第讲概率及正态分布
第四章 第一讲 正态分布及其性质
u
查标准正态分布函数值表便可得 u
x
图2 也可由定义利用上侧分位数与双侧分位数之间的关系,借助于标 准正态分布双侧分位数表直接查得,即直接查 的双侧分位数.
0 .0 5
u 1 .6 4 5
0 .0 1
所以有 P 0 . 84 X 0 . 64 ( 0 . 64 ) ( 0 . 84 )
0 . 7389 0 . 2005 0 . 5384
《概率论与数理统计》课程教学团队
第四章 第一讲 正态分布及其性质
例 设X~N(0, 1),求P(-1<X≤2),P(X>2.5). 解 P( -1<X≤2 ) = Φ( 2 )-Φ( -1 ) = Φ( 2 )-[1-Φ( 1 )] = 0.9772-(1-0.8413) = 0.8185. P{ X > 2.5 }= 1-Φ( 2.5 )
第四章 正态分布
第一讲
正态分布及其性质
《概率论与数理统计》课程教学团队
第四章 第一讲 正态分布及其性质
第一讲 正态分布及其性质
• • • • 一、正态分布 二、标准正态分布 三、正态变量的线性组合 四、小结
《概率论与数理统计》课程教学团队
第四章 第一讲 正态分布及其性质
一、正态分布
1、定义
设连续型随机变量 X 的概率密度为 f (x) 1 2 πσ
解 : ( 2) P { X 5 0 0 2 0 0} 1 P { X 500 200 }
1 P{ 200 60 X 500 60 200 60 }
200 200 1 60 60
概率与统计中的正态分布
概率与统计中的正态分布正态分布是概率与统计学中最为重要的概率分布之一,也被称为高斯分布。
它在自然界和人类社会中广泛存在,被用于描述各种现象的分布规律,从而对数据进行分析和预测。
本文将详细介绍正态分布的定义、性质以及应用。
一、正态分布的定义和性质正态分布是一种连续型的概率分布,可以通过其概率密度函数来描述。
这个函数的图像呈现出钟形曲线,其形状对称轴对称,且在均值处达到最大值。
正态分布的概率密度函数可由以下公式表示:f(x) = 1 / (σ√(2π)) * e^(-((x-μ)^2) / (2σ^2))其中,μ表示均值,σ表示标准差,e表示自然对数的底数。
正态分布具有以下重要的性质:1. 对称性:正态分布的概率密度函数相对于均值呈现对称性,即左右两侧的曲线形状相同。
2. 峰度:正态分布的峰度为3,表示其曲线相较于正态分布的峰度更加平坦。
3. 标准正态分布:当均值μ为0,标准差σ为1时,所得的正态分布称为标准正态分布。
标准正态分布在统计学中具有重要的作用,经过适当的转换,可以将任何正态分布转化为标准正态分布。
二、正态分布的应用正态分布在自然科学、社会科学和工程技术等领域具有广泛的应用。
下面将介绍其中几个典型的应用。
1. 统计推断:由于正态分布具有丰富的性质和可靠的统计特征,在统计学中得到了广泛应用。
通过对观测数据的分析,可以利用正态分布进行参数估计和假设检验,从而得到关于总体的推断结果。
2. 质量控制:正态分布在质量控制中有着重要的应用。
例如,在生产过程中,通过对产品质量数据的测量和分析,可以使用正态分布来确定产品是否合格以及如何调整生产过程,以确保产品符合规定的质量标准。
3. 金融市场:正态分布在金融领域中的应用广泛而重要。
许多金融市场价格变动的模型都基于正态分布。
例如,根据正态分布模型,可以计算股票价格的变动概率,评估投资风险,并进行资产配置和风险管理。
4. 人口统计学:正态分布在人口统计学中的应用主要用于研究人口特征和人口变化规律。
概率分布正态化总结讲解
a
1 b
(
1
1)
b
0.5772
2
标准差
ab 23
x (e 2 1)e(2 2 )
1
ab
( 2 1) [( 1 1)]2
b
b
1 6
x
4 2
统计参数向分布参数的转化
第一章:为什么要研究随机变量的分布
目前概率论预测方法的应用已经遍及自然科学和社会科学 的各个领域。从电子、航空、宇航、核能等尖端工业部门扩展 到电机与电力系统、机械设备、动力、土木建筑、冶金、化工 等部门。可靠性的应用也从复杂航天器的设计推广普及到日常 生活中的机电产品设计之中,并贯穿于产品的开发研制、设计、 制造、试验、使用、运输、保管及维修保养等各个环节。
第二章:常见的随机变量的分布类型
正态分布 均匀分布 指数分布 对数正态分布 极值分布( Gumbel ) 瑞利分布(Rayleigh) 韦伯分布( Weibull )
正态分布概要
正态分布是在统计以及许多统计测试中最广泛应用的一 类分布。在概率论中, 正态分布是几种连续分布和离散分布 的极限分布。各种各样的心理学测试和物理现象都被发现近 似地服从正态分布。
正态分布概要
由上图可以看出约68%的数值分布在距离平均值有1个标准 差之内的范围,约95%数值分布在距离平均值有2个标准差之内 的范围,以及约99.7%数值分布在距离平均值有3个标准差之内 的范围。称为 "68-95-99.7法则"或"经验法则".
关于非正态分布需要转化的一些说明
由于正态分布具有上述一些优良的特性,而且工程界的大 多数参数都是服从正态分布的,因此在目前比较成熟的可靠 性分析方法中,很多方法(改进一次二阶矩方法,一次、二 次响应面法)往往都是针对正态分布展开的,因此我们对非 正态分布变量需要采用当量正态化。具体方法将在第三章中 详细介绍,为了能更好的理解各种分布类型的相关特性,对 实验数据的获得提供相应参考,本章将对一些常见的非正态 变量的分布类型分类进行简要阐述。
1.正态分布的概率密度与分布函数
解:(1) P( X 1.96) (1.96) 0.975;
(2) P(1.6 X 2.5)
(2.5) (1.6) (2.5) [1 (1.6)] (2.5) 1 (1.6) 0.9938 1 0.9452
0.9390.
