生了会聚和发散,这种电器组合称为电子透镜。
电子束的偏转与聚焦实验报告
图2物理实验报告一、实验名称:电子束的偏转与聚焦现象班级: 黄昆班13 实验日期:2015年5月12日 姓名: 杨巧林 学 号: 41340072二、实验目的1、研究带电粒子在电场和磁场中偏转和聚焦的规律;2、了解电子束线管的结构和工作原理。
三、实验原理1】电子束的产生和控制如图,电子示波管的结构示意图:2、电偏转原理在示波管中,电子从被加热的阴极K 逸出后,由于受到阳极电场的加速作用,使电子获得沿示波管轴向的动能。
电子经过电势差为U 的空间后,电场力做的功eU 应等于电子获得的动能 2m 21v eU =→ 22v U mez =若在电子运动的垂直方向加一横向电场,电子在该电场作用下将发生横向偏转,如图2所示。
若偏转板板长为l 、偏转板末端到屏的距离为L 、偏转电极间距离为d 、轴向加速电压(即第二阳极A 2电压)为U 2,横向偏转电压为U d ,则荧光屏上光点的横向偏转量D 由下式给出:dlU U L D d 2)2l (2+= 在单位偏转电压的作用下,电子束在荧光屏上偏离轴向的距离DE/Ud 称为电偏转灵敏度。
图3B3、磁偏转原理电子通过A 2后,若在垂直Z 轴的X 方向外加一个均匀磁场,那么以速度v 飞越子电子在Y 方向上也会发生偏转,如图所示。
由于电子受洛伦兹力F=eBv 作用,F 的大小不变,方向与速度方向垂直,因此电子在F 的作用下做匀速圆周运动,洛伦兹力就是向心力,即有eBv=mv 2/R ,所以R=mv/eB电子离开磁场后将沿圆切线方向飞出,直射到达荧光屏。
在偏转角φ较小的情况下,偏转量:z2)2l (klI mU eL D += 在单位偏转线圈激励电流的作用下,电子束在荧光屏上偏离轴向的距离Dm/I 称为磁偏转灵敏度。
4、电聚焦原理电子聚焦的基本思路在于利用非均匀的电场使电子束加速电场使电子束形成交叉点。
电极的电压比阴极电位高几百伏至上千伏。
前加速阳极,聚焦阳极和第二阳极是由同轴的金属圆筒组成。
电子束的偏转与聚焦实验报告
电子束的偏转与聚焦实验报告Prepared on 22 November 2020南昌大学物理实验报告课程名称:普通物理实验(2)实验名称:电子束的偏转与聚焦学院:专业班级:学生姓名:学号:实验地点:座位号:实验时间:一、实验目的:1、了解示波管的构造和工作原理。
2、定量分析电子束在匀强电场作用下的偏转情况和在均匀磁场作用下的偏转情况。
3、学会规范使用数字多用表。
4、学会磁聚焦法测量电子比荷的方法。
二、实验仪器:EB—Ⅲ电子束实验仪、直流稳压电源30V,2A、数字多用表。
三、实验原理:1、示波管的结构示波管又称为阴极射线管,其密封在高真空的玻璃壳之中,它的构造如图1所示,主要包括三个部分:前端为荧光屏,(S,其用来将电子束的动能变为光),中间为偏转系统(Y:垂直偏转板,X:水平偏转板),后端为电子枪(K:阴极,G:栅极,A1:聚焦阳极,A2:第二阳极,A3:前加速阳极)。
灯丝H用交流供电,其作用是将阴极加热,使阴极发射电子,电子受阳极的作用而加速。
2、电聚焦原理电子射线束的聚焦是电子束管必须解决的问题。
在示波管中,阴极被加热发射电子,电子受阳极产生的正电场作用而加速运动,同时又受栅极产生的负电场作用只有一部分电子能够通过栅极小孔而飞向阳极。
栅极G的电压一般要比阴极K的电压低20~100V,由阴极发射电子,受到栅极与阴极间减速电场的作用,初速度小的电子被阻挡,而那些初速度大的电子可以通过栅极射向荧光屏。
所以调节栅极电压的高低可以控制射向荧光屏的电子数,从而控制荧光屏上的辉度。
当栅极上的电压负到一定的程度时,可使电子射线截止,辉度为0。
加速电极的电压比阴极电位高几百伏至上千伏。
