2020年浙江省金华市中考数学试卷--解析版

合集下载

七年级上册数学浙江省金华市2020届中考真题数学试卷(解析版)

七年级上册数学浙江省金华市2020届中考真题数学试卷(解析版)

2020年浙江省金华市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.实数﹣的绝对值是()A.2 B.C.﹣D.﹣2.若实数a,b在数轴上的位置如图所示,则下列判断错误的是()A.a<0 B.ab<0 C.a<b D.a,b互为倒数3.如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是()A.Φ45.02 B.Φ44.9 C.Φ44.98 D.Φ45.014.从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是()A.B.C.D.5.一元二次方程x2﹣3x﹣2=0的两根为x1,x2,则下列结论正确的是()A.x1=﹣1,x2=2 B.x1=1,x2=﹣2 C.x1+x2=3 D.x1x2=26.如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD7.小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为()A.B.C.D.8.一座楼梯的示意图如图所示,BC是铅垂线,CA是水平线,BA与CA的夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯的面积至少需要()A.米2B.米2C.(4+)米2D.(4+4tanθ)米29.足球射门,不考虑其他因素,仅考虑射点到球门AB的张角大小时,张角越大,射门越好.如图的正方形网格中,点A,B,C,D,E均在格点上,球员带球沿CD方向进攻,最好的射点在()A.点C B.点D或点EC.线段DE(异于端点)上一点D.线段CD(异于端点)上一点10.在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足.设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为()A.B.C.D.二、填空题(本题有6小题,每小题4分,共24分)11.不等式3x+1<﹣2的解集是.12.能够说明“=x不成立”的x的值是(写出一个即可).13.为监测某河道水质,进行了6次水质检测,绘制了如图的氨氮含量的折线统计图.若这6次水质检测氨氮含量平均数为1.5mg/L,则第3次检测得到的氨氮含量是mg/L.14.如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是.15.如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC 上,以AD为折痕△ABD折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是.16.由6根钢管首尾顺次铰接而成六边形钢架ABCDEF,相邻两钢管可以转动.已知各钢管的长度为AB=DE=1米,BC=CD=EF=FA=2米.(铰接点长度忽略不计)(1)转动钢管得到三角形钢架,如图1,则点A,E之间的距离是米.(2)转动钢管得到如图2所示的六边形钢架,有∠A=∠B=∠C=∠D=120°,现用三根钢条连接顶点使该钢架不能活动,则所用三根钢条总长度的最小值是米.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.计算:﹣(﹣1)2020﹣3tan60°+(﹣2020)0.18.解方程组.19.某校组织学生排球垫球训练,训练前后,对每个学生进行考核.现随机抽取部分学生,统计了训练前后两次考核成绩,并按“A,B,C”三个等次绘制了如图不完整的统计图.试根据统计图信息,解答下列问题:(1)抽取的学生中,训练后“A”等次的人数是多少?并补全统计图.(2)若学校有600名学生,请估计该校训练后成绩为“A”等次的人数.20.如图1表示同一时刻的韩国首尔时间和北京时间,两地时差为整数.(1)设北京时间为x(时),首尔时间为y(时),就0≤x≤12,求y关于x的函数表达式,并填写下表(同一时刻的两地时间).北京时间7:30 2:50首尔时间12:15(2)如图2表示同一时刻的英国伦敦时间(夏时制)和北京时间,两地时差为整数.如果现在伦敦(夏时制)时间为7:30,那么此时韩国首尔时间是多少?21.如图,直线y=x﹣与x,y轴分别交于点A,B,与反比例函数y=(k>0)图象交于点C,D,过点A作x轴的垂线交该反比例函数图象于点E.(1)求点A的坐标.(2)若AE=AC.①求k的值.②试判断点E与点D是否关于原点O成中心对称?并说明理由.22.四边形ABCD的对角线交于点E,有AE=EC,BE=ED,以AB为直径的半圆过点E,圆心为O.(1)利用图1,求证:四边形ABCD是菱形.(2)如图2,若CD的延长线与半圆相切于点F,已知直径AB=8.①连结OE,求△OBE的面积.②求弧AE的长.23.在平面直角坐标系中,点O为原点,平行于x轴的直线与抛物线L:y=ax2相交于A,B两点(点B在第一象限),点D在AB的延长线上.(1)已知a=1,点B的纵坐标为2.①如图1,向右平移抛物线L使该抛物线过点B,与AB的延长线交于点C,求AC的长.②如图2,若BD=AB,过点B,D的抛物线L2,其顶点M在x轴上,求该抛物线的函数表达式.(2)如图3,若BD=AB,过O,B,D三点的抛物线L3,顶点为P,对应函数的二次项系数为a3,过点P作PE∥x轴,交抛物线L于E,F两点,求的值,并直接写出的值.24.在平面直角坐标系中,点O为原点,点A的坐标为(﹣6,0).如图1,正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=60°,OE=OA,求直线EF的函数表达式.(2)若α为锐角,tanα=,当AE取得最小值时,求正方形OEFG的面积.(3)当正方形OEFG的顶点F落在y轴上时,直线AE与直线FG相交于点P,△OEP的其中两边之比能否为:1?若能,求点P的坐标;若不能,试说明理由2020年浙江省金华市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.实数﹣的绝对值是()A.2 B.C.﹣D.﹣【考点】实数的性质.【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:﹣的绝对值是.故选:B.【点评】本题考查了实数的性质,负数的绝对值是它的相反数.2.若实数a,b在数轴上的位置如图所示,则下列判断错误的是()A.a<0 B.ab<0 C.a<b D.a,b互为倒数【考点】实数与数轴.【分析】根据数轴上的点表示的数右边的总比左边的大,可得答案.【解答】解:A、a<0,故A正确;B、ab<0,故B正确;C、a<b,故C正确;D、乘积为1的两个数互为倒数,故D错误;故选:D.【点评】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大是解题关键.3.如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是()A.Φ45.02 B.Φ44.9 C.Φ44.98 D.Φ45.01【考点】正数和负数.【分析】依据正负数的意义求得零件直径的合格范围,然后找出不符要求的选项即可.【解答】解:∵45+0.03=45.03,45﹣0.04=44.96,∴零件的直径的合格范围是:44.96≤零件的直径≤5.03.∵44.9不在该范围之内,∴不合格的是B.故选:B.【点评】本题主要考查的是正数和负数的意义,根据正负数的意义求得零件直径的合格范围是解题的关键.4.从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是()A.B.C.D.【考点】简单几何体的三视图.【分析】直接利用左视图的观察角度,进而得出视图.【解答】解:如图所示:∵从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,∴该几何体的左视图为:.故选:C.【点评】此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.5.一元二次方程x2﹣3x﹣2=0的两根为x1,x2,则下列结论正确的是()A.x1=﹣1,x2=2 B.x1=1,x2=﹣2 C.x1+x2=3 D.x1x2=2【考点】根与系数的关系.【分析】根据根与系数的关系找出“x1+x2=﹣=3,x1•x2==﹣2”,再结合四个选项即可得出结论.【解答】解:∵方程x2﹣3x﹣2=0的两根为x1,x2,∴x1+x2=﹣=3,x1•x2==﹣2,∴C选项正确.故选C.【点评】本题考查了根与系数的关系,解题的关键是找出x1+x2=3,x1•x2=﹣2.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积是关键.6.如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD【考点】全等三角形的判定.【分析】根据全等三角形的判定:SAS,AAS,ASA,可得答案.【解答】解:由题意,得∠ABC=∠BAD,AB=BA,A、∠ABC=∠BAD,AB=BA,AC=BD,(SSA)三角形不全等,故A错误;B、在△ABC与△BAD中,,△ABC≌△BAD(ASA),故B正确;C、在△ABC与△BAD中,,△ABC≌△BAD(AAS),故C正确;D、在△ABC与△BAD中,,△ABC≌△BAD(SAS),故D正确;故选:A.【点评】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为()A.B.C.D.【考点】列表法与树状图法.【分析】列表得出所有等可能的情况数,找出小明、小华两名学生参加社会实践活动的情况数,即可求出所求的概率;【解答】解:解:可能出现的结果小明打扫社区卫生打扫社区卫生参加社会调查参加社会调查小华打扫社区卫生参加社会调查参加社会调查打扫社区卫生由上表可知,可能的结果共有4种,且他们都是等可能的,其中两人同时选择“参加社会调查”的结果有1种,则所求概率P1=,故选:A.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.8.一座楼梯的示意图如图所示,BC是铅垂线,CA是水平线,BA与CA的夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯的面积至少需要()A.米2B.米2C.(4+)米2D.(4+4tanθ)米2【考点】解直角三角形的应用.【分析】由三角函数表示出BC,得出AC+BC的长度,由矩形的面积即可得出结果.【解答】解:在Rt△ABC中,BC=AC•tanθ=4tanθ(米),∴AC+BC=4+4tanθ(米),∴地毯的面积至少需要1×(4+4tanθ)=4+tanθ(米2);故选:D.【点评】本题考查了解直角三角形的应用、矩形面积的计算;由三角函数表示出BC是解决问题的关键.9.足球射门,不考虑其他因素,仅考虑射点到球门AB的张角大小时,张角越大,射门越好.如图的正方形网格中,点A,B,C,D,E均在格点上,球员带球沿CD方向进攻,最好的射点在()A.点C B.点D或点EC.线段DE(异于端点)上一点D.线段CD(异于端点)上一点【考点】角的大小比较.【专题】网格型.【分析】连接BC,AC,BD,AD,AE,BE,再比较∠ACB,∠ADB,∠AEB的大小即可.【解答】解:连接BC,AC,BD,AD,AE,BE,通过测量可知∠ACB<∠ADB<∠AEB,所以射门的点越靠近线段DE,角越大,故最好选择DE(异于端点)上一点,故选C.【点评】本题考查了比较角的大小,一般情况下比较角的大小有两种方法:①测量法,即用量角器量角的度数,角的度数越大,角越大.②叠合法,即将两个角叠合在一起比较,使两个角的顶点及一边重合,观察另一边的位置.10.在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足.设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为()A.B.C.D.【考点】相似三角形的判定与性质;函数的图象;线段垂直平分线的性质.【分析】由△DAH∽△CAB,得=,求出y与x关系,再确定x的取值范围即可解决问题.【解答】解:∵DH垂直平分AC,∴DA=DC,AH=HC=2,∴∠DAC=∠DCH,∵CD∥AB,∴∠DCA=∠BAC,∴∠DAN=∠BAC,∵∠DHA=∠B=90°,∴△DAH∽△CAB,∴=,∴=,∴y=,∵AB<AC,∴x<4,∴图象是D.故选D.【点评】本题科学相似三角形的判定和性质、相等垂直平分线性质、反比例函数等知识,解题的关键是正确寻找相似三角形,构建函数关系,注意自变量的取值范围的确定,属于中考常考题型.二、填空题(本题有6小题,每小题4分,共24分)11.不等式3x+1<﹣2的解集是x<﹣1.【考点】解一元一次不等式.【分析】利用不等式的基本性质,将两边不等式同时减去1再除以3,不等号的方向不变.得到不等式的解集为:x<﹣1.【解答】解:解不等式3x+1<﹣2,得3x<﹣3,解得x<﹣1.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.12.能够说明“=x不成立”的x的值是﹣1(写出一个即可).【考点】算术平方根.【专题】计算题;实数.【分析】举一个反例,例如x=﹣1,说明原式不成立即可.【解答】解:能够说明“=x不成立”的x的值是﹣1,故答案为:﹣1【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.13.为监测某河道水质,进行了6次水质检测,绘制了如图的氨氮含量的折线统计图.若这6次水质检测氨氮含量平均数为1.5mg/L,则第3次检测得到的氨氮含量是1mg/L.【考点】算术平均数;折线统计图.【专题】统计与概率.【分析】根据题意可以求得这6次总的含量,由折线统计图可以得到除第3次的含量,从而可以得到第3次检测得到的氨氮含量.【解答】解:由题意可得,第3次检测得到的氨氮含量是:1.5×6﹣(1.6+2+1.5+1.4+1.5)=9﹣8=1mg/L,故答案为:1.【点评】本题考查算术平均数、折线统计图,解题的关键是明确题意,找出所求问题需要的条件.14.如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是80°.【考点】平行线的性质.【分析】延长DE交AB于F,根据平行线的性质得到∠AFE=∠B,∠B+∠C=180°,根据三角形的外角的性质即可得到结论.【解答】解:延长DE交AB于F,∵AB∥CD,BC∥DE,∴∠AFE=∠B,∠B+∠C=180°,∴∠AFE=∠B=60°,∴∠AED=∠A+∠AFE=80°,故答案为:80°.【点评】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.15.如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC 上,以AD为折痕△ABD折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是2或5.【考点】翻折变换(折叠问题).【分析】先依据勾股定理求得AB的长,然后由翻折的性质可知:AB′=10,DB=DB′,接下来分为∠B′DE=90°和∠B′ED=90°,两种情况画出图形,设DB=DB′=x,然后依据勾股定理列出关于x的方程求解即可.【解答】解:∵Rt△ABC纸片中,∠C=90°,AC=6,BC=8,∴AB=10,∵以AD为折痕△ABD折叠得到△AB′D,∴BD=DB′,AB′=AB=10.如图1所示:当∠B′DE=90°时,过点B′作B′F⊥AF,垂足为F.设BD=DB′=x,则AF=6+x,FB′=8﹣x.在Rt△AFB′中,由勾股定理得:AB′2=AF2+FB′2,即(6+x)2+(8﹣x)2=102.解得:x1=2,x2=0(舍去).∴BD=2.如图2所示:当∠B′ED=90°时,C与点E重合.∵AB′=10,AC=6,∴B′E=4.设BD=DB′=x,则CD=8﹣x.在Rt△′BDE中,DB′2=DE2+B′E2,即x2=(8﹣x)2+42.解得:x=5.∴BD=5.综上所述,BD的长为2或5.故答案为:2或5.【点评】本题主要考查的是翻折的性质、勾股定理的应用,根据勾股定理列出关于x的方程是解题的关键.16.由6根钢管首尾顺次铰接而成六边形钢架ABCDEF,相邻两钢管可以转动.已知各钢管的长度为AB=DE=1米,BC=CD=EF=FA=2米.(铰接点长度忽略不计)(1)转动钢管得到三角形钢架,如图1,则点A,E之间的距离是米.(2)转动钢管得到如图2所示的六边形钢架,有∠A=∠B=∠C=∠D=120°,现用三根钢条连接顶点使该钢架不能活动,则所用三根钢条总长度的最小值是3米.【考点】三角形的稳定性.【分析】(1)只要证明AE∥BD,得=,列出方程即可解决问题.(2)分别求出六边形的对角线并且比较大小,即可解决问题.【解答】解:(1)如图1中,∵FB=DF,FA=FE,∴∠FAE=∠FEA,∠B=∠D,∴∠FAE=∠B,∴AE∥BD,∴=,∴=,∴AE=,故答案为.(2)如图中,作BN⊥FA于N,延长AB、DC交于点M,连接BD、AD、BF、CF.在RT△BFN中,∵∠BNF=90°,BN=,FN=AN+AF=+2=,∴BF==,同理得到AC=DF=,∵∠ABC=∠BCD=120°,∴∠MBC=∠MCB=60°,∴∠M=60°,∴CM=BC=BM,∵∠M+∠MAF=180°,∴AF∥DM,∵AF=CM,∴四边形AMCF是平行四边形,∴CF=AM=3,∵∠BCD=∠CBD+∠CDB=60°,∠CBD=∠CDB,∴∠CBD=∠CDB=30°,∵∠M=60°,∴∠MBD=90°,∴BD==2,同理BE=2,∵<3<2,∴用三根钢条连接顶点使该钢架不能活动,∴连接AC、BF、DF即可,∴所用三根钢条总长度的最小值3,故答案为3.【点评】本题考查三角形的稳定性、平行线的性质、平行四边形的判定和性质、勾股定理.等边三角形的判定和性质等知识,解题的关键是添加辅助线构造特殊三角形以及平行四边形,属于中考常考题型.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.计算:﹣(﹣1)2020﹣3tan60°+(﹣2020)0.【考点】实数的运算.【分析】首先利用二次根式的性质以及特殊角的三角函数值、零指数幂的性质分别化简求出答案.【解答】解:原式=3﹣1﹣3×+1=0.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.解方程组.【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】方程组利用加减消元法求出解即可.【解答】解:,由①﹣②,得y=3,把y=3代入②,得x+3=2,解得:x=﹣1.则原方程组的解是.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.某校组织学生排球垫球训练,训练前后,对每个学生进行考核.现随机抽取部分学生,统计了训练前后两次考核成绩,并按“A,B,C”三个等次绘制了如图不完整的统计图.试根据统计图信息,解答下列问题:(1)抽取的学生中,训练后“A”等次的人数是多少?并补全统计图.(2)若学校有600名学生,请估计该校训练后成绩为“A”等次的人数.【考点】条形统计图.【分析】(1)将训练前各等级人数相加得总人数,将总人数减去训练后B、C两个等级人数可得训练后A等级人数;(2)将训练后A等级人数占总人数比例乘以总人数可得.【解答】解:(1)∵抽取的人数为21+7+2=30,∴训练后“A”等次的人数为30﹣2﹣8=20.补全统计图如图:(2)600×=400(人).答:估计该校九年级训练后成绩为“A”等次的人数是400.【点评】本题主要考查条形统计图,根据统计图读出训练前后各等级的人数及总人数间的关系是解题的关键,也考查了样本估计总体.20.如图1表示同一时刻的韩国首尔时间和北京时间,两地时差为整数.(1)设北京时间为x(时),首尔时间为y(时),就0≤x≤12,求y关于x的函数表达式,并填写下表(同一时刻的两地时间).北京时间7:30 11:152:50首尔时间8:3012:15 3:50(2)如图2表示同一时刻的英国伦敦时间(夏时制)和北京时间,两地时差为整数.如果现在伦敦(夏时制)时间为7:30,那么此时韩国首尔时间是多少?【考点】一次函数的应用.【分析】(1)根据图1得到y关于x的函数表达式,根据表达式填表;(2)根据如图2表示同一时刻的英国伦敦时间(夏时制)和北京时间得到伦敦(夏时制)时间与北京时间的关系,结合(1)解答即可.【解答】解:(1)从图1看出,同一时刻,首尔时间比北京时间多1小时,故y关于x的函数表达式是y=x+1.北京时间7:30 11:15 2:50首尔时间8:30 12:15 3:50(2)从图2看出,设伦敦(夏时制)时间为t时,则北京时间为(t+7)时,由第(1)题,韩国首尔时间为(t+8)时,所以,当伦敦(夏时制)时间为7:30,韩国首尔时间为15:30.【点评】本题考查的是一次函数的应用,根据题意正确求出函数解析式是解题的关键.21.如图,直线y=x﹣与x,y轴分别交于点A,B,与反比例函数y=(k>0)图象交于点C,D,过点A作x轴的垂线交该反比例函数图象于点E.(1)求点A的坐标.(2)若AE=AC.①求k的值.②试判断点E与点D是否关于原点O成中心对称?并说明理由.【考点】反比例函数与一次函数的交点问题.【分析】(1)令一次函数中y=0,解关于x的一元一次方程,即可得出结论;(2)①过点C作CF⊥x轴于点F,设AE=AC=t,由此表示出点E的坐标,利用特殊角的三角形函数值,通过计算可得出点C的坐标,再根据反比例函数图象上点的坐标特征可得出关于t的一元二次方程,解方程即可得出结论;②根据点在直线上设出点D的坐标,根据反比例函数图象上点的坐标特征可得出关于点D横坐标的一元二次方程,解方程即可得出点D的坐标,结合①中点E的坐标即可得出结论.【解答】解:(1)当y=0时,得0=x﹣,解得:x=3.∴点A的坐标为(3,0).:(2)①过点C作CF⊥x轴于点F,如图所示.设AE=AC=t,点E的坐标是(3,t),在Rt△AOB中,tan∠OAB==,∴∠OAB=30°.在Rt△ACF中,∠CAF=30°,∴CF=t,AF=AC•cos30°=t,∴点C的坐标是(3+t,t).∴(3+t)×t=3t,解得:t1=0(舍去),t2=2.∴k=3t=6.②点E与点D关于原点O成中心对称,理由如下:设点D的坐标是(x,x﹣),∴x(x﹣)=6,解得:x1=6,x2=﹣3,∴点D的坐标是(﹣3,﹣2).又∵点E的坐标为(3,2),∴点E与点D关于原点O成中心对称.【点评】本题考查了反比例函数与一次函数的交点问题、解一元二次方程以及反比例函数图象上点的坐标特征,解题的关键是:(1)令一次函数中y=0求出x的值;(2)根据反比例函数图象上点的坐标特征得出一元二次方程.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数图象上点的坐标特征找出关于点的横坐标的一元二次方程是关键.22.四边形ABCD的对角线交于点E,有AE=EC,BE=ED,以AB为直径的半圆过点E,圆心为O.(1)利用图1,求证:四边形ABCD是菱形.(2)如图2,若CD的延长线与半圆相切于点F,已知直径AB=8.①连结OE,求△OBE的面积.②求弧AE的长.【考点】菱形的判定与性质;切线的性质.【分析】(1)先由AE=EC、BE=ED可判定四边形为平行四边形,再根据∠AEB=90°可判定该平行四边形为菱形;(2)①连结OF,由切线可得OF为△ABD的高且OF=4,从而可得S△ABD,由OE为△ABD的中位线可得S△OBE=S△ABD;②作DH⊥AB于点H,结合①可知四边形OHDF为矩形,即DH=OF=4,根据sin∠DAB==知∠EOB=∠DAH=30°,即∠AOE=150°,根据弧长公式可得答案【解答】解:(1)∵AE=EC,BE=ED,∴四边形ABCD是平行四边形.∵AB为直径,且过点E,∴∠AEB=90°,即AC⊥BD.∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.(2)①连结OF.∵CD的延长线与半圆相切于点F,∴OF⊥CF.∵FC∥AB,∴OF即为△ABD中AB边上的高.∴S△ABD=AB×OF=×8×4=16,∵点O是AB中点,点E是BD的中点,∴S△OBE=S△ABD=4.②过点D作DH⊥AB于点H.∵AB∥CD,OF⊥CF,∴FO⊥AB,∴∠F=∠FOB=∠DHO=90°.∴四边形OHDF为矩形,即DH=OF=4.∵在Rt△DAH中,sin∠DAB==,∴∠DAH=30°.∵点O,E分别为AB,BD中点,∴OE∥AD,∴∠EOB=∠DAH=30°.∴∠AOE=180°﹣∠EOB=150°.∴弧AE的长==.【点评】本题主要考查菱形的判定即矩形的判定与性质、切线的性质,熟练掌握其判定与性质并结合题意加以灵活运用是解题的关键.23.在平面直角坐标系中,点O为原点,平行于x轴的直线与抛物线L:y=ax2相交于A,B两点(点B在第一象限),点D在AB的延长线上.(1)已知a=1,点B的纵坐标为2.①如图1,向右平移抛物线L使该抛物线过点B,与AB的延长线交于点C,求AC的长.②如图2,若BD=AB,过点B,D的抛物线L2,其顶点M在x轴上,求该抛物线的函数表达式.(2)如图3,若BD=AB,过O,B,D三点的抛物线L3,顶点为P,对应函数的二次项系数为a3,过点P作PE∥x轴,交抛物线L于E,F两点,求的值,并直接写出的值.【考点】二次函数综合题.【分析】(1)①根据函数解析式求出点A、B的坐标,求出AC的长;②作抛物线L2的对称轴与AD相交于点N,根据抛物线的轴对称性求出OM,利用待定系数法求出抛物线的函数表达式;(2)过点B作BK⊥x轴于点K,设OK=t,得到OG=4t,利用待定系数法求出抛物线的函数表达式,根据抛物线过点B(t,at2),求出的值,根据抛物线上点的坐标特征求出的值.【解答】解:(1)①二次函数y=x2,当y=2时,2=x2,解得x1=,x2=﹣,∴AB=2.∵平移得到的抛物线L1经过点B,∴BC=AB=2,∴AC=4.②作抛物线L2的对称轴与AD相交于点N,如图2,根据抛物线的轴对称性,得BN=DB=,∴OM=.设抛物线L2的函数表达式为y=a(x﹣)2,由①得,B点的坐标为(,2),∴2=a(﹣)2,解得a=4.抛物线L2的函数表达式为y=4(x﹣)2;(2)如图3,抛物线L3与x轴交于点G,其对称轴与x轴交于点Q,过点B作BK⊥x轴于点K,设OK=t,则AB=BD=2t,点B的坐标为(t,at2),根据抛物线的轴对称性,得OQ=2t,OG=2OQ=4t.设抛物线L3的函数表达式为y=a3x(x﹣4t),∵该抛物线过点B(t,at2),∴at2=a3t(t﹣4t),∵t≠0,∴=﹣,由题意得,点P的坐标为(2t,﹣4a3t2),则﹣4a3t2=ax2,解得,x1=﹣t,x2=t,EF=t,∴=.【点评】本题考查的是二次函数的图象和性质、待定系数法求函数解析式,灵活运用待定系数法求出函数解析式、掌握抛物线的对称性、正确理解抛物线上点的坐标特征是解题的关键.24.在平面直角坐标系中,点O为原点,点A的坐标为(﹣6,0).如图1,正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=60°,OE=OA,求直线EF的函数表达式.(2)若α为锐角,tanα=,当AE取得最小值时,求正方形OEFG的面积.(3)当正方形OEFG的顶点F落在y轴上时,直线AE与直线FG相交于点P,△OEP的其中两边之比能否为:1?若能,求点P的坐标;若不能,试说明理由【考点】正方形的性质;待定系数法求一次函数解析式.【分析】(1)先判断出△AEO为正三角形,再根据锐角三角函数求出OM即可;(2)判断出当AE⊥OQ时,线段AE的长最小,用勾股定理计算即可;(3)由△OEP的其中两边之比为:1分三种情况进行计算即可.【解答】解:(1)如图1,过点E作EH⊥OA于点H,EF与y轴的交点为M.∵OE=OA,α=60°,∴△AEO为正三角形,∴OH=3,EH==3.∴E(﹣3,3).∵∠AOM=90°,∴∠EOM=30°.在Rt△EOM中,∵cos∠EOM=,即=,∴OM=4.∴M(0,4).设直线EF的函数表达式为y=kx+4,∵该直线过点E(﹣3,3),∴﹣3k+4=3,解得k=,所以,直线EF的函数表达式为y=x+4.(2)如图2,射线OQ与OA的夹角为α(α为锐角,tanα).无论正方形边长为多少,绕点O旋转角α后得到正方形OEFG的顶点E在射线OQ上,∴当AE⊥OQ时,线段AE的长最小.在Rt△AOE中,设AE=a,则OE=2a,∴a2+(2a)2=62,解得a1=,a2=﹣(舍去),∴OE=2a=,∴S=OE2=.正方形OEFG(3)设正方形边长为m.当点F落在y轴正半轴时.如图3,当P与F重合时,△PEO是等腰直角三角形,有=或=.在Rt△AOP中,∠APO=45°,OP=OA=6,∴点P1的坐标为(0,6).在图3的基础上,当减小正方形边长时,点P在边FG 上,△OEP的其中两边之比不可能为:1;当增加正方形边长时,存在=(图4)和=(图5)两种情况.如图4,△EFP是等腰直角三角形,有=,即=,此时有AP∥OF.在Rt△AOE中,∠AOE=45°,∴OE=OA=6,∴PE=OE=12,PA=PE+AE=18,∴点P2的坐标为(﹣6,18).如图5,过P作PR⊥x轴于点R,延长PG交x轴于点H.设PF=n.。