概率论与数理统计
§4.1 正态分布的概率密度与分布函数
正态分布的概率计算
定理. 设 X ~ N ( , 2 ) , 则
P( x1
X
x2
)
(
x2
) ( x1
).
证: P(x1 X x2 )
t
xμ σ
1
2π
x2 t2
e 2 dt
x1
1
e dx x2
(
x )2 2 2
标准正态分布的概率密度:
(x)
1 2π
x2
e2
,
ห้องสมุดไป่ตู้
x
;
标准正态分布的分布函数:
Φ(x) 1
x t2
e 2 dt .
2 π
(x) 的性质:
(0) 0.5; () 1; (x) 1 (x).
概率论与数理统计
§4.1 正态分布的概率密度与分布函数
例1.设X服从标准正态分布N (0 ,1) , 求
概率论与数理统计
§4.1 正态分布的概率密度与分布函数
例4.设随机变量 X 服从标准正态分布 N (0 ,1) , 求随
机变量函数 Y X 2 的概率密度.
解:已知随机变量X 的概率密度
fX (x)
1
x2
e 2,
2π
x .
第6课 正态分布 概率论
上一讲我们已经看到,当 n 很大,p 接近 0 或 1 时,二项分布近 似泊松分布; 可以证明,如果 n 很大,而 p 不接近于 0 或 1 时, 二项分布近似于正态分布. 再看一个应用正态分布的例子
例8 公共汽车车门高度是按男子与车门顶头碰头机会在 0.01以 下来设计的. 若男子身高 X~N(170, 62), 问门高度应如何确定? 解 设车门高度为 h cm, 按设计要求应有 P(X≥h)≤0.01
定义4 (P147.) 设 X~N(0 , 1 ), 0 < < 1 , 则称 满足等式 P(X >u ) = 的数 u 为标准正态分布的上侧 分位数; 称满足等式 P(|X|>u/2 ) = 的数 u/2 为标准正态分布的双侧 (x) 分位数; (x)
O
/2
1 e 2
( x )2 2 2
, x
f (x)所确定的曲线叫作正态曲线.
正态分布密度的性质
(2) 正态分布的密度曲线位于 x 轴的上方, f (μ+c) ≤f (μ), f (μ-c)≤f (μ) 决定图形的中心位置; 且关于 x f对称, 且 f (μ += c)= (μ-c) 故 f (x)以μ为对称轴, 1 (3对密度函数求导: ) 密度曲线 y = f (x) 有拐点 ( , ); e) 2 ( x ) (x (x ) ( ) ( ) 2 x x 1 (4当 )f f (x ) x 轴为水平渐近线 0+, ; e e2 2 (x x ) 以 (e f 2 ) → ∞时, ( x ) → 3 2 2 2 2 2 2 2 ( x ) ( x 即曲线 y =N f( )1向左右伸展时 , 越来越贴近 x): 轴. 正态分布 (x , )的密度函数图形的特点 ( ) x 2 2 f ( x ) [e e ] 2 3 2 ,左右对称的 “峰” 状 两头低, 中间高 ( x ) 1 2 ( x )2 ] e 2 [ =0, 若固定 ,改变 的值, f ( ) , 反之亦然, 2 决定了图形中峰的陡峭程度 x =μ σ为 f (x) 的两个拐点的横坐标.
第三章 常用概率分布之正态分布
图4.13 离均差的绝对值≤1 , 2 和3 的概率值
随机变量x在区间( μ – kσ, μ + kσ )外取值的概率P ( x<μ – kσ ) + P( x>μ + kσ )为两尾概率,记为α P ( x<μ – kσ ) + P( x>μ + kσ )=α P ( x<μ – kσ ) = P( x>μ + kσ )=α/2 两尾分位数Uα
=0.0227
0.020
fN (x)
0.020
fN (x)
0.016
0.016
0.012
0.012
0.008
P( y 40) 0.9773
P( y 26) 0.2119
0.008
0.004
0.004
0.000 10 15 20 25 30 35 40 45
0.000 10 15 20 25 30 35 40 45
第三章
常用概率分布
第一节 事件与概率 第二节 概率分布 第三节 二项式分布 第四节 正态分布 第五节 样本平均数抽样分布与标准误 第六节 t分布,x2分布和F分布
第三章
常用概率分布
第一节 事件与概率 第二节 概率分布 第三节 二项式分布 第四节 正态分布 第五节 样本平均数抽样分布与标准误 第六节 t分布,x2分布和F分布
首先计算:
查附表2,当u=-0.8时,FN(26)=0.2119,说明这 一分布从-∞到26范围内的变量数占全部变量数的 21.19%,或者说,y≤26概率为0.2119. 同理可得: FN(40)=0.9773
所以:P(26<y≤40)=FN(40)-FN(26)=0.9773-0.2119
第6课 正态分布 概率论
离散型 —— 分布列 P( X xk ) pk
f (x) 0
x
连续型 —— 密度函数 f (x) 非负特规征范
是判定一个函数是否为某随机变量X 的分布列或密度的充要条件.
0
x
分布函数 F ( x) pk 其图形是右连续的阶梯曲线
F(X)= P(X x)
F( x)
xxk
当 X=256 时,
P(X>256)
1
(
256166 93
)
0.169
这表明高于256分的频率应为0.169, 即成绩高于甲的人数应占考生
的16.9%, 排在甲前应有 1657 16.9% 280名, 甲大约排在281名.
故甲能被录取, 但成为正式工的可能性不大.