前加速阳极,聚焦阳极和第二阳极是由同轴的金属圆筒组成。
由于各电极上的电压不同,在它们之间形成了弯曲的等势面、电场线。
这样就使电子束的路径发生弯曲,这类似光线通过透镜那样产生了会聚和发散,这种电器组合称为电子透镜。
改变电极间的电压分布,可以改变等势面的弯曲程度,从而达到电子束的聚焦。
电子束偏转与聚焦
电子来偏转与聚焦一、实验目的1、了解示波管的基本结构和工作原理2、研究带电粒子在电场和磁场中偏转的规律3、学会规范使用数字万用表4、通过磁聚焦原理测电子的核质比CB -1川型或DZS-D电子末实验仅直流税压中源数文用表三、实验原理1.电偏转与聚焦(示波管可基本结构及厚理)2电子束的磁偏转3.电子束的磁聚集四、实验步骤1、电偏转实验(1)开启电源开关,将“电子束一荷质比”功能选择开关K1和K2,打到“电子束”位置,适当调节亮度旋钮,使辉度适中,调节聚焦,使屏上光点聚成一细点。
(2)光点调零,用导线将偏转板插孔与电偏转电压表的输入插孔相连接(电源负极内部已连接),调节X“偏转电压”旋钮,使电压表的指示为“零”,再调节调零的旋钮,把光点移动到示波管垂直中线上。
同调零X一样,通过将调零旋钮,可以使光点位于示波管的中心原点处。
(3)测量光点移动距离D随偏转电压Ud大小的变化(X轴):调节阳极电压旋钮,固定阳极电压在U2=700V.改变电偏转电压值Ud和对应的光点的位移量D值,每隔3伏测一组Ud、D 值,把数据记录到表中.然后调节到U2=900V,重复以上实验步骤。
2、磁偏转实验(1)开启电源开关,将K1和K2“电子束-荷质比”选择开关打向“电子束”位置,辉度适当调节,并调.节聚焦,使屏上光点聚焦成一细点,应注意:光点不能太亮,以免烧坏荧光屏。
(2)光点调零,在磁偏转输出电流为零时,通过调节X“偏转电压”和丫“偏转电压”旋钮,使光点位于轴的中心(坐标原点)。
(3)测量偏转量D随磁偏电流|的变化,给定U2=700V,接好线,按下电流选择按钮开关,调节磁偏电流调节旋钮(改变磁偏电流的大小),每增加10mA磁偏.电流测量--组D值,改变U2=900V,再测一-组数据把数据记录到表中。
3、电子荷质比测量(1)把励磁电流接到励磁电流的接线柱上,把励磁电流调节旋钮逆时针旋到底。
(2)开启电子束测试仪电源开关,“电子束一荷质比”转换开关K1置于“荷质比”位置,K2为“电子束”此时荧光屏上出现一条直线,把阳极电压调到700V。
电子束的偏转与聚焦(北京科技大学物理实验报告)
当Uz不变时,Dm随着偏转电流I的增大而增大;当I不变时,Dm随着Uz的变大而减小,如图:(取I为100mA为基点)
C 电聚焦的观测
由于聚焦是一种直观的感受,所以何时真正地聚焦了就属于自己的感觉了。由图9可以看出,各个数据之间的相关程度R2=0.9812,相关性较低。但它们仍然是线性相关的。随着阳极电压的增大,聚焦电压随之增大。
然后我分析了一下不同阳极电压下偏转电压随偏转量变化快慢。显然,斜率即电偏转灵敏度,分别为:0.105,0.0915,0.082, 0.0753, 斜率是随着阳极电压的增大而减小的。为了清晰明了,我把两者的关系用图表示出来
上图说明阳极电压与图1,2,3,5的电偏转灵敏度之间几乎是成线性变化的。
阳极电压的增大导致了初速度的增加,而初速度越大偏转就越难,因而偏转灵敏度越小。
偏转量/cm
0.5
1
1.5
2
2.5
偏转电压/V
6.51
12.61
18.76
24.88
30.87
阳极电压1000V
偏转量/cm
0.5
1
1.5
2
2.5
偏转电压/V
6.74
13.41
20.08
26.66
30.04
B 磁偏转的观测数据
阳极电压800V
偏转量/cm
0.5
1
1.5
2
2.5
磁偏电流I+/mA
17.2
