金属箔式应变片——全桥性能实验实验报告
金属箔式应变片实验报告

一、实验目的1. 了解金属箔式应变片的工作原理和结构特点。
2. 掌握金属箔式应变片的安装方法及注意事项。
3. 通过实验验证金属箔式应变片的性能,包括灵敏度、非线性误差、温度系数等。
二、实验原理金属箔式应变片是一种将应变转换为电信号的传感器。
当应变片受到拉伸或压缩时,其电阻值发生变化,从而产生电压信号。
实验中,利用金属箔式应变片组成的电桥电路,通过测量电桥输出电压的变化,来反映应变片受到的应变。
三、实验仪器与材料1. 金属箔式应变片2. 电桥电路3. 稳压电源4. 电压表5. 数字多用表6. 加载装置7. 温度计8. 实验台四、实验步骤1. 将金属箔式应变片安装在实验台上,确保其固定牢固。
2. 将应变片接入电桥电路,连接稳压电源和电压表。
3. 在加载装置上施加一定的力,观察电压表读数的变化。
4. 记录不同加载力下的电压值。
5. 改变加载方向,重复步骤3和4,观察电压值的变化。
6. 测量应变片的温度,记录不同温度下的电压值。
7. 利用数字多用表测量应变片的电阻值。
五、实验结果与分析1. 灵敏度测试根据实验数据,绘制应变片电压值与加载力的关系曲线。
根据曲线斜率,计算应变片的灵敏度。
2. 非线性误差测试根据实验数据,绘制应变片电压值与加载力的关系曲线。
通过曲线拟合,得到线性拟合曲线,计算非线性误差。
3. 温度系数测试根据实验数据,绘制应变片电压值与温度的关系曲线。
通过曲线拟合,得到线性拟合曲线,计算温度系数。
六、实验结论1. 通过实验验证了金属箔式应变片的工作原理和结构特点。
2. 实验结果表明,金属箔式应变片具有较高的灵敏度和较好的线性度。
3. 温度对金属箔式应变片的影响较小,温度系数较小。
七、实验总结本次实验对金属箔式应变片进行了性能测试,了解了其工作原理和结构特点。
通过实验,掌握了金属箔式应变片的安装方法及注意事项。
实验结果表明,金属箔式应变片具有较高的灵敏度和较好的线性度,适用于各种应变测量场合。
传感器实验报告

实验一 金属箔式应变片——全桥性能实验一、实验目的了解全桥测量电路的优点二、基本原理全桥测量电路中,将受力方向相同的两应变片接入电桥对边,相反的应变片接入电桥邻边。
当应变片初始阻值R1=R2=R3=R4、其变化值1234R R R R ∆=∆=∆=∆时,其桥路输出电压3o U EK ε=。
其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差都得到了改善。
三、实验器材主机箱、应变传感器实验模板、托盘、砝码、万用表、导线等。
四、实验步骤1.根据接线示意图安装接线。
2.放大器输出调零。
3.电桥调零。
4.应变片全桥实验数据记录如下表所示: 重量(g ) 0 20 40 60 80 100 120 140 电压(mv )20.140.160.480.8100.8121.1141.2实验曲线如下所示:分析:从图中可见,数据点基本在拟合曲线上,线性性比半桥进一步提高。
5.计算灵敏度S=U/W ,非线性误差δ。
U=141.2mv , W=140g ; 所以 S=141.2/140=1.0086 mv/g;m∆=0.1786g,y F S=140g,δ=⨯=0.1786/140100%06.利用虚拟仪器进行测量测量数据如下表所示:重量(g)0 20 40 60 80 100 120 140电压(mv)-1.1 19.6 40.4 61.1 81.7 102.4 122.0 142.0 实验曲线如下所示:五、思考题1.测量中,当两组对边电阻值R相同时,即R1=R3,R2=R4,而R1≠R2时,是否可以组成全桥:(1)可以;(2)不可以。
答:(2)不可以。
2.某工程技术人员在进行材料拉力测试时在棒材上贴了两组应变片,能否及如何利用四组应变片组成电桥,是否需要外加电阻。
答:能够利用它们组成电桥。
对于左边一副图,可以任意选取两个电阻接入电桥的对边,则输出为两倍的横向应变,如果已知泊松比则可知纵向应变。
对于右边的一幅图,可以选取R3、R4接入电桥对边,则输出为两倍的纵向应变。
实验四金属箔式应变片性能一全桥