2020年浙江金华中考数学试卷(解析版)

2020年浙江金华中考数学试卷(解析版)

2020年浙江金华中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.实数的相反数是( ).A. B. C. D.2.分式的值是零,则的值为( ).A. B. C. D.3.下列多项式中,能运用平方差公式分解因式的是( ).A. B. C. D.4.下列四个图形中,是中心对称图形的是( ).A.B.C.D.5.如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到号卡片的概率是( ).A.B.C.D.6.如图,工人师傅用角尺画出工件边缘的垂线和,得到,理由是( ).A.连结直线外一点与直线上各点的所有线段中,垂线段最短B.在同一平面内,垂直于同一条直线的两条直线互相平行C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D.经过直线外一点,有且只有一条直线与这条直线平行7.已知点,,在函数 的图象上,则下列判断正确的是( ).A.B.C.D.8.如图,⊙是等边的内切圆,分别切,,于点,,,是上一点,则的度数是( ).A.B.C.D.9.如图,在编写数学谜题时,“”内要求填写同一个数字,若设“”内数字为,则列出方程正确的是( ).A.B.C.D.10.如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形与正方形.连结,相交于点,与相交于点.若,则的值是( ).A.B.正方形正方形C.D.二、填空题(本大题共6小题,每小题4分,共24分)11.点在第二象限内,则的值可以是(写出一个即可) .12.数据,,,,的中位数是 .13.如图为一个长方体,则该几何体主视图的面积为 .单位:主视方向14.如图,平移图形,与图形可以拼成一个平行四边形,则图中的度数是 .15.如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点,,均为正六边形的顶点.与地面.所成的锐角为,则的值是 .(1)(2)16.图是一个闭合时的夹子,图是该夹子的主视示意图,夹子两边为,(点与点重合),点是夹子转轴位置,于点,于点,,,,.按图示方式用手指按夹子,夹子两边绕点转动. 图图当,两点的距离最大时,以点,,,为顶点的四边形的周长是.当夹子的开口最大(即点与点重合)时,,两点的距为.三、解答题(本大题共8小题,共66分)17.计算:.18.解不等式:.19.某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如下两幅不完整的统计图表,请根据图表信息回答下列问题:抽取的学生最喜爱体育锻炼项目的统计表(1)(2)(3)类别项目人数(人)跳绳健身操俯卧撑开合跳其它抽取的学生最喜爱体育锻炼项目的扇形统计图.跳绳.健身操.俯卧撑.开合跳.其他求参与问卷调查的学生总人数.在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?该市共有初中学生人,估算该市初中学生中最喜爱“健身操”的人数.(1)(2)20.如图,的半径,于点,.求弦的长.求的长.21.某地区山峰的高度每增加百米,气温大约降低.气温和高度(百米)的函数关系如图所示,请根据图象解决下列问题:(1)(2)(3)(百米)求高度为百米时的气温.求关于的函数表达式.测得山顶的气温为,求该山峰的高度.图(1)图1图2(2)22.如图,在中,,,.求边上的高线长.点为线段的中点,点在边上,连结,沿将折叠得到.如图,当点落在上时,求的度数.如图,连结,当时,求的长.23.如图,在平面直角坐标系中,已知二次函数图象的顶点为,与轴交于点,异于顶点的点在该函数图象上.【答案】解析:∵,∴的相反数是.故选:.(1)(2)(3)xy当时,求的值.当时,若点在第一象限内,结合图象,求当时,自变量的取值范围.作直线与轴相交于点当点在轴上方,且在线段上时,求的取值范围.(1)(2)(3)24.如图,在平面直角坐标系中,正方形的两直角边分别在坐标轴的正半轴上,分别过,的中点,作,的平行线,相交于点,已知.备用图求证:四边形为菱形.求四边形的面积.若点在轴正半轴上(异于点),点在轴上,平面内是否存在点,使得以点,,,为顶点的四边形与四边形相似?若存在,求点的坐标;若不存在,试说明理由.A 1.解析:,即,,,经检验不是原方程的解,是原方程的解,故.故选.解析:中心对称图形是旋转后和原图形能够重合,、、均为轴对称图形.解析:由于所有机会均等的结果为种,选中号的情况是种,所以摸到号的概率为,故应选:.解析:工人师傅用角尺画出工件边缘的垂线和,得到,理由是在同一平面内,垂直于同一条直线的两条直线互相平行.故选.解析:反比例函数经过一、三象限,点在第三象限故,点;在第一象限,D 2.C 3.C 4.A 5.B 6.C 7.当函数在第一象限时,随增大而减小且此时,故,∴.故答案为:.解析:如图连接、,∵⊙为的内切圆,分别切、于点、,∴,,∴,∵为等边三角形,∴,四边形中,,∴,所对圆心角为,圆周角为,∴,∴.故选.解析:中的是十位上的数,是个位上的数,中的是十位上的数,是个位上的数,∴.B 8.D 9.B10.解析:设,与交点为点.由题意可知:≌≌≌,∴,,又四边形为正方形,∴,,,∴,与中有,∴≌,∴,,,∵,∴,与中有,∴≌,∴ ,又,∵,∴,又,,,∴,∴,∴,∴,∴中,∵为正方形,∴,又,∴.故选.解析:∵点在第二象限,∴,故(答案不唯一).解析:把这些数从小到大排列为:、、、、,最中间的数是,则中位数是.故答案为:.解析:该几何体的主视图是一个长,宽的长方形,所以主视图的面积是.解析:如图所示,即为与拼成的平分四边形,则,过点作,则,∴,,∴,.正方形正方形正方形正方形(答案不唯一,负数即可)11.12.13.14.解析:设正六边形的边长为,如图所示,在正六边形中,由于正六边形是轴对称图形,对称轴、、交于点,则,∴≌≌≌≌≌,∴,∴、、、、、均为等边三角形.∴,连接交于点,∴,,∴,,过点作于点,过点作,过点作于点,交于点,交于点,于点,交于点,交正六边形于点,交正六边形顶点.∴四边形、、均为矩形.∴,,,又,∴.15.、、(1)(2)又,,,,,,∴.∴,∴.故的值是.解析:由题意可知,若、两点之间的距离最大,则为,即、、三点共线时.∵,,,∴,∴,又∵,故,∴四边形为矩形,∴,∴四边形的周长为:().当夹子开口最大时(点与重合)如图所示:(1)(2)16.连接、相交于点,∵,∴,∵,∴(),∵故,在中,(),∵且,,,∴且,∵,,∴,∴,∴,∴,∴,∵且,,∴,∴,∴,∴().解析:.17.(1)(2)(3)(1)(2)原式.解析:,,,.解析:.∴参与问卷调查的学生总人数为人..答:最喜爱“开合跳”的学生有人.抽取学生中最喜爱“健身操”的初中学生有:(人),.∴最喜爱“健身操”的初中学生人数约为人.解析:在中,,∴.∵,∴.∵,,∴.∴.18.(1)人.(2)人.(3)人.19.(1).(2).20.(1)(2)(3)(1).∴的长是.解析:由题意,得高度增加百米,则温度降低,∴,∴高度为百米时的气温大约是.设,由题意,得,即;当,,,解得,∴.当时,,解得.∴该山峰的高度大约为百米.解析:如图,图(1).(2).(3)百米.21.(1).12(2)..22.12(2)过点作于点.在中,.如图,图由题意,得≌,∴.又∵.∴,∴.如图,图由()可知:在中,,∵,∴.∵≌,∴,则.又∵,∴,∴,即,∴.在中,,则.(1).23.(1)(2)(3)解析:当时,,当时,.当时,将代入函数表达式,得,解得,(舍去),∴此时抛物线的对称轴是直线,根据抛物线的轴对称性,当时,有,,∴的取值范围为.∵点与点不重合,∴,∵抛物线的顶点的坐标是,∴抛物线的顶点在直线上,当时,,∴点的坐标为,xy图xy图xy图xy图抛物线从图向左平移到图的过程中,减小且,点沿轴向上移动,当点与点重合时,,(2).(3)或.(1)(2)解得,(舍去),当点与点重合时,如图,顶点也与点,重合,点到达最高点,∴点的坐标为,∴,解得,当抛物线从图位置继续向左平移时,如图,点不在线段上,∴点在线段上时,的取值范围是或.解析:∵,,∴四边形是平行四边形,∵四边形是正方形,∴,,∵点,是,的中点,∴,∴≌,∴,∴平行四边形是菱形.如图,连接.图∵,,∴(1)证明见解析.(2).(3),,,,.24.正方形(3),∴.由图,连结与相交于点,易得的两直角边之比为.)当为菱形一边时,点在轴上方,有图、图两种情况:如图,与交于点.图∵菱形菱形,∴的两直角边之比为.过点作轴于点,交于点.设.∵,点是的中点,∴点是中点,∴是的中位线,∴.∵,,∴,∴,∴,∴.∵,∴,解得.∴,∴点的坐标为.如图,的两直角边之比为.菱形图过点作轴于点,过点作于点,延长交于点.∵,,∴,∴,设,∴,∴,∴.又∵是的中位线,∴,∴,∴,解得,∴,点的坐标为.)当为菱形一边时,点在轴下方,有图,图两种情况:如图,的两直角边之比为.图过点作轴于点,过点作于点.∵是的中位线,∴.又∵,,∴,∴,则,∴.设,则.∵,∴,解得.∴,∴点的坐标为.如图,的两直角边之比为.图过点作轴于点,交于点,过点作于点,∵是的中位线,∴,,∵,,∴,∴,则.设,则,∵,∴,解得,∴,∴点的坐标为.)当为菱形对角线时,有图一种情况:如图,的两直角边之比为.图过点作轴于点,交于点,过点作于点.∵轴,点为的中点,∴,∴,∵,,∴,∴,则,.∵是的中位线,∴,即,∴点的坐标为.综上所述,点的坐标为,,,,.。

2020年浙江省金华市、丽水市中考数学试卷及答案

2020年浙江省金华市、丽水市中考数学试卷及答案

2020年浙江省金华市、丽水市中考数学试卷及答案一、选择题(本题有10小题,每小题3分,共30分)1.实数3的相反数是()A. −3B. 3C. −13D. 132.分式 x+5x−2的值是零,则x的值为()A. 5B. 2C. -2D. -53.下列多项式中,能运用平方差公式分解因式的是()A. a2+b2B. 2a−b2C. a2−b2D. −a2−b24.下列四个图形中,是中心对称图形的是()A. B. C. D.5.如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是()A. 12B. 13C. 23D. 166.如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∥b,理由是()A. 连结直线外一点与直线上各点的所有线段中,垂线段最短B. 在同一平面内,垂直于同一条直线的两条直线互相平行C. 在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D. 经过直线外一点,有且只有一条直线与这条直线平行7.已知点(-2,a),(2,b),(3,c)在函数y=kx(k>0)的图象上,则下列判断正确的是()A. a<b<c B. b<a<c C. a<c<b D. c<b<a8.如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是DF⌢上一点,则∠EPF的度数是()A. 65°B. 60°C. 58°D. 50°9.如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x,则列出方程正确的是()A. 3×2x+5=2xB. 3×20x+5=10x×2C. 3×20+x+5=20xD. 3×(20+x)+5=10x+210.如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD相交于点O,BD与HC相交于点P.若GO=GP,则S正方形ABCDS正方形EFGH的值是()A. 1+√2B. 2+√2C. 5−√2D. 154二、填空题(本题有6小题,每小题4分,共24分)11.点P(m,2)在第二象限内,则m的值可以是(写出一个即可)________.12.数据1,2,4,5,3的中位数是________.13.如图为一个长方体,则该几何体主视图的面积为________cm2.14.如图,平移图形M,与图形N可以拼成一个平行四边形,则图中α的度数是________°.15.如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A,B,C均为正六边形的顶点,AB与地面BC所成的锐角为β,则tanβ的值是________.16.图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC,BD(点A与点B重合),点O是夹子转轴位置,OE⊥AC于点E,OF⊥BD于点F,OE=OF=1cm,AC=BD=6cm,CE=DF,CE:AE=2:3.按图示方式用手指按夹子,夹子两边绕点O转动.(1)当E,F两点的距离最大值时,以点A,B,C,D为顶点的四边形的周长是________cm.(2)当夹子的开口最大(点C与点D重合)时,A,B两点的距离为________cm.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.计算:(−2020)0+√4−tan45o+|−3|.18.解不等式:5x−5<2(2+x).19.某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如下两幅不完整的统计图表,请根据图表信息回答下列问题:抽取的学生最喜爱体育锻炼项目的统计表类别项目人数(人)A 跳舞59B 健身操C 俯卧撑 31D 开合跳E 其它22(1)求参与问卷调查的学生总人数.(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生约8000人,估算该市初中学生中最喜爱“健身操”的人数.20.如图,的半径OA=2,OC⊥AB于点C,∠AOC=60°.(1)求弦AB的长.(2)求的长.21.某地区山峰的高度每增加1百米,气温大约降低0.6℃.气温T(℃)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温.(2)求T关于h的函数表达式.(3)测得山顶的气温为6℃,求该山峰的高度.22.如图,在△ABC中,AB= 4√2,∠B=45°,∠C=60°.(1)求BC边上的高线长.(2)点E为线段AB的中点,点F在边AC上,连结EF,沿EF将△AEF折叠得到△PEF.①如图2,当点P落在BC上时,求∠AEP的度数.②如图3,连结AP,当PF⊥AC时,求AP的长.23.如图,在平面直角坐标系中,已知二次函数图象的顶点为A,与y轴交于点B,异于顶点A的点C(1,n)在该函数图象上.(1)当m=5时,求n的值.(2)当n=2时,若点A在第一象限内,结合图象,求当y 时,自变量x的取值范围.(3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围.24.如图,在平面直角坐标系中,正方形ABOC的两直角边分别在坐标轴的正半轴上,分别过OB,OC的中点D,E作AE,AD的平行线,相交于点F,已知OB=8.(1)求证:四边形AEFD为菱形.(2)求四边形AEFD的面积.(3)若点P在x轴正半轴上(异于点D),点Q在y轴上,平面内是否存在点G,使得以点A,P,Q,G 为顶点的四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由.参考答案一、选择题(本题有10小题,每小题3分,共30分)1-5 ADCCA 6-10 BCBDB二、填空题(本题有6小题,每小题4分,共24分)11.【答案】如-1等(答案不唯一,负数即可)【考点】点的坐标与象限的关系【解析】【解答】解:∵点P(m,2)在第二象限内,∴m<0,m可以是-1.故答案为:-1(答案不唯一).【分析】根据第二象限点的坐标符号为负正,据此解答即可.12.【答案】3【考点】中位数【解析】【解答】解:将数据从小大排列1,2,3,4,5,最中间的数据是3,∴中位数是:3.故答案为:3.【分析】中位数:先把数据从小到大(或从大到小)进行排列,如果数据的个数是奇数,那么最中间的那个数据就是中位数,如果数据的个数是偶数,那么最中间的那两个数据的平均数就是中位数;据此解答即可.13.【答案】20【考点】简单几何体的三视图【解析】【解答】解:主视图是一个长4,高为5的长方体,∴主视图的面积为:4×5=20cm2.故答案为:20.【分析】主视图:是从物体正面所看的的平面图形,根据长方体的尺寸确定主视图的长,高,然后计算即可.14.【答案】30【考点】多边形内角与外角,平行四边形的性质【解析】【解答】解:如图,∵∠1+∠2+70°+140°+120°=(5-2)×180°,∴∠1+∠2=210°,∵平移图形M ,与图形N 可以拼成一个平行四边形 ,∴∠2+120°=180°,∠1+a=180°,∴∠2+120°+∠1+a=360°,∴a=30°.故答案为:30.【分析】根据五边形的内角和可求出∠1+∠2=210°,根据平行四边形的性质及平角的定义可得∠2+120°=180°,∠1+a=180°,从而求出a 的度数.15.【答案】1915√3【考点】正多边形和圆,锐角三角函数的定义【解析】【解答】如图,过作AD ∥BC ,过点B 作BH ⊥AD 垂足为H ,∴∠A=β,设正六边形的边长为a ,∴BH=6×2a=12a ,∠AED=120°,AE=AD=a ,在等腰三角形ADE 中,∠ADE=∠EAD=30°,∴AD=√3a ,∴AH=√3a+√3a+√32a=5√32a, tan β=tanA=BH AH =24√315. 故答案为:24√315.【分析】如图,过作AD ∥BC ,过点B 作BH ⊥AD 垂足为H ,可得∠A=β,设正六边形的边长为a ,根据正六边形的性质及卡通图形,可得BH=12a ,∠ADE=∠EAD=30°,AE=AD=a ,从而求出AD=√3a ,从而可得AH=5√32a ,由tan β=tanA=BHAH 即可求出结论. 16.【答案】 (1)16(2)【考点】等腰三角形的性质,勾股定理,矩形的性质,锐角三角函数的定义【解析】【解答】解:(1)当点E 、O 、F 三点共线时,E 、F 两点的距离最大,此时四边形ABDC 是矩形,∴AB=CD=EF=2cm ,∴ 以点A ,B ,C ,D 为顶点的四边形的周长为:2+6+2=6=16cm;(2)当夹子的开口最大(点C 与点D 重合)时 ,如图,连接CO 并延长交AB 于点H ,∴CH⊥AB,AH=BH,∵AC=BD=6cm,CE:AE=2:3,∴CE=125cm,在Rt△OEF中,CO=√OE2+CE2=135,∵sin∠ECO=OECO =AHAC,∴AH=3013,∴AB=2AH=6013.【分析】(1)当点E、O、F三点共线时,E、F两点的距离最大,此时四边形ABDC是矩形,可得AB=CD=EF=2cm,根据矩形的性质求出周长即可;(2)当夹子的开口最大(点C与点D重合)时,如图,;连接CO并延长交AB于点H,可得CH⊥AB,AH=BH,利用已知先求出CE=125cm,在Rt△OEF中利用勾股定理求出CO的长,由sin∠ECO=OECO =AHAC,求出AH,从而求出AB=2AH的长.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.【答案】解:原式=1+2-1+3=5【考点】实数的运算,特殊角的三角函数值【解析】【分析】利用零指数幂,算术平方根,特殊角的三角函数值,绝对值的意义将原式简化,然后进行加减运算即可.18.【答案】解:5x-5<4+2x,5x-2x<4+5,3x<9,x <3【考点】解一元一次不等式【解析】【分析】利用去括号,移项合并,系数化为1求出不等式的解集即可.19.【答案】(1)解:22÷11%=200.∴参与问卷调查的学生总人数为200人.(2)解:200×24%=48.答:最喜爱“开合跳”的学生有48人.(3)解:抽取学生中最喜爱“健身操”的初中学生有200-59-31-48-22=40(人),40200×8000=1600.∴最喜爱“健身操”的初中学生人数约为1600人.【考点】用样本估计总体,统计表,扇形统计图【解析】【分析】(1)利用跳绳的人数除以其百分比即得参与问卷调查的学生总人数.(2)利用参与问卷调查的学生总人数乘以“开合跳”的学生百分比即得“开合跳”的学生的人数;(3)利用8000乘以样本中最喜爱“健身操”人数的百分比即得结论.20.【答案】(1)解:在Rt△AOC中,∠AOC=60°,∴AC=AO·sin∠AOC =2sin60°=√3,∵OC⊥AB,∴AB=2AC=2 √3(2)解:∵OA= OB=2,OC⊥AB,∴∠AOB=2∠AOC=120°.∴= nπr180=120π×2180=4π3.∴的长是4π3.【考点】垂径定理,圆周角定理,弧长的计算【解析】【分析】(1)在Rt△AOC中,由AC=AO·sin∠AOC,可求出AC=√得AB=2AC=2√3;(2)根据等腰三角形的性质可得∠AOB=2∠AOC=120°,直接利用弧长公式即可求出结论.21.【答案】(1)解:由题意得高度增加2百米,则温度降低2×0.6=1.2(℃).∴13.2-1.2=12∴高度为5百米时的气温大约是12℃.(2)解:设T=kh+b(k≠0),当h=3时,T=13.2,13.2=-0.6 ×3+b,解得b=15.∴T=-0.6h+15(3)解:当T=6时,6=-0.6h+15,解得h=15.∴该山峰的高度大约为15百米.【考点】一次函数的实际应用【解析】【分析】(1)由高度每增加1百米,气温大约降低0.6℃,可得高度增加2百米,则温度降低2×0.6=1.2(℃),从而可得高度为5百米时的气温大约是13.2-1.2=12℃;(2)直接利用待定系数法求一次函数解析式T=-0.6h+15;(3)利用(2)直接求出当T=6时,h的值即可.22.【答案】(1)解:如图1,过点A作AD⊥BC于点D,在Rt△ABD中,AD=AB⋅sin45°=4.= 4√2×√22(2)解:①如图2,∵△AEF≌△PEF,∴AE=EP.又∵AE=BE ,∴BE=EP,∴∠EPB=∠B=45°,∴∠AEP=90°.②如图3,由(1)可知:在Rt△ADC中,AC=ADsin60°=8√33.∵PF⊥AC,∴∠PFA=90°.∵△AEF≌△PEF,∴∠AFE=∠PFE=45°,则∠AFE=∠B. 又∵∠EAF=∠CAB,∴△EAF∽△CAB,∴AFAB =AEAC,即4√2=√28√33,∴AF=2√3在Rt△AFP中,AF=PF,则AP=√2AF=2√6.【考点】翻折变换(折叠问题),相似三角形的判定与性质,解直角三角形,等腰直角三角形【解析】【分析】(1)如图1,过点A作AD⊥BC于点D,在Rt△ABD中,AD=AB⋅sin45°=4;(2)①由折叠知△AEF≌△PEF,可得AE=EP,利用线段的中点及等量代换,可得BE=EP,根据等边对等角,可得∠EPB=∠B=45°,利用三角形内角和即可求出∠AEP=90°;②由(1)可知:在Rt△ADC中,AC=ADsin60°=8√33,由∠EAF=∠CAB,∠AFE=∠B,可证,据此求出AF的长,在等腰直角△APF中,AP=√2AF,从而求出结论.23.【答案】(1)解:当m=5时,y= −12(x−5)2+4,当x=1时,n=−12×42+4=−4.(2)解:当n=2时,将C(1,2)代入函数表达式y=−12(x−m)2+4,得2=−12(1−m)2+4,解得m1=3,m2=-1(舍去).∴此时抛物线的对称轴为直线x=3,根据抛物线的轴对称性,当y=2时,有x1=1 ,x2=5.∴x的取值范围为1≤x≤5.(3)解:∵点A与点C不重合,∴m≠1.∵抛物线的顶点A的坐标是(m,4) ,∴抛物线的顶点在直线y=4上.当x=0时,y=−12m2+4,∴点B的坐标为(0,−1m2+4).2抛物线从试题图位置向左平移到图2的位置前,m减小,点B沿y轴上向上移动.m2+4=0,当点B与点O重合时,−12解得m1=2√2,m2=−2√2.当点B与点D重合时,如图2,顶点A也与点B,D 重合,点B到达最高点.∴点B的点坐标为(0,4),∴−1m2+4=4,解得m=0.2当抛物线从图2位置继续向左平移时,如图3点B不在线段OD上.∴ B点在线段OD上时,m的取值范围是0≤m<1或1<m<2 √2.【考点】二次函数图象的几何变换,二次函数图象上点的坐标特征,二次函数y=a(x-h)^2+k的图象,二次函数y=a(x-h)^2+k的性质【解析】【分析】(1)将m=5,x=1代入中,即可求出n值;(2)当n=2时,将C(1,2)代入函数表达式中,求出m=3值,即得此时抛物线的对称轴为直线x=3,(x-3)2+4=2,解得x1=1 ,x2=5,由于抛物线开口向下,当1≤x≤5时,抛物线的图当y=2时,即y=−12象在直线y=2直线的上方,据此即得结论;(3)点A与点C不重合,可得m≠1.由抛物线的顶点A的坐标是(m,4) ,可知抛物线的顶点在直线ym2+4).抛物线从试题图位置向左平移到图2的位置前,m =4上.利用抛物线求出点B的坐标为(0,−12减小,点B沿y轴上向上移动,①当点B与点O重合时,②如图2,顶点A也与点B,D 重合,点B 到达最高点.③当抛物线从图2位置继续向左平移时,如图3点B不在线段OD上,分别求出m的范围即可.24.【答案】(1)证明:∵DF∥AE,EF∥AD,∴四边形AEFD是平行四边形.∵四边形ABOC是正方形,∴OB=OC=AB=AC,∠ACE=∠ABD=Rt∠.∵点D,E是OB,OC的中点,∴CE=BD,∴△ACE≌△ABD(SAS),∴AE=AD,∴□AEFD是菱形.(2)解:如图1,连结DE.∵S△ABD=AB·BD=,S△ODE=OD·OE=,∴S△AED=S正方形ABOC-2 S△ABD-S△ODE=64-2 -8=24,∴S菱形AEFD=2S△AED=48.(3)解:由图1,连结AF与DE相交于点K,易得△ADK的两直角边之比为1:3. 1)当AP为菱形一边时,点Q在x轴上方,有图2、图3两种情况:如图2,AG与PQ交于点H,∵菱形PAQG∽菱形ADFE,∴△APH的两直角边之比为1:3.过点H作HN⊥x轴于点N,交AC于点M,设AM=t.∵HN∥OQ,点H是PQ的中点,∴点N是OP中点,∴HN是△OPQ的中位线,∴ON=PN=8-t.又∵∠1=∠3=90°-∠2,∠PNH=∠AMH=90°,∴△HMA∽△PNH,∴AMHN =MHPN=,∴HN=3AM=3t,∴MH=MN-NH=8-3t.∵PN=3MH,∴8-t =3(8-3t),解得t=2.∴OP=2ON=2(8-t)=12,∴点P的坐标为(12,0).如图3,△APH的两直角边之比为1:3.过点H作HI⊥y轴于点I,过点P作PN⊥x轴交IH于点N,延长BA交IN于点M. ∵∠1=∠3=90°-∠2,∠AMH=∠PNH,∴△AMH∽△HNP,∴AMHN =MHPN=,设MH=t,∴PN=3MH=3t,∴AM=BM-AB=3t-8,∴HN=3AM=3(3t-8) =9t-24.又∵HI是△OPQ的中位线,∴OP=2IH,∴HI=HN,∴8+t=9t-24,解得t=4.∴OP=2HI=2(8+t)=24,∴点P的坐标为(24,0).2)当AP为菱形一边时,点Q在x轴下方,有图4、图5两种情况:如图4,△PQH的两直角边之比为1:3.过点H作HM⊥y轴于点M,过点P作PN⊥HM于点N. ∵MH是△QAC的中位线,∴HM=AC2=4.又∵∠1=∠3=90°-∠2,∠HMQ=∠N,∴△HPN∽△QHM,∴NPHM =HNMQ=,则PN==43,∴OM=43.设HN=t,则MQ=3t.∵MQ=MC,∴3t=8-43,解得t=.∴OP=MN=4+t=569,∴点P的坐标为( ,0).如图5,△PQH的两直角边之比为1:3.过点H作HM⊥x轴于点M,交AC于点I,过点Q作NQ⊥HM于点N. ∵IH是△ACQ的中位线,∴CQ=2HI,NQ=CI=4.∵∠1=∠3=90°-∠2,∠PMH=∠QNH,∴△PMH∽△HNQ,∴MHNQ =PMHN=PHHQ=,则MH=NQ=.设PM=t,则HN=3t,∵HN=HI,∴3t=8+ ,解得t=.∴OP=OM-PM=QN-PM=4-t=,∴点P的坐标为( ,0).3)当AP为菱形对角线时,有图6一种情况:如图6,△PQH的两直角边之比为1:3.过点H作HM⊥y轴于点M,交AB于点I,过点P作PN⊥HM于点N. ∵HI∥x轴,点H为AP的中点,∴AI=IB=4,∴PN=4.∵∠1=∠3=90°-∠2,∠PNH=∠QMH=90°,∴△PNH∽△HMQ,∴PNMH =PMHN=PMHN=13,则MH=3PN=12,HI=MH-MI=4.∵HI是△ABP的中位线,∴BP=2HI=8,即OP=16,∴点P的坐标为(16,0).综上所述,点P的坐标为(12,0),(24,0),( ,0),( ,0),(16,0).【考点】坐标与图形性质,菱形的判定与性质,正方形的性质,相似多边形的性质,相似三角形的判定与性质【解析】【分析】(1)根据两组对边分别平行可证四边形AEFD是平行四边形,利用正方形的性质可得OB=OC=AB=AC,∠ACE=∠ABD=90°.根据线段中点的定义可得CE=BD,根据“SAS”可证△ACE≌△ABD,可得AE=AD,根据一组邻边相等的平行四边形是菱形即证;(2)如图1,连结DE.根据三角形的面积公式求出S△ABD=AB·BD=,16,S△ODE=OD·OE=8,利用S△AED=S正方形ABOC-2 S△ABD-S△ODE=24,由S菱形AEFD=2S△AED即可求出结论;(3)由图1,连结AF与DE相交于点K,易得△ADK的两直角边之比为1:3.分两种情况讨论:①当AP为菱形一边时,点Q在x轴上方,有图2(△APH的两直角边之比为1:3);图3(△APH的两直角边之比为1:3).两种情况;②当AP为菱形一边时,点Q在x轴下方,有图4(△PQH的两直角边之比为1:3 )、图5(△PQH的两直角边之比为1:3)两种情况;据此分别解答即可.。