实验的总体构成很简单,我们两个的合作也很顺利。
A 磁偏转的测量数据如下
电子束的偏转实验报告
电子束的偏转实验报告篇一:电子束偏转实验报告篇一:电子束的偏转实验报告实验题目:电子束线的偏转实验目的1. 研究带电粒子在电场和磁场中偏转的规律;2. 了解电子束管的结构和原理。
仪器和用具实验原理1.电子束在电场中的偏转假定由阴极发射出的电子其平均初速近似为零,在阳极电压作用下,沿z方向作加速运动,则其最后速度vz可根据功能原理求出来,即eua?移项后得到 vz?212mvz 22eua() me式中ua为加速阳极相对于阴极的电势,为电子的电荷与质量之比(简称比荷,又称荷 m质比).如果在垂直于z轴的y方向上设置一个匀强电场,那么以vz速度飞行的电子将在y方向上发生偏转,如图所示.若偏转电场由一个平行板电容器构成,板间距离为d,极间电势差为u,则电子在电容器中所受到的偏转力为fy?ee?eu() d??根据牛顿定律 fy?m?y??因此 ?yeudeu() md即电子在电容器的y方向上作匀加速运动,而在z方向上作匀速运动,电子横越电容器的时间为 t?l() vz当电子飞出电容器后,由于受到的合外力近似为零,于是电子几乎作匀速直线运动,一直打到荧光屏上,如图里的f点.整理以上各式可得到电子偏离z轴的距离n?keu() uall?l?1 2d?2l?式中ke?是一个与偏转系统的几何尺寸有关的常量.所以电场偏转的特点是:电子束线偏离z轴(即荧光屏中心)的距离与偏转板两端的电压成正比,与加速极的加速电压成反比.2.电子束在磁场中的偏转如果在垂直于z轴的x方向上设置一个由亥姆霍兹线圈所产生的恒定均匀磁场,那么以速度vz飞越的电子在y方向上也将发生偏转,如图所示.假定使电子偏转的磁场在l范围内均匀分布,则电子受到的洛伦兹力大小不变,方向与速度垂直,因而电子作匀速圆周运动,洛伦兹力就是向心力,所以电子旋转的半径r?mvz() eb当电子飞到a点时将沿着切线方向飞出,直射荧光屏,由于磁场由亥姆霍兹线圈产生,因此磁场强度b?ki ()式中k是与线圈半径等有关的常量,i为通过线圈的电流值.将()、()式代人()式,再根据图的几何关系加以整理和化简,可得到电于偏离z轴的距离n?kmi() allk?l?e1? ??2?2l?m式中km?也是一个与偏转系统几何尺寸有关的常量.所以磁场偏转的特点是:电子束的偏转距离与加速电压的平方根成反比,与偏转电流成正比.1 2 3 22电子管内部线路图实验内容1、研究和验证示波管中电场偏转的规律。
12实验十二 电子束磁偏转与磁聚焦
I1 I 2 I 3 I0 1 2 3
5、代入公式,求得电子荷质比,与理论值e/m= 1.757×1011c/Kg,求出百分比误差。
e ( L2 D2 ) 1014 U 2 2 2 2 m 2 N L0 I
[注意事项] 1.本仪器使用时,周围应无其他强磁场及铁
2 m 2 m 2eU 2 L0 h vZ eB eB m
故电子的荷质比为:
e 8 2U 2 2 2 m L0 B
实验用螺线管可近似为薄螺线管,按 薄螺线管计算公式有:
B 0nI (cos 2 cos 1 ) / 2
式中: 0 4 10 N / A
7 2
为
F evz B
根据洛伦兹力的性质,是一个向心力,则
vz2 evz B m R
电子偏转的轨道半径为
mvz R eB
在偏转角较小的情况下,近似的有
l D tan R L
由此可得偏转量D与外加磁场B、加速电压U2
等的关系为
e D lBL 2mU 2
实验中的外加横向磁场由一对载流线圈产生, 其大小为
实 验 十 二 电子束的磁偏转与磁聚焦
实验目的: 1.研究带电粒子磁场中偏转的规律。 2.研究带电粒子磁场中聚焦的规律。 3.通过磁聚焦原理测量电子的荷质比.