实验四 金属箔式应变片性能——全桥四臂实验一、实验目的:了解金属箔式应变片,半桥单、双臂测量电路的工作原理和工作情形。
二、实验原理:本实验说明箔式应变片及半桥单、双臂直流电桥的原理和工作情形。
电阻应变片是最经常使用的测力传感元件。
当用应变片测试时,应变片要牢固地粘贴在力灵敏物体(测件)表面,当测件受力发生形变(即为应变),应变片的灵敏栅随同变形,其电阻也随之发生相应的转变,通过测量电路,转换成电信号输出显示。
电桥电路是最经常使用的非电量电测电路中的一种,当电桥平稳时,桥路对臂电阻乘积相等,电桥输出为零,在桥臂四个电阻R 1、R 2、R 3、R 4中,电阻的相对转变率别离为11R R ∆、22R R ∆、33R R ∆、44R R ∆,当利用一个应变片时, R R R ∆=∑ ;当二个应变片组成差动状态工作,那么有RR R ∆=∑2;用四个应变片组成二个差动对工作,且R 1=R 2=R 3=R 4=R ,R R R ∆=∑4。
由此可知,单臂、半桥、全桥电路的灵敏度依次增大。
三、所需单元及部件:直流稳压电源、电桥、差动放大器、双平行梁、四片应变片、F/V 表、主、副电源。
四、旋钮初始位置:直流稳压电源打到±2V 档,F/V 表打到2V 档,差动放大增益最大。
五、实验步骤:(1)、了解所需单元、部件在实验仪上的所在位置,观看梁上的应变片,应变片为棕色衬底箔式结构小方薄片。
上下二片梁的外表各贴二片受力应变片。
(2)、将差动放大器调零:用连线将差动放大器的正(+)、负(-)、地短接。
将差动放大器的输出端与F/V 表的输入插口V i 相连;开启主电源;调剂差动放大器的增益到最大位置(顺时针将差动放大器的增益旋钮调整到最大),然后调整差动放大器的调零旋钮,直至使F/V 表显示为零。
关闭主电源,并将差动放大器的正(+)、负(-)极短接线全数撤去。
(3)、电桥的调零:依照如图1接线。
R 1、R 2、R 3、R 4为应变片。
《传感器与检测技术》金属箔式应变片性能研究实验报告

《传感器与检测技术》金属箔式应变片性能研究实验报告课程名称:传感器与检测技术实验类型:研究型实验项目名称:金属箔式应变片性能研究一、实验目的和要求1、了解金属箔式应变片,单臂电桥的工作原理和工作情况。
2、了解金属箔式应变片,半桥的工作原理和工作情况。
3、了解金属箔式应变片,全桥的工作原理和工作情况。
4、验证单臂、半桥、全桥的性能及相互之间的关系。
二、实验内容和原理电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成,一种利用电阻材料的应变效应工程结构件的内部变形转化为电阻变化的传感器。
此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的形变,然后由电阻应变片将弹性元件的形变转化为电阻的变化,再通过测量电路将电阻的变化转换成电压或者电流变化信号输出。
它可用于能转化成形变的的各种物理量的检测。
本实验以金属箔式应变片为研究对象。
箔式应变片的基本结构:金属箔式应变片是在用苯酚、环氧树脂等绝缘材料的基板上,粘贴直径为 0.025mm 左右的金属丝或者金属箔制成,如图所示:金属箔式应变片是通过光刻、腐蚀等工艺制成的应变敏感元件,与丝式应变片工作原理相同。
电阻丝在外力的作用下发生机械形变时,其电阻值发生变化,这就是电阻应变效应。
描述电阻应变效应的关系式为△R/R=Kε。
式中△R/R为电阻丝电阻的相对变化,K 为应变灵敏系数,ε=△L/L 为电阻丝长度相对变化。
为了将电阻应变式传感器的电阻变化转化成电压或者电流信号,在应用中一般采用电桥电路作为测量电路。
电桥电路具有结构简单、灵敏度高、测量范围宽、线性度好且易实现温度补偿等优点。
能较好地满足各种应变测量要求,因此在测量应变中得到了广泛的应用。
电路电桥按其工作方式分有单臂、半桥、全桥三种,单臂工作输出信号最小,线性、稳定性较差;双臂输出是单臂的两倍,性能比单臂有所改善;全桥工作时的输出是单臂的四倍,性能最好。
因此,为了得到较大的输出电压一般采用半桥或者全桥工作。
金属箔式应变片单臂、半桥、全桥性能比较实验

金属箔式应变片单臂、半桥、全桥性能比较实验一、实验目的:了解金属箔式应变片的应变效应工作原理和性能, 比较单臂、半桥、全桥输出时的灵敏度和非线性度,得出相应的结论。
二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中:ΔR/R 为电阻丝电阻相对变化,K 为应变灵敏系数,ε=ΔL/L 为电阻丝长度相对变化。
金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化。
电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。
对单臂电桥输出电压Uo= EKε/4。
半桥测量电路中,不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。
当应变片阻值和应变量相同时,其桥路输出电压U o=EKε/2。
全桥测量电路中,将受力方向相同的两应变片接入电桥对边,相反的应变片接入电桥邻边。
当应变片初始阻值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。
其桥路输出电压U o=KEε。
三、需用器件与单元:主机箱(±4V、±15V、电压表)、应变式传感器实验模板、托盘砝码。
四、实验步骤:应变传感器实验模板简介:实验模板中的R1、R2、R3、R4 为应变片,没有文字标记的5 个电阻符号下面是空的,其中4 个组成电桥模型是为实验者组成电桥方便而设,图中的粗黑曲线表示连接线。
应变式传感器(电子秤传感器)已装于应变传感器模板上。
传感器中的4片应变片和加热电阻已连接在实验模板左上方的R1、R2、R3、R4 和加热器上。
传感器左下角应变片为R1;右下角为R2;右上角为R3;左上角为R4。
当传感器托盘支点受压时,R1、R3 阻值增加,R2、R4 阻值减小,可用四位半数显万用表2K 电阻档进行测量判别。
金属箔式应变片——全桥性能实验实验报告