2020年浙江省金华市中考数学试卷

2020年浙江省金华市中考数学试卷

2020年浙江省金华市中考数学试卷和答案解析一、选择题(本题有10小题,每小题3分,共30分)1.(3分)实数3的相反数是()A.﹣3B.3C.﹣D.解析:直接利用相反数的定义分析得出答案.参考答案:解:实数3的相反数是:﹣3.故选:A.点拨:此题主要考查了实数的性质,正确掌握相反数的定义是解题关键.2.(3分)分式的值是零,则x的值为()A.2B.5C.﹣2D.﹣5解析:利用分式值为零的条件可得x+5=0,且x﹣2≠0,再解即可.参考答案:解:由题意得:x+5=0,且x﹣2≠0,解得:x=﹣5,故选:D.点拨:此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.3.(3分)下列多项式中,能运用平方差公式分解因式的是()A.a2+b2B.2a﹣b2C.a2﹣b2D.﹣a2﹣b2解析:根据能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反进行分析即可.参考答案:解:A、a2+b2不能运用平方差公式分解,故此选项错误;B、2a﹣b2不能运用平方差公式分解,故此选项错误;C、a2﹣b2能运用平方差公式分解,故此选项正确;D、﹣a2﹣b2不能运用平方差公式分解,故此选项错误;故选:C.点拨:此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.4.(3分)下列四个图形中,是中心对称图形的是()A.B.C.D.解析:根据中心对称图形的概念对各图形分析判断即可得解.参考答案:解:A、该图形不是中心对称图形,故本选项不合题意;B、该图形不是中心对称图形,故本选项不合题意;C、该图形是中心对称图形,故本选项符合题意;D、该图形不是中心对称图形,故本选项不合题意;故选:C.点拨:本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(3分)如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是()A.B.C.D.解析:根据概率公式直接求解即可.参考答案:解:∵共有6张卡片,其中写有1号的有3张,∴从中任意摸出一张,摸到1号卡片的概率是=;故选:A.点拨:此题考查了概率的求法,用到的知识点为:可能性等于所求情况数与总情况数之比.6.(3分)如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∥b.理由是()A.连结直线外一点与直线上各点的所有线段中,垂线段最短B.在同一平面内,垂直于同一条直线的两条直线互相平行C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D.经过直线外一点,有且只有一条直线与这条直线平行解析:根据垂直于同一条直线的两条直线平行判断即可.参考答案:解:由题意a⊥AB,b⊥AB,∴a∥b(垂直于同一条直线的两条直线平行),故选:B.点拨:本题考查平行线的判定,平行公理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.7.(3分)已知点(﹣2,a)(2,b)(3,c)在函数y=(k>0)的图象上,则下列判断正确的是()A.a<b<c B.b<a<c C.a<c<b D.c<b<a解析:根据反比例函数的性质得到函数y=(k>0)的图象分布在第一、三象限,在每一象限,y随x的增大而减小,则b>c>0,a<0.参考答案:解:∵k>0,∴函数y=(k>0)的图象分布在第一、三象限,在每一象限,y 随x的增大而减小,∵﹣2<0<2<3,∴b>c>0,a<0,∴a<c<b.故选:C.点拨:本题考查了反比例函数图象上点的坐标特征,熟练掌握反比例函数的性质是解题的关键.8.(3分)如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是上一点,则∠EPF的度数是()A.65°B.60°C.58°D.50°解析:如图,连接OE,OF.求出∠EOF的度数即可解决问题.参考答案:解:如图,连接OE,OF.∵⊙O是△ABC的内切圆,E,F是切点,∴OE⊥AB,OF⊥BC,∴∠OEB=∠OFB=90°,∵△ABC是等边三角形,∴∠B=60°,∴∠EOF=120°,∴∠EPF=∠EOF=60°,故选:B.点拨:本题考查三角形的内切圆与内心,切线的性质,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.(3分)如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x.则列出方程正确的是()A.3×2x+5=2x B.3×20x+5=10x×2C.3×20+x+5=20x D.3×(20+x)+5=10x+2解析:直接利用表示十位数的方法进而得出等式即可.参考答案:解:设“□”内数字为x,根据题意可得:3×(20+x)+5=10x+2.故选:D.点拨:此题主要考查了由实际问题抽象出一元一次方程,正确表示十位数是解题关键.10.(3分)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD相交于点O、BD与HC相交于点P.若GO=GP,则的值是()A.1+B.2+C.5﹣D.解析:证明△BPG≌△BCG(ASA),得出PG=CG.设OG=PG =CG=x,则EG=2x,FG=x,由勾股定理得出BC2=(4+2)x2,则可得出答案.参考答案:解:∵四边形EFGH为正方形,∴∠EGH=45°,∠FGH=90°,∵OG=GP,∴∠GOP=∠OPG=67.5°,∴∠PBG=22.5°,又∵∠DBC=45°,∴∠GBC=22.5°,∴∠PBG=∠GBC,∵∠BGP=∠BG=90°,BG=BG,∴△BPG≌△BCG(ASA),∴PG=CG.设OG=PG=CG=x,∵O为EG,BD的交点,∴EG=2x,FG=x,∵四个全等的直角三角形拼成“赵爽弦图”,∴BF=CG=x,∴BG=x+x,∴BC2=BG2+CG2==,∴=.故选:B.点拨:本题考查了正方形的性质,全等三角形的判定与性质,勾股定理,直角三角形的性质等知识,熟练掌握勾股定理的应用是解题的关键.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)点P(m,2)在第二象限内,则m的值可以是(写出一个即可)﹣1(答案不唯一)..解析:直接利用第二象限内点的坐标特点得出m的取值范围,进而得出答案.参考答案:解:∵点P(m,2)在第二象限内,∴m<0,则m的值可以是﹣1(答案不唯一).故答案为:﹣1(答案不唯一).点拨:此题主要考查了点的坐标,正确得出m的取值范围是解题关键.12.(4分)数据1,2,4,5,3的中位数是3.解析:先将题目中的数据按照从小到大排列,即可得到这组数据的中位数.参考答案:解:数据1,2,4,5,3按照从小到大排列是1,2,3,4,5,则这组数据的中位数是3,故答案为:3.点拨:本题考查中位数,解答本题的关键是明确中位数的含义,会求一组数据的中位数.13.(4分)如图为一个长方体,则该几何体主视图的面积为20cm2.解析:根据从正面看所得到的图形,即可得出这个几何体的主视图的面积.参考答案:解:该几何体的主视图是一个长为5,宽为4的矩形,所以该几何体主视图的面积为20cm2.故答案为:20.点拨:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.14.(4分)如图,平移图形M,与图形N可以拼成一个平行四边形,则图中α的度数是30°.解析:根据平行四边形的性质解答即可.参考答案:解:∵四边形ABCD是平行四边形,∴∠D=180°﹣∠C=60°,∴∠α=180°﹣(540°﹣70°﹣140°﹣180°)=30°,故答案为:30.点拨:此题考查平行四边形的性质,关键是根据平行四边形的邻角互补解答.15.(4分)如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A,B,C均为正六边形的顶点,AB与地面BC所成的锐角为β.则tanβ的值是.解析:如图,作AT∥BC,过点B作BH⊥AT于H,设正六边形的边长为a,则正六边形的半径为a,边心距=a.求出BH,AH即可解决问题.参考答案:解:如图,作AT∥BC,过点B作BH⊥AT于H,设正六边形的边长为a,则正六边形的半径为,边心距=a.观察图象可知:BH=a,AH=a,∵AT∥BC,∴∠BAH=β,∴tanβ===.故答案为.点拨:本题考查解直角三角形的应用,解题的关键是理解题意,学会添加常用辅助线,构造直角三角形解决问题.16.(4分)图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC,BD(点A与点B重合),点O是夹子转轴位置,OE⊥AC于点E,OF⊥BD于点F,OE=OF=1cm,AC=BD=6cm,CE=DF,CE:AE=2:3.按图示方式用手指按夹子,夹子两边绕点O转动.(1)当E,F两点的距离最大时,以点A,B,C,D为顶点的四边形的周长是16cm.(2)当夹子的开口最大(即点C与点D重合)时,A,B两点的距离为cm.解析:(1)当E,F两点的距离最大时,E,O,F共线,此时四边形ABCD是矩形,求出矩形的长和宽即可解决问题.(2)如图3中,连接EF交OC于H.想办法求出EF,利用平行线分线段成比例定理即可解决问题.参考答案:解:(1)当E,F两点的距离最大时,E,O,F共线,此时四边形ABCD是矩形,∵OE=OF=1cm,∴EF=2cm,∴AB=CD=2cm,∴此时四边形ABCD的周长为2+2+6+6=16(cm),故答案为16.(2)如图3中,连接EF交OC于H.由题意CE=CF=×6=(cm),∵OE=OF=1cm,∴CO垂直平分线段EF,∵OC===(cm),∵•OE•EC=•CO•EH,∴EH==(cm),∴EF=2EH=(cm)∵EF∥AB,∴==,∴AB=×=(cm).故答案为.点拨:本题考查旋转的性质,矩形的判定和性质,平行线分线段成比例定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)计算:(﹣2020)0+﹣tan45°+|﹣3|.解析:利用零次幂的性质、二次根式的性质、特殊角的三角函数值、绝对值的性质进行计算,再算加减即可.参考答案:解:原式=1+2﹣1+3=5.点拨:此题主要考查了实数运算,关键是掌握零次幂、二次根式的性质、特殊角的三角函数值、绝对值的性质.18.(6分)解不等式:5x﹣5<2(2+x).解析:去括号,移项、合并同类项,系数化为1求得即可.参考答案:解:5x﹣5<2(2+x),5x﹣5<4+2x5x﹣2x<4+5,3x<9,x<3.点拨:本题考查了解一元一次不等式,熟练掌握解不等式的步骤是解题的关键.19.(6分)某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题:抽取的学生最喜爱体育锻炼项目的统计表类别项目人数(人)A跳绳59B健身操▲C俯卧撑31D开合跳▲E其它22(1)求参与问卷调查的学生总人数.(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生约8000人,估算该市初中学生中最喜爱“健身操”的人数.解析:(1)从统计图表中可得,“E组其它”的频数为22,所占的百分比为11%,可求出调查学生总数;(2)“开合跳”的人数占调查人数的24%,即可求出最喜爱“开合跳”的人数;(3)求出“健身操”所占的百分比,用样本估计总体,即可求出8000人中喜爱“健身操”的人数.参考答案:解:(1)22÷11%=200(人),答:参与调查的学生总数为200人;(2)200×24%=48(人),答:最喜爱“开合跳”的学生有48人;(3)最喜爱“健身操”的学生数为200﹣59﹣31﹣48﹣22=40(人),8000×=1600(人),答:最喜爱“健身操”的学生数大约为1600人.点拨:考查统计表、扇形统计图的意义和制作方法,理解统计图表中的数量之间的关是解决问题的关键.20.(8分)如图,的半径OA=2,OC⊥AB于点C,∠AOC=60°.(1)求弦AB的长.(2)求的长.解析:(1)根据题意和垂径定理,可以求得AC的长,然后即可得到AB的长;(2)根据∠AOC=60°,可以得到∠AOB的度数,然后根据弧长公式计算即可.参考答案:解:(1)∵的半径OA=2,OC⊥AB于点C,∠AOC =60°,∴AC=OA•sin60°=2×=,∴AB=2AC=2;(2)∵OC⊥AB,∠AOC=60°,∴∠AOB=120°,∵OA=2,∴的长是:=.点拨:本题考查弧长的计算、垂径定理,解答本题的关键是明确题意,利用数形结合的思想解答.21.(8分)某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T(℃)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.解析:(1)根据高度每增加1百米,气温大约降低0.6℃,由3百米时温度为13.2°C,即可得出高度为5百米时的气温;(2)应用待定系数法解答即可;(3)根据(2)的结论解答即可.参考答案:解:(1)由题意得,高度增加2百米,则气温降低2×0.6=1.2(°C),∴13.2﹣1.2=12,∴高度为5百米时的气温大约是12°C;(2)设T关于h的函数表达式为T=kh+b,则:,解得,∴T关于h的函数表达式为T=﹣0.6h+15;(3)当T=6时,6=﹣0.6h+15,解得h=15.∴该山峰的高度大约为15百米.点拨:本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.22.(10分)如图,在△ABC中,AB=4,∠B=45°,∠C=60°.(1)求BC边上的高线长.(2)点E为线段AB的中点,点F在边AC上,连结EF,沿EF 将△AEF折叠得到△PEF.①如图2,当点P落在BC上时,求∠AEP的度数.②如图3,连结AP,当PF⊥AC时,求AP的长.解析:(1)如图1中,过点A作AD⊥BC于D.解直角三角形求出AD即可.(2)①证明BE=EP,可得∠EPB=∠B=45°解决问题.②如图3中,由(1)可知:AC==,证明△AEF∽△ACB,推出=,由此求出AF即可解决问题.参考答案:解:(1)如图1中,过点A作AD⊥BC于D.在Rt△ABD中,AD=AB•sin45°=4×=4.(2)①如图2中,∵△AEF≌△PEF,∴AE=EP,∵AE=EB,∴BE=EP,∴∠EPB=∠B=45°,∴∠PEB=90°,∴∠AEP=180°﹣90°=90°.②如图3中,由(1)可知:AC==,∵PF⊥AC,∴∠PFA=90°,∵△AEF≌△PEF,∴∠AFE=∠PFE=45°,∴∠AFE=∠B,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴=,即=,∴AF=2,在Rt△AFP,AF=FP,∴AP=AF=2.方法二:AE=BE=PE可得直角三角形ABP,由PF⊥AC,可得∠AFE=45°,可得∠FAP=45°,即∠PAB=30°.AP=ABcos30°=2.点拨:本题属于三角形综合题,考查了解直角三角形的应用,翻折变换,全等三角形的性质,相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.23.(10分)如图,在平面直角坐标系中,已知二次函数y=﹣(x ﹣m)2+4图象的顶点为A,与y轴交于点B,异于顶点A的点C (1,n)在该函数图象上.(1)当m=5时,求n的值.(2)当n=2时,若点A在第一象限内,结合图象,求当y≥2时,自变量x的取值范围.(3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围.解析:(1)利用待定系数法求解即可.(2)求出y=2时,x的值即可判断.(3)由题意点B的坐标为(0,﹣m2+4),求出几个特殊位置m 的值即可判断.参考答案:解:(1)当m=5时,y=﹣(x﹣5)2+4,当x=1时,n=﹣×42+4=﹣4.(2)当n=2时,将C(1,2)代入函数表达式y=﹣(x﹣m)2+4,得2=﹣(1﹣m)2+4,解得m=3或﹣1(舍弃),∴此时抛物线的对称轴x=3,根据抛物线的对称性可知,当y=2时,x=1或5,∴x的取值范围为1≤x≤5.(3)∵点A与点C不重合,∴m≠1,∵抛物线的顶点A的坐标是(m,4),∴抛物线的顶点在直线y=4上,当x=0时,y=﹣m2+4,∴点B的坐标为(0,﹣m2+4),抛物线从图1的位置向左平移到图2的位置,m逐渐减小,点B 沿y轴向上移动,当点B与O重合时,﹣m2+4=0,解得m=2或﹣2,当点B与点D重合时,如图2,顶点A也与B,D重合,点B到达最高点,∴点B(0,4),∴﹣m2+4=4,解得m=0,当抛物线从图2的位置继续向左平移时,如图3点B不在线段OD 上,∴B点在线段OD上时,m的取值范围是:0≤m<1或1<m<2.点拨:本题属于二次函数综合题,考查了二次函数的性质,待定系数法,一次函数的性质等知识,解题的关键是理解题意,学会寻找特殊位置解决数学问题,属于中考常压轴题.24.(12分)如图,在平面直角坐标系中,正方形ABOC的两直角边分别在坐标轴的正半轴上,分别过OB,OC的中点D,E作AE,AD的平行线,相交于点F,已知OB=8.(1)求证:四边形AEFD为菱形.(2)求四边形AEFD的面积.(3)若点P在x轴正半轴上(异于点D),点Q在y轴上,平面内是否存在点G,使得以点A,P,Q,G为顶点的四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由.解析:(1)根据邻边相等的四边形是菱形证明即可.(2)连接DE,求出△ADE的面积即可解决问题.(3)首先证明AK=3DK,①当AP为菱形的一边,点Q在x轴的上方,有图2,图3两种情形.②当AP为菱形的边,点Q在x 轴的下方时,有图4,图5两种情形.③如图6中,当AP为菱形的对角线时,有图6一种情形.分别利用相似三角形的性质求解即可.参考答案:(1)证明:如图1中,∵AE∥DF,AD∥EF,∴四边形AEFD是平行四边形,∵四边形ABCD是正方形,∴AC=AB=OC=OB,∠ACE=∠ABD=90°,∵E,D分别是OC,OB的中点,∴CE=BD,∴△CAE≌△ABD(SAS),∴AE=AD,∴四边形AEFD是菱形.(2)解:如图1中,连接DE.∵S△ADB=S△ACE=×8×4=16,S△EOD=×4×4=8,∴S△AED=S正方形ABOC﹣2S△ABD﹣S△EOD=64﹣2×16﹣8=24,∴S菱形AEFD=2S△AED=48.(3)解:如图1中,连接AF,设AF交DE于K,∵OE=OD=4,OK⊥DE,∴KE=KD,∴OK=KE=KD=2,∵AO=8,∴AK=6,∴AK=3DK,①当AP为菱形的一边,点Q在x轴的上方,有图2,图3两种情形:如图2中,设AG交PQ于H,过点H作HN⊥x轴于N,交AC 于M,设AM=t.∵菱形PAQG∽菱形ADFE,∴PH=3AH,∵HN∥OQ,QH=HP,∴ON=NP,∴HN是△PQO的中位线,∴ON=PN=8﹣t,∵∠MAH=∠PHN=90°﹣∠AHM,∠PNH=∠AMH=90°,∴△HMA∽△PNH,∴===,∴HN=3AM=3t,∴MH=MN﹣NH=8﹣3t,∵PN=3MH,∴8﹣t=3(8﹣3t),∴t=2,∴OP=2ON=2(8﹣t)=12,∴P(12,0).如图3中,过点H作HI⊥y轴于I,过点P作PN⊥x轴交IH于N,延长BA交IN于M.同法可证:△AMH∽△HNP,∴===,设MH=t,∴PN=3MH=3t,∴AM=BM﹣AB=3t﹣8,∵HI是△OPQ的中位线,∴OP=2IH,∴HIHN,∴8+t=9t﹣24,∴t=4,∴OP=2HI=2(8+t)=24,∴P(24,0).②当AP为菱形的边,点Q在x轴的下方时,有图4,图5两种情形:如图4中,QH=3PH,过点H作HM⊥OC于M,过D点P作PN⊥MH于N.∵MH是△QAC的中位线,∴MH=AC=4,同法可得:△HPN∽△QHM,∴===,∴PN=HM=,∴OM=PN=,设HN=t,则MQ=3t,∵MQ=MC,∴3t=8﹣,∴t=,∴OP=MN=4+t=,∴点P的坐标为(,0).如图5中,QH=3PH,过点H作HM⊥x轴于M交AC于I,过点Q作QN⊥HM于N.∵IH是△ACQ的中位线,∴CQ=2HI,NQ=CI=4,同法可得:△PMH∽△HNQ,∴===,则MH=NQ=,设PM=t,则HN=3t,∵HN=HI,∴3t=8+,∴t=,∴OP=OM﹣PM=QN﹣PM=4﹣t=,∴P(,0).③如图6中,当AP为菱形的对角线时,有图6一种情形:过点H作HM⊥y轴于于点M,交AB于I,过点P作PN⊥HM 于N.∵HI∥x轴,AH=HP,∴AI=IB=4,∴PN=IB=4,同法可得:△PNH∽△HMQ,∴===,∴MH=3PN=12,HI=MH﹣MI=4,∵HI是△ABP的中位线,∴BP=2IH=8,∴OP=OB+BP=16,∴P(16,0),综上所述,满足条件的点P的坐标为(12,0)或(24,0)或(,0)或(,0)或(16,0).点拨:本题属于相似形综合题,考查了正方形的性质,菱形的判定和性质,解直角三角形,相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会寻找相似三角形,利用相似三角形的性质构建方程解决问题,属于中考压轴题.。

2020浙江省金华市中考数学试卷(解析版)

2020浙江省金华市中考数学试卷(解析版)
一、选择题(本题有 10 小题,每小题 3 分,共 30 分) 1.(3 分)实数 3 的相反数是( )
A.﹣3
B.3
C.﹣
2020 年浙江省金华市中考数学试卷
参考答案与试题解析
D.
【分析】直接利用相反数的定义分析得出答案. 【解答】解:实数 3 的相反数是:﹣3. 故选:A. 2.(3 分)分式 的值是零,则 x 的值为( )
A.2
B.5
C.﹣2
D.﹣5
【分析】利用分式值为零的条件可得 x+5=0,且 x﹣2≠0,再解即可.
【解答】解:由题意得:x+5=0,且 x﹣2≠0,
解得:x=﹣5,
故选:D.
3.(3 分)下列多项式中,能运用平方差公式分解因式的是( )
A.a2+b2
B.2a﹣b2
C.a2﹣b2
D.﹣a2﹣b2
【分析】根据能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反进行分析即可. 【解答】解:A、a2+b2 不能运用平方差公式分解,故此选项错误; B、2a﹣b2 不能运用平方差公式分解,故此选项错误;
故选:A. 6.(3 分)如图,工人师傅用角尺画出工件边缘 AB 的垂线 a 和 b,得到 a∥b.理由是( )
第 2 页(共 23 页)
A.连结直线外一点与直线上各点的所有线段中,垂线段最短 B.在同一平面内,垂直于同一条直线的两条直线互相平行 C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线 D.经过直线外一点,有且只有一条直线与这条直线平行 【分析】根据垂直于同一条直线的两条直线平行判断即可. 【解答】解:由题意 a⊥AB,b⊥AB, ∴a∥b(垂直于同一条直线的两条直线平行), 故选:B.