例11
设 X~N( , 2 ), 求 P(|X-| < k ) k=1,2,3 .
类似可得 (u/2 )= 1- /2 ,
可查表得值
若 X~N( , 2)时,要求满足 P(X >x0 )= 的 x0 :
(u )= 1- u
x0
u
x0 u
复习
随机变量 X
全部可能的取值 取值的概率分布
p(x)
至此,我们已介绍了两类重要的随机变量:
P
(
X
k
)
e
k k!
k 0,1, 2,,
x
f
(
t
)d
t
,
其图形是连续曲线
常见的分布
离散型
连续型
两点分布、二项分布、泊松分布 超几何分布、几何分布
第五章概率与正态分布
合计
1000
相对密度
0.003 0.021 0.090 0.295 0.330 0.201 0.054 0.005 0.001 1
正态概率分布(正态分布)
f (x)
密 度
f (x)
1
(x)2
e 2 2
2
( x )
68.3% 95.4%
99.7%
3 2 2 3
(1)前20名,在所有参赛者中的位置是前10% 设最低分数点为b,则b点右侧的概率是0.1 b点标准分数对应的P 值是0.5-0.1=0.4 查正态分布表得b点的Z分数为1.28,根据Z分数 的公式转换求得b点分数为78.54分。
(2)某生得80分,则其Z 分数为1.44 查表Z=1.44时,P=0.42507 那么等于和高于该生的人数比率为 0.5-0.42507=0.07493 具体人数=200×0.07493=15(人)
正面向上 次数
2048 6019 12012
频率
0.5069 0.5016 0.5005
50粒不同颜色的石子放入一只瓶子并且完全 混合在一起,石子中有25粒蓝色,20粒绿 色和5粒红色。如果闭上眼睛从瓶子中取出 一粒石子,计算以下概率:
(1)P(红色石子)
(2)P(蓝色或红色石子)
在某大城市一家医院的产房,去年出生1060个男婴 和1000个女婴,假设这些数据表示了全部出生情 况,在该医院下一个出生的婴儿是男婴的概率是 多少?是女婴的概率是多少?
• 在随机现象中还有不少样本点本身不是数,这时可根据研究需 要设计随机变量。
– 检查一个产品,只考察合格与否,则其样本空间为{合格品,不合
样本点
X的取值
格品合格},品这时可设计一个随机变0量X如下:
条件概率、二项分布及正态分布(讲解部分)
考法二 正态分布问题的解题方法
例2 (2018河北石家庄新华模拟,19)“过大年,吃水饺”是我国不少地方 过春节的一大习俗.2018年春节前夕,A市某质检部门随机抽取了100包某 种品牌的速冻水饺,检测其某项质量指标值,所得频率分布直方图如下:
(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数 x(同一组中 的数据用该组区间的中点值作代表);
∴E(X)=4×1 =2.
2
方法总结 1.对于正态分布N(μ,σ2),由x=μ是正态曲线的对称轴知 (1)P(X≥μ)=P(X≤μ)=0.5; (2)对任意的a有P(X<μ-a)=P(X>μ+a); (3)P(X<x0)=1-P(X≥x0); (4)P(a<X<b)=P(X<b)-P(X≤a). 2.服从N(μ,σ2)的随机变量X在某个区间内取值的概率的求法: (1)利用P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)的值直接求; (2)充分利用正态曲线的对称性和曲线与x轴之间的面积为1这些特殊性质 求解.
(2)①由直方图可以认为,速冻水饺的该项质量指标值Z服从正态分布N(μ,σ2),
利用该正态分布,求Z落在(14.55,38.45)内的概率; ②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4 包速冻水饺中这种质量指标值位于(10,30)内的包数为X,求X的分布列和数 学期望. 附:计算得所抽查的这100包速冻水饺的质量指标值的标准差为σ= 142.75 ≈11.95; 若ξ~N(μ,σ2),则P(μ-σ<ξ≤μ+σ)=0.682 6,P(μ-2σ<ξ≤μ+2σ)=0.954 4. 解题导引
概率论 正态分布
概率论正态分布概率论:正态分布第四章正态分布第一节第二节第三节第四节第五节正态分布的密度函数正态分布的数字特征正态分布的线性性质二维正态分布中心极限定理正态分布的密度函数正态分布是实践中应用最为广泛,在理论上研究最多的分布之一,它在概率统计中占有特别重要的地位.比如,考察一群人的身高,个体的身高作为一个随机变量,其取值特点是:在平均身高附近的人较多,特别高和特别矮的人较少.一个班的一次考试成绩、测量误差等均有类似的特征.高斯在研究误差理论时曾用它来刻画误差,因此很多文献中亦称之为高斯分布. 进一步的理论研究表明,一个变量如果受到大量独立的因素的影响(无主导因素),则它一般服从正态分布,这是中心极限定理探讨的问题.一. 一般正态分布1. 定义若随机变量X的密度函数为1 2 2 f ( x) e 2其中 x ( x )2式中为实数, >0 .则称X服从参数为 ,2的正态分布,亦称高斯分布.记为N(, 2).可表为X~N(, 2). 图象见右上角正态分布有两个特性: (1) 单峰对称密度曲线关于直线x=对称1 f()=maxf(x)= 2(2) 的大小直接影响概率的分布越大,曲线越平坦; 越小,曲线越陡峻. 正态分布也称为高斯(Gauss)分布N ( 4,3 / 5)N ( 4,1)N ( 4,7 / 5)二. 标准正态分布参数=0,2=1的正态分布称为标准正态分布,记作X~N(0, 1)。