金属箔式应变片——全桥性能实验实验报告一. 实验目的:了解全桥测量电路的优点。
二. 基本原理:全桥测量电路中,将受力性质相同的两应变片接入电桥对边,受力方向不同的接入邻边,当应变片初始阻值:1234R R R R ===,其变化值1234R R R R ∆=∆=∆=∆时,其桥路输出电压3o U KE ε=。
其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。
三. 需用器件和单元:应变单元电路、应变式传感器、砝码、数显表(实验箱上电压表)、±4V 电源、万用表。
四. 实验步骤:图1 应变式传感器全桥实验接线图1. 保持单臂、半桥实验中的3Rw 和4Rw 的当前位置不变。
2. 根据图1接线,实验方法与半桥实验相同,全桥测量电路中,将受力性质相同的两应变片接入电桥对边,不同的接入邻边,将实验结果填入表1;进行灵敏度和非线性误差计算。
表1 全桥输出电压与加负载重量值3. 根据表1计算系统灵敏度S ,/S u W =∆∆(u ∆输出电压变化量;W ∆重量变化量);计算非线性误差:1 /100%f F S m y δ⋅=∆⨯,式中m ∆为输出值(多次测量时为平均值)与拟合直线的最大偏差,F S y ⋅满量程输出平均值。
五. 实验结果计算1. 计算系统灵敏度S ,/S u W =∆∆(u ∆输出电压变化量;W ∆重量变化量)表2 全桥测量灵敏度2. 计算非线性误差:1 /100%f F S m y δ⋅=∆⨯,式中m ∆为输出值(多次测量时为平均值)与拟合直线的最大偏差,F S y ⋅满量程输出平均值。
实验时,测的最大重量为80()g ,因此,0.157()F S y ⋅=电压表测得、=0.15293(LABVIEW )F S y ⋅测得(1) 由电压表测得数据拟合得到的方程为:0.00170.0185y x =+拟合得到数据:拟合得到图像:01020304050607080计算得到非线性误差为:表3 电压表测得数据计算得到非线性误差由LABVIEW 测得数据拟合得到的方程为:0.00170.0182y x =+拟合得到数据:拟合得到图像:01020304050607080计算得到非线性误差为:表4 LABVIEW 测得数据计算得到非线性误差六. 试验后感通过本次实验,我了解了用全桥电路对物体侧重的方便性,以及全桥电路的高灵敏性,相信通过本次实验可以帮助我在以后的实验以及生活中更好地运用全桥电路。
金属箔式应变片交流全桥实验报告doc

金属箔式应变片交流全桥实验报告篇一:自动化传感器实验报告三__金属箔式应变片——全桥性能实验实验三项目名称:金属箔式应变片——全桥性能实验一、实验目的了解全桥测量电路的原理及优点。
二、基本原理全桥测量电路中,将受力性质相同的两个应变片接入电桥对边,当应变片初始阻值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压U03=KE?。
其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到明显改善。
三、需用器件和单元传感器实验箱(一)中应变式传感器实验单元,传感器调理电路挂件、砝码、智能直流电压表(或虚拟直流电压表)、±15V电源、±5V电源。
四、实验内容与步骤1.根据图3-1接线,实验方法与实验二相同。
将实验结果填入表3-1;进行灵敏度和非线性误差计算。
图3-1 应变式传感器全桥实验接线图五、实验注意事项1.不要在砝码盘上放置超过1kg的物体,否则容易损坏传感器。
2.电桥的电压为±5V,绝不可错接成±15V。
一、实验目的了解全桥测量电路的原理及优点。
二、基本原理全桥测量电路中,将受力性质相同的两个应变片接入电桥对边,当应变片初始阻值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压U03=1KE?。
其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到明显改善。
三、需用器件和单元传感器实验箱(一)中应变式传感器实验单元,传感器调理电路挂件、砝码、智能直流电压表(或虚拟直流电压表)、±15V电源、±5V电源。
四、实验内容与步骤1.根据图3-1接线,实验方法与实验二相同。
将实验结果填入表3-1;进行灵敏度和非线性误差计算。
表3-1全桥输出电压与加负载重量值图3-1 应变式传感器全桥实验接线图2五、实验注意事项1.不要在砝码盘上放置超过1kg的物体,否则容易损坏传感器。
2.电桥的电压为±5V,绝不可错接成±15V。
实验一金属箔式应变片实验报告