2020年浙江省金华市中考数学测评试卷附解析

2020年浙江省金华市中考数学测评试卷附解析

2020年浙江省金华市中考数学测评试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.直角三角形纸片的两直角边长分别为6,8,现将ABC △如图那样折叠,使点A 与点B 重合,折痕为DE ,则tan CBE ∠的值是( ) A .247B.3C .724D .132.两圆的半径的比是 5:3,两圆外切时圆心距d=16,那么两圆内含时,它们的圆心距d 满足( ) A .d<6B .d<4C .6<d<10D .d<83.一个圆柱的侧面展开图是相邻边长分别为10和16的矩形,则该圆柱的底面圆半径是( ) A .π5 B .π8 C .π5或π8 D .π10或π164.抛物线2255y x x =++与坐标轴...的交点个数是( ) A .O 个 B .1个C . 2个D .3 个5.如图,在矩形ABCD 中,AB =3,AD =4,点P 在AD 上,PE ⊥AC 于E ,PF ⊥BD 于F ,则PE +PF 等于( ) A .75 B .125 C .135 D .1456.如图,在□ABCD 中,EF ∥GH ∥AB ,MN ∥BC ,则图中的平行四边形的个数为(• ) A .12个 B .16个 C .14个 D .18个7.将一个有40个数据的样本经统计分成6组,若某一组的频率为0.15,则该组的频数为 ( ) A .6B .0.9C .6D .18.四条边都相等的平行四边形ABCD 中,周长为l2 cm ,相邻两角之比为5:1,那么□ABCD 对边之间的距离是( ) A .4 cm B .3 cm C .1.5 cmD .1 cm9.有一个两位数,它的十位数字比个位数字大2,并且这个两位数大于40且小于52,则这个两位数是( ) A .41B .42C .43D .4410.要使分式2143x x -+的值为 0,则x 的值应为( )A DBC E FPA .1B .-1C .34-D .1±11.下列计算错误..的是( ) A .6a 2b 3÷(3a 2b-2ab 2)=2b 2-3ab B .[12a 3+(-6a 2)]÷(-3a )=-4a 2+2a C .(-xy 2-3x )÷(-2x )=12y 2+32D .[(-4x 2y )+2xy 2]÷2xy=-2x+y12.已知一叠2元和5元两种面值的人民币,其价值是24元,则面值为2元的人民币的张数是 ( ) A .2张B .7张C 12张D .2张或7张二、填空题13.两名同学玩“石头、剪刀、布”的游戏,如果两人都是等可能性地出石头、剪刀、布三个策略,那么一个回合就能决 胜负的概率是 . 14.若函数y=(m+1)231m m x ++是反比例函数,则m 的值为 .-215.A 是坐标平面上的一点,若点A 与x 轴的距离是2,与y 轴的距离是l ,则点A 的坐标为 .16.卫星绕地球运动的速度是37.910⨯米/秒那么卫星绕地球运行2210⨯秒走过的路程是 米.17.如图,把五边形ABCDO 变换到五边形CDEFO ,应用了哪种图形变换?请完整地叙述这个变换:18.小康把自己的左手印和右手印按在同一张白纸上,左手手印_______(•填“能”和“不能”)通过平移与右手手印重合.19.己公路全长为 s(km),骑自行车 t(h)到达,为了提前 1 h 到达,自行车每小时应多走 km.20.23a -+ 的次数是 .三、解答题21.已知,如图,在⊙O 中,AB 是直径,CD 是一条弦,且CD ⊥AB 于P .连结BC ,AD .求证:PC 2 =PA ·PB .P OC BDA22.如图所示,已知△ABC ,分别以AB ,AC ,BC 为边在BC 的同侧作等边△ABD ,△ACF ,△EBC .求证:四边形DAFE 是平行四边形.23.把汽油以均匀的速度注入容积为60 L 的桶里,注入的时间和注入的油量如下表:注入的时间t(min) 1 2 3 4 5 6 注入的油量q(L) 1.534.567.59(1)(2)求变量t 的取值范围; (3)求t=1.5,4.5时,q 的对应值.24.如图.(1)如果此图形中四个点的纵坐标不变,横坐标都乘-1,在直角坐标中画出新图形,并比较新图形与原图形有何关系;(2)如果原图中四个点的横坐标不变,纵坐标都加上-2,在直角坐标系中画出新图形,并比较新图形与原图形有何关系.25.某活动小组为了估计装有5个白球和若干个红球(每个球除颜色外都相同)的袋中红球接近多少个,在不将袋中球倒出来的情况下,分小组进行摸球试验,两人一组,共20组进行摸球实验.其中一位学生摸球,另一位学生记录所摸球的颜色,并将球放回袋中摇匀,每一组做400次试验,汇总起来后,摸到红球次数为6000次.⑴估计从袋中任意摸出一个球,恰好是红球的概率是多少?⑵请你估计袋中红球接近多少个?26.已知一纸箱中装有5个只有颜色不同的球,其中2个白球,3个红球.(1)求从纸箱中随机取出一个白球的概率是多少?(2)若往装有5个球的原纸箱中,再放入x个白球和y个红球,从箱中随机取出一个白球的概率是13,求y与x的函数解析式.27.小华家距离学校2.4 km,某一天小华从家中去上学恰好行走到一半的路程时,发现离到校时间只有12 min了,如果小华能按时赶到学校,那么他行走剩下的一半路程的平均速度至少要达到多少?28.观察下列等式 (式子中的“ !”是一种数学运算符号):1! = 1,2! = 2×1 , 3! = 3×2 ×1 , 4! =4×3×2×l,…,计算:!(1)!nn(n 是正整数).29.已知实数a、b、c在数轴上的对应点如下图所示,化简a b c a b c a---+--.30.李明家和陈刚家都从甲、乙两供水点购买同样的一种桶装矿泉水,李明家第一季度从甲、乙两供水点分别购买了10桶和6桶,共花费51元;陈刚家第一季度从甲、乙两供水点分别购买了8桶和l2桶,且在乙供水点比在甲供水点多花18元钱.若只考虑价格因素,通过计算说明到哪家供水点购买这种桶装矿泉水更便宜一些?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.C4.B5.B6.D7.C8.C9.B10.D.11.A12.D二、填空题 13. 2314. 15.(1,2)或(-1,2)或(1,-2)或(-1,-2)16.61.5810⨯17.应用了旋转变换,五边形 CDBFO 是由五边形ABCDO 绕点 0接顺时针方向旋转 90°得到的.18.不能19.2st t-20. 1三、解答题 21.略,提示△CBP ∽△DAP .22.证明△EDB ∽△CAB ,得DE=AC ,则DE=AF ,同理AD=EF ,所以四边形DAFE 是平行四边形23.(1)q=1.5t ,是;(2)0≤t ≤40;(3)2.25,6.7524.(1)图略,四个点的坐标变为(0,0),(-6,3),(-4,0),(-6,-3),新图形与原图形关于 y 轴对称 (2)图略,四个点的坐标变为(0,-2),(6,1),(4,-2),(6,-5),新图形是由原图形向下平移 2个单位长度得到的25.(1)20×400=8000,∴摸到红球的频率为75.080006000=.∵试验次数很大,∴频率接近于理论概率,∴估计从袋中任意摸出一个球,恰好是红球的概率是0.75. (2)设袋中红球有x 个,根据题意得:75.05=+x x, 解得 x=15,经检验x=15是原方程的解,∴估计袋中红球接近15个.26. (1)25 (2)21y x =+ 27.0.1km/min28.n29.由题意,得0a b -<,0c a ->,0b c -<,0a <,∴原式=()()()a b c a b c a a b c a b c a a ------+=-+-+-++=30.设这种矿泉水在甲处每桶的价格为x 元,则在乙处的价格为51106x-元,由题意得, 5110128186x x -⨯-=,解之:3x =,∴这种矿泉水在乙处每桶的价格为5110 3.56x-=, ∵3.5>3 ∴到甲供水点购买这种桶装矿泉水便宜一些.。

浙江省金华市2020年中考数学试卷(含解析)

浙江省金华市2020年中考数学试卷(含解析)

2020年浙江省金华市中考数学试卷一、选择题(共10小题,每小题3分,共30分).1.实数3的相反数是()A.3-B.3C.13-D.132.分式52xx+-的值是零,则x的值为()A.2B.5C.2-D.5-3.下列多项式中,能运用平方差公式分解因式的是()A.22a b+B.22a b-C.22a b-D.22a b--4.下列四个图形中,是中心对称图形的是()A.B.C.D.5.如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是()A.12B.13C.23D.166.如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到//a b.理由是()A.连结直线外一点与直线上各点的所有线段中,垂线段最短B.在同一平面内,垂直于同一条直线的两条直线互相平行C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D .经过直线外一点,有且只有一条直线与这条直线平行 7.已知点(2-,)(2a ,)(3b ,)c 在函数(0)ky k x=>的图象上,则下列判断正确的是( ) A .a b c <<B .b a c <<C .a c b <<D .c b a <<8.如图,O 是等边ABC ∆的内切圆,分别切AB ,BC ,AC 于点E ,F ,D ,P 是DF 上一点,则EPF ∠的度数是( )A .65︒B .60︒C .58︒D .50︒9.如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x .则列出方程正确的是( )A .3252x x ⨯+=B .3205102x x ⨯+=⨯C .320520x x ⨯++=D .3(20)5102x x ⨯++=+10.如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD 与正方形EFGH .连结EG ,BD 相交于点O 、BD 与HC 相交于点P .若GO GP =,则ABCD EFGHS S 正方形正方形的值是( )A .12B .22C .52D .154二、填空题(本题有6小题,每小题4分,共24分)11.点(,2)P m 在第二象限内,则m 的值可以是(写出一个即可) .12.数据1,2,4,5,3的中位数是 .13.如图为一个长方体,则该几何体主视图的面积为 2cm .14.如图,平移图形M ,与图形N 可以拼成一个平行四边形,则图中α的度数是 ︒.15.如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A ,B ,C 均为正六边形的顶点,AB 与地面BC 所成的锐角为β.则tan β的值是 .16.图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC ,BD (点A 与点B 重合),点O 是夹子转轴位置,OE AC ⊥于点E ,OF BD ⊥于点F ,1OE OF cm ==,6AC BD cm ==,CE DF =,:2:3CE AE =.按图示方式用手指按夹子,夹子两边绕点O 转动.(1)当E ,F 两点的距离最大时,以点A ,B ,C ,D 为顶点的四边形的周长是 cm . (2)当夹子的开口最大(即点C 与点D 重合)时,A ,B 两点的距离为 cm .三、解答题(本题有8小题,共66分,各小题都必须写出解答过程) 17.计算:0(2020)4tan 45|3|-+︒+-.18.解不等式:552(2)x x -<+.19.某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题: 抽取的学生最喜爱体育锻炼项目的统计表 类别 项目 人数(人)A 跳绳 59B 健身操 ▲C 俯卧撑 31D 开合跳 ▲ E其它22(1)求参与问卷调查的学生总人数;(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生8000人,估算该市初中学生中最喜爱“健身操”的人数.20.如图,AB 的半径2OA =,OC AB ⊥于点C ,60AOC ∠=︒. (1)求弦AB 的长. (2)求AB 的长.21.某地区山峰的高度每增加1百米,气温大约降低0.6C ︒,气温(C)T ︒和高度h (百米)的函数关系如图所示.请根据图象解决下列问题: (1)求高度为5百米时的气温; (2)求T 关于h 的函数表达式;(3)测得山顶的气温为6C ︒,求该山峰的高度.22.如图,在ABC ∆中,42AB =,45B ∠=︒,60C ∠=︒. (1)求BC 边上的高线长.(2)点E 为线段AB 的中点,点F 在边AC 上,连结EF ,沿EF 将AEF ∆折叠得到PEF ∆. ①如图2,当点P 落在BC 上时,求AEP ∠的度数. ②如图3,连结AP ,当PF AC ⊥时,求AP 的长23.如图,在平面直角坐标系中,已知二次函数21()42y x m =--+图象的顶点为A ,与y 轴交于点B ,异于顶点A 的点(1,)C n 在该函数图象上. (1)当5m =时,求n 的值.(2)当2n =时,若点A 在第一象限内,结合图象,求当2y 时,自变量x 的取值范围. (3)作直线AC 与y 轴相交于点D .当点B 在x 轴上方,且在线段OD 上时,求m 的取值范围.24.如图,在平面直角坐标系中,正方形ABOC的两直角边分别在坐标轴的正半轴上,分OB .别过OB,OC的中点D,E作AE,AD的平行线,相交于点F,已知8(1)求证:四边形AEFD为菱形.(2)求四边形AEFD的面积.(3)若点P在x轴正半轴上(异于点)D,点Q在y轴上,平面内是否存在点G,使得以点A,P,Q,G为顶点的四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由.参考答案一、选择题(本题有10小题,每小题3分,共30分) 1.实数3的相反数是( ) A .3-B .3C .13-D .13解:实数3的相反数是:3-. 故选:A . 2.分式52x x +-的值是零,则x 的值为( ) A .2B .5C .2-D .5-解:由题意得:50x +=,且20x -≠, 解得:5x =-, 故选:D .3.下列多项式中,能运用平方差公式分解因式的是( ) A .22a b +B .22a b -C .22a b -D .22a b --解:A 、22a b +不能运用平方差公式分解,故此选项错误; B 、22a b -不能运用平方差公式分解,故此选项错误; C 、22a b -能运用平方差公式分解,故此选项正确;D 、22a b --不能运用平方差公式分解,故此选项错误;故选:C .4.下列四个图形中,是中心对称图形的是( )A .B .C .D .解:A 、该图形不是中心对称图形,故本选项不合题意; B 、该图形不是中心对称图形,故本选项不合题意; C 、该图形是中心对称图形,故本选项符合题意;D 、该图形不是中心对称图形,故本选项不合题意;故选:C .5.如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是( )A .12 B .13C .23D .16解:共有6张卡片,其中写有1号的有3张, ∴从中任意摸出一张,摸到1号卡片的概率是3162=; 故选:A .6.如图,工人师傅用角尺画出工件边缘AB 的垂线a 和b ,得到//a b .理由是( )A .连结直线外一点与直线上各点的所有线段中,垂线段最短B .在同一平面内,垂直于同一条直线的两条直线互相平行C .在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D .经过直线外一点,有且只有一条直线与这条直线平行 解:由题意a AB ⊥,b AB ⊥,//a b ∴(垂直于同一条直线的两条直线平行),故选:B .7.已知点(2-,)(2a ,)(3b ,)c 在函数(0)ky k x=>的图象上,则下列判断正确的是( ) A .a b c << B .b a c << C .a c b << D .c b a <<解:0k >, ∴函数(0)ky k x=>的图象分布在第一、三象限,在每一象限,y 随x 的增大而减小, 2023-<<<, 0b c ∴>>,0a <,a cb ∴<<.故选:C .8.如图,O 是等边ABC ∆的内切圆,分别切AB ,BC ,AC 于点E ,F ,D ,P 是DF 上一点,则EPF ∠的度数是( )A .65︒B .60︒C .58︒D .50︒解:如图,连接OE ,OF .O 是ABC ∆的内切圆,E ,F 是切点, OE AB ∴⊥,OF BC ⊥, 90OEB OFB ∴∠=∠=︒, ABC ∆是等边三角形, 60B ∴∠=︒, 120EOF ∴∠=︒,1602EPF EOF ∴∠=∠=︒, 故选:B .9.如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x .则列出方程正确的是( )A .3252x x ⨯+=B .3205102x x ⨯+=⨯C .320520x x ⨯++=D .3(20)5102x x ⨯++=+解:设“□”内数字为x ,根据题意可得: 3(20)5102x x ⨯++=+.故选:D .10.如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD 与正方形EFGH .连结EG ,BD 相交于点O 、BD 与HC 相交于点P .若GO GP =,则ABCD EFGHS S 正方形正方形的值是( )A .12B .22C .52D .154解:四边形EFGH 为正方形, 45EGH ∴∠=︒,90FGH ∠=︒, OG GP =,67.5GOP OPG ∴∠=∠=︒, 22.5PBG ∴∠=︒,又45DBC ∠=︒, 22.5GBC ∴∠=︒, PBG GBC ∴∠=∠,90BGP BG ∠=∠=︒,BG BG =,()BPG BCG ASA ∴∆≅∆, PG CG ∴=.设OG PG CG x ===, O 为EG ,BD 的交点,2EG x ∴=,2FG x =, 四个全等的直角三角形拼成“赵爽弦图”, BF CG x ∴==,2BG x x ∴=+,2222222(21)(422)BC BG CG x x x ∴=+=++=+,∴()22422222ABCDEFGH x S S x +==+正方形正方形.故选:B .二、填空题(本题有6小题,每小题4分,共24分)11.点(,2)P m 在第二象限内,则m 的值可以是(写出一个即可) 1-(答案不唯一). . 解:点(,2)P m 在第二象限内,0m ∴<,则m 的值可以是1-(答案不唯一).故答案为:1-(答案不唯一).12.数据1,2,4,5,3的中位数是 3 .解:数据1,2,4,5,3按照从小到大排列是1,2,3,4,5,则这组数据的中位数是3,故答案为:3.13.如图为一个长方体,则该几何体主视图的面积为 20 2cm .解:该几何体的主视图是一个长为4,宽为5的矩形,所以该几何体主视图的面积为220cm .故答案为:20.14.如图,平移图形M ,与图形N 可以拼成一个平行四边形,则图中α的度数是 30 ︒.解:四边形ABCD 是平行四边形,18060D C ∴∠=︒-∠=︒,180(54070140180)30α∴∠=︒-︒-︒-︒-︒=︒,故答案为:30.15.如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A ,B ,C 均为正六边形的顶点,AB 与地面BC 所成的锐角为β.则tan β的值是 19315.解:如图,作//AT BC ,过点B 作BH AT ⊥于H ,设正六边形的边长为a ,则正六边形的半径为,边心距32a =.观察图象可知:192BH a =,532AH =, //AT BC , BAH β∴∠=,191932tan 15532a BH AH a β∴===. 故答案为19315. 16.图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC ,BD (点A 与点B 重合),点O 是夹子转轴位置,OE AC ⊥于点E ,OF BD ⊥于点F ,1OE OF cm ==,6AC BD cm ==,CE DF =,:2:3CE AE =.按图示方式用手指按夹子,夹子两边绕点O 转动.(1)当E ,F 两点的距离最大时,以点A ,B ,C ,D 为顶点的四边形的周长是 16 cm .(2)当夹子的开口最大(即点C 与点D 重合)时,A ,B 两点的距离为 cm .解:(1)当E ,F 两点的距离最大时,E ,O ,F 共线,此时四边形ABCD 是矩形, 1OE OF cm ==,2EF cm ∴=,2AB CD cm ∴==,∴此时四边形ABCD 的周长为226616()cm +++=,故答案为16.(2)如图3中,连接EF 交OC 于H .由题意2126()55CE CF cm ==⨯=,1OE OF cm ==,CO ∴垂直平分线段EF ,13()5OC CE cm ===, 1122OE EC CO EH =, 121125()13135EH cm ⨯∴==, 242()13EF EH cm ∴== //EF AB ,∴25EF CE AB CB ==, 52460()21313AB cm ∴=⨯=. 故答案为6013. 三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.计算:0(2020)tan 45|3|-+︒+-.解:原式12135=+-+=.18.解不等式:552(2)x x -<+.解:552(2)x x -<+,5542x x -<+5245x x -<+,39x <,3x <.19.某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题:抽取的学生最喜爱体育锻炼项目的统计表B 健身操 ▲C 俯卧撑 31D 开合跳 ▲E 其它 22(1)求参与问卷调查的学生总人数;(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生8000人,估算该市初中学生中最喜爱“健身操”的人数.解:(1)2211%200÷=(人),答:参与调查的学生总数为200人;(2)20024%48⨯=(人),答:最喜爱“开合跳”的学生有48人;(3)最喜爱“健身操”的学生数为2005931482240----=(人),4080001600200⨯=(人),答:最喜爱“健身操”的学生数大约为1600人.20.如图,AB 的半径2OA =,OC AB ⊥于点C ,60AOC ∠=︒.(1)求弦AB 的长.(2)求AB 的长.解:(1)AB 的半径2OA =,OC AB ⊥于点C ,60AOC ∠=︒,3sin 60232AC OA ∴=︒==,223AB AC ∴==;(2)OC AB ⊥,60AOC ∠=︒,120AOB ∴∠=︒,2OA =,∴AB 的长是:120241803ππ⨯=. 21.某地区山峰的高度每增加1百米,气温大约降低0.6C ︒,气温(C)T ︒和高度h (百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T 关于h 的函数表达式;(3)测得山顶的气温为6C ︒,求该山峰的高度.解:(1)由题意得,高度增加2百米,则气温降低20.6 1.2()C ⨯=︒,13.2 1.212∴-=,∴高度为5百米时的气温大约是12C ︒;(2)设T 关于h 的函数表达式为T kh b =+,则:313.2512k b k b +=⎧⎨+=⎩, 解得0.615k b =-⎧⎨=⎩, T ∴关于h 的函数表达式为0.615T h =-+;(3)当6T =时,60.615h =-+,解得15h =.∴该山峰的高度大约为15百米.22.如图,在ABC ∆中,42AB =,45B ∠=︒,60C ∠=︒.(1)求BC 边上的高线长.(2)点E 为线段AB 的中点,点F 在边AC 上,连结EF ,沿EF 将AEF ∆折叠得到PEF ∆.①如图2,当点P 落在BC 上时,求AEP ∠的度数.②如图3,连结AP ,当PF AC ⊥时,求AP 的长解:(1)如图1中,过点A 作AD BC ⊥于D .在Rt ABD ∆中,2sin 454242AD AB =︒=⨯=.(2)①如图2中,AEF PEF ∆≅∆,AE EP ∴=,AE EB =,BE EP ∴=,45EPB B ∴∠=∠=︒,90PEB ∴∠=︒,1809090AEP ∴∠=︒-︒=︒.②如图3中,由(1)可知:83sin 603AD AC ==︒,PF AC ⊥,90PFA ∴∠=︒,AEF PEF ∆≅∆,45AFE PFE ∴∠=∠=︒,AFE B ∴∠=∠,EAF CAB ∠=∠,AEF ACB ∴∆∆∽, ∴AF AE AB AC =2242833AF =, 23AF ∴=在Rt AFP ∆,AF FP =,226AP ∴==.23.如图,在平面直角坐标系中,已知二次函数21()42y x m =--+图象的顶点为A ,与y 轴交于点B ,异于顶点A 的点(1,)C n 在该函数图象上.(1)当5m =时,求n 的值.(2)当2n =时,若点A 在第一象限内,结合图象,求当2y 时,自变量x 的取值范围. (3)作直线AC 与y 轴相交于点D .当点B 在x 轴上方,且在线段OD 上时,求m 的取值范围.解:(1)当5m =时,21(5)42y x =--+,当1x =时,214442n =-⨯+=-.(2)当2n =时,将(1,2)C 代入函数表达式21()42y x m =--+,得212(1)42m =--+,解得3m =或1-(舍弃),∴此时抛物线的对称轴3x =,根据抛物线的对称性可知,当2y =时,1x =或5,x ∴的取值范围为15x .(3)点A 与点C 不重合,1m ∴≠,抛物线的顶点A 的坐标是(,4)m ,∴抛物线的顶点在直线4y =上,当0x =时,2142y m =-+,∴点B 的坐标为21(0,4)2m -+,抛物线从图1的位置向左平移到图2的位置,m 逐渐减小,点B 沿y 轴向上移动, 当点B 与O 重合时,21402m -+=, 解得22m =或22-当点B 与点D 重合时,如图2,顶点A 也与B ,D 重合,点B 到达最高点,∴点(0,4)B ,21442m ∴-+=,解得0m =, 当抛物线从图2的位置继续向左平移时,如图3点B 不在线段OD 上,B ∴点在线段OD 上时,m 的取值范围是:01m <或122m <<.24.如图,在平面直角坐标系中,正方形ABOC 的两直角边分别在坐标轴的正半轴上,分别过OB ,OC 的中点D ,E 作AE ,AD 的平行线,相交于点F ,已知8OB =. (1)求证:四边形AEFD 为菱形.(2)求四边形AEFD 的面积.(3)若点P 在x 轴正半轴上(异于点)D ,点Q 在y 轴上,平面内是否存在点G ,使得以点A ,P ,Q ,G 为顶点的四边形与四边形AEFD 相似?若存在,求点P 的坐标;若不存在,试说明理由.【解答】(1)证明:如图1中,//AE DF ,//AD EF ,∴四边形AEFD 是平行四边形,四边形ABCD 是正方形,AC AB OC OB ∴===,90ACE ABD ∠=∠=︒, E ,D 分别是OC ,OB 的中点,CE BD ∴=,()CAE ABD SAS ∴∆≅∆,AE AD ∴=,∴四边形AEFD 是菱形.(2)解:如图1中,连接DE .184162ADB ACE S S ∆∆==⨯⨯=,14482EOD S ∆=⨯⨯=,264216824AED ABD EOD ABOC S S S S ∆∆∆∴=--=-⨯-=正方形,248AED AEFD S S ∆∴==菱形.(3)解:如图1中,连接AF ,设AF 交DE 于K ,4OE OD ==,OK DE ⊥,KE KD ∴=,2OK KE KD ∴===,82AO =,62AK ∴=,3AK DK ∴=,①当AP 为菱形的一边,点Q 在x 轴的上方,有图2,图3两种情形: 如图2中,设AG 交PQ 于H ,过点H 作HN x ⊥轴于N ,交AC 于M ,设AM t =.菱形PAQG ∽菱形ADFE ,3PH AH ∴=, //HN OQ ,QH HP =,ON NP ∴=,HN ∴是PQO ∆的中位线,8ON PN t ∴==-,90MAH PHN AHM ∠=∠=︒-∠,90PNH AMH ∠=∠=︒,HMA PNH ∴∆∆∽,∴13AMMHAHNH PN PH ===,33HN AM t ∴==,83MH MN NH t ∴=-=-,3PN MH =,83(83)t t ∴-=-,2t ∴=,22(8)12OP ON t ∴==-=,(12,0)P ∴.如图3中,过点H 作HI y ⊥轴于I ,过点P 作PN x ⊥轴交IH 于N ,延长BA 交IN 于M .同法可证:AMH HNP ∆∆∽, ∴13AMMHAHHN PN HP ===,设MH t =,33PN MH t ∴==,38AM BM AB t ∴=-=-, HI 是OPQ ∆的中位线,2OP IH ∴=,HIHN ∴,8924t t ∴+=-,4t ∴=,22(8)24OP HI t ∴==+=,(24,0)P ∴.②当AP 为菱形的边,点Q 在x 轴的下方时,有图4,图5两种情形: 如图4中,3QH PH =,过点H 作HM OC ⊥于M ,过D 点P 作PN MH ⊥于N .MH 是QAC ∆的中位线,142MH AC ∴==, 同法可得:HPN QHM ∆∆∽, ∴13NP HN PH HM MQ QH ===, 1433PN HM ∴==, 43OM PN ∴==,设HN t =,则3MQ t =, MQ MC =,4383t ∴=-, 209t ∴=, 5649OP MN t ∴==+=, ∴点P 的坐标为56(9,0).如图5中,3QH PH =,过点H 作HM x ⊥轴于M 交AC 于I ,过点Q 作QN HM ⊥于N .IH 是ACQ ∆的中位线,2CQ HI ∴=,4NQ CI ==,同法可得:PMH HNQ ∆∆∽, ∴13MH PM PH NQ HN HQ ===,则1433MH NQ ==,设PM t =,则3HN t =,HN HI =,4383t ∴=+,289t ∴=,849OP OM PM QN PM t ∴=-=-=-=,8(9P ∴,0).③如图6中,当AP 为菱形的对角线时,有图6一种情形:过点H 作HM y ⊥轴于于点M ,交AB 于I ,过点P 作PN HM ⊥于N . //HI x 轴,AH HP =,4AI IB ∴==,4PN IB ∴==,同法可得:PNH HMQ ∆∆∽, ∴13PN HN PH HM MQ HQ ===,312MH PN ∴==,4HI MH MI =-=, HI 是ABP ∆的中位线,28BP IH ∴==,16OP OB BP ∴=+=,(16,0)P ∴,综上所述,满足条件的点P 的坐标为(12,0)或(24,0)或56(9,0)或8(9,0)或(16,0).。