(x) 其密度函数为1 (x)2 ( x )x2 e 24 2 0(1) (0)=0.5( x ) P { X x}t2 x 1 e 2 2(2) (+∞)=1;dt , xf ( x) 1 e 2(3) (x)=1-(-x). 一般的概率统计教科书均附有标准正态分布表供读者查阅(x)的值.(P328附表1)如,若 X~N(0,1),(0.5)=0.6915, P{1.32正态分布的数字特征 (一) 一般正态分布N(, 2)( x)2 2 21 X ~ f (x) e 2, xE( X )xf ( x)dxt ( xt2 2 e dt 2x e 2( x )2 2 2D( X )) f ( x )dx(二)标准正态分布N(0, 1)X ~ f ( x)E( X )x2 e 2, xx2 e 2 dxxf ( x ) dx0(奇函数 )D( X ) E{[ X E ( X )] }2 x[ xE ( X )] f ( x)dxx2 e 2 dx三. 一般正态分布概率的计算若X~N(,2),>0,则有F ( x ) P { X x}x 1 e 2 (t ) 2 2 2x }F ( x) P{X x} P{ P{Z ( x ).} ( x ) /t2 1 e 2 dt 2一般地,有例1 设随机变量 X ~ N (1, 2 ) , 求 P{ 1.6 X 2.4} 解 P{ 1.6 X 2.4} P{ 1.6 1 X 1 2.4 1} P{ 2.6 X 1 1.4}P{ 2.6 / 2 ( X 1) / 2 1.4 / 2} P{ 1.3 ( X 1) / 2 0.7}(0.7) ( 1.3)(0.7) [1 (1.3)] 0.7580 [1 0.9032] 0.6612 .P{a X b} P{a X b } a b a Xb P{ } P{ Z } b a P{Z } P{Z } Z ~ N (0,1) b a( ) ( ) 2例2. 设 X N(,2),求P{-3解 P{ 3 X 3 } P{( 3 ) X( 3 ) } P{3 X 3 } P{ 3 X3 } P{ 3 ( X ) / 3} (3) ( 3)(3) [1 (3)] 2 (3) 1 0.9973本题结果称为3原则.在工程应用中,通常认为P{|X|≤3} ≈1,忽略{|X|>3}的值.如在质量控制中, 常用标准指标值±3作两条线,当生产过程的指标观察值落在两线之外时发出警报,表明生产出现异常.例 3 设随机变量 X ~ N ( 2, 2 ) , 且 P{2 X 4} 0 .3, 求 P{ X0}. 随机变量解 P{2 X 4} P{0 ( X 2) / 2 / } 标准化(2 / ) (0) 0.3, (2 / ) 0.3 (0) 0.8P{ X 0} P{( X 2) / 2 / } ( 2 / ) 1 (2 / ) 1 0.8 0.2 例 4 设随机变量 X ~ N ( 3, 4 ) , 且常数 C 满足 P{ X C } P{ X C }, 求常数 C . 解由P{ X C} P{ X C}, 即 1 P{ X C} P{ X C} 所以 P{ X C} 0.5 X 3 C 3 C 3 另一方面 , P{ XC} P{ } ( ) 0.5 2 2 2 C 3 0 , C 3. 2例 4(2021年) ( A)设 X ~ N (0 , 1), 对于给定的 (0,1), 数 ( B)满足 P{ X } . 若 P{ X x} , 则 x 等于( D) 1解 P { X x} P { x X x}1 P{ X x}2 故 x 1一种电子元件的使用寿命X(小时)服从正态分布N(100,152),某仪器上装有3个这种元件,三个元件损坏与否是相互独立的.求:使用的最初90小时内无一元件损坏的概率. 解:设Y为使用的最初90小时内损坏的元件数,则Y~90 100 ) (0.67) 0.2514 其中 p P{ X 90} ( 15P{Y 0} (1 p ) 3 0.4195 故2 (2021年) 设随机变量X ~ N ( 1 , 12 ), Y ~ N ( 2 , 2 ),且 P{ X 1 1} P{ Y 2 1}, 则必有 ( A) 1 2 . ( B ) 1 2 . (C ) 1 2 . ( B) 1 2 .第二节正态分布的数字特征一. 一般正态分布N(, 2)( x)2 2 21 X ~ f (x) e 2, xE( X )xf ( x)dxt ( xt2 2 e dt 2x e 2( x )2 2 2D( X )) f ( x )dx标准正态分布N(0, 1)X ~ f ( x)E( X )x2 e 2, xx2 e 2 dxxf ( x ) dx0(奇函数 )D( X ) E{[ X E ( X )] }2 x[ xE ( X )] f ( x)dxx2 e 2 dx例1 已知随机变量X的密度函数为 1 x 2 2 x 1 f ( x) e ,x 求 E ( X )、D ( X ) .f ( x)x 2 x 11 e2 (1/ 2)( x 1) 2 2(1/ 2 ) 21 故 1, 2例2 设X服从N(0,1)分布,求E(X2),E(X3)1 解 f (x) e2 x2 x2 2 E ( X 2 ) x 2 f ( x)dxe dx 2 2 2x de 2x 2x 2 eE( X )3 xf ( x) dxx2 x3 2 e dxx2 e 2 dx 12021年(数一) 设随机变量X的分布函数为F ( x) 0.3 ( x) 0.7 ( 其中 ( x)为标准正态分布函数, 则EX ( A)0. ( B )0.3. (C )0.7. ( D)1.x 1 ), 2分析 : EX xf ( x )dx ,因此先求随机变量 X的概率密度函数 f ( x ).解 f ( x ) F ( x ) [ 0 . 3 ( x ) 0 . 7 (0 .7 x 1 0 . 