实验一-金属箔式应变片实验报告金属箔式应变片实验报告一、实验目的1.学习和了解金属箔式应变片的基本原理和应用。
2.掌握应变片的粘贴和测试方法。
3.通过实验数据分析,理解应变、应力和弹性模量的关系。
二、实验原理金属箔式应变片是一种用于测量物体应变的传感器,其工作原理基于电阻的应变效应。
当金属导体受到拉伸或压缩时,其电阻值会发生变化。
这种现象称为“应变效应”。
利用这一原理,可以将应变片粘贴在待测物体上,通过测量电阻值的变化来推算物体的应变。
三、实验步骤1.准备材料:金属箔式应变片、放大镜、砂纸、酒精、丙酮、吹风机、应变计、电阻表、加载装置(如砝码或液压缸)。
2.选定待测物体并清理表面。
对待测物体表面进行打磨、清洁和干燥处理,确保表面无油污和杂质。
3.粘贴应变片:将金属箔式应变片粘贴在待测物体表面,确保应变片与物体表面完全贴合,无气泡和褶皱。
使用放大镜观察应变片的位置和贴合程度。
4.连接电阻表:将应变片的引脚连接到电阻表上,确保连接稳定可靠。
5.加载待测物体:采用适当的加载装置对待测物体进行加载,使物体产生应变。
记录加载过程中电阻表读数的变化。
6.数据记录:在加载过程中,每隔一定时间记录一次电阻表读数,并观察应变片应变的规律。
当应变达到最大值时,停止加载并记录最终的电阻值。
7.数据处理和分析:根据记录的电阻值和已知的应变系数,计算出物体的应变值。
分析应变、应力和弹性模量之间的关系。
四、实验结果与分析1.应变测量结果:通过电阻表测量得到应变片的电阻值变化量,根据应变系数计算得到物体的应变值。
2.应力和弹性模量之间的关系:根据弹性力学的基本原理,应力和弹性模量之间存在一定的关系。
本实验中,通过测量物体的应变和应力,可以进一步计算出物体的弹性模量。
3.应变片灵敏度的分析:通过比较不同应变片在同一物体上的测量结果,可以分析应变片的灵敏度和精度。
五、实验总结通过本次实验,我们学习和了解了金属箔式应变片的基本原理和应用,掌握了应变片的粘贴和测试方法,并通过实验数据分析,理解了应变、应力和弹性模量的关系。
(完整word版)单臂半桥全桥传感器实验报告

实验一 金属箔式应变片――单臂电桥性能实验一、实验目的:认识金属箔式应变片的应变效应,单臂电桥工作原理和性能。
二、基来源理: 电阻丝在外力作用下发活力械变形时,其电阻值发生变化,这就是电阻应变效应,描绘电阻应变效应的关系式为:ΔR/R =K ε,式中 ΔR/ R 为电阻丝电阻相对变化, K 为应变敏捷系数,ε=l/l 为电阻丝长度相对变化,金属箔式应变片就是经过光刻、腐化等工艺制成的应变敏感元件,经过它变换被测部位受力状态变化、电桥的作用达成电阻到电压的比率变化,电桥的输出电压反应了相应的受力状态。
对单臂电桥输出电压Uo1= EK ε 。
/4图 1-1 应变式传感器安装表示图三、需用器件与单元:应变式传感器实验模板、应变式传感器-电子秤、砝码、数显表、 ±15V 电源、 ±4V 电源、万用表(自备) 。
四、实验步骤:1.依据图( 1-1)应变式传感器(电子秤)已装于应变传感器模板上。
传感器中各应变片已接入模板的左上方的R1、R2、R3、R4。
加热丝也接于模板上,可用万用表进行丈量鉴别, R 1= R 2 =R 3 =R 4=350Ω,加热丝阻值为 50Ω 左右。
2.接入模板电源 ±15V (从主控台引入),检查无误后,合上主控台电源开关,将实验模板调理增益电位器R W3 顺时针调理大概到中间地点,再进行差动放大器调零,方法为将差放的正负输入端与地短接,输出端与主控台面板上数显表电压输入端 V i相连,调理实验模板上浮零电位器 R W4,使数显表显示为零(数显表的切换开关打到2V 档)。
封闭主控箱电源(注意:当R w3、R w4的地点一旦确立,就不可以改变。
向来到做完实验三为止)。
3.将应变式传感器的此中一个电阻应变片R1(即模板左上方的R1)接入电桥作为一个桥臂与R5、 R6、R7 接成直流电桥( R5、R6、R7 模块内已接好),接好电桥调零电位器R W1,接上桥路电源±4V(从主控台引入),此时应将±4 地与±15 地短接。
实验三 金属箔式应变片全桥性能实验