2020年浙江省金华市中考数学精品试题试卷A卷附解析

2020年浙江省金华市中考数学精品试题试卷A卷附解析

2020年浙江省金华市中考数学精品试题试卷A卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.下列运算中,正确的是( )A .2222(53)106ac b c b c ac +=+B .232()(1)()()a b a b a b b a --+=---C .()(1)()()b c a x y x b c a y a b c a b c +-++=+-----+-D .2(2)(11b 2)(2)(3)5(2)a b a a b a b b a --=-+--2.数学课上老师给出下面的数据,精确的是( )A .2002年美国在阿富汗的战争每月耗费10亿美元B .地球上煤储量为5万亿吨以上C .人的大脑有l ×1010个细胞D .七年级某班有51个人3.甲、乙两人参加某体育项目训练,为了便于研究,把最近五次训练成绩分别用实线和虚线连结,如图所示,下面结论错误的是( )A .乙的第二次成绩与 第五次成绩相同B 第三次测试甲的成绩与乙的成绩相同C .第四次测试甲的成绩比乙的成绩多2分D .五次测试甲的成绩都比乙的成绩高4.一个角的补角是( )A .锐角B .直角C .钝角D .以上三种都有可能 5.一个锐角的补角与这个角的余角的差是( ) A .锐角B .直角C .钝角D .平角 6.如图,AC ⊥BE ,∠A =∠E ,不能判断△ABC ≌△EDC 的条件是( )A .BC =DCB .∠B =∠CDEC .AB =DED .AC =CE7.某校组织学生进行社会调查,并对学生的调查报告进行评比,将某年级60篇学生调查报告的成绩进行整理,分成五组画出的频数分布直方图如图.已知从左到右4个小组的频数分别是3,9,21,18,则这次评比中被评为优秀的调查报告(分数大于或等于80分为优秀,且分数为整数)听占的比例为()A.10%B.20%C.30%D.45%8.把多项式m2(a-2)+m(2-a)分解因式等于()A.(a-2)(m2+m)B.(a-2)(m2-m)C.m(a-2)(m-1)D.m(a-2)(m+1)9.如图,Rt△ACB 中,∠C= 90°,以A、B分别为圆心,lcm 为半径画圆,则图中阴影部分面积是()A.14πB.1:8πC.38πD.12π10.下列现象中,不属于旋转变换的是()A.电梯的升降运动B.大风车转动C.方向盘的转动D.钟摆的运动11.如图,一个质点在第一象限及x轴、y轴上运动,在第1秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)…,且每秒移动一个单位,那么第35秒时,质点所在位置的坐标是()A.(4.0)B.(5.0)C.(0.5)D.(5.5)12.在频率分布直方图中,下列结论成立的是()A.各小组频率之和等于nB.各小组频数之和等于1C.各小组频数之和等于nD.各小组长方形高的和等于l13.下列命题属于真命题的个数有()①三角形的两边之和大于第三边,两边之差小于第三边;②两条直线被第三条直线所截,同位角相等:③相等的角是对顶角;④有两角和其中一角的对边对应相等的两个三角形是全等三角形.A.1个B.2个C.3个D.4个14.下列说法中,正确的是()A.命题就是定理B.每一个定理都有逆定理C.原命题是真命题,那么它的逆命题也是真命题D.定理和逆定理都是命题15.依次连接菱形各边中点所得到的四边形是()A.梯形B.菱形C.矩形D.正方形16.AB是⊙O的弦,OC⊥AB于C,再以O为圆心,OC为半径作圆,称作小⊙O,点P是AB 上异于A、B、C的任意一点,则点 P的位置是()A.在大⊙O上B.在大⊙O的外部C.在小⊙O的内部D.在小⊙O外在大⊙O内17.数学老师抽一名同学回答问题,抽到女同学是()A.必然事件B.不确定事件C.不可能事件D.无法判断18.中央电视台“幸福52”栏目中“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张笑脸,若某人前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是()A.14B.15C.16D.320二、填空题19.在⊙O中,AB是弦,∠OAB=50°,则弦AB所对的圆心角的度数是_______,弦AB所对的两条弧的度数是_______.20.判断下列说法是否正确,对的打“√”,错的打“×”:(1)每个命题都有逆命题; ( )(2)假命题的逆命题也是假命题; ( )(3)每个定理都有逆定理; ( )(4)真命题的逆命题是真命题. ( )21.若方程mx2+3x-4=3x2是关于x的一元二次方程,则m的取值范围是 .22.如图,EF⊥AB于点F,CD⊥AB于点D,∠l=∠2,则图中互相平行的直线是.23.如图所示,是用笔尖扎重叠的纸得到的关于直线l成轴对称的两个图形,连结CE交l于0,则⊥,且 = ,AB的对应线段是,EF的对应线段是,∠DC0的对应角是.24.若点C 是线段 AB 的中点,已知 AC = 2 cm,则 AB = ______cm.25.方程 2(x-3)=6-x 的解是x= .三、解答题26.如图所示,某幢建筑物里,从 lOm高的窗口 A用水管向外喷出的水流呈抛物线状 (抛物线所在平面与墙面垂直),如果抛物线的最高点M离OA 距离为 lm,离地面403m,则水流落地点离墙的距离 OB 为多少?27.如图所示,在矩形 ABCD的对边 AB、CD 的外侧以 AB、CD 为直径作半圆. 已知 AD、BC 与两半圆所围成的图形的周长为 50 m,面积为 5. 问AB、BC各取多少时,面积 S 最大?28.一个两位数,十位上的数字与个位上的数字之和为5,把这个两位数的十位上的数字与个位上的数字对调后,所得的新的两位数与原来的两位数的积是736,求原来的两位数.29.在正常情况下,一个人在运动时所能承受的每分钟心跳的最高次数S(次/分)是这个人年龄n(岁)的一次函数.(1)根据以上信息,求在正常情况下,S关于n的函数解析式;(2)若一位66岁的老人在跑步时,医生在途中给他测得l0秒心跳为25次,问:他是否有危险?为什么?30.一艘潜艇在水下800 m处用声纳测得水面上一艘静止的轮船与它的直线距离为l000m,潜艇的速度为20m/s,若它向这艘轮船方向驶去(深度保持不变),则经多少时间它会位于轮船正下方?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.D3.D4.D5.B6.B7.D8.C9.A10.A11.B12.D13.B14.D15.C16.D17.B18.C二、填空题19.80度;80度或280度20.(1)√ (2)× (3)× (4)×21.3≠m22.EF∥CD,DE∥BC23.l,CE,OC,O)E,GH.CD,∠FE0 24.425.4三、解答题26.由已知得抛物线的顶点坐标(1,403),设抛物线为240(1)3y a x=-+,把点 A(0,10)代入得240(01)103a -+=,∴103a =-,∴21040(1)33y x =--+ 令21040(1)33y x =--+得2(1)4x -=,解得 x l = 3,x 2=-1(舍去),即 OB=3m 27.设 AB=x ,502x AD π-=,∴2(25)24x S x x ππ=-+,化简得2254S x x π=-+, ∴当502b x a π=-=时,S 最大,即50AB π=,BC=0时,面积S 最大. 28.32 或 2329. (1)21743S n =-+;(2)有危险 30.30s。

2020年浙江省金华市中考数学试卷(解析版)

2020年浙江省金华市中考数学试卷(解析版)

2020年浙江省金华市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.(3分)实数3的相反数是()A.﹣3B.3C.﹣D.【分析】直接利用相反数的定义分析得出答案.【解答】解:实数3的相反数是:﹣3.故选:A.2.(3分)分式的值是零,则x的值为()A.2B.5C.﹣2D.﹣5【分析】利用分式值为零的条件可得x+5=0,且x﹣2≠0,再解即可.【解答】解:由题意得:x+5=0,且x﹣2≠0,解得:x=﹣5,故选:D.3.(3分)下列多项式中,能运用平方差公式分解因式的是()A.a2+b2B.2a﹣b2C.a2﹣b2D.﹣a2﹣b2【分析】根据能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反进行分析即可.【解答】解:A、a2+b2不能运用平方差公式分解,故此选项错误;B、2a﹣b2不能运用平方差公式分解,故此选项错误;C、a2﹣b2能运用平方差公式分解,故此选项正确;D、﹣a2﹣b2不能运用平方差公式分解,故此选项错误;故选:C.4.(3分)下列四个图形中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念对各图形分析判断即可得解.【解答】解:A、该图形不是中心对称图形,故本选项不合题意;B、该图形不是中心对称图形,故本选项不合题意;C、该图形是中心对称图形,故本选项符合题意;D、该图形不是中心对称图形,故本选项不合题意;故选:C.5.(3分)如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是()A.B.C.D.【分析】根据概率公式直接求解即可.【解答】解:∵共有6张卡片,其中写有1号的有3张,∵从中任意摸出一张,摸到1号卡片的概率是=;故选:A.6.(3分)如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∵b.理由是()A.连结直线外一点与直线上各点的所有线段中,垂线段最短B.在同一平面内,垂直于同一条直线的两条直线互相平行C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D.经过直线外一点,有且只有一条直线与这条直线平行【分析】根据垂直于同一条直线的两条直线平行判断即可.【解答】解:由题意a∵AB,b∵AB,∵a∵b(垂直于同一条直线的两条直线平行),故选:B.7.(3分)已知点(﹣2,a)(2,b)(3,c)在函数y=(k>0)的图象上,则下列判断正确的是()A.a<b<c B.b<a<c C.a<c<b D.c<b<a【分析】根据反比例函数的性质得到函数y=(k>0)的图象分布在第一、三象限,在每一象限,y随x的增大而减小,则b>c>0,a<0.【解答】解:∵k>0,∵函数y=(k>0)的图象分布在第一、三象限,在每一象限,y随x的增大而减小,∵﹣2<0<2<3,∵b>c>0,a<0,∵a<c<b.故选:C.8.(3分)如图,∵O是等边∵ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是上一点,则∵EPF 的度数是()A.65°B.60°C.58°D.50°【分析】如图,连接OE,OF.求出∵EOF的度数即可解决问题.【解答】解:如图,连接OE,OF.∵∵O是∵ABC的内切圆,E,F是切点,∵OE∵AB,OF∵BC,∵∵OEB=∵OFB=90°,∵∵ABC是等边三角形,∵∵B=60°,∵∵EOF=120°,∵∵EPF=∵EOF=60°,故选:B.9.(3分)如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x.则列出方程正确的是()A.3×2x+5=2x B.3×20x+5=10x×2C.3×20+x+5=20x D.3×(20+x)+5=10x+2【分析】直接利用表示十位数的方法进而得出等式即可.【解答】解:设“□”内数字为x,根据题意可得:3×(20+x)+5=10x+2.故选:D.10.(3分)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD相交于点O、BD与HC相交于点P.若GO=GP,则的值是()A.1+B.2+C.5﹣D.【分析】证明∵BPG∵∵BCG(ASA),得出PG=CG.设OG=PG=CG=x,则EG=2x,FG=x,由勾股定理得出BC2=(4+2)x2,则可得出答案.【解答】解:∵四边形EFGH为正方形,∵∵EGH=45°,∵FGH=90°,∵OG=GP,∵∵GOP=∵OPG=67.5°,∵∵PBG=22.5°,又∵∵DBC=45°,∵∵GBC=22.5°,∵∵PBG=∵GBC,∵∵BGP=∵BG=90°,BG=BG,∵∵BPG∵∵BCG(ASA),∵PG=CG.设OG=PG=CG=x,∵O为EG,BD的交点,∵EG=2x,FG=x,∵四个全等的直角三角形拼成“赵爽弦图”,∵BF=CG=x,∵BG=x+x,∵BC2=BG2+CG2==,∵=.故选:B.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)点P(m,2)在第二象限内,则m的值可以是(写出一个即可)﹣1(答案不唯一)..【分析】直接利用第二象限内点的坐标特点得出m的取值范围,进而得出答案.【解答】解:∵点P(m,2)在第二象限内,∵m<0,则m的值可以是﹣1(答案不唯一).故答案为:﹣1(答案不唯一).12.(4分)数据1,2,4,5,3的中位数是3.【分析】先将题目中的数据按照从小到大排列,即可得到这组数据的中位数.【解答】解:数据1,2,4,5,3按照从小到大排列是1,2,3,4,5,则这组数据的中位数是3,故答案为:3.13.(4分)如图为一个长方体,则该几何体主视图的面积为20cm2.【分析】根据从正面看所得到的图形,即可得出这个几何体的主视图的面积.【解答】解:该几何体的主视图是一个长为4,宽为5的矩形,所以该几何体主视图的面积为20cm2.故答案为:20.14.(4分)如图,平移图形M,与图形N可以拼成一个平行四边形,则图中α的度数是30°.【分析】根据平行四边形的性质解答即可.【解答】解:∵四边形ABCD是平行四边形,∵∵D=180°﹣∵C=60°,∵∵α=180°﹣(540°﹣70°﹣140°﹣180°)=30°,故答案为:30.15.(4分)如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A,B,C均为正六边形的顶点,AB与地面BC所成的锐角为β.则tanβ的值是.【分析】如图,作AT∵BC,过点B作BH∵AT于H,设正六边形的边长为a,则正六边形的半径为a,边心距=a.求出BH,AH即可解决问题.【解答】解:如图,作AT∵BC,过点B作BH∵AT于H,设正六边形的边长为a,则正六边形的半径为,边心距=a.观察图象可知:BH=a,AH=a,∵AT∵BC,∵∵BAH=β,∵tanβ===.故答案为.16.(4分)图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC,BD(点A与点B重合),点O是夹子转轴位置,OE∵AC于点E,OF∵BD于点F,OE=OF=1cm,AC=BD=6cm,CE=DF,CE:AE=2:3.按图示方式用手指按夹子,夹子两边绕点O转动.(1)当E,F两点的距离最大时,以点A,B,C,D为顶点的四边形的周长是16cm.(2)当夹子的开口最大(即点C与点D重合)时,A,B两点的距离为cm.【分析】(1)当E,F两点的距离最大时,E,O,F共线,此时四边形ABCD是矩形,求出矩形的长和宽即可解决问题.(2)如图3中,连接EF交OC于H.想办法求出EF,利用平行线分线段成比例定理即可解决问题.【解答】解:(1)当E,F两点的距离最大时,E,O,F共线,此时四边形ABCD是矩形,∵OE=OF=1cm,∵EF=2cm,∵AB=CD=2cm,∵此时四边形ABCD的周长为2+2+6+6=16(cm),故答案为16.(2)如图3中,连接EF交OC于H.由题意CE=CF=×6=(cm),∵OE=OF=1cm,∵CO垂直平分线段EF,∵OC===(cm),∵•OE•EC=•CO•EH,∵EH==(cm),∵EF=2EH=(cm)∵EF∵AB,∵==,∵AB=×=(cm).故答案为.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)计算:(﹣2020)0+﹣tan45°+|﹣3|.【分析】利用零次幂的性质、二次根式的性质、特殊角的三角函数值、绝对值的性质进行计算,再算加减即可.【解答】解:原式=1+2﹣1+3=5.18.(6分)解不等式:5x﹣5<2(2+x).【分析】去括号,移项、合并同类项,系数化为1求得即可.【解答】解:5x﹣5<2(2+x),5x﹣5<4+2x5x﹣2x<4+5,3x<9,x<3.19.(6分)某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题:抽取的学生最喜爱体育锻炼项目的统计表类别项目人数(人)A跳绳59B健身操▲C俯卧撑31D开合跳▲E其它22(1)求参与问卷调查的学生总人数.(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生约8000人,估算该市初中学生中最喜爱“健身操”的人数.【分析】(1)从统计图表中可得,“E组其它”的频数为22,所占的百分比为11%,可求出调查学生总数;(2)“开合跳”的人数占调查人数的24%,即可求出最喜爱“开合跳”的人数;(3)求出“健身操”所占的百分比,用样本估计总体,即可求出8000人中喜爱“健身操”的人数.【解答】解:(1)22÷11%=200(人),答:参与调查的学生总数为200人;(2)200×24%=48(人),答:最喜爱“开合跳”的学生有48人;(3)最喜爱“健身操”的学生数为200﹣59﹣31﹣48﹣22=40(人),8000×=1600(人),答:最喜爱“健身操”的学生数大约为1600人.20.(8分)如图,的半径OA=2,OC∵AB于点C,∵AOC=60°.(1)求弦AB的长.(2)求的长.【分析】(1)根据题意和垂径定理,可以求得AC的长,然后即可得到AB的长;(2)根据∵AOC=60°,可以得到∵AOB的度数,然后根据弧长公式计算即可.【解答】解:(1)∵的半径OA=2,OC∵AB于点C,∵AOC=60°,∵AC=OA•sin60°=2×=,∵AB=2AC=2;(2)∵OC∵AB,∵AOC=60°,∵∵AOB=120°,∵OA=2,∵的长是:=.21.(8分)某地区山峰的高度每增加1百米,气温大约降低0.6∵,气温T(∵)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6∵,求该山峰的高度.【分析】(1)根据高度每增加1百米,气温大约降低0.6∵,由3百米时温度为13.2°C,即可得出高度为5百米时的气温;(2)应用待定系数法解答即可;(3)根据(2)的结论解答即可.【解答】解:(1)由题意得,高度增加2百米,则气温降低2×0.6=1.2(°C),∵13.2﹣1.2=12,∵高度为5百米时的气温大约是12°C;(2)设T关于h的函数表达式为T=kh+b,则:,解得,∵T关于h的函数表达式为T=﹣0.6h+15;(3)当T=6时,6=﹣0.6h+15,解得h=15.∵该山峰的高度大约为15百米.22.(10分)如图,在∵ABC中,AB=4,∵B=45°,∵C=60°.(1)求BC边上的高线长.(2)点E为线段AB的中点,点F在边AC上,连结EF,沿EF将∵AEF折叠得到∵PEF.∵如图2,当点P落在BC上时,求∵AEP的度数.∵如图3,连结AP,当PF∵AC时,求AP的长.【分析】(1)如图1中,过点A作AD∵BC于D.解直角三角形求出AD即可.(2)∵证明BE=EP,可得∵EPB=∵B=45°解决问题.∵如图3中,由(1)可知:AC==,证明∵AEF∵∵ACB,推出=,由此求出AF即可解决问题.【解答】解:(1)如图1中,过点A作AD∵BC于D.在Rt∵ABD中,AD=AB•sin45°=4×=4.(2)∵如图2中,∵∵AEF∵∵PEF,∵AE=EP,∵AE=EB,∵BE=EP,∵∵EPB=∵B=45°,∵∵PEB=90°,∵∵AEP=180°﹣90°=90°.∵如图3中,由(1)可知:AC==,∵PF∵AC,∵∵PF A=90°,∵∵AEF∵∵PEF,∵∵AFE=∵PFE=45°,∵∵AFE=∵B,∵∵EAF=∵CAB,∵∵AEF∵∵ACB,∵=,即=,∵AF=2,在Rt∵AFP,AF=FP,∵AP=AF=2.23.(10分)如图,在平面直角坐标系中,已知二次函数y=﹣(x﹣m)2+4图象的顶点为A,与y轴交于点B,异于顶点A的点C(1,n)在该函数图象上.(1)当m=5时,求n的值.(2)当n=2时,若点A在第一象限内,结合图象,求当y≥2时,自变量x的取值范围.(3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围.【分析】(1)利用待定系数法求解即可.(2)求出y=2时,x的值即可判断.(3)由题意点B的坐标为(0,﹣m2+4),求出几个特殊位置m的值即可判断.【解答】解:(1)当m=5时,y=﹣(x﹣5)2+4,当x=1时,n=﹣×42+4=﹣4.(2)当n=2时,将C(1,2)代入函数表达式y=﹣(x﹣m)2+4,得2=﹣(1﹣m)2+4,解得m=3或﹣1(舍弃),∵此时抛物线的对称轴x=3,根据抛物线的对称性可知,当y=2时,x=1或5,∵x的取值范围为1≤x≤5.(3)∵点A与点C不重合,∵m≠1,∵抛物线的顶点A的坐标是(m,4),∵抛物线的顶点在直线y=4上,当x=0时,y=﹣m2+4,∵点B的坐标为(0,﹣m2+4),抛物线从图1的位置向左平移到图2的位置,m逐渐减小,点B沿y轴向上移动,当点B与O重合时,﹣m2+4=0,解得m=2或﹣2,当点B与点D重合时,如图2,顶点A也与B,D重合,点B到达最高点,∵点B(0,4),∵﹣m2+4=4,解得m=0,当抛物线从图2的位置继续向左平移时,如图3点B不在线段OD上,∵B点在线段OD上时,m的取值范围是:0≤m<1或1<m<2.24.(12分)如图,在平面直角坐标系中,正方形ABOC的两直角边分别在坐标轴的正半轴上,分别过OB,OC的中点D,E作AE,AD的平行线,相交于点F,已知OB=8.(1)求证:四边形AEFD为菱形.(2)求四边形AEFD的面积.(3)若点P在x轴正半轴上(异于点D),点Q在y轴上,平面内是否存在点G,使得以点A,P,Q,G为顶点的四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由.【分析】(1)根据邻边相等的四边形是菱形证明即可.(2)连接DE,求出∵ADE的面积即可解决问题.(3)首先证明AK=3DK,∵当AP为菱形的一边,点Q在x轴的上方,有图2,图3两种情形.∵当AP为菱形的边,点Q在x轴的下方时,有图4,图5两种情形.∵如图6中,当AP为菱形的对角线时,有图6一种情形.分别利用相似三角形的性质求解即可.【解答】(1)证明:如图1中,∵AE∵DF,AD∵EF,∵四边形AEFD是平行四边形,∵四边形ABCD是正方形,∵AC=AB=OC=OB,∵ACE=∵ABD=90°,∵E,D分别是OC,OB的中点,∵CE=BD,∵∵CAE∵∵ABD(SAS),∵AE=AD,∵四边形AEFD是菱形.(2)解:如图1中,连接DE.∵S∵ADB=S∵ACE=×8×4=16,S∵EOD=×4×4=8,∵S∵AED=S正方形ABOC﹣2S∵ABD﹣S∵EOD=64﹣2×16﹣8=24,∵S菱形AEFD=2S∵AED=48.(3)解:如图1中,连接AF,设AF交DE于K,∵OE=OD=4,OK∵DE,∵KE=KD,∵OK=KE=KD=2,∵AO=8,∵AK=6,∵AK=3DK,∵当AP为菱形的一边,点Q在x轴的上方,有图2,图3两种情形:如图2中,设AG交PQ于H,过点H作HN∵x轴于N,交AC于M,设AM=t.∵菱形P AQG∵菱形ADFE,∵PH=3AH,∵HN∵OQ,QH=HP,∵ON=NP,∵HN是∵PQO的中位线,∵ON=PN=8﹣t,∵∵MAH=∵PHN=90°﹣∵AHM,∵PNH=∵AMH=90°,∵∵HMA∵∵PNH,∵===,∵HN=3AM=3t,∵MH=MN﹣NH=8﹣3t,∵PN=3MH,∵8﹣t=3(8﹣3t),∵t=2,∵OP=2ON=2(8﹣t)=12,∵P(12,0).如图3中,过点H作HI∵y轴于I,过点P作PN∵x轴交IH于N,延长BA交IN于M.同法可证:∵AMH∵∵HNP,∵===,设MH=t,∵PN=3MH=3t,∵AM=BM﹣AB=3t﹣8,∵HI是∵OPQ的中位线,∵OP=2IH,∵HIHN,∵8+t=9t﹣24,∵t=4,∵OP=2HI=2(8+t)=24,∵P(24,0).∵当AP为菱形的边,点Q在x轴的下方时,有图4,图5两种情形:如图4中,QH=3PH,过点H作HM∵OC于M,过D点P作PN∵MH于N.∵MH是∵QAC的中位线,∵MH=AC=4,同法可得:∵HPN∵∵QHM,∵===,∵PN=HM=,∵OM=PN=,设HN=t,则MQ=3t,∵MQ=MC,∵3t=8﹣,∵t=,∵OP=MN=4+t=,∵点P的坐标为(,0).如图5中,QH=3PH,过点H作HM∵x轴于M交AC于I,过点Q作QN∵HM于N.∵IH是∵ACQ的中位线,∵CQ=2HI,NQ=CI=4,同法可得:∵PMH∵∵HNQ,∵===,则MH=NQ=,设PM=t,则HN=3t,∵HN=HI,∵3t=8+,∵t=,∵OP=OM﹣PM=QN﹣PM=4﹣t=,∵P(,0).∵如图6中,当AP为菱形的对角线时,有图6一种情形:过点H作HM∵y轴于于点M,交AB于I,过点P作PN∵HM于N.∵HI∵x轴,AH=HP,∵AI=IB=4,∵PN=IB=4,同法可得:∵PNH∵∵HMQ,∵===,∵MH=3PN=12,HI=MH﹣MI=4,∵HI是∵ABP的中位线,∵BP=2IH=8,∵OP=OB+BP=16,∵P(16,0),综上所述,满足条件的点P的坐标为(12,0)或(24,0)或(,0)或(,0)或(16,0).。