仪器和用具: HLD-EB-IV型电子束实验仪
实验原理:一、磁偏转系统
加速场对电子所做的功等于电子动能的增量
1 2 eU 2 mvZ 2 电子受洛伦兹力为
B K 0nI
由此有 D K 0 nIlL
e 2mU 2
当励磁电流I(即外加磁场B)确定时,电子 束在横向磁场中的偏转量D与加速电压U2的平 方根成反比。 D e 磁偏转灵敏度: Sm K 0 nlL
实验十二 电子束偏转与聚焦
13、200mA、2A转换开关。 14、200mA、2A励磁电流数值:可显示0~200mA、0~2A。 15、200mA电流调节:用来改变励磁电流大小。 16、2A电流调节:用来改变励磁电流大小。 17、电源开关:用来接通电源指示,使仪器工作。 18、点、线转换开关:用来转换点、线显示,打到“线”档即 可出现一条横线。 19、示波管后靠背:用来接通示波管,可将示波管插入使用。 20、8SJ31J示波管。 21、磁偏转线圈:用来做磁偏转实验。 22、螺线管线圈:用来做磁聚焦实验。 23、换向开关:用以改变偏转线圈电流方向来控制磁偏转的方 向(向上、向下)。 24、0~2A输出插座:用来接通标准螺线管励磁电流。
T
2 m Be
与
v 无关。故只要电子的轴向速度相同,经过
整数周期后会聚焦于荧光屏上的一点,这就 是磁聚焦。
电子作螺旋运动的螺距:
h vZT 2 mvZ Be
六. 电子荷质比测量
从前面的谈论可知,电子的轴向速度 v Z 由加速 电压决定(电子离开阴极时的初速度相对来说很 小,可以忽略),固有
2
L D
2 2
2
2 2
U2 I
2
0 N L0
各实验参数由实验室给出
D—螺线管线圈平均直径,D=0.0945m;
L—螺线管线圈长度,L=0.233m; N—螺线管线圈匝数,N=1340; L0—电子束从栅极G交叉至荧光屏的距离,即
电子束在均匀磁场中聚焦的焦距; L0—0.199m I—为光斑进行三次聚焦时对应的励磁电流的 加权平均值;
等的关系为
D lB L
e 2mU 2
实验中的外加横向磁场由一对载流线圈产生, 其大小为
B K 0 nI
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、 电子束的聚焦与辉度的控制:
人们最初想把极板上的圆孔做成足够小 可得任意细小的电子束,然而电子向不同方 向离开加热阴极,只能有很小部分的电子正 好向着阳极小孔方向运动,大多数电子不能 达到荧光屏。不过,我们可以利用适当形状 的电场来改变初速度不在管轴方向的那些电 子的方向,从而得到比较强的电子束和比较 亮的光点。
在电子枪内的第一加速阳极 A1 与第二加 速阳极A 2 之间形成一个静电透镜,可解决上述 问题。其作用的原理如下:
如图C给出了静电透镜聚焦作用的几何
示意图,这是假定电子
A1
A2
在两聚焦电极之间的区
域的路程远小于电子的
F
Z
总路程时电子运动的轨
P
迹简化形式。假定从第
V 图C
一加速极出来的那些电
子具有相同的轴向分量 v Z ,但具有不同的
当电流通过钨丝阴极Kபைடு நூலகம்加热后,筒端的钡 与锶氧化物涂层内的自由电子获得较高的动能, 从表面逸出。因为第一加速阳极A具有(相对阴 极K)很高的电压(如1000伏),在K-G-A1之间 形成强电场,故从阴极逸出的电子在电场中的加 速运动,穿过G的小孔(直径约1mm),以高速穿 过G2、A1及A2筒内的限制孔,形成一束电子射线, 电子最后打到荧光屏上,这上面涂有一满层的特 殊荧光物质,在电子的轰击下发出可见光。
表头即可显示;当打到VdY档调节偏转电压VdY,表头即可 显示。
13、200mA、2A转换开关。 14、200mA、2A励磁电流数值:可显示0~200mA、0~2A。 15、200mA电流调节:用来改变励磁电流大小。 16、2A电流调节:用来改变励磁电流大小。 17、电源开关:用来接通电源指示,使仪器工作。 18、点、线转换开关:用来转换点、线显示,打到“线”档即
可出现一条横线。
19、示波管后靠背:用来接通示波管,可将示波管插入使用。 20、8SJ31J示波管。 21、磁偏转线圈:用来做磁偏转实验。 22、螺线管线圈:用来做磁聚焦实验。 23、换向开关:用以改变偏转线圈电流方向来控制磁偏转的方