实验三金属箔式应变片全桥性能实验本实验旨在研究金属箔式应变片全桥性能。
应变片是一种能够测量物体应力和应变的传感器,广泛应用于机械、仪器仪表、建筑结构等领域。
实验操作步骤如下:1. 准备金属箔式应变片全桥电路实验仪器。
该实验仪器包括一个桥式电路主机、一个数据采集器和一台计算机。
2. 将金属箔式应变片粘贴到待测物体的表面,并与待测物体形成一定的接触面积。
应变片需要贴紧,确保不会产生任何空隙。
3. 打开电路主机和数据采集器,并接通电源。
将电路主机的四个端口与应变片的四个引脚连接。
4. 进行桥路平衡操作。
调整电路主机上的平衡旋钮,使电桥两端电压差为零。
5. 施加不同的载荷或应力。
通过增加或减小物体的负载或力度,产生不同程度的应变,以观察应变片测量的电信号变化。
6. 记录采集的电信号数据。
实验过程中,数据采集器将自动记录实验结果,并将数据发送到连接的计算机上。
7. 处理和分析数据。
将采集到的电信号数据导入计算机软件进行处理和分析,得出应变片的精确测量结果。
在实验过程中,需要注意以下几点:1. 应变片的表面必须清洁干燥,以确保应变片与待测物体有良好的接触。
2. 应恰当选择应变片的种类和规格,以适应不同的测量范围和特定应用场合。
3. 在进行实验前,应对电路主机和数据采集器进行检查和调试,确保设备正常运转。
4. 实验过程中应注意安全问题,避免因误操作而引起电击、短路等事故。
总之,金属箔式应变片全桥性能实验是一项重要的测试技术,可以有效地测量物体的应力和应变。
通过本实验,我们可以学习并掌握应变片的工作原理和使用方法,为日后的实际应用提供必要的技术支持。
金属箔式应变片-单臂,半桥,全桥比较实验报告

金属箔式应变片-单臂,半桥,全桥比较实验报告实验目的
本实验旨在比较单臂、半桥和全桥金属箔式应变片三种桥式应变测量方式的各项性能
指标,以确定实验系统采用哪种应变电阻测量方式更为合适。
实验原理
金属箔式应变片是一种通过钢带和金属铋素材以及其他电子组件构成的应变测量系统,它以电阻变化反映外力作用于它所处位置上应变参数比如应力、压力、位移等的变化。
桥
式应变测量系统主要把箔式传感器通过桥式电路连接,采用桥式方式结成形成的放大系统,以及与之相配的信号处理装置,能够检测更小的微小应变,从而实现压力、位移等多变量
的实时测量。
实验装置
在实验中,我们使用了一台微工控机,一台注塑机(模具温度可调),10只单臂、半桥和全桥金属箔式应变片,三种不同的应变测量系统,以及一套由计算机驱动的数据采集
系统。
实验方法
1.首先,我们调节注塑机的温度到所测试的温度等级,保持它处于恒定的温度状态。
2.然后,给定三种桥式应变片金属箔所处的表面位置,将10只应变片分别安装在相
同位置,连接到同一个微控机上。
3.在测试温度范围内,做240次应力波动,每次应力值为奇数,持续时间为一小时。
4.计算一小时内每只应变片的平均应变值,并记录三种应变测量方式的误差。
5.回算比较三种金属箔式应变片的应变特性,最终选出最佳的应变测量方式。
实验结果
在实验中,通过比较计算得出的结果,可以看到半桥式箔式应变片的平均应变值小于
单桥式和全桥式,误差也最小,使用效果最好。
因此在实际系统中采用半桥式的应变测量
更为合适,能够取得更高的测量精度和可靠性。
实验一 金属箔式应变片--全桥性能试验

实验一 金属箔式应变片--全桥性能试验一、试验目的:了解全桥测量电路的优点。
二、实验仪器:应变传感器实验模块、托盘、砝码、数显电压表、±15V 、±14V 电源、万用表(自备)。
三、实验原理:全桥测量电路中,将受力性质相同的两只应变片接到电桥的对边,不同的接入邻边,如图3-1,当应变片初始值相等,变化量也相等时,其桥路输出:0U KE ε= (3-1)E 为电桥电源电压,式3-1表明,全桥输出灵敏度比半桥又提高了一倍,非线性误差得到进一步改善。
四、实验内容与步骤1.应变传感器已安装在应变传感器实验模块上,可参考图1-1。
2.差动放大器调零,从主控台接入±15V 电源,检查无误后,合上主控台电源开关,将差动放大器的输入端Ui 短接,输出端2O U 接数显电压表(选择2V 档),调节电位器Rw4,使电压表显示为0V 。
Rw4的位置确定后不能改动。
关闭主控台电源。
3.按图3-1接线,将受力相反(一片受拉,一片受压)的两只应变片接入电桥的邻边,接入电桥调零电位器Rw1,直流电源±4V (从主控台接入),电桥输出接到差动放大器的输入端Ui ,检查接线无误后,合上主控台电源开关,调节Rw1,使电压表显示为零。
4.在应变传感器托盘上放置一只砝码,调节Rw3,改变差动放大器的增益,使数显电压表显示0.020V左右,读取数显表数值,保持Rw3不变,依次增加砝码和读取相应的数显表值,直到200g砝码加完,计下实验结果,填入下表3-1,关闭电源。
根据记录表3-1的实验资料,计算灵敏度L=△U/△W,非线性误差3f六、思考题比较单臂、半桥、全桥测量电路的灵敏度和非线性度,得出相应的结论。
金属箔式应变片性能实验报告