2020年浙江省金华市中考数学名校精编试卷附解析

2020年浙江省金华市中考数学名校精编试卷附解析

2020年浙江省金华市中考数学名校精编试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.在□ABCD中,∠A:∠B:∠C:∠D的值可以是()A.1:2:3:4 B.1:3:4:2 C.1:1:2:2 D.3:4:3:42.下列近似数中,含有3个有效数字的是()A.5.430 B.6⨯C. 0.5430 D.5.43万5.430103.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件服装仍可获利l5元,则这种服装每件的成本价是()A.120元B.125元C.135元D.1404.如图所示是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入的球袋是()A.1号袋B.2号袋C.3号袋D.4号袋5.如果2-+=+-,那么 a 的值是()(1)()23x x a x xA.3 B.-2 C.2 D.36.如图所示是一个风筝的图案,它是轴对称图形,量得∠B=30°,则∠E的大小为()A. 30°B. 35°C.40°D. 45°'7.下列说法正确的个数为()①一个数的倒数一定小于这个数;②一个数的倒数一定大于这个数;③0 除以任何数都得0;④两个数的商为 0,只有被除数为 0.A.0 个B.1 个C.2 个D.3 个8.若三角形的三个外角的度数之比为2:3:4,则与之对应的三个内角的度数之比为()A.4:3:2 B.3:2:4 C.5:3:1 D.3:1:59.如图,是北京奥运会自行车比赛项目标志,则图中两轮所在圆的位置关系是()A .内含B .相交C .相切D .外离10.如图8,Rt △ABC 中,∠C=90°,斜边AB 的垂直平分线交AB 于点D ,交BC 于点E ,AE 平分∠BAC ,那么下列关系式中不成立的是( )A .∠B=∠CAEB .∠DEA=∠CEAC .∠B=∠BAED .AC=2EC 11.将抛物线21(1)22y x =-+先向右平移2个单位,再向上平移 3个单位得到的抛物线是( )A .21(1)52y x =++ B .21(2)42y x =++ C .21(3)52y x =-+ D .21(3)12y x =-- 12.能判定△ABC 相似于△′B ′C ′的条件是( )A . AB : A ′B ′ =AC : A ′C ′B .AB :AC=A ′B ′:A ′C ′,且∠A=∠C ′C .AB :A ′B ′= BC :A ′C ′,且∠B=∠A ′D .AB :A ′B ′=AC :A ′C ′,且∠B=∠B ′13.如图两建筑物的水平距离为a 米,从A 点测得D 点的俯角为α,测得C 点的俯角为β,则较低建筑物CD 的高为( )A .a 米B .αtan a 米C .βtan a 米D .)tan (tan αβ-a 米14.已知α是等腰直角三角形的一个锐角,则sin α的值为( )A .12BCD .115.在△ABC 中,A=70°,⊙O 截△ABC 的三条边所得的弦长相等,则∠BOC 的度数为( )A .140°B .l35°C .130°D .125°16.下列语句中,属于命题的是 ( )A .直线AB 与CD 垂直吗B 过线段AB 的中点C 画AB 的垂线C .同旁内角不互补,两直线不平行D .连结A ,B 两点二、填空题17.右图是一山谷的横断面示意图,宽AA '为15m ,用曲尺(两直尺相交成直角)从山谷两侧测量出1m OA =,3m OB =,0.5m O A ''=,3m O B ''=(点A O O A '',,,在同一条水平线上)则该山谷的深h为m.18.在⊙O中,弦 AB∥CD,AB=24,CD=10,弦 AB 的弦心距为 5,则 AB 和 CD 之间的距离是.19.如图,AE=AD,请你添加一个条件: ,使△ABE≌△ACD (图形中不再增加其他字母).20.如图, 已知△ABE≌△ACD,B和C,D和E是对应顶点, 如果∠B=46°,BE=5,∠AEB=66°,那么CD= ,∠DAC= .21.3 的相反数是,3的相反数是.三、解答题OC⊥交AB于点C,过B的直线交OC的延长线于点E,当22.如图,AB是⊙O的弦,OACE=时,直线BE与⊙O有怎样的位置关系?请说明理由.BE23.如图,已知⊙O1、⊙O2相交于 A,、B,PE 切⊙O1于 P,PA、PB 交⊙O2于 C.D. 求证: CD∥PE.24.如图所示的相似四边形中,求未知边 x、y的长度和角度α的大小.25.已知:如图,在△ABC 中,中线BE ,CD 交于点O ,F ,G 分别是OB ,OC 的中点. 求证:四边形DFGE 是平行四边形.26.如图①所示,已知AE 是△ABC 的高,F 是AE 上的任意一点,G 是E 点关于F 的对称点,过点G 作BC 的平行线与AB 交于点H ,与AC 交于点I ,连结IF 并延长交BC 于点J ,连结HF 并延长交BC 于点K .(1)请你在图②中再画出一个满足条件的四边形HJKI(点F 的位置与图①不同);(2)请你判断四边形HJKl 是怎样的四边形?并对你得到的结论予以证明(图②供思考用).27.化简:(1)21211x x x ++- (2)1)111(-÷--x x x28.一个矩形的长为a,宽为b,在图(1)中将线段A1A2向右平移1个单位到B1B2,得到封闭图形A1B1B2A2(即阴影部分).(1) (2)(3) (4)在图(2)中,将折线A1A2A3向右平移1个单位到B1B2B3,得到封闭图形A1A2A3B3B2B1(即阴影部分).(1)在图3中,请你类似地画出一条有两个折点的折线,同样向右平移1个单位,从而得到一个封闭图形,并用斜线表示出;(2)请你分别写出上述三个图形中除去阴影部分后剩余部分的面积:S1=•______,S2=_________,S3=________.(3)联想与探索.如图(4),在一块草地上有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位),请你猜想空白部分表示的草地面积是多少?并请说明你的猜想是正确的.29.根据条件列方程:(1)某数的5倍比这个数大3(2)某数的相反数比这个数大6(3)爸爸和儿子的年龄分别是40岁和l3岁,请问几年后,爸爸的年龄是儿子年龄的2倍?30.A 地海拔是-40 m,B 地比A地高 20 m,C地又比B 地高 30m,试用正数或负数表示B、C两地的海拔.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.D3.B4.B5.D6.A7.B8.C9.D10.D11.C12.C13.D14.B15.D16.C二、填空题17.3018.7 或 1719.答案不唯一,如AB =AC20.5,68°21. -3,3-三、解答题22.解:BE 与⊙O 相切.理由:连接OB , ∵ BE CE =,∴ 312∠=∠=∠ ∵ OA OC ⊥,∴ ︒=∠+∠903A ,∴ ︒=∠+∠902A 又∵ OB OA =,∴ OBA A ∠=∠,∴ ︒=∠+∠902OBA 即︒=∠90OBE ,∴ BE 与⊙O 相切23.作直径 PT ,连结 AT 、AB. ∴∠PA T=90°,∠T+∠TPA=90°.∵PE 切⊙O 1 于点P. ∴∠TPA+∠EPA=90°,∴∠EPA=∠T , ∵∠T=∠B ,∠B=∠C ,∴∠EPA=∠C ,∴CD ∥PE .24.由于两个四边形相似,它们的对应边成比例,对应角相等,所以18467y x==,解得 x=31.5,y=27.α= 360°- (77°+83°+ 117°) =83°.25.提示:DE//FG.26.(1)作图与①类似;②四边形HJKI为平行四边形,证略27.(1)11x-,(2)1.28.(1)略,(2)b(a-1), b(a-1) ,b(a-1),(3)b(a-1) 29.略30.B:-20 m C:+10 m。

2020年浙江省金华市中考数学试卷甲卷附解析

2020年浙江省金华市中考数学试卷甲卷附解析

2020年浙江省金华市中考数学试卷甲卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.在半径为 8 cm 的圆中有一条弧长为4πcm ,则这条弧所对的圆周角为( )A .30°B .45°C .60°D .90° 2. 已知关于x 的方程220x kx k +-=的一个根是2-,则k 的值是( ) A . 13± B .13-± C . 15± D . 15-± 3. 把31a a -根号外的因式移入根号内,得( ) A .1a B .1a - C .1a - D .1a-- 4.下列各情况分别可以用图中的哪幅图来近似刻画:(1)一杯越晾越凉的水(水温与时间的关系) ( )(2)一面冉冉上升的红旗(高度与时间的关系) ( )(3)足球守门员大脚开出的球(高度与时间的关系) ( )(4)匀速行驶的汽车(速度与时间的关系) ( )A .B .C .D . 5.已知点P (1,2)与点Q (x ,y )在同一条平行于x 轴的直线上,且Q 点到y 轴的距离等于2,那么点Q 的坐标是( )A .(2,2)B .(-2,2)C .(-2,2)和(2,2)D .(-2,-2)和(2,-2)1.确定平面上一个点的位置,一般需要的数据个数为( )A .无法确定B .l 个C .2个D .3个 6.8名学生在一次数学测试中的成绩为80,82,79,69,74,78,x ,81,这组成绩的平均数是77,则x 的值为( )A .76B .75C .74D .73 7.已知一组数据1x ,2x ,…,n x 的方差为4,则数据132x +,232x +,…,32n x +的方差为( )A .14B .18C .36D .388.画一个物体的三视图时,一般的顺序是( )A .主视图、左视图、俯视图B .主视图、俯视图、左视图C .俯视图、主视图、左视图D .左视图、俯视图、主视图9.把式子2(3)(2)a a a -+-化简为13a +,应满足的条件是( ) A . 2a -是正数B . 20a -≠ D . 2a -是非负数 D .20a -= 10.下列多项式中,含有因式1y +的多项式是( ) A .2223y xy x --B .22(1)(1)y y +--C .22(1)(1)y y +--D . 2(1)2(1)1y y ++++11.用一根绳子环绕一可人棵大树,若环绕大树 3周绳子还多4米,若环绕4周又少了 3米,则环绕大树一周需要绳子长为( )A . 5米B . 6米C .7米D .8米12.在△ABC 和△A ′B ′C ′中,已知 AB=A ′B ′,∠B=∠B ′,要保证△ABC ≌△A ′B ′C ′,可补充的条件是( )A .∠B+∠A=90°B . AC=A ′C ′ C .BC=B ′C ′D .∠A+∠A ′=90° 13.如图,把图形沿BC 对折,点A 和点D 重合,那么图中共有全等三角形( )A . 1对B .2对C .3对D .4对14.如图.一张矩形报纸ABCD 的长AB=a (cm ).宽BC=b (cm ),E .F 分别是AB ,CD 的中点。

2020年浙江省金华市中考数学试卷

2020年浙江省金华市中考数学试卷

(1)当 E,F 两点的距离最大时,以点 A,B,C,D 为顶点的四边形的周长是
cm.
(2)当夹子的开口最大(即点 C 与点 D 重合)时,A,B 两点的距离为
cm.
三、解答题(本题有 8 小题,共 66 分,各小题都必须写出解答过程)
17.(6 分)计算:(﹣2020)0
tan45°+|﹣3|.
18.(6 分)解不等式:5x﹣5<2(2+x).
C、a2﹣b2 能运用平方差公式分解,故此选项正确;
D、﹣a2﹣b2 不能运用平方差公式分解,故此选项错误;
故选:C.
4.(3 分)下列四个图形中,是中心对称图形的是( )
A.
B.
C.
D.
【解答】解:A、该图形不是中心对称图形,故本选项不合题意;
B、该图形不是中心对称图形,故本选项不合题意;
C、该图形是中心对称图形,故本选项符合题意;
正方形 ⺁
的值是( )
A.1 㤮
B.2 㤮
C.5 㤮
D.
二、填空题(本题有 6 小题,每小题 4 分,共 24 分)
11.(4 分)点 P(m,2)在第二象限内,则 m 的值可以是(写出一个即可)

12.(4 分)数据 1,2,4,5,3 的中位数是

13.(4 分)如图为一个长方体,则该几何体主视图的面积为
【解答】解:∵点 P(m,2)在第二象限内,
∴m<0,
则 m 的值可以是﹣1(答案不唯一).
故答案为:﹣1(答案不唯一).
12.(4 分)数据 1,2,4,5,3 的中位数是 3 .
【解答】解:数据 1,2,4,5,3 按照从小到大排列是 1,2,3,4,5,

2020年浙江省金华市中考数学精品试题B卷附解析

2020年浙江省金华市中考数学精品试题B卷附解析

2020年浙江省金华市中考数学精品试题B卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.下列图形中的角是圆周角的是()2.如图,DE是△ABC的中位线,F是DE的中点,BF的延长线交AC于点H,则AH:HE 等于()A.1:1 B.1:2 C.2:1 D.3:23.在频数分布直方图中,每个小长形的高度等于()A.组距B.组数C.每小组的频率D.每小组的频数4.某造纸厂一月份生产纸 1200 t,采用新技术后,每月比上个月提高相同的百分数,且三月份比二月份多生产 207 t. 设每月提高的百分数为x,根据题意列出下列方程,正确的是()A.21200(1)1200(1)207x x+-+=B.21200(1)1200207x x+-=C.21200(1)1200207x x+-=D.221200(1)1200207x x+-=5.如图所示的图形是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,那么这个几何体的左视图是()6.已知111a b a b+=+,则b aa b+的值为()A.1 B.0 C.-1 D.-27.如图,在△ABC中,DE是边AB的垂直平分线,BC=8cm,AC=5cm 则△ADC的周长为()A.14 cm B.13 cm C.11 cm D.9 cm 8.下列各多项式中,能用平方差公式分解因式的是()A.22()x y--B.225x y--C.24x y-D.22()a b--+ 9.下列各组代数式中,不是同类项的一组是()A.12-和0 B.213ab c-和2cab C.2xy和2x y D.3xy和xy-10.小明编制了一个计算程序,当输入任一有理数,显示屏的结果总等于所输入有理数的平方与1之和,若输入-2,显示的结果应当是()A.2B.3C.4D.5二、填空题11.当你乘坐的车沿一条平坦的路向前行驶时,你前方那些高一些的建筑物好像“沉”到了位于它们前面那些矮一些的建筑物后面去了.如图所示,当你所在的位置在范围内时,你会看到后面那座高大的建筑物.12.在山坡上种树,要求株距为 5.5m,测得斜坡的倾斜角为 30°,则斜坡上的相邻两株间的坡面距离是 m.13.如图,已知AB∥CD,AD∥BC,∠B=60°,∠EDA=50°则∠CDO= .14.在下式的“□”里,分别填上适当的代数式,使等式成立:□+□=1a b -.15.下表是对某校 10 名女生进行身高测量的数据表(单位:cm),但其中一个数据不慎丢失(用x表示).身高(cm)156162x165157身高(cm)168165163170159从这 10 名女生中任意抽出一名,其身高不低于 162 cm 的事件的可能性,可以用上图中的点表示 ( 在 A,B,C,D,E 五个字母中选择一个符合题意的 ).16.在一幅扇形统计图中,所有扇形的百分比之和是 .17.大、小两个正方形放在桌上,它们共遮住了32 cm2的面积,如果两正方形重叠部分面积为4 cm2,小正方形面积为7 cm2,则大正方形面积为 cm2.18.代数式 4a 的意义可以解释为.19.用四舍五入法取l29543的近似值,保留3个有效数字,并用科学记数法表示是.20.底数是23-,指数是 3 的幂是 . 21.某天早晨的气温为-6℃,中午上升了 8℃,半夜又下降了6℃,则半夜的气温是 .三、解答题22.如图所示,某水库大坝的横断面是等腰梯形,坝顶宽 6m ,坝高 lOm ,斜坡AB 的坡度为 1:2,现要加高 2m ,在坝顶宽度和斜坡坡度均不变的情况下,加固一条长50m 的大坝,需要多少土?23.如图所示,在□ABCD 中,AE ⊥CD ,AF ⊥BC ,垂足为E ,F ,∠EAF=60°,CE=1,CF=4.求□ABCD 的各边长.24.已知关于x 的方程01)1(22=+-++-m m x x m 有一个根为-1,分析根的情况,并求出方程所有的根.25.某商场今年二月份的营业额为400万元,三月份的营业额比二月份增加10%,五月份的营业额达到633.6万元.求三月份到五月份营业额的平均月增长率.26.如图,AB ∥CD ,∠3=∠4,则BE ∥CF ,请说明理由.2 4 13 AB C DEF27. a 为何值时,分式222211a a a +---的值为零? 0a =28.如图,将△ABC 先向上平移5格得到△A ′B ′C ′,再以直线MN 为对称轴,将△A ′B ′C ′作轴对称变换,得到△A ″B ″C ″,作出 △A ′B ′C ′和△A ″B ″C ″.29.为了了解某校七年级学生的视力情况,抽测了一批同学的视力,检测结果如下表: 视力情况差 中 良 优 合计 人数(人) 7 20 3百分比(%) 1410030.8箱苹果,以每箱5千克为准,称重记录如下:(超过记为正数,单位:千克)1.5,-1,3,0, 0.5,-1.5,2,-0.5这8箱苹果的总重量是多少?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.D4.A5.D6.C7.B8.D9.C10.D二、填空题11.BA12.13. 70°14. 答案不唯一;如:22a a b -、22b a b - 15.D16.117.2918.青菜价格每千克a 元,买了4 千克青菜共需 4a 元19.1.30×10520.827-21. -4℃三、解答题22.据题意作出加固后的坝体横断面(如图中等腰梯形 CFEP),过A 点作AH ⊥BC 于 H ,过E 点作 EM ⊥BC 于M ,则BH=2AH=20m.∴BC=2BH+AD=46m,1(646)102602AECD S =⨯+⨯=梯形(m 2), ∵EF=AD= 6 m,EM= 12 m, PM=24m.∴PC=54m,∴1(654)123602PCEF S =⨯+⨯=梯形(m 2), ∴加的面积为 360—260=100(m 2),∴应增加100×50= 5000(m 3)土.23.由AE ⊥CD .AF ⊥BC 及∠EAF=60°想到,构造含60°角的直角三=角形.故延长AE 、BC 交于点P ,易知PC=2,PF=6.进而求出AF=23AP=4333再在Rt △ABF 、Rt △ADE 中可分别求出AB=CD=4,AD=BD=624.当m =1时,方程为一元一次方程,解为一1;当m ≠1时,方程为一元二次方程,解为一1,23. 25.20%26.∵AB ∥CD ,∴∠ABC=∠DCB ,∵∠3=∠4,∴∠ABC-∠3=∠DCB-∠4,∴∠2=∠1,∴BE ∥CF27.0a =28.略29.表中依次填:20,50;40,40,630.44千克。

2020年浙江省金华市中考数学测试试卷附解析

2020年浙江省金华市中考数学测试试卷附解析

2020年浙江省金华市中考数学测试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1. 如图,⊙O 是直角△ABC 的内切圆,切斜边AB 于D ,切直角边 BC 、CA 于点 E 、F ,已知 AC=5,BC=12,则四边形 OFCE 的面积为( )A .1B . 15C .152D .42.在平面直角坐标系内有一点 P (tan45°,sin60°),则点P 关于x 轴的对称点 P 1 的坐 标为( )A .(-13B . 3-1)C .(1,3D .(31) 3.函数22(2)4y x =-+的最小值是( )A .2B .4C .8D .234.“数轴上的点并不都表示有理数,如图中数轴上的点P 所表示的数是2”,这种说明问题的方式体现的数学思想方法叫做( )A .代入法B .换元法C .数形结合D .分类讨论 5.已知关于x 的一元一次方程431x m x -=+的解是负数,则m 的取值范围是( ) A .1m >-B .1m <-C .1m ≥-D .1m ≤- 6.考试开始了,你所在的教室里,有一位同学数学考试成绩会得90分,这是( ) A .必然事件B .不确定事件C .不可能事件D .无法判断 7.若1044m x x x--=--无解,则m 的值是( ) A .-2 B .2 C .3 D .-38. 一架飞机在无风的情况下每小时飞行 1200千米,若逆风飞完长为x 千米的航线用 3小时,而顺风飞完这条航线只需 2小时. 根据题意列方程,得1200120032x x -=-.这个方程所表示的意义是( )A .飞机往返一次的总时间不变B .顺风与逆风飞行,飞机自身的速度不变C .飞机往返一次的总路程不变D .顺风与逆风的风速相等二、填空题9.如图,已知△ABC 的一边BC 与以AC 为直径的⊙O 相切于点C ,若BC=4,AB=5,则cosB= . 10.某口袋中有红色、黄色、蓝色玻璃球 80个.小明通过多次模球实验后,发现摸到红球、黄球、蓝球的频率依次为 20、30、50,则可估计口袋中红球的数目为 ,黄球的数目为 ,蓝球的数目为 .11.如图所示,水坝的迎水坡AB=25 m ,坝高55m ,则坡角α≈ .12. 如果二次函数y =x 2-3x -2k,不论x 取任何实数,都有y>0,则k 的取值范围是_______.k<-9813.一学生推铅球时,铅球行进高度 y(m)与水平距离 x(m)的函数图象如图所示,则铅球推出的距离为 m .14.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那最省事的办法是( )A .带①去B .带②去C .带③去D .带①②去15.某人沿电车路线行走,每12分钟有一辆电车从后面赶上,每 4分钟有一辆电车迎面开来,若行人与电车都是匀速前进的,则电车每隔 分钟从起点开出一辆.16.写出一个以23x y =⎧⎨=⎩为解的二元一次方程组 .17. 如图,△ABC 中,∠A=30°,以 BE 为边,将此三角形对折,其次,又以BA 为边,再一次对折,C 点落在BE 上,此时∠CDB= 80°,则原三角形的∠B 等于 .18.如图,映在镜子里的这个英文单词是_________.19.(1)7点整,分针和时针之间的夹角的度数是 . (2)从午夜0时到早上8时,时针所转过的角度是 .20.一个立方体由 个面围成;有 条棱(面与面的交线叫做棱);有 个顶点(棱与棱的交点叫顶点).21.2x-7 与 4互为相反数,则x= .三、解答题22.如图,在△ABC 中,∠C= 90°,∠A = 30°,0 为AB 上一点,BO=m ,⊙O 的半径为12cm ,当m 在什么范围内取值,直线BC 与⊙O 相离?相切?相交?23.如图,△ABC 内接于⊙O ,AH ⊥BC ,垂足为 H ,AD 平分∠BAC ,交⊙O 于D . 求证:AD 平分∠HAO .24.如图,已知AOB OA OB ∠=,,点E 在OB 边上,四边形AEBF 是矩形.请你只用无刻度的直尺在图中画出AOB ∠的平分线(请保留画图痕迹).25.已知一个平行四边形可以剪开而拼成一个矩形,如图①所示,那么一个等腰梯形(如图②)是台能剪升拼成一个矩形?请画图说明.若在等腰梯形ABCD中,AD∥BC,AC=5 cm,梯形的高为4 cm,求梯形的面积.26.如图,在□ABCD中,E、F是对角线BD上的两点,且BE=DF.求证:(1)AE=CF;(2)AE∥CF.F C DAEB27.已知关于x的方程42a x+=的解是负数,求a的取值范围.12a>28.A 口袋中装有2个小球,分别标有数字 1和2;B 口袋中装有3个小球,分别标有数字3、4和 5. 每个小球除数字外都相同. 甲、乙两人玩游戏,从A、B两个口袋中随机地各取出 1个小球,若两个小球上的数字之和为偶数,则甲赢;若和为奇数,则乙赢. 这个游戏对甲、乙双方公平吗?请说明理由.29.规律探究:(1)观察下列一组数, 找出规律并在空格内填上相应的数:4,1,2,5,-- ____, 11,14…_________(第50个数)…(2) (本题2分)请观察下列算式, 并回答问题211211-=⨯,3121321-=⨯,4131431-=⨯,5141541-=⨯…… 根据上述算式请把下面2个分数写成形如“111a b c=+”的形式(b c ≠): 1115________=+ 1112009________=+ (3)计算下列各式:①67⨯=________ ②6667⨯=_________③666667⨯=_________ ④66666667⨯=_________请你利用你发现的规律,直接算出:166666667n n -⨯个()个的结果.30.某商场计划投入一笔资金采购一批紧俏商品,经过市场调查发现,如果月初出售,可获利l5%,并可用本和利再投资其它商品,到月底又可获利l0%;如果月末出售可获利30%,但要付仓储费700元,请问根据商场的资金状况,如何购销才能获利最多?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.C3.A4.C5.B6.B7.C8.D二、填空题9.410.516,24,4011.263354o'''12.13.1014.A15.616.答案不唯一,如521x yx y+=⎧⎨-=⎩等17.75°18.HAPPY19.(1)150°(2)240°20.6,12,8 21.32三、解答题22.当33m>时相离;当33m=时相切;当33m<<时相交.23.连结 OD,∵AD平分∠BAC,∴⌒BD =⌒CD,∴OD⊥BC,∵AH⊥BC,∴.OD∥AH,∴∠ODA=∠HAD ,∵OA=OD,∴∠ODA=∠OAD,∴∠HAD=∠OADlD,即 AD 平分∠HAO.24.连结AB、EF相交于点P,连结OP,OP就是所求的AOB∠的平分线(图略).25.能,12 cm226.利用△ABE≌△CDF即可27.12a>28.画数状图:或列表:3451(3 ,1)和为4(4, 1)和为5(5 ,1 )和为 62(3,2)和为5(4,2)和为6(5 ,2)和为7数字之和共有 6种可能情况,其中和为偶数的情况有 3种,和为奇数的情况有 3种.所以P(和为偶数)=12,P(和为奇数)=12.所以游戏对甲、乙双方是公平的.29.(1)8;143(2)5×6;6;2009×2010;2010(3) 42 ; 4422 ;444222 ;44442222,444……222(n个4,n个2)30.设投入资金为a元,月初售出可获利:a(1+15%)(1+10%)-a=0.265a月末售出可获利:[a(1+30%)-700]-a=0.3a-700∴当a=20000元时,获利一样多;当a>20000元时,月末售出获利多;当a<20000元时,月初售出获利。