3 ( x ) ( ) 2 2于是 EXx 1 ) ] 2xf ( x ) dxx[0.3 ( x )0 .7 x 1 ( )]dx 2 20.7 x 1 0.3 x ( x)dx x ( )dx 2 21 0 .3 x e 20 .7 dx x 21 x 12 ( ) 2 21 x 12 ( ) 1 2 2 e dx 20 .7 1 x 2 e 21 x 12 ) ( 0 .7 1 2 2 dx dx x 2 e 2x 1 令 t , 则dx 2dt , x 2t 1. 代入上式得 20 .7 1 x 2 e 21 x 12 ) ( 2 20 .7 1 dx (2t 1) 2 e 21 0 .7 2t e2 22 dt0 .7 1 2 e 20. 7 10 2 e 22dt 0.7dt 0.7.设随机变量 X与 Y相互独立 , 且 X服从标准正态分布 ,1 Y的概率分布为 P{Y 0} P{Y 1} .记 FZ ( z )为随机变量2 Z XY 的分布函数 , 则函数 FZ ( z )的间断点个数为 ( A) 0 . ( B )1. (C ) 2 . ( D )3 .解 FZ (z) P{Z z} P{XY z}P{Y 0}P{XY z | Y 0} P{Y 1}P{XY z | Y 1}1 [ P{ XY z | Y 0} P{ XY z | Y 1}]2 1 [ P{ X 0z | Y 0} P{ X 1 z | Y 1}] 2 为什么? 1 [ P { X 0 z }P { X z }] 21 (1)当z 0时, FZ ( z ) [ P{ X 0 z} P{ X z}] 21 1 [ P( ) P{ X z}] [0 P{ X z}]2 21 1 P{ X z} ( z )2 2 1 (2)当z 0时, FZ ( z ) [ P{ X0 z P{ X z}] 21 1 [ P() P{ X z}] [1 P{ X z}]2 2所以 , z 0为函数 FZ ( z )的间断点 . ( B )正确 .1 [1 ( z )] 2例 3 某地抽样调查结果表明 , 考生的外语成绩 (百分制) 近似服从正态分布 , 平均成绩为 72 分, 而 96以上的考生占总数的 2.3%, 求考生的外语成绩在 60 分至 84 分之间的概率 . 解设 X —考生的外语成绩, 依题设知X ~ N ( , 2 ), 其中72, 下求方差 2 X 96 由题设 P{ X 96} 0.023 P{ } 0.023 X 96 96 1 P{ } 0.023, 即 1 ( ) 0.023) 0.977,96 96 72 2, 12 2 2于是 , P{60 X 84 } P{60 72 X 84 72 X 1} P{ } P{ 1 12 12(1) (1) (1) [1 (1)]2 (1) 1 2 0.841 1 0.682例 4 假设测量的随机误差 X ~ N ( 0,10 2 ).试求在 100 次独立重复测量中 , 至少有三次测量的绝对值大于 19 .6 的概率 ,并利用泊松分布求出的近似值 . 解先求每次测量误差的绝对值大于19.6的概率 p p P{ X 19.6} 1 P{ X19.6} 1 P{19.6 X 19.6}1 P{ 19.619.6 0 X 19.6 0 } 1 P{ 10 10 X1 P{ 1.96 1.96} 1 [ (1.96) ( 1.96)]1 [ (1.96) ( 1.96)] 1 (1.96) [1 (1.96)]2 2 (1.96) 2 2 0.975 2 1.95 0.0519.6设 Y — 100次测量中绝对值大于19.6, 则Y ~ B (100,0.05)于是所求的概率为 P{Y 3} 1 P{Y 0} P{Y 1} P{Y2}0 1 1 C100 (0.05) 0 (0.95)100 C100 (0.05)1 (0.95)99 2 C100 (0.05) 2 (0.95)98np 100 0 .05 5, 故由泊松分布得52 1 e (1 ) 1 e 5 (1 5 ) 0.87 2 2习作题 1.设随机变量X N(0,1),Y U(0,1),Z B(5,0.5),且 X,Y,Z独立,求随机变量U=(2X+3Y)(4Z-1)的数学期望答:27 E (U ) E (2 X 3Y ) E (4 Z 1) 22 设随机变量 X 1 ,..., X n 相互独立,且均服从 N ( , 2 )1 n 分布,求随机变量 X X i 的数学期望 n i 1 1 n 答: E ( X ) E ( X i ) n i 11. 设随机变量X B(12,0.5),Y N(0,1), COV(X,Y)=-1,求V=4X+3Y+1与W=-2X+4Y 的方差与协方差.2. 某单位招聘2500人,按考试成绩从高分到低分依次录用,共有10000人报名.假定报名者的考试成绩X 服从正态分布 N ( , 2 ), 现已知90分以上有359人, 60分以下的有1151人,求被录用者中的最低分数.第三节正态分布的线性性质一. 线性性质例1 设随机变量X服从标准正态分布,求随机变量 Y a X b ~ N (b, a2 ) Y=aX+b的密度函数,且有y b 解: Y=ax+b关于x严单,反函数为 h( y ) ay b fY ( y) f X ( ) h( y) 1 a 2E (Y )y b a 2 e( y b ) 2 2a2y e 2 a( y b ) 2 2a 2dyax b 2x2 e 2 dxD (Y ) E{[YE (Y )]2 } [ y E (Y ) ]2 f ( y ) dy( y b)2 2 a 2 2 e dy a 2 a 直接由Y的密度函数,可观察到Y的数学期望与方差1 2a2 , 由 f ( y) e 2 a 可知随机变量Y服从正态分布, ( y b) 2( y b)2而且 E (Y ) b , D (Y ) a 2定理1 设随机变量X 服从正态分布N(, 2),则X的线性函数 Y a b X 也服从正态分布,且有 Y a bX ~ N ( a b , a 2 2 )已知X N(,2),求 Y解 Y X 关于x严格单调,反函数为 h( y) y 故 fY ( y) f X [h( y)] | h( y) | f X (y )y 2你能用正态分布的线性性质求解吗?