金属箔式应变片性能实验报告金属箔式应变片是一种常见的测量物体变形的仪器,主要用于测量实验中材料的力学特性和应变分布。
本实验通过对金属箔式应变片的性能进行测试,旨在探究其力学性能并评估其应用的可行性。
以下是关于金属箔式应变片性能实验的报告。
一、实验目的:1.掌握金属箔式应变片的基本原理和工作方式;2.了解金属箔式应变片的力学性能,如线性范围、敏感系数等;3.研究金属箔式应变片的应变分布,并评估其应用可行性。
二、实验器材:1.金属箔式应变片;2.电桥;3.高精度电压源;4.五步电压变阻箱;5.数字万用表;6.计算机及相应软件。
三、实验步骤:1.将金属箔式应变片安装在待测物体上,并确保其平整、牢固;2.通过电桥连接金属箔式应变片的导线,并设置适当的电压源;3.将五步电压变阻箱设置为规定的输出电压,并通过电流表测量电压源的电流;4.使用数字万用表测量金属箔式应变片的输出电压,并记录测量值;5.重复步骤3和步骤4,改变电阻箱的输出电压,并记录相应的电流和电压值;6.使用计算机及相应软件进行数据处理,并计算金属箔式应变片的力学性能指标。
四、实验结果与讨论:通过实验测量得到的数据可以用于评估金属箔式应变片的力学性能。
其中,线性范围是指金属箔式应变片能够线性响应的应变范围,即在该范围内,输出的电压与应变呈线性关系;敏感系数是指单位应变的变化引起的电压变化,可以通过计算斜率得到。
五、实验结论:六、实验心得:通过本次实验,我进一步了解了金属箔式应变片的原理和工作方式,并学习了其性能测试的方法和步骤。
同时,实验过程中,我也体会到了仪器的正确使用和数据处理的重要性,这对于实验结果的准确性和可靠性至关重要。
通过本次实验,我不仅增加了实验操作技能,还加深了对材料力学性能的理解,提高了实验设计和数据分析的能力。
单臂半桥全桥传感器实验报告

实验一金属箔式应变片——单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。
二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:AR/R= K£,式中AR/R为电阻丝电阻相对变化,K为应变灵敏系数,&=A为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。
对单臂电桥输出电压U oi= EK £ /4图1-1应变式传感器安装示意图三、需用器件与单元:应变式传感器实验模板、应变式传感器-电子秤、砝码、数显表、±5V电源、±4V电源、万用表(自备)。
四、实验步骤:1 •根据图(1-1)应变式传感器(电子秤)已装于应变传感器模板上。
传感器中各应变片已接入模板的左上方的R1、R2、R3、R4。
加热丝也接于模板上,可用万用表进行测量判别,R1 = R2 = R3 = R4 = 350Q,加热丝阻值为50Q左右2.接入模板电源±5V (从主控台引入),检查无误后,合上主控台电源开关,将实验模板调节增益电位器R W3顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正负输入端与地短接,输出端与主控台面板上数显表电压输入端V i 相连,调节实验模板上调零电位器 R W4,使数显表显示为零(数 显表的切换开关打到2V 档)。
关闭主控箱电源(注意:当R w3、R w4的位置一旦 确定,就不能改变。
一直到做完实验三为止)。
3•将应变式传感器的其中一个电阻应变片 R1 (即模板左上方的R1)接入电桥 作为一个桥臂与R5、R6、R7接成直流电桥(R5、R6、R7模块内已接好),接 好电桥调零电位器R W1,接上桥路电源±4V (从主控台引入),此时应将±4地与 ±5地短接。
金属箔式应变片全桥性能实验

中国地质大学(北京)实验报告专用纸实验名称:学号:1002123229 姓名:王秀禹同组人员:实验三金属箔式应变片全桥性能实验一、实验目的了解全桥测量电路的优点,理解全桥电路的性能特点。
二、基本原理全桥测量电路中,将受力状态相同的两片应变片接入点桥对边,不同方的应接入邻边,应变片初始阻值是R1=R2=R3=R4,当其变化值∆R1=∆R2=∆R3=∆R4时,桥路输出电压U O2=KEε∆,比半桥灵敏度又提高一倍,非线性误差进一步得到改善。
三、需用器件与单元应变式传感器实验模板、应变式传感器、砝码(每只约20g)、数显表、±15V电源数、±5V电源、数字万用表。
四、实验步骤1、接入模板电源±15V,检查无误后,合上主控台电源开关,将实验模板增益调节电位器Rw3顺时针调节到大致中间位置;(2)将差放的正、负输入端与地短接,Vo1输出端与数显电压表输入端Vi相连,调节实验模板上调零电位器RW4,使数显表显示为零(数显表的切换开关打到2V档),完毕后关闭主控台电源。
2、根据图3-1接入传感器,将R1、R2、R3、R4应变片接成全桥,注意受力状态不要接错。
接入桥路电源+5V,先粗调节Rw1,再细调RW4使数显表显示为零,保持增益不变;逐一加上砝码,将实验结果填入表3-1;进行灵敏度和非线性误差计算。
图3-1 应变片全桥性能实验接线图五、实验结果分析与处理1、记录数显表数值如下:表3-1:全桥测量时,输出电压与负载重量的关系:2、由所得数据绘出半桥电桥的传感器特性曲线如下图3-2 全桥传感器特性曲线由图可知,全桥的传感器特性曲线的线性特性良好,电桥输出灵敏度很高。
3、(1)计算系统灵敏度:ΔV=(58.2-28.0)+(88.4-58.2)+∙∙+(309-277)/9=(309-58.2)/9=31.22mV∙ΔW=20gS=ΔV/ΔW=1.56mV/g(2)计算非线性误差:Δm =(28.0+58.2+88.4+119.6+150.7+182.8+214.2+246+277+309)/10=167.39mVy FS=309mVδf =Δm / yFS×100%=54.2%六、思考题1、全桥测量中,当两组对边(R1、R3)电阻值相同时,即R1=R3,R2=R4,∆R2时,是否可以组成全桥:(1)可以?(2)不可以?而R1≠答:可以组成全桥电路。
金属箔式应变片——全桥性能实验实验报告4页