2020年浙江省金华市中考数学测评考试试卷附解析

2020年浙江省金华市中考数学测评考试试卷附解析

2020年浙江省金华市中考数学测评考试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.下列各组线段中,能成比例的是( )A . 3,6,7,9B .2,5,6,8C .3,6,9,18D . 1,2,3,4 2.反比例函数k y x =与二次函数2y kx =(k ≠0)画在同一个坐标系里,正确的是( )A .B .C .D . 3.用反证法证明命题“在△ABC 中,若∠A>∠B+∠C ,则∠A>60°”时,第一步假设 ( ) A .∠A<60°B .∠A≠60°C .∠A=60°D .∠A≤60° 4.如图,已知△ABC ≌△CDE ,其中AB=CD ,那么列结论中,不正确的是( ) A .AC=CE B . ∠BAC=∠DCE C .∠ACB=∠ECD D . ∠B=∠D5.下列各式是完全平方式的是( )A .412+-x xB .21x +C .1++xy xD .122-+x x6.已知||2(3)18m m x --=是关于x 的一元一次方程,则( )A .2m =B .3m =-C .3m =±D .1m =7.下列实数中,无理数是( )A 4B .2πC .13D .128.某工厂抽查了20名工人的年龄如下(单位:岁):25,27,23,28,25,28,21,26,29,26,25,24,25,27,26,22,25,24,30,28,则岁数落在24.5~26.5这一组的频率是 ( )A .0.45B .0.40C .0.35D .0.30二、填空题9.已知⊙O 1和⊙O 2的圆心距为7,两圆半径是方程27120x x -+=的两根,则⊙O 1和⊙O 2的位置关系是__________.10.如图,在正方形ABCD 中,以对角线AC 为一边作菱形AEFC ,则∠FAB= . 11.某厂一月份生产化肥500吨,三月份生产化肥720吨,那么该厂第一季度平均月增长率为多少?解:设月增长率为x ,由题意得,列出方程为: .12.如图的方格纸中,左边图形到右边图形的变换是 .13.若)3)(5(-+x x 是二次三项式152--kx x 的因式,那么k = .14. 如图,点P 关于OA 、OB 对称点分别是P 1、P 2,P 1P 2分别交OA 、OB 于点C 、D ,P 1P 2=6cm ,则△PCD 的周长为 .15.已知某圆恰好分成三个扇形A 、B 、C , 扇形A 、B 所占的百分比分别为 25%、45%, 又知整个圆代表学校总人数.且C 中有l50人,则该校的总人数是 人.16.体育老师在操场上画l00 m 的跑道,如果画5条跑道,需要画 条线,这些线的位置关系是 .17.如图,0C ⊥AB 于点0,OC 平分∠DOE ,若∠1=63°,则∠3= .18.已知27a b -=,57b c -=,则a c - . 三、解答题19.如图,玻璃刷AB 由两根OA 、OB 杆撑起,把△AOB 绕着点0旋转 90°至△DOC 位置,OA= 30cm ,OB= 10cm ,求图中玻璃刷刷过的阴影部分面积.20.求下列函数的自变量的取值范围:(1)22y x x =+; (2)3x y x =+;(3)332x y x +=-;(4)12y x x =-++.21.已知不等式5(2)86(1)7x x -+<-+最小整数解为方程24x ax -=的的解,求a 的值.22.因受国际金融危机影响,某药业集团降低生产成本,将药品包装盆的生产样式进行改革. 如图是该包装盒的表面展开图,如长方体 盒子的长比宽多 4厘米,求这种药品包装盒的体积. 单位:厘米23.桌上放着两个物体,它的三视图如图,你知道这两个物体是什么吗?24.如图,C表示灯塔,轮船从A处出发以每小时21海里的速度向正北(AN方向)航行,在A 处测得么∠NAC=30°,3小时后,船到达B处,在B处测得么∠NBC=60°,求此时B到灯塔C的距离.25.用如图所示的大正方形纸片 1 张,小正方形纸片 1 张,长方形纸片 2 张,将它们拼成一个正方形,根据图示可以验证的等式是什么?222++=+2()a ab b a b26.某校计划向灾区的学生捐赠 3500 册图书,实际捐赠 4125 册,其中初中生捐赠了原计划的 120%,高中生比原计划多捐赠了15%,问初中生和高中生原计划各捐赠多少册图书?27.如图所示,△ABC与△DFE全等,AC与DE是对应边.(1)找出图中相等的线段和相等的角;(2)若BE=14 cm,FC=4 cm,求出EC的长.28.检验括号中的数是否为方程的解?(1)3x-4=8(x=3,x=4)(2)1372y+=(y=8,y=4)29.2008年6月1日北京奥运圣火在宜昌传递,圣火传递路线分为两段,其中在市区的传递路程为700(a-1)米,三峡坝区的传递路程为(881a+2309)米.设圣火在宜昌的传递总路程为s米.(1)用含a的代数式表示s;(2)已知a=11,求s的值.30.A 地海拔是-40 m,B 地比A地高 20 m,C地又比B 地高 30m,试用正数或负数表示B、C两地的海拔.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.A3.D4.C5.A6.B7.B8.B二、填空题9.外切10.22.5°2500(1)720x +=12.以AB 为对称轴作轴对称图形,再向右平移8格13.-214.6cm15.50016.6,平行17.27°18.1三、解答题19.由旋转得AOD S S S =-阴影扇形扇形OBC ,2290903010200360360S πππ⨯⨯-⨯⨯=阴影= cm 2. 20.(1)任何实数;(2)x ≠-3;(3)x ≥-l 且x ≠2;(4)x ≥121.a=422.设长方体盒子的宽和高分别为x 厘米、y 厘米,则该长方体盒子的长为(4x +)厘米. 根据题意,得2()144213x y x y +=⎧⎨++=⎩, 解得5213x y =⎧⎨=⎩,∴49x +=. ∴长方体盒子的长、宽、高分别为9厘米、5厘米、2厘米.∴9×5×2=90(立方厘米).∴这种药品包装盒的体积为90立方厘米.23.一个长方体,一个圆柱体(答案不唯一)24.25.222++=+26.a ab b a b2()初中生与高中生原计划分别捐赠 2000 册与 1500 册27.(1)BF=CE,AC=DE,AB=DF,BC=EF,∠A=∠D,∠B=∠EFD,∠ACB=∠E;(2)5 cm 28.(1)x=4 是方程的解,x=3不是 (2)y=8是方程的解,y=4不是29.解:(1)s=700(a-1)+(881a+2309)=1581a+1609.(2)a=11时,s=1581a+1609=1 581×11 +1 609=19000.30.B:-20 m C:+10 m。