二. 正态分布的可加性定理2 设随机变量X1,X2 相互独立且Xi 服从正态分布N(i ,i2),i=1,2, 则 2 2 2 2 a1 X 1 a2 X 2 ~ N (a1 1 a2 2 , a1 1 a2 2 ) 定理3 设随机变量X1, X2,..., Xn独立且Xi 服从正态分布N(i ,i2),i=1,...,n, 则a i X i ~ N ( a i i , a i2 i2 )i 1 i 1例1. 设随机变量X与Y独立且均服从标准正态分布,求证:Z=X+Y服从N(0,2)分布.解依题设 X ~ N ( 0,1) , Y ~ N ( 0,1) ; 故有E ( X ) 0 , D ( X ) 1 , E (Y ) 0 , D (Y )于是由定理 2可知 X Y服从正态分布 , 且有E ( X Y ) E ( X ) E (Y ) 0 0 0D ( X Y ) D ( X ) D (Y ) 1 1 2,即 X Y ~ N (0 , 2 )例2. 设随机变量X与Y独立,且X~ N(1,2),Y~N(0,1). 求证:(1)Z=2X-Y+3的密度函数;(2)P{2D ( Z ) D ( 2 X Y 3) 4 D ( X )E (Y ) 8 1 9Z 2 X Y 3 ~ N (5,9) 2 Z 8 Z (2) P{2 Z 8} P{ } P{ 1 1} (1) (1) (1) [1 (1)] 即2 (1) 1 2 0.8413 1 0.6826一. 密度函数若随机变量(X,Y)的密度函数为f ( x, y )1 212 11 ( x 1 )2 ( x 1 )( y 2 ) ( y 2 ) 2 [ ] 2 22 2 1 2 2( 1 ) 2 1其中,1、2为实数,1>0、2>0、| |( X , Y ) ~ N ( 1 , 2 , , , )2 1 2 2二、边缘密度函数 2 设(X, Y)~f(x,y),(x,y)R ,则称 f X ( x) f ( x, y )dy 为(X,Y)关于X的边缘密度函数;同理,称 fY ( y ) f ( x,y )dx为(X, Y)关于Y的边缘密度函数。
概率与统计中的正态分布
概率与统计中的正态分布正态分布是概率与统计学中最为重要的概率分布之一。
它的形状对称、钟形曲线使得它在很多实际问题中都有着广泛的应用。
本文将介绍正态分布的定义、性质以及如何使用正态分布进行概率计算和统计推断。
一、正态分布的定义正态分布,又称高斯分布,是一种连续型的概率分布。
它的概率密度函数(probability density function, PDF)可以用以下公式表示:f(x) = (1 / σ√(2π)) * e^(-(x-μ)^2 / (2σ^2))其中,μ是正态分布的均值,σ是正态分布的标准差,e是自然对数的底数。
二、正态分布的性质正态分布具有许多重要的性质,以下是其中的几个:1. 对称性:正态分布的概率密度函数关于均值对称。
即当x接近μ时,f(x)的值趋近于最大值。
2. 峰度:正态分布的峰度是3,意味着它的尾部相对较重。
3. 范围:正态分布的取值范围是(-∞, +∞),即负无穷到正无穷。
4. 均值和标准差:正态分布的均值μ决定了分布的中心位置,标准差σ决定了分布的形状。
68%的数据在均值的一个σ范围内,95%的数据在两个σ范围内,99.7%的数据在三个σ范围内。
三、正态分布的应用正态分布在实际问题中有着广泛的应用。
以下是正态分布常见的几个应用场景:1. 抽样分布近似:中心极限定理表明,当样本容量足够大时,许多随机变量的抽样分布可以近似为正态分布。
2. 参数估计:在统计推断中,我们经常使用正态分布来估计未知参数的置信区间。
通过样本数据的均值和标准差,我们可以计算出参数估计的置信区间。
3. 假设检验:正态分布在假设检验中也有着重要的应用。
我们可以通过计算检验统计量并参考正态分布的分位数,判断某个假设是否成立。
4. 质量控制:正态分布在质量控制中常用于确定过程的稳定性。
通过统计过程得到的样本数据,可以进行正态性检验,判断过程是否受到特殊因素的影响。
四、正态分布的计算与推断在实际应用中,我们经常需要计算正态分布的概率值或进行统计推断。
概率论正太分布及其定理
概率论与数理统计
正态分布与极限定理
例3 若 X ~ N , 2 ,求X 落在区间 k , k 内的概率,
其中 k 1, 2, 3, 。
解 P k X k P X k
k
k
k
k
2 k 1
查表得 P X 21 1 0.6826
概率论与数理统计
§4.2 二维正态分布
正态分布与极限定理
①若X与Y均服从正态分布且相互独立,则(X,Y)服从二维正态分布.
②若(X,Y)服从二维正态分布,则X与Y的边缘分布都是正态分布,
X与Y相互独立 X与Y不相关.
16
2020年10月21日3时52分
山东建筑大学理学院信息与计算科学教研室
概率论与数理统计
正态分布与极限定理
定理2 (1) 若随机变量 X 与 Y 独立,且都服从正态分布,则
证明
服从二维正态分布.
(2) 若 (X,Y) 服从二维正态分布,如果 X 与 Y 不相关
则 X 与 Y 独立.
(2)
设随机变量(X,Y)~
N
( 1 , 12
;
2
,
2 2
;
)
f (x, y)
1
e
1
2 (1
2
)
(
1
PX
80
1
80 d 0.5
0.99
80 d 0.5
0.01
(2.33) 0.9901 ቤተ መጻሕፍቲ ባይዱ2.33) 0.01
80 d 2.33 0.5
d 81.165 故设定温度d至少为81.165度.