金属箔式应变片——全桥性能实验实验报告4页实验目的:1. 熟悉金属箔式应变片的工作原理及其使用方法;2. 了解电桥测量原理,实现全桥测量方案设计;4. 实验中应用全桥电路,得到金属箔式应变片的应变-电压输出特性曲线。
实验仪器:1.金属箔式应变片;2.电桥测量仪;3.电压源;4.万用表;5.螺旋卡尺;6.计算机。
实验原理:金属箔式应变片的特点是:采用金属箔片的变形特性,制成微小的电阻应变片,常用的箔片材料有:钨、铂等。
当应变片在受力作用下发生形变,其电阻值也会发生变化,因此可通过测量电阻变化量,了解应变片的应变量。
校准金属箔应变片:由于金属箔片家质差异及加工差异,未校准时其输出电压未知,因此需要校准,以获得稳定的输出结果。
全桥电路:全桥电路采用4个电阻绕成的“Wheatstone电桥”,使用电压源提供电能,经过测量电桥的电阻差值、电压差值等,即可计算测量量的值。
实验步骤:1. 通过螺旋卡尺测量样品上要粘贴应变片的长度和宽度;2. 将样品清洗干净,待干;3. 粘贴金属箔式应变片,注意对粘贴区域的清洁和紧密接触;4. 使用电桥测量仪进行电路连接,根据电桥测量仪的要求连接电源,连接电阻箱;5. 按照测量仪器的测量提示,进行校准,获得标准应变值;6. 施加预测荷载,观察电荷随荷载的变化。
根据荷载下应变的变化率,计算出样品中的应力值;7. 通过计算机记录所测量的电荷值和应变值,描绘出应变—电荷输出特性曲线。
实验结果和分析:1. 实验得到的应变-电荷输出特性曲线如下:2. 通过该特性曲线可以反映金属箔式应变片在各种荷载下的响应情况,具有重要的工程应用价值;3. 实验结果证实,金属箔式应变片是一种灵敏度高、稳定性好、响应速度快的应变传感器,具有广泛的应用前景。
结论:本实验通过对金属箔式应变片进行实验研究,得到了该传感器的应变-电荷输出特性曲线,证实了该传感器具有一定的应变灵敏度、稳定性和相对快速的响应速度,适用于各种领域的力学性能测试和监测。
金属箔式应变片性能实验报告

金属箔式应变片性能实验报告金属箔式应变片性能实验报告引言:金属箔式应变片是一种常用的测量应变的工具,广泛应用于工程领域。
本实验旨在研究不同材料、不同厚度的金属箔式应变片的性能,并探讨其在实际应用中的优缺点。
一、实验目的通过对金属箔式应变片的性能测试,了解其应变灵敏度、线性范围、温度影响等特性,为其在工程实践中的应用提供参考。
二、实验材料与方法1. 实验材料:选取了不同材料的金属箔式应变片,包括铜、铝和钢等常见金属材料,并分别制备了不同厚度的应变片。
2. 实验仪器:使用电子拉伸试验机进行拉伸实验,并配备应变片固定装置和应变片读数装置。
3. 实验方法:a) 将不同材料、不同厚度的金属箔式应变片固定在试样上,并连接至电子拉伸试验机。
b) 在一定拉伸速率下,进行拉伸实验,并记录应变片的电阻变化。
c) 根据拉伸实验得到的电阻变化数据,计算得到应变值,并与拉伸试验机的应变计进行对比。
三、实验结果与分析1. 应变灵敏度:通过实验发现,不同材料、不同厚度的金属箔式应变片对应变的灵敏度存在差异。
以铜材料为例,当厚度相同时,应变灵敏度随着拉伸速率的增加而增加。
而当拉伸速率相同时,厚度较薄的应变片具有更高的灵敏度。
这说明金属箔式应变片的灵敏度与材料的导电性、厚度以及加载速率等因素有关。
2. 线性范围:实验结果显示,金属箔式应变片的线性范围与其材料和厚度密切相关。
以钢材料为例,当厚度较小时,其线性范围较宽,能够准确测量较小的应变值。
然而,当厚度较大时,线性范围会受到限制,无法测量较大的应变值。
因此,在实际应用中,需根据测量需求选择合适的金属箔式应变片材料和厚度。
3. 温度影响:温度是影响金属箔式应变片性能的重要因素之一。
实验结果表明,金属箔式应变片的电阻值随温度的变化而变化,从而影响应变值的计算。
在实际应用中,需对金属箔式应变片进行温度补偿,以提高测量的准确性。
四、实验结论通过对金属箔式应变片的性能测试,可以得出以下结论:1. 金属箔式应变片的灵敏度与材料的导电性、厚度以及加载速率等因素有关。
金属箔式应变片三种桥路性能比较的实验原理和方法