2020年浙江省金华市中考数学试卷

2020年浙江省金华市中考数学试卷

2020年浙江省金华市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分) 1.(3分)实数3的相反数是( ) A .﹣3 B .3C .−13D .132.(3分)分式x+5x−2的值是零,则x 的值为( )A .2B .5C .﹣2D .﹣53.(3分)下列多项式中,能运用平方差公式分解因式的是( ) A .a 2+b 2B .2a ﹣b 2C .a 2﹣b 2D .﹣a 2﹣b 24.(3分)下列四个图形中,是中心对称图形的是( )A .B .C .D .5.(3分)如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是( )A .12B .13C .23D .166.(3分)如图,工人师傅用角尺画出工件边缘AB 的垂线a 和b ,得到a ∥b .理由是( )A .连结直线外一点与直线上各点的所有线段中,垂线段最短B .在同一平面内,垂直于同一条直线的两条直线互相平行C .在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D .经过直线外一点,有且只有一条直线与这条直线平行7.(3分)已知点(﹣2,a )(2,b )(3,c )在函数y =kx(k >0)的图象上,则下列判断正确的是( ) A .a <b <cB .b <a <cC .a <c <bD .c <b <a8.(3分)如图,⊙O 是等边△ABC 的内切圆,分别切AB ,BC ,AC 于点E ,F ,D ,P 是DF ̂上一点,则∠EPF 的度数是( )A .65°B .60°C .58°D .50°9.(3分)如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x .则列出方程正确的是( )A .3×2x +5=2xB .3×20x +5=10x ×2C .3×20+x +5=20xD .3×(20+x )+5=10x +210.(3分)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD 与正方形EFGH .连结EG ,BD 相交于点O 、BD 与HC 相交于点P .若GO =GP ,则S 正方形ABCD S 正方形EFGH的值是( )A .1+√2B .2+√2C .5−√2D .154二、填空题(本题有6小题,每小题4分,共24分)11.(4分)点P (m ,2)在第二象限内,则m 的值可以是(写出一个即可) . 12.(4分)数据1,2,4,5,3的中位数是 .13.(4分)如图为一个长方体,则该几何体主视图的面积为 cm 2.14.(4分)如图,平移图形M ,与图形N 可以拼成一个平行四边形,则图中α的度数是 °.15.(4分)如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A ,B ,C 均为正六边形的顶点,AB 与地面BC 所成的锐角为β.则tan β的值是 .16.(4分)图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC ,BD (点A 与点B 重合),点O 是夹子转轴位置,OE ⊥AC 于点E ,OF ⊥BD 于点F ,OE =OF =1cm ,AC =BD =6cm ,CE =DF ,CE :AE =2:3.按图示方式用手指按夹子,夹子两边绕点O 转动.(1)当E ,F 两点的距离最大时,以点A ,B ,C ,D 为顶点的四边形的周长是 cm . (2)当夹子的开口最大(即点C 与点D 重合)时,A ,B 两点的距离为 cm .三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)计算:(﹣2020)0+√4−tan45°+|﹣3|.18.(6分)解不等式:5x﹣5<2(2+x).19.(6分)某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题:抽取的学生最喜爱体育锻炼项目的统计表类别项目人数(人)A跳绳59B健身操▲C俯卧撑31D开合跳▲E其它22(1)求参与问卷调查的学生总人数.(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生约8000人,估算该市初中学生中最喜爱“健身操”的人数.̂的半径OA=2,OC⊥AB于点C,∠AOC=60°.20.(8分)如图,AB(1)求弦AB的长.̂的长.(2)求AB21.(8分)某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T(℃)和高度h (百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.22.(10分)如图,在△ABC中,AB=4√2,∠B=45°,∠C=60°.(1)求BC边上的高线长.(2)点E为线段AB的中点,点F在边AC上,连结EF,沿EF将△AEF折叠得到△PEF.①如图2,当点P落在BC上时,求∠AEP的度数.②如图3,连结AP,当PF⊥AC时,求AP的长.23.(10分)如图,在平面直角坐标系中,已知二次函数y=−12(x﹣m)2+4图象的顶点为A,与y轴交于点B,异于顶点A的点C(1,n)在该函数图象上.(1)当m=5时,求n的值.(2)当n=2时,若点A在第一象限内,结合图象,求当y≥2时,自变量x的取值范围.(3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围.24.(12分)如图,在平面直角坐标系中,正方形ABOC的两直角边分别在坐标轴的正半轴上,分别过OB,OC的中点D,E作AE,AD的平行线,相交于点F,已知OB=8.(1)求证:四边形AEFD为菱形.(2)求四边形AEFD的面积.(3)若点P在x轴正半轴上(异于点D),点Q在y轴上,平面内是否存在点G,使得以点A,P,Q,G为顶点的四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由.2020年浙江省金华市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分) 1.(3分)实数3的相反数是( ) A .﹣3B .3C .−13D .13【解答】解:实数3的相反数是:﹣3. 故选:A . 2.(3分)分式x+5x−2的值是零,则x 的值为( )A .2B .5C .﹣2D .﹣5【解答】解:由题意得:x +5=0,且x ﹣2≠0, 解得:x =﹣5, 故选:D .3.(3分)下列多项式中,能运用平方差公式分解因式的是( ) A .a 2+b 2B .2a ﹣b 2C .a 2﹣b 2D .﹣a 2﹣b 2【解答】解:A 、a 2+b 2不能运用平方差公式分解,故此选项错误; B 、2a ﹣b 2不能运用平方差公式分解,故此选项错误; C 、a 2﹣b 2能运用平方差公式分解,故此选项正确; D 、﹣a 2﹣b 2不能运用平方差公式分解,故此选项错误; 故选:C .4.(3分)下列四个图形中,是中心对称图形的是( )A .B .C .D .【解答】解:A 、该图形不是中心对称图形,故本选项不合题意; B 、该图形不是中心对称图形,故本选项不合题意; C 、该图形是中心对称图形,故本选项符合题意;D 、该图形不是中心对称图形,故本选项不合题意; 故选:C .5.(3分)如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是( )A .12B .13C .23D .16【解答】解:∵共有6张卡片,其中写有1号的有3张, ∴从中任意摸出一张,摸到1号卡片的概率是36=12;故选:A .6.(3分)如图,工人师傅用角尺画出工件边缘AB 的垂线a 和b ,得到a ∥b .理由是( )A .连结直线外一点与直线上各点的所有线段中,垂线段最短B .在同一平面内,垂直于同一条直线的两条直线互相平行C .在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D .经过直线外一点,有且只有一条直线与这条直线平行 【解答】解:由题意a ⊥AB ,b ⊥AB , ∴a ∥b (垂直于同一条直线的两条直线平行), 故选:B .7.(3分)已知点(﹣2,a )(2,b )(3,c )在函数y =kx (k >0)的图象上,则下列判断正确的是( ) A .a <b <cB .b <a <cC .a <c <bD .c <b <a【解答】解:∵k >0,∴函数y =kx (k >0)的图象分布在第一、三象限,在每一象限,y 随x 的增大而减小, ∵﹣2<0<2<3,∴b>c>0,a<0,∴a<c<b.故选:C.8.(3分)如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是DF̂上一点,则∠EPF的度数是()A.65°B.60°C.58°D.50°【解答】解:如图,连接OE,OF.∵⊙O是△ABC的内切圆,E,F是切点,∴OE⊥AB,OF⊥BC,∴∠OEB=∠OFB=90°,∵△ABC是等边三角形,∴∠B=60°,∴∠EOF=120°,∴∠EPF=12∠EOF=60°,故选:B.9.(3分)如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x.则列出方程正确的是()A .3×2x +5=2xB .3×20x +5=10x ×2C .3×20+x +5=20xD .3×(20+x )+5=10x +2【解答】解:设“□”内数字为x ,根据题意可得: 3×(20+x )+5=10x +2. 故选:D .10.(3分)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD 与正方形EFGH .连结EG ,BD 相交于点O 、BD 与HC 相交于点P .若GO =GP ,则S 正方形ABCD S 正方形EFGH的值是( )A .1+√2B .2+√2C .5−√2D .154【解答】解:∵四边形EFGH 为正方形, ∴∠EGH =45°,∠FGH =90°, ∵OG =GP ,∴∠GOP =∠OPG =67.5°, ∴∠PBG =22.5°, 又∵∠DBC =45°, ∴∠GBC =22.5°, ∴∠PBG =∠GBC ,∵∠BGP =∠BG =90°,BG =BG , ∴△BPG ≌△BCG (ASA ), ∴PG =CG .设OG =PG =CG =x ,∵O 为EG ,BD 的交点,∴EG =2x ,FG =√2x ,∵四个全等的直角三角形拼成“赵爽弦图”,∴BF =CG =x ,∴BG =x +√2x ,∴BC 2=BG 2+CG 2=x 2(√2+1)2+x 2=(4+2√2)x 2,∴S 正方形ABCDS 正方形EFGH =(4+2√2)x 22x =2+√2.故选:B .二、填空题(本题有6小题,每小题4分,共24分)11.(4分)点P (m ,2)在第二象限内,则m 的值可以是(写出一个即可) ﹣1(答案不唯一). .【解答】解:∵点P (m ,2)在第二象限内,∴m <0,则m 的值可以是﹣1(答案不唯一).故答案为:﹣1(答案不唯一).12.(4分)数据1,2,4,5,3的中位数是 3 .【解答】解:数据1,2,4,5,3按照从小到大排列是1,2,3,4,5,则这组数据的中位数是3,故答案为:3.13.(4分)如图为一个长方体,则该几何体主视图的面积为 20 cm 2.【解答】解:该几何体的主视图是一个长为4,宽为5的矩形,所以该几何体主视图的面积为20cm 2.故答案为:20.14.(4分)如图,平移图形M,与图形N可以拼成一个平行四边形,则图中α的度数是30°.【解答】解:∵四边形ABCD是平行四边形,∴∠D=180°﹣∠C=60°,∴∠α=180°﹣(540°﹣70°﹣140°﹣180°)=30°,故答案为:30.15.(4分)如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A,B,C均为正六边形的顶点,AB与地面BC所成的锐角为β.则tanβ的值是19√315.【解答】解:如图,作AT∥BC,过点B作BH⊥AT于H,设正六边形的边长为a,则正六边形的半径为,边心距=√32a.观察图象可知:BH=192a,AH=5√32a,∵AT∥BC,∴∠BAH =β,∴tan β=BH AH =192a 532a=19√315. 故答案为19√315.16.(4分)图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC ,BD(点A 与点B 重合),点O 是夹子转轴位置,OE ⊥AC 于点E ,OF ⊥BD 于点F ,OE =OF =1cm ,AC =BD =6cm ,CE =DF ,CE :AE =2:3.按图示方式用手指按夹子,夹子两边绕点O 转动.(1)当E ,F 两点的距离最大时,以点A ,B ,C ,D 为顶点的四边形的周长是 16 cm .(2)当夹子的开口最大(即点C 与点D 重合)时,A ,B 两点的距离为 6013 cm .【解答】解:(1)当E ,F 两点的距离最大时,E ,O ,F 共线,此时四边形ABCD 是矩形,∵OE =OF =1cm ,∴EF =2cm ,∴AB =CD =2cm ,∴此时四边形ABCD 的周长为2+2+6+6=16(cm ),故答案为16.(2)如图3中,连接EF 交OC 于H .由题意CE =CF =25×6=125(cm ), ∵OE =OF =1cm ,∴CO 垂直平分线段EF ,∵OC =2+OE 2=√(125)2+12=135(cm ), ∵12•OE •EC =12•CO •EH ,∴EH =1×125135=1213(cm ),∴EF =2EH =2413(cm )∵EF ∥AB ,∴EF AB =CE CB =25, ∴AB =52×2413=6013(cm ).故答案为6013.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)计算:(﹣2020)0+√4−tan45°+|﹣3|.【解答】解:原式=1+2﹣1+3=5.18.(6分)解不等式:5x ﹣5<2(2+x ).【解答】解:5x ﹣5<2(2+x ),5x ﹣5<4+2x5x ﹣2x <4+5,3x <9,x <3.19.(6分)某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题:抽取的学生最喜爱体育锻炼项目的统计表类别项目 人数(人) A跳绳 59B健身操▲C俯卧撑31D开合跳▲E其它22(1)求参与问卷调查的学生总人数.(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生约8000人,估算该市初中学生中最喜爱“健身操”的人数.【解答】解:(1)22÷11%=200(人),答:参与调查的学生总数为200人;(2)200×24%=48(人),答:最喜爱“开合跳”的学生有48人;(3)最喜爱“健身操”的学生数为200﹣59﹣31﹣48﹣22=40(人),8000×40200=1600(人),答:最喜爱“健身操”的学生数大约为1600人.20.(8分)如图,AB̂的半径OA=2,OC⊥AB于点C,∠AOC=60°.(1)求弦AB的长.(2)求AB̂的长.【解答】解:(1)∵AB̂的半径OA=2,OC⊥AB于点C,∠AOC=60°,∴AC=OA•sin60°=2×√32=√3,∴AB =2AC =2√3;(2)∵OC ⊥AB ,∠AOC =60°,∴∠AOB =120°,∵OA =2,∴AB ̂的长是:120π×2180=4π3.21.(8分)某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T (℃)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T 关于h 的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.【解答】解:(1)由题意得,高度增加2百米,则气温降低2×0.6=1.2(°C ), ∴13.2﹣1.2=12,∴高度为5百米时的气温大约是12°C ;(2)设T 关于h 的函数表达式为T =kh +b ,则:{3k +b =13.25k +b =12, 解得{k =−0.6b =15, ∴T 关于h 的函数表达式为T =﹣0.6h +15;(3)当T =6时,6=﹣0.6h +15,解得h =15.∴该山峰的高度大约为15百米.22.(10分)如图,在△ABC中,AB=4√2,∠B=45°,∠C=60°.(1)求BC边上的高线长.(2)点E为线段AB的中点,点F在边AC上,连结EF,沿EF将△AEF折叠得到△PEF.①如图2,当点P落在BC上时,求∠AEP的度数.②如图3,连结AP,当PF⊥AC时,求AP的长.【解答】解:(1)如图1中,过点A作AD⊥BC于D.在Rt△ABD中,AD=AB•sin45°=4√2×√22=4.(2)①如图2中,∵△AEF≌△PEF,∴AE=EP,∵AE=EB,∴BE=EP,∴∠EPB=∠B=45°,∴∠PEB=90°,∴∠AEP=180°﹣90°=90°.②如图3中,由(1)可知:AC=ADsin60°=8√33,∵PF⊥AC,∴∠PF A=90°,∵△AEF≌△PEF,∴∠AFE=∠PFE=45°,∴∠AFE=∠B,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴AFAB =AEAC,即4√2=√28√33,∴AF=2√3,在Rt△AFP,AF=FP,∴AP=√2AF=2√6.23.(10分)如图,在平面直角坐标系中,已知二次函数y=−12(x﹣m)2+4图象的顶点为A,与y轴交于点B,异于顶点A的点C(1,n)在该函数图象上.(1)当m=5时,求n的值.(2)当n=2时,若点A在第一象限内,结合图象,求当y≥2时,自变量x的取值范围.(3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围.【解答】解:(1)当m=5时,y=−12(x﹣5)2+4,当x=1时,n=−12×42+4=﹣4.(2)当n=2时,将C(1,2)代入函数表达式y=−12(x﹣m)2+4,得2=−12(1﹣m)2+4,解得m=3或﹣1(舍弃),∴此时抛物线的对称轴x=3,根据抛物线的对称性可知,当y=2时,x=1或5,∴x的取值范围为1≤x≤5.(3)∵点A与点C不重合,∴m≠1,∵抛物线的顶点A的坐标是(m,4),∴抛物线的顶点在直线y=4上,当x=0时,y=−12m2+4,∴点B的坐标为(0,−12m2+4),抛物线从图1的位置向左平移到图2的位置,m逐渐减小,点B沿y轴向上移动,当点B与O重合时,−12m2+4=0,解得m=2√2或﹣2√2,当点B与点D重合时,如图2,顶点A也与B,D重合,点B到达最高点,∴点B(0,4),∴−12m2+4=4,解得m=0,当抛物线从图2的位置继续向左平移时,如图3点B不在线段OD上,∴B点在线段OD上时,m的取值范围是:0≤m<1或1<m<2√2.24.(12分)如图,在平面直角坐标系中,正方形ABOC的两直角边分别在坐标轴的正半轴上,分别过OB,OC的中点D,E作AE,AD的平行线,相交于点F,已知OB=8.(1)求证:四边形AEFD为菱形.(2)求四边形AEFD的面积.(3)若点P在x轴正半轴上(异于点D),点Q在y轴上,平面内是否存在点G,使得以点A,P,Q,G为顶点的四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由.【解答】(1)证明:如图1中,∵AE∥DF,AD∥EF,∴四边形AEFD是平行四边形,∵四边形ABCD是正方形,∴AC=AB=OC=OB,∠ACE=∠ABD=90°,∵E,D分别是OC,OB的中点,∴CE=BD,∴△CAE≌△ABD(SAS),∴AE=AD,∴四边形AEFD是菱形.(2)解:如图1中,连接DE.∵S△ADB=S△ACE=12×8×4=16,S△EOD=12×4×4=8,∴S△AED=S正方形ABOC﹣2S△ABD﹣S△EOD=64﹣2×16﹣8=24,∴S菱形AEFD=2S△AED=48.(3)解:如图1中,连接AF,设AF交DE于K,∵OE=OD=4,OK⊥DE,∴KE=KD,∴OK=KE=KD=2√2,∵AO=8√2,∴AK=6√2,∴AK =3DK ,①当AP 为菱形的一边,点Q 在x 轴的上方,有图2,图3两种情形:如图2中,设AG 交PQ 于H ,过点H 作HN ⊥x 轴于N ,交AC 于M ,设AM =t .∵菱形P AQG ∽菱形ADFE ,∴PH =3AH ,∵HN ∥OQ ,QH =HP ,∴ON =NP ,∴HN 是△PQO 的中位线,∴ON =PN =8﹣t ,∵∠MAH =∠PHN =90°﹣∠AHM ,∠PNH =∠AMH =90°,∴△HMA ∽△PNH ,∴AM NH =MH PN =AH PH =13, ∴HN =3AM =3t ,∴MH =MN ﹣NH =8﹣3t ,∵PN =3MH ,∴8﹣t =3(8﹣3t ),∴t =2,∴OP =2ON =2(8﹣t )=12,∴P (12,0).如图3中,过点H 作HI ⊥y 轴于I ,过点P 作PN ⊥x 轴交IH 于N ,延长BA 交IN 于M .同法可证:△AMH ∽△HNP ,∴AM HN =MH PN =AH HP =13,设MH =t , ∴PN =3MH =3t ,∴AM =BM ﹣AB =3t ﹣8,∵HI 是△OPQ 的中位线,∴OP =2IH ,∴HIHN ,∴8+t =9t ﹣24,∴t =4,∴OP =2HI =2(8+t )=24,∴P (24,0).②当AP 为菱形的边,点Q 在x 轴的下方时,有图4,图5两种情形:如图4中,QH =3PH ,过点H 作HM ⊥OC 于M ,过D 点P 作PN ⊥MH 于N .∵MH 是△QAC 的中位线,∴MH =12AC =4,同法可得:△HPN ∽△QHM ,∴NP HM =HN MQ =PH QH =13, ∴PN =13HM =43,∴OM =PN =43,设HN =t ,则MQ =3t ,∵MQ =MC ,∴3t =8−43,∴t =209,∴OP =MN =4+t =569,∴点P 的坐标为(569,0).如图5中,QH =3PH ,过点H 作HM ⊥x 轴于M 交AC 于I ,过点Q 作QN ⊥HM 于N .∵IH 是△ACQ 的中位线,∴CQ =2HI ,NQ =CI =4,同法可得:△PMH ∽△HNQ ,∴MH NQ =PM HN =PH HQ =13,则MH =13NQ =43, 设PM =t ,则HN =3t ,∵HN =HI ,∴3t =8+43,∴t =289, ∴OP =OM ﹣PM =QN ﹣PM =4﹣t =89,∴P (89,0). ③如图6中,当AP 为菱形的对角线时,有图6一种情形:过点H 作HM ⊥y 轴于于点M ,交AB 于I ,过点P 作PN ⊥HM 于N . ∵HI ∥x 轴,AH =HP ,∴AI =IB =4,∴PN =IB =4,同法可得:△PNH ∽△HMQ ,∴PN HM =HN MQ =PH HQ =13, ∴MH =3PN =12,HI =MH ﹣MI =4,∵HI 是△ABP 的中位线,∴BP =2IH =8,∴OP =OB +BP =16,∴P (16,0),综上所述,满足条件的点P 的坐标为(12,0)或(24,0)或(569,0)或(89,0)或(16,0).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年浙江省金华市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.(3 分)实数3 的相反数是()1313A.﹣3 B.3 C.−D.푥+5푥−22.(3 分)分式的值是零,则x的值为()A.2 B.5 C.﹣2 D.﹣53.(3 分)下列多项式中,能运用平方差公式分解因式的是()2 2 B.2a﹣b2C.a﹣b22 D.﹣a﹣b22 A.a+b4.(3 分)下列四个图形中,是中心对称图形的是()A.C.B.D.5.(3 分)如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1 号卡片的概率是()12132316 A.B.C.D.6.(3 分)如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∥b.理由是()A.连结直线外一点与直线上各点的所有线段中,垂线段最短B.在同一平面内,垂直于同一条直线的两条直线互相平行C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D.经过直线外一点,有且只有一条直线与这条直线平行푘7.(3 分)已知点(﹣2,a)(2,b)(3,c)在函数y=(k>0)的图象上,则下列判断正푥确的是()A.a<b<c B.b<a<c C.a<c<b D.c<b<a8.(3 分)如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是가가퐹上一点,则∠EPF的度数是()A.65°B.60°C.58°D.50°9.(3 分)如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x.则列出方程正确的是()A.3×2x+5=2x B.3×20x+5=10x×2C.3×20+x+5=20x D.3×(20+x)+5=10x+210.(3 分)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形푆正方形퐴퐵퐶퐷EFGH.连结EG,BD相交于点O、BD与HC相交于点P.若GO=GP,则的푆正方形퐸퐹퐺퐻值是()154 A.1+2B.2+2C.5−2D.√√√二、填空题(本题有6小题,每小题4分,共24分)11.(4 分)点P(m,2)在第二象限内,则m的值可以是(写出一个即可)12.(4 分)数据1,2,4,5,3 的中位数是13.(4 分)如图为一个长方体,则该几何体主视图的面积为..2cm.14.(4 分)如图,平移图形M,与图形N可以拼成一个平行四边形,则图中α的度数°.是15.(4 分)如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A,B,C均为正六边形的顶点,AB与地面BC所成的锐角为β.则tanβ的值是.16.(4 分)图1 是一个闭合时的夹子,图2 是该夹子的主视示意图,夹子两边为AC,BD (点A与点B重合),点O是夹子转轴位置,OE⊥AC于点E,OF⊥BD于点F,OE=OF=1cm,AC=BD=6cm,CE=DF,CE:AE=2:3.按图示方式用手指按夹子,夹子两边绕点O转动.(1)当E,F两点的距离最大时,以点A,B,C,D为顶点的四边形的周长是(2)当夹子的开口最大(即点C与点D重合)时,A,B两点的距离为cm.cm.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6 分)计算:(﹣2020)+4−tan45°+|﹣3|.√18.(6 分)解不等式:5x﹣5<2(2+x).19.(6 分)某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题:抽取的学生最喜爱体育锻炼项目的统计表类别A项目跳绳人数(人)59▲31▲22B健身操俯卧撑开合跳其它CDE(1)求参与问卷调查的学生总人数.(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生约8000 人,估算该市初中学生中最喜爱“健身操”的人数.20.(8 分)如图,가가퐵的半径OA=2,OC⊥AB于点C,∠AOC=60°.(1)求弦AB的长.(2)求가가퐵的长.21.(8 分)某地区山峰的高度每增加1 百米,气温大约降低0.6℃,气温T(℃)和高度h (百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5 百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.22.(10 分)如图,在△ABC中,AB=4 2,∠B=45°,∠C=60°.√(1)求BC边上的高线长.(2)点E为线段AB的中点,点F在边AC上,连结EF,沿EF将△AEF折叠得到△PEF.①如图2,当点P落在BC上时,求∠AEP的度数.②如图3,连结AP,当PF⊥AC时,求AP的长.1 2223.(10 分)如图,在平面直角坐标系中,已知二次函数y=−(x﹣m)+4 图象的顶点为A,与y轴交于点B,异于顶点A的点C(1,n)在该函数图象上.(1)当m=5 时,求n的值.(2)当n=2 时,若点A在第一象限内,结合图象,求当y≥2 时,自变量x的取值范围.(3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围.24.(12 分)如图,在平面直角坐标系中,正方形ABOC的两直角边分别在坐标轴的正半轴上,分别过OB,OC的中点D,E作AE,AD的平行线,相交于点F,已知OB=8.(1)求证:四边形AEFD为菱形.(2)求四边形AEFD的面积.(3)若点P在x轴正半轴上(异于点D),点Q在y轴上,平面内是否存在点G,使得以点A,P,Q,G为顶点的四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由.2020年浙江省金华市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.(3 分)实数3 的相反数是(A.﹣3 B.3 )1313C.−D.【分析】直接利用相反数的定义分析得出答案.【解答】解:实数3 的相反数是:﹣3.故选:A.【点评】此题主要考查了实数的性质,正确掌握相反数的定义是解题关键.푥+52.(3 分)分式的值是零,则x的值为()푥−2A.2 B.5 C.﹣2 D.﹣5【分析】利用分式值为零的条件可得x+5=0,且x﹣2≠0,再解即可.【解答】解:由题意得:x+5=0,且x﹣2≠0,解得:x=﹣5,故选:D.【点评】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.3.(3 分)下列多项式中,能运用平方差公式分解因式的是()2 2 B.2a﹣b2C.a﹣b22 D.﹣a﹣b22 A.a+b【分析】根据能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反进行分析即可.2 2【解答】解:A、a+b不能运用平方差公式分解,故此选项错误;2B、2a﹣b不能运用平方差公式分解,故此选项错误;2 2C、a﹣b能运用平方差公式分解,故此选项正确;2 2D、﹣a﹣b不能运用平方差公式分解,故此选项错误;故选:C.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.4.(3 分)下列四个图形中,是中心对称图形的是()A.C.B.D.【分析】根据中心对称图形的概念对各图形分析判断即可得解.【解答】解:A、该图形不是中心对称图形,故本选项不合题意;B、该图形不是中心对称图形,故本选项不合题意;C、该图形是中心对称图形,故本选项符合题意;D、该图形不是中心对称图形,故本选项不合题意;故选:C.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180 度后两部分重合.5.(3 分)如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1 号卡片的概率是()12132316 A.B.C.D.【分析】根据概率公式直接求解即可.【解答】解:∵共有6 张卡片,其中写有1 号的有3 张,31∴从中任意摸出一张,摸到1 号卡片的概率是=;62故选:A.【点评】此题考查了概率的求法,用到的知识点为:可能性等于所求情况数与总情况数之比.6.(3 分)如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∥b.理由是()A.连结直线外一点与直线上各点的所有线段中,垂线段最短B.在同一平面内,垂直于同一条直线的两条直线互相平行C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D.经过直线外一点,有且只有一条直线与这条直线平行【分析】根据垂直于同一条直线的两条直线平行判断即可.【解答】解:由题意a⊥AB,b⊥AB,∴a∥b(垂直于同一条直线的两条直线平行),故选:B.【点评】本题考查平行线的判定,平行公理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.푘7.(3 分)已知点(﹣2,a)(2,b)(3,c)在函数y=(k>0)的图象上,则下列判断正푥确的是()A.a<b<c B.b<a<c C.a<c<b D.c<b<a푘【分析】根据反比例函数的性质得到函数y=(k>0)的图象分布在第一、三象限,在푥每一象限,y随x的增大而减小,则b>c>0,a<0.【解答】解:∵k>0,푘∴函数y=(k>0)的图象分布在第一、三象限,在每一象限,y随x的增大而减小,푥∵﹣2<0<2<3,∴b>c>0,a<0,∴a<c<b.故选:C.【点评】本题考查了反比例函数图象上点的坐标特征,熟练掌握反比例函数的性质是解题的关键.8.(3 分)如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是가가퐹上一点,则∠EPF的度数是()A.65°B.60°C.58°D.50°【分析】如图,连接OE,OF.求出∠EOF的度数即可解决问题.【解答】解:如图,连接OE,OF.∵⊙O是△ABC的内切圆,E,F是切点,∴OE⊥AB,OF⊥BC,∴∠OEB=∠OFB=90°,∵△ABC是等边三角形,∴∠B=60°,∴∠EOF=120°,1∴∠EPF=∠EOF=60°,2故选:B.【点评】本题考查三角形的内切圆与内心,切线的性质,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.(3 分)如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x.则列出方程正确的是()A .3×2x +5=2xB .3×20x +5=10x ×2C .3×20+x +5=20xD .3×(20+x )+5=10x +2【分析】直接利用表示十位数的方法进而得出等式即可.【解答】解:设“□”内数字为 x ,根据题意可得:3×(20+x )+5=10x +2.故选:D .【点评】此题主要考查了由实际问题抽象出一元一次方程,正确表示十位数是解题关键.10.(3 分)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形 ABCD 与正方形푆正方形퐴퐵퐶퐷EFGH .连结 EG ,BD 相交于点 O 、BD 与 HC 相交于点 P .若 GO =GP ,则 的푆正方形퐸퐹퐺퐻 值是( )154A .1+ 2B .2+ 2C .5− 2D . √ √ √ 【分析】证明△BPG ≌△BCG (ASA ),得 出 PG =CG .设 OG =PG =CG =x ,则 EG =2x , 2 2FG = 2x ,由勾股定理得出 BC =(4+2 2)x ,则可得出答案. √ √ 【解答】解:∵四边形 EFGH 为正方形,∴∠EGH =45°,∠FGH =90°,∵OG =GP ,∴∠GOP =∠OPG =67.5°,∴∠PBG =22.5°,又∵∠DBC =45°,∴∠GBC =22.5°,∴∠PBG=∠GBC,∵∠BGP=∠BG=90°,BG=BG,∴△BPG≌△BCG(ASA),∴PG=CG.设OG=PG=CG=x,∵O为EG,BD的交点,∴EG=2x,FG=√2x,∵四个全等的直角三角形拼成“赵爽弦图”,∴BF=CG=x,∴BG=x+√2x,2 2 2∴BC=BG+CG=푥2(√2+1)2+푥2=(4+2√2)푥2,푆正方形퐴퐵퐶퐷(4+2√2)푥2∴==2+√2.푆正方形퐸퐹퐺퐻2푥2故选:B.【点评】本题考查了正方形的性质,全等三角形的判定与性质,勾股定理,直角三角形的性质等知识,熟练掌握勾股定理的应用是解题的关键.二、填空题(本题有6小题,每小题4分,共24分)11.(4 分)点P(m,2)在第二象限内,则m的值可以是(写出一个即可)﹣1(答案不唯一)..【分析】直接利用第二象限内点的坐标特点得出m的取值范围,进而得出答案.【解答】解:∵点P(m,2)在第二象限内,∴m<0,则m的值可以是﹣1(答案不唯一).故答案为:﹣1(答案不唯一).【点评】此题主要考查了点的坐标,正确得出m的取值范围是解题关键.12.(4 分)数据1,2,4,5,3 的中位数是 3 .【分析】先将题目中的数据按照从小到大排列,即可得到这组数据的中位数.【解答】解:数据1,2,4,5,3 按照从小到大排列是1,2,3,4,5,则这组数据的中位数是3,故答案为:3.【点评】本题考查中位数,解答本题的关键是明确中位数的含义,会求一组数据的中位数.213.(4 分)如图为一个长方体,则该几何体主视图的面积为20 cm.【分析】根据从正面看所得到的图形,即可得出这个几何体的主视图的面积.【解答】解:该几何体的主视图是一个长为4,宽为5 的矩形,所以该几何体主视图的面2积为20cm.故答案为:20.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.14.(4 分)如图,平移图形M,与图形N可以拼成一个平行四边形,则图中α的度数是30 °.【分析】根据平行四边形的性质解答即可.【解答】解:∵四边形ABCD是平行四边形,∴∠D=180°﹣∠C=60°,∴∠α=180°﹣(540°﹣70°﹣140°﹣180°)=30°,故答案为:30.【点评】此题考查平行四边形的性质,关键是根据平行四边形的邻角互补解答.15.(4 分)如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A,B,C均为正六边形的顶点,AB与地面BC所成的锐角为β.则tanβ的值19√315 是 .【分析】如图,作 AT ∥BC ,过点 B 作 BH ⊥AT 于 H ,设正六边形的边长为 a ,则正六边 √32 形的半径为,边心距= a .求出 BH ,AH 即可解决问题.【解答】解:如图,作 AT ∥BC ,过点 B 作 BH ⊥AT 于 H ,设正六边形的边长为 a ,则正 √3六边形的半径为,边心距= a .219 2 5√3 2观察图象可知:BH =a ,AH = a , ∵AT ∥BC ,∴∠BAH =β, 19 2 푎 퐵퐻 19√3 15 ∴tan β= = = . 퐴퐻 53 √ 푎2 19√3故答案为 .15 【点评】本题考查解直角三角形的应用,解题的关键是理解题意,学会添加常用辅助线, 构造直角三角形解决问题.16.(4 分)图 1 是一个闭合时的夹子,图 2 是该夹子的主视示意图,夹子两边为 AC ,BD (点 A 与点 B 重合),点 O 是夹子转轴位置,OE ⊥AC 于点 E ,OF ⊥BD 于点 F ,OE = OF =1cm ,AC =BD =6cm ,CE =DF ,CE :AE =2:3.按图示方式用手指按夹子,夹子 两边绕点 O 转动.(1)当 E ,F 两点的距离最大时,以点 A ,B ,C ,D 为顶点的四边形的周长是 16 cm .6013(2)当夹子的开口最大(即点C与点D重合)时,A,B两点的距离为cm.【分析】(1)当E,F两点的距离最大时,E,O,F共线,此时四边形ABCD是矩形,求出矩形的长和宽即可解决问题.(2)如图3 中,连接EF交OC于H.想办法求出EF,利用平行线分线段成比例定理即可解决问题.【解答】解:(1)当E,F两点的距离最大时,E,O,F共线,此时四边形ABCD是矩形,∵OE=OF=1cm,∴EF=2cm,∴AB=CD=2cm,∴此时四边形ABCD的周长为2+2+6+6=16(cm),故答案为16.(2)如图3 中,连接EF交OC于H.2 512 5由题意CE=CF=×6=(cm),∵OE=OF=1cm,∴CO垂直平分线段EF,∵OC=√퐶퐸2+푂퐸2=√(12)2+12=13(cm),551 12 ∵ •OE •EC = •CO •EH , 2121× 12 13∴EH = 135 = (cm ), 5 24∴EF =2EH =(cm ) 13 ∵EF ∥AB ,퐸퐹 퐶퐸 퐶퐵 2= ,5 ∴ = 퐴퐵 5 2 24 60 = (cm ). ∴AB = × 13 13 6013 故答案为 .【点评】本题考查旋转的性质,矩形的判定和性质,平行线分线段成比例定理等知识, 解题的关键是理解题意,灵活运用所学知识解决问题.三、解答题(本题有 8 小题,共 66 分,各小题都必须写出解答过程)0 17.(6 分)计算:(﹣2020) + 4 −tan45°+|﹣3|.√ 【分析】利用零次幂的性质、二次根式的性质、特殊角的三角函数值、绝对值的性质进 行计算,再算加减即可.【解答】解:原式=1+2﹣1+3=5.【点评】此题主要考查了实数运算,关键是掌握零次幂、二次根式的性质、特殊角的三 角函数值、绝对值的性质.18.(6 分)解不等式:5x ﹣5<2(2+x ).【分析】去括号,移项、合并同类项,系数化为 1 求得即可.【解答】解:5x ﹣5<2(2+x ),5x ﹣5<4+2x5x ﹣2x <4+5,3x <9,x <3.【点评】本题考查了解一元一次不等式,熟练掌握解不等式的步骤是解题的关键.19.(6 分)某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽 取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其 中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题:抽取的学生最喜爱体育锻炼项目的统计表类别A项目跳绳人数(人)59▲31▲22B健身操俯卧撑开合跳其它CDE(1)求参与问卷调查的学生总人数.(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生约8000 人,估算该市初中学生中最喜爱“健身操”的人数.【分析】(1)从统计图表中可得,“E组其它”的频数为22,所占的百分比为11%,可求出调查学生总数;(2)“开合跳”的人数占调查人数的24%,即可求出最喜爱“开合跳”的人数;(3)求出“健身操”所占的百分比,用样本估计总体,即可求出8000 人中喜爱“健身操”的人数.【解答】解:(1)22÷11%=200(人),答:参与调查的学生总数为200 人;(2)200×24%=48(人),答:最喜爱“开合跳”的学生有48 人;(3)最喜爱“健身操”的学生数为200﹣59﹣31﹣48﹣22=40(人),402008000×=1600(人),答:最喜爱“健身操”的学生数大约为1600 人.【点评】考查统计表、扇形统计图的意义和制作方法,理解统计图表中的数量之间的关是解决问题的关键.20.(8 分)如图,가가퐵的半径OA=2,OC⊥AB于点C,∠AOC=60°.(1)求弦AB的长.(2)求가가퐵的长.【分析】(1)根据题意和垂径定理,可以求得AC的长,然后即可得到AB的长;(2)根据∠AOC=60°,可以得到∠AOB的度数,然后根据弧长公式计算即可.【解答】解:(1)∵가가퐵的半径OA=2,OC⊥AB于点C,∠AOC=60°,√32∴AC=OA•sin60°=2×∴AB=2AC=2√3;=√3,(2)∵OC⊥AB,∠AOC=60°,∴∠AOB=120°,∵OA=2,120휋×21804휋3∴가가퐵的长是:=.【点评】本题考查弧长的计算、垂径定理,解答本题的关键是明确题意,利用数形结合的思想解答.21.(8 分)某地区山峰的高度每增加1 百米,气温大约降低0.6℃,气温T(℃)和高度h (百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5 百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.【分析】(1)根据高度每增加1 百米,气温大约降低0.6℃,由3 百米时温度为13.2°C,即可得出高度为5 百米时的气温;(2)应用待定系数法解答即可;(3)根据(2)的结论解答即可.【解答】解:(1)由题意得,高度增加2 百米,则气温降低2×0.6=1.2(°C),∴13.2﹣1.2=12,∴高度为5 百米时的气温大约是12°C;(2)设T关于h的函数表达式为T=kh+b,则:{3푘+푏=13.2,5푘+푏=12푘=−0.6푏=15解得{,∴T关于h的函数表达式为T=﹣0.6h+15;(3)当T=6 时,6=﹣0.6h+15,解得h=15.∴该山峰的高度大约为15 百米.【点评】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.22.(10 分)如图,在△ABC中,AB=4 2,∠B=45°,∠C=60°.√(1)求BC边上的高线长.(2)点E为线段AB的中点,点F在边AC上,连结EF,沿EF将△AEF折叠得到△PEF.①如图2,当点P落在BC上时,求∠AEP的度数.②如图3,连结AP,当PF⊥AC时,求AP的长.【分析】(1)如图1 中,过点A作AD⊥BC于D.解直角三角形求出AD即可.(2)①证明BE=EP,可得∠EPB=∠B=45°解决问题.퐴퐹퐴퐸퐴퐶퐴퐷푠푖푛60°8√33②如图3 中,由(1)可知:AC=由此求出AF即可解决问题.=,证明△AEF∽△ACB,推出=,퐴퐵【解答】解:(1)如图1 中,过点A作AD⊥BC于D.√22在Rt△ABD中,AD=AB•sin45°=4√2×(2)①如图2 中,=4.∵△AEF≌△PEF,∴AE=EP,∵AE=EB,∴BE=EP,∴∠EPB=∠B=45°,∴∠PEB=90°,∴∠AEP=180°﹣90°=90°.②如图3 中,由(1)可知:AC=퐴퐷푠푖푛60°8√3 3=,∵PF⊥AC,∴∠PFA=90°,∵△AEF≌△PEF,∴∠AFE=∠PFE=45°,∴∠AFE=∠B,∵∠EAF=∠CAB,∴△AEF∽△ACB,퐴퐹퐴퐸퐴퐶퐴퐹2√2∴=,即=,퐴퐵4√28√33∴AF=2√3,在Rt△AFP,AF=FP,∴AP=√2AF=2√6.【点评】本题属于三角形综合题,考查了解直角三角形的应用,翻折变换,全等三角形的性质,相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.1 2223.(10 分)如图,在平面直角坐标系中,已知二次函数y=−(x﹣m)+4 图象的顶点为A,与y轴交于点B,异于顶点A的点C(1,n)在该函数图象上.(1)当m=5 时,求n的值.(2)当n=2 时,若点A在第一象限内,结合图象,求当y≥2 时,自变量x的取值范围.(3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围.【分析】(1)利用待定系数法求解即可.(2)求出y=2 时,x的值即可判断.1 2(3)由题意点B的坐标为(0,−m+4),求出几个特殊位置m的值即可判断.21 22【解答】解:(1)当m=5 时,y=−(x﹣5)+4,1 22当x=1 时,n=−×4 +4=﹣4.1 212 2(2)当n=2 时,将C(1,2)代入函数表达式y=−(x﹣m)+4,得2=−(1﹣m)2+4,解得m=3 或﹣1(舍弃),∴此时抛物线的对称轴x=3,根据抛物线的对称性可知,当y=2 时,x=1 或5,∴x的取值范围为1≤x≤5.(3)∵点A与点C不重合,∴m≠1,∵抛物线的顶点A的坐标是(m,4),∴抛物线的顶点在直线y=4 上,1 22当x=0 时,y=−m+4,1 22∴点B的坐标为(0,−m+4),抛物线从图1 的位置向左平移到图2 的位置,m逐渐减小,点B沿y轴向上移动,1 22当点B与O重合时,−m+4=0,解得m=2√2或﹣2√2,当点B与点D重合时,如图2,顶点A也与B,D重合,点B到达最高点,∴点B(0,4),1 22∴−m+4=4,解得m=0,当抛物线从图2 的位置继续向左平移时,如图3 点B不在线段OD上,∴B点在线段OD上时,m的取值范围是:0≤m<1 或1<m<2√2.【点评】本题属于二次函数综合题,考查了二次函数的性质,待定系数法,一次函数的性质等知识,解题的关键是理解题意,学会寻找特殊位置解决数学问题,属于中考常压轴题.24.(12 分)如图,在平面直角坐标系中,正方形ABOC的两直角边分别在坐标轴的正半轴上,分别过OB,OC的中点D,E作AE,AD的平行线,相交于点F,已知OB=8.(1)求证:四边形AEFD为菱形.(2)求四边形AEFD的面积.(3)若点P在x轴正半轴上(异于点D),点Q在y轴上,平面内是否存在点G,使得以点A,P,Q,G为顶点的四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由.【分析】(1)根据邻边相等的四边形是菱形证明即可.(2)连接DE,求出△ADE的面积即可解决问题.(3)首先证明AK=3DK,①当AP为菱形的一边,点Q在x轴的上方,有图2,图3 两种情形.②当AP为菱形的边,点Q在x轴的下方时,有图4,图5 两种情形.③如图6 中,当AP为菱形的对角线时,有图6 一种情形.分别利用相似三角形的性质求解即可.【解答】(1)证明:如图1 中,∵AE∥DF,AD∥EF,∴四边形AEFD是平行四边形,∵四边形ABCD是正方形,∴AC=AB=OC=OB,∠ACE=∠ABD=90°,∵E,D分别是OC,OB的中点,∴CE=BD,∴△CAE≌△ABD(SAS),∴AE=AD,∴四边形AEFD是菱形.(2)解:如图1 中,连接DE.1∵S△ADB=S△ACE=×8×4=16,21S△EOD=×4×4=8,2∴S△AED=S﹣2S△ABD﹣S△EOD=64﹣2×16﹣8=24,正方形ABOC∴S=2S△AED=48.菱形AEFD(3)解:如图1 中,连接AF,设AF交DE于K,∵OE=OD=4,OK⊥DE,∴KE=KD,∴OK=KE=KD=2√2,∵AO=8√2,∴AK=6√2,∴AK=3DK,①当AP为菱形的一边,点Q在x轴的上方,有图2,图3 两种情形:如图2 中,设AG交PQ于H,过点H作HN⊥x轴于N,交AC于M,设AM=t.∵菱形PAQG∽菱形ADFE,∴PH=3AH,∵HN∥OQ,QH=HP,∴ON=NP,∴HN是△PQO的中位线,∴ON=PN=8﹣t,∵∠MAH=∠PHN=90°﹣∠AHM,∠PNH=∠AMH=90°,∴△HMA∽△PNH,퐴푀푁퐻푀퐻푃푁퐴퐻푃퐻1=,3∴==∴HN=3AM=3t,∴MH=MN﹣NH=8﹣3t,∵PN=3MH,∴8﹣t=3(8﹣3t),∴t=2,∴OP=2ON=2(8﹣t)=12,∴P(12,0).如图3 中,过点H作HI⊥y轴于I,过点P作PN⊥x轴交IH于N,延长BA交IN于M.同法可证:△AMH∽△HNP,퐴푀퐻푁푀퐻푃푁퐴퐻퐻푃1∴===,设MH=t,3∴PN=3MH=3t,∴AM=BM﹣AB=3t﹣8,∵HI是△OPQ的中位线,∴OP=2IH,∴HIHN,∴8+t=9t﹣24,∴t=4,∴OP=2HI=2(8+t)=24,∴P(24,0).②当AP为菱形的边,点Q在x轴的下方时,有图4,图5 两种情形:如图4 中,QH=3PH,过点H作HM⊥OC于M,过D点P作PN⊥MH于N.∵MH是△QAC的中位线,1∴MH=AC=4,2同法可得:△HPN∽△QHM,푁푃퐻푁푀푄푃퐻푄퐻1=,3∴=1=퐻푀43∴PN=HM=,343∴OM=PN=,设HN=t,则MQ=3t,∵MQ=MC,4∴3t=8−,3209∴t=,569∴OP=MN=4+t=,56∴点P的坐标为(,0).9如图5 中,QH=3PH,过点H作HM⊥x轴于M交AC于I,过点Q作QN⊥HM于N.∵IH是△ACQ的中位线,∴CQ=2HI,NQ=CI=4,同法可得:△PMH∽△HNQ,푀퐻푁푄푃푀퐻푁푃퐻퐻푄11343∴===,则MH=NQ=,3设PM=t,则HN=3t,∵HN=HI,4∴3t=8+,3289∴t=,89∴OP=OM﹣PM=QN﹣PM=4﹣t=,8∴P(,0).9③如图6 中,当AP为菱形的对角线时,有图6 一种情形:过点H作HM⊥y轴于于点M,交AB于I,过点P作PN⊥HM于N.∵HI∥x轴,AH=HP,∴AI=IB=4,∴PN=IB=4,同法可得:△PNH∽△HMQ,푃푁퐻푁푀푄푃퐻퐻푄1=,3∴==퐻푀∴MH=3PN=12,HI=MH﹣MI=4,∵HI是△ABP的中位线,∴BP=2IH=8,∴OP=OB+BP=16,∴P(16,0),568综上所述,满足条件的点P的坐标为(12,0)或(24,0)或(,0)或(,0)或99(16,0).【点评】本题属于相似形综合题,考查了正方形的性质,菱形的判定和性质,解直角三角形,相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会寻找相似三角形,利用相似三角形的性质构建方程解决问题,属于中考压轴题.。

相关文档
最新文档