10
2020年10月21日3时52分
山东建筑大学理学院信息与计算科学教研室
概率与统计中的正态分布
概率与统计中的正态分布正态分布,也被称为高斯分布,是统计学中最为重要的一种概率分布。
它常用于研究连续型随机变量,具有广泛的应用。
正态分布的形态呈钟形曲线,对称分布在均值两侧。
在本文中,我们将介绍正态分布的基本概念、性质以及它在实际问题中的应用。
一、正态分布的定义与性质正态分布的形式化定义如下:对于一个连续型随机变量X,如果其概率密度函数为f(x) = (1/√(2πσ^2)) * e^(-(x-μ)^2/(2σ^2)),其中μ为均值,σ为标准差,则X服从正态分布,记为X~N(μ, σ^2)。
正态分布的性质如下:1. 正态分布的均值、中位数和众数相等,称为位置参数。
2. 正态分布的曲线关于均值对称。
3. 正态分布的标准差描述曲线的宽度,标准差越大,曲线越矮胖;标准差越小,曲线越高瘦。
4. 正态分布的概率密度总和为1。
5. 正态分布的标准差决定了曲线在均值附近的陡峭程度。
二、正态分布的标准化与标准正态分布由于正态分布无法直接计算概率,因此引入了标准化的概念,即将正态分布转化为标准正态分布。
标准正态分布是均值为0,标准差为1的正态分布。
标准化的方法为:Z = (X - μ) / σ,其中Z表示标准正态随机变量,X是原始随机变量,μ和σ分别是原始随机变量的均值和标准差。
标准正态分布的概率可以查表得到,或者使用计算工具进行计算。
三、正态分布的应用正态分布在实际问题中具有广泛的应用。
以下是一些常见的应用场景:1. 身高和体重身高和体重往往符合正态分布。
通过对一定人群的测量,我们可以得到人群身高和体重的分布情况,从而能够更好地了解人群的整体特征。
2. 产品质量控制大多数产品的质量参数符合正态分布。
通过对产品进行抽样检测,可以根据正态分布的性质来判断产品的合格率,并进行质量控制。
3. 股票收益率股票收益率往往符合正态分布。
通过分析股票的历史数据,可以了解股票价格的波动情况,并进行风险评估。
4. 考试成绩大多数考试成绩符合正态分布。
第4章 概率及正态分布
正态分布的概率
概率是曲线下的面积! 概率是曲线下的面积!
ϕ (x )
P(a ≤ x ≤ b) = ∫ f (x)dx = ?
a
b
a
b
x
左右各一个标准差范围内的面积:68.27% 左右各一个标准差范围内的面积:68.27%; 左右各一个标准差范围内的面积:95.45% 左右各一个标准差范围内的面积:95.45%; 左右各一个标准差范围内的面积:99.73% 左右各一个标准差范围内的面积:99.73%;
第四节 大数定理与中心极限定理
大数定理
少量的随机现象是没有稳定性规律的; 少量的随机现象是没有稳定性规律的; 大量随机现象构成的总体,呈现的规律具有稳定性, 大量随机现象构成的总体,呈现的规律具有稳定性,有关 这一系列的定理, 大数定理; 这一系列的定理,称大数定理; 大数定理有:贝努里大数定理、切贝谢夫大数定理; 大数定理有:贝努里大数定理、切贝谢夫大数定理;P163 大数定理说明了大量现象的稳定规律:频率值趋于概率值, 大数定理说明了大量现象的稳定规律:频率值趋于概率值, 平均值趋于期望值。 平均值趋于期望值。 例如,一家一户,在自然的生育的情况下, 例如,一家一户,在自然的生育的情况下,生男生女纯属 偶然,但统计成千上万户的结果后,其性别比约为1/2将 偶然,但统计成千上万户的结果后,其性别比约为 将 是稳定的。 是稳定的。 所以,大数定理是把偶然性因素消除掉, 所以,大数定理是把偶然性因素消除掉,使共性表现出来 大数定理抽样调查的大样本( ≧ 大数定理抽样调查的大样本(n≧50)提供了理论基础 提供了理论基础
概率论第四版课件3.4正态分布
34
正态分布的数学期望与方差
定理3.5说明正态分布中的两个参数μ与σ分别是服从
正态分布的连续型随机变量的数学期望与标准差.因
而若已知数学期望与方差,则完全确定正态分布.
推论 如果连续型随机变量X服从标准正态分布,即
连续型随机变量X~N(0,1),则其数学期望E(X)=0,方
差D(X)=1
导数
Φ0'(x)=φ0(x)
说明函数Φ0(x)为φ0(x)的一个原函数
9
标准正态分布概率计算
➢由于连续型随机变量在任一区间上取值的概率等
于它的概率密度在该区间上的积分,因而概率
P{a<X<b}=P{a≤X<b}
=P{a<X≤b}=P{a≤X≤b}
b
=a φ0(x)dx
=Φ0(x)| ba
=Φ0(b)-Φ0(a)
43
例9
某批零件长度Xcm是一个连续型随机变量,它服从数
学期望为50cm、方差为0.5625cm2的正态分布,规定
长度在50±1.2cm之间的零件为合格品,从中随机抽
取1个零件,求这个零件为合格品的概率.(函数值
Φ0(1.6)=0.945 2)
解:由题意得到参数
μ=E(X)=50
σ= D(X)= 0.5625=0.75
Φ0(1.16)=0.877 0,则概率P{|X-μ|≤1.16σ}=
.