向(向上、向下)。
24、0~2A输出插座:用来接通标准螺线管励磁电流。
e 2mU2
五:磁聚焦原理:
在示波管外套一个同轴的螺线管,当给 螺线管通以稳恒直流电时,其内部形成一个 轴向磁场。若螺线管足够长,则可认为内部 为匀强磁场。
电子进入匀强磁场后,将会以轴向速度 作匀速直线运动。同时以径向速度 作匀速圆 周运动。其合运动是一个螺旋线运动。
由于匀速圆周运动周期 T 2m 与
1、加速电压V2:改变电子束的加速电压的大小 2、V2电压表指示:0~1300V。 3、聚焦电压V1:用以调节聚焦极A1上的电压以调节电极附近
区域的电场分布,从而调节电子束的聚焦和散焦。
4、V1电压指示:150~400V。 5、栅极电压VG(辉度):用以调节加在示波管控制栅极上的
电压大小,以控制阴极发射的电子数量,从而控制荧光屏上 光点的辉度。
6、VG电压指示:0~-80V。 7、VdX偏转电压调节:-80V~80V。 8、调零X:用来调节光点水平距离; 9、Vdy偏转电压调节:-80~80V。 10、 调零Y:用来调节光点上下距离。 11、偏转电压指示:用来显示VdX、Vdy数值。 12、VdX、Vdy转换开关:当打到VdX档调节偏转电压VdX,
实验原理
一、示波管的基本结构及原理图:
电子枪
偏转板
HK
Y2
X2
荧
光
6.3V H
屏
UG G1 G2 A1 A2
Y1 X1
U1 U2 图a
HH—钨丝的热电极
A 1 —第一加速阳级 X1X2 —水平偏转板
K—阴极
G
—加速栅级
2
Y1Y2 —垂直偏转板
G 1—控制栅极 A 2 —第二加速阳级
HLD-EB-IV型电子束实验仪
y1 2a2t2emUdvl02
eU2 l 2m0vd
U ——偏转电压(平行板间电位差) d——板间距离
l ——板长
电子离开电场后不受电场力作用,将作匀
速直线运动,等效直接从A点(板中点位置)
直接射出(如图b所示),故
D l L ' tg 2
l L' vy l L' 2 vx 2
m eUdvL0 v0
l 2
L'
eUl mdv02
令 l L' L 有 2
如果加速电压为U2
D eUlL
mdv
2 0
则
eU2
1 2
mv02
d
故
D ULl 2U2d
示波管的Y方向电偏转灵敏度 :
L
、 L
A
VX D
图b
VY
SyU D ylLU U 2U2d2dlLU 2
在X方向同理得
Sx
Be
v无关。故只要电子的轴向速度相同,经过
整数周期后会聚焦于荧光屏上的一点,这就 是磁聚焦。
径向速度分量。
在图C中任取一点P,电子在该处是总会
沿着F与 v之间的某一方向运动,分析不同
的点同样可得出电子的运动的轨迹如图c所示,
达到电聚焦的作用。若轴向分量 不v同Z ,只是
打到荧光屏的时间不同,但也可与前面或后 面运动的电子在荧光屏上重合,但不能与同 时出发的电子在荧光屏上同时重合。聚焦作 用的强弱可以通过改变 之A1 间A2 的电压,从 而改变其间的场强来实现的。
RL
❖ 由此可得偏转量D与外加磁场B、加速电压U2 等的关系为
D lBL e 2mU2
实验中的外加横向磁场由一对载流线圈产生, 其大小为
B K0nI
由此有
D K0nIlL
e 2mU2
当励磁电流I(即外加磁场B)确定时,电子
束在横向磁场中的偏转量D与加速电压U2的平 方根成反比。
磁偏转灵敏度:SmD I K0nlL
三、电偏转系统
1、偏转电场的形成与简化
在两排平行板间加电压就可以形成电场。 当平行板间的距离d比长度L小得多时,可 以认为它形成的空间电场是均匀的,且在平 行板的界外电场为零。
2、电偏转的原理
电子在均匀电场内以 v 0 从平行于板的 方向进入电场,在电场力的作用下,在y方向 (垂直 v 0 方向)产生偏离位移。
D Ux
lL 2dU2
四:磁偏转系统:
❖ 加速场对电子所做的功等于点自动能的增量
为
eU2
1 2
mvZ 2
❖ 电子受洛伦兹力为
F evz B
❖ 根据洛伦兹力的性质,是一个向心力,则
evz B
m
v
2 z
R
❖ 电子偏转的轨道半径为
R mvz eB
❖ 在偏转角较小的情况下,近似的有
tan l D