解:由于连续型随机变量X~N(μ,σ2),从而连续型随机
X−μ
变量Y=
~N(0,1)
σ
38
例6
根据标准正态分布概率的计算公式,并注意到参数
σ>0,因此概率
P{|X-μ|≤1.16σ}
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在随机试验中,试验的结果可能是一个简单
事件,也可能是一个复杂事件。简单事件就 是不可以再分解的事件,又称为基本事件。 复杂事件是由简单事件组合而成的事件。
例:投掷一粒均匀的六面体骰子,出现的
点数有可能是1、2、3、4、5、6共六种。 这六种结果是基本结果,不可以再分解成 更简单的结果了,“出现点数是奇数”这 一事件就不是简单事件,它是由基本事件 {1},{3}和{5}组合而成的。
抛掷次数 出正面次数 出正面频率 试验者
4 50 100
2048 4040 12000
1 23 51
1061 2048 6019
0.25 0.46 0.51
0.518 0.5069 0.5016 蒲丰
24000
12012
0.5005
Pearson
概率的统计定义
在一定条件下,进行n次重复试验,当n 充分大时,随机事件A出现的频率稳定在某一 数值P附近摆动。随着试验次数的增多,这种 摆动的幅度越小。我们则定义事件A的概率为 P(A)=P。 根据概率的统计定义,通常是n当很大 时,以事件A的频率作为事件A概率的近似 m P ( A ) 值。即
互斥事件(互不相容事件)
不可能同时发生的事件 没有公共样本点
Ω
A B
互斥事件的加法公式
P ( A∪B ) = P ( A ) + P ( B )
P ( A1∪A2 ∪… ∪An) = P ( A1 ) + P (A2 ) + …+ P (An )
事件的独立性
• 两个事件独立
– 一个事件的发生与否并不影响另一个事件发 生的概率
164 181 170 168 159 185 169 164 179 156 175 155 169 169 180 164 182 168 161 182 170 178 174 159 154 172 167 173 160 182 163 164 164 174 173 163 165 166 175 168 161 176 167 170 167 172 172 169 161 174 181 171 171 168 171 161 169 177 177 181 176 174 170 185 178 175 173 175 167 172 172 174 157 162 161 165 168 178 174 171 172 174 172 155
[例1]在某体育彩票发行站的10000张体育彩 票中,设有特等奖1个,一等奖3个,二等奖 20个,三等奖100个,末等奖500个。某人购 买了一张体育彩票,求其中特奖或一等奖的 概率。 p( A) m 4 0.0004 0.04%
n 10000
n=10000
m=1+3=4
[例 2]口袋有10个大小形状相同的球,其中8个白 球,2个红球,从中随机取出2个,问取到的1个白 球、1 个红球的概率有多大? B:取2球1个白球、1 个红球,求P(B)=?
学习要点
概率概念理解
正态分布及应用 二项分布及应用
第一节
概率的基本概念
推论统计的主要目的在于应用观测到的样本的信 息推论总体的情况,作出一定可靠性程度的估计 和推论。概率及概率分布理论是说明这种可靠程 度的依据,是统计推论的基础。 推论统计的数学基础:概率论 赋予不确定性以量化指标——概率(0,1)
推导出的总体的次数分布
基本随机变量分布: 抽样分布:样本统计量的分布
概率分布的分类结构图
分布
经验分布——频次分布 理论分布——概率分布 总体分布 抽样分布
离散分布——二项分布 连续分布——正态分布
第二节 中随机抽取出84名,测量身高, 数据如下(单位:cm) :
三、概率分布
概率分布又称“随机变量分布”,是描述随 机变量所有取值和对应概率变化规律的函数 随机现象的总体上的数学方法描述,函数描 述
概率分布的分类
离散分布:二项分布、泊松分布、超几何分布
连续分布:正态分布、负指数分布、维布尔分布 经验分布:有限观察次数分布或相对频率分布 理论分布:随机变量概率分布函数;按照数学模型
• 独立事件的乘法公式:
P(AB) =P(A)· P(B)
推广到n 个独立事件,有:
P(A1…An)=P(A1)P(A2) … P(An)
随机事件之间的关系
互不相容——互斥事件——或(并集)——
一个随机试验多种随机事件间的运算 互独立事件——与(交集)——两种随机事 件的伴随 概率运算的意义
c
n m
m! n!( m n)!
2 10
n C 45
16 P( B) 0.38 45
m C C 16
1 8 1 2
概率的统计定义
频率 如果事件A在n次重复试验中发生了m 次,则 m 叫作事件A的频率,记作
n
m W ( A) n
[例3]历史上有人做过多次抛掷一枚硬币的试验, 其试验结果如下:
n
二、概率的基本运算性质
任何随机事件的概率都是非负的 随机事件的值域
随机现象的任一结果的概率都界于0和1之间 必然事件发生的概率为1 不可能事件发生的概率为0
概率加法—P(A)+P(B)= P( A+ B) 概率的乘法—P(A)*P(B)= P(AB)
概率的运算法则——加法公式
用于求P(A∪B)——“A发生或B发生”的概率
随机试验——随机事件——随机事件取值— —随机变量 概率亦称“机率”或“或然率”,是0到1之 间的一个数,表示随机现象某一结果发生可 能性的大小。通常用符号P(A), P(B),P(C)……显示。
概率分类
概率分类
先验概率或古典概率—骰子、硬币、红白球 后验概率或统计概率—连续的随机事件
概率的古典定义
古典型试验的特点: 1、试验观测的一切可能结果的个数是有限的。 2、各个可能结果出现的可能性是均等互斥的。
概率的古典定义: 如果在一次试验中,共有n个同等可能且 互斥的结果,其中属于事件A的有m个,则事 m 件A的概率定义为
p ( A)
n
m:属于事件A的结果数 n:一切可能结果数
一、什么是概率
基本概念
随机现象:指在相同的条件下进行试验时,试验的 结果不止一个,并且事先无法确定的现象。 随机变量:随机现象各种结果的数量表现形式,随 机现象结果不确定,取值也具有不确定性,不同的 值对应于不同的试验结果,用随机变量取值的规律 描述随机现象的规律。
必然事件:指在一定条件下必然会发生的事 件。 不可能事件:指在一定条件下一定不会发生 的事件。