金属箔式应变片三种桥路性能比较一、实验目的:1、了解金属箔片式应片及应变电桥的原理和性能;2、验证单臂、半桥、全桥的性能及相互间的关系;3、比较单臂、半桥、全桥输出时的灵敏度和非线性度,得出相应的结论。
二、基本原理:电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成。
一种利用电阻材料的应变效应,将工程结构件的内部变形转换为电阻变化的传感器,此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将变形转换成电阻的变化,再通过测量电路进一步将电阻的改变转换成电压或电流信号输出。
可用于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等。
1、应变片的电阻应变效应所谓电阻应变效应是指具有规则外形的金属导体或半导体材料在外力作用下产生应变而其电阻值也会产生相应地改变,这一物理现象称为“电阻应变效应”。
以圆柱形导体为例:设其长为L 、半径为r 、材料的电阻率为ρ时,根据电阻的定义式得2r L A L R ⋅==πρρ(3-1)当导体因某种原因产生应变时,其长度L 、截面积A 和电阻率ρ的变化为dL 、dA 、dρ相应的电阻变化为dR 。
对式(3—1)全微分得电阻变化率dR /R 为:ρρd r dr L dL R dR +-=2(3-2)式中:dL /L 为导体的轴向应变量εL ;dr /r 为导体的横向应变量εr由材料力学得:εL =-μεr (3-3)式中:μ为材料的泊松比,大多数金属材料的泊松比为0.3~0.5左右;负号表示两者的变化方向相反。
将式(3—3)代入式(3—2)得:()ρρεμd R dR ++=21(3-4)式(3—4)说明电阻应变效应主要取决于它的几何应变(几何效应)和本身特有的导电性能(压阻效应)。
2、应变灵敏度它是指电阻应变片在单位应变作用下所产生的电阻的相对变化量。
(1)、金属导体的应变灵敏度K :主要取决于其几何效应,可取()l R dR εμ21+≈(3-5)其灵敏度系数为:()με21+==RdR K l 金属导体在受到应变作用时将产生电阻的变化,拉伸时电阻增大,压缩时电阻减小,且与其轴向应变成正比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属箔式应变片——全桥性能实验
实验报告
一. 实验目的:
了解全桥测量电路的优点。
二. 基本原理:
全桥测量电路中,将受力性质相同的两应变片接入电桥对边,受力方向不同的接入邻边,当应变片初始阻值:1234R R R R ===,其变化值
1234R R R R ∆=∆=∆=∆时,其桥路输出电压3o U KE ε=。
其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。
三. 需用器件和单元:
应变单元电路、应变式传感器、砝码、数显表(实验箱上电压表)、±4V 电源、万用表。
四. 实验步骤:
图1 应变式传感器全桥实验接线图
1. 保持单臂、半桥实验中的3Rw 和4Rw 的当前位置不变。
2. 根据图1接线,实验方法与半桥实验相同,全桥测量电路中,将受力性质相同的两应变片接入电桥对边,不同的接入邻边,将实验结果填入表1;进行灵敏度和非线性误差计算。
表1 全桥输出电压与加负载重量值
3. 根据表1计算系统灵敏度S ,/S u W =∆∆(u ∆输出电压变化量;W ∆重量变化量);计算非线性误差:1 /100%f F S m y δ⋅=∆⨯,式中m ∆为输出值(多次测量时为平均值)与拟合直线的最大偏差,F S y ⋅满量程输出平均值。
五. 实验结果计算
1. 计算系统灵敏度S ,/S u W =∆∆(u ∆输出电压变化量;W ∆重量变化量)
表2 全桥测量灵敏度
2. 计算非线性误差:1 /100%f F S m y δ⋅=∆⨯,式中m ∆为输出值(多次测量时为平均值)与拟合直线的最大偏差,F S y ⋅满量程输出平均值。
实验时,测的最大重量为80()g ,因此,0.157()F S y ⋅=电压表测得、
=0.15293(LABVIEW )F S y ⋅测得
(1) 由电压表测得数据拟合得到的方程为:0.00170.0185y x =+
拟合得到数据:
拟合得到图像:
01020304050607080
计算得到非线性误差为:
表3 电压表测得数据计算得到非线性误差
由LABVIEW 测得数据拟合得到的方程为:0.00170.0182y x =+
拟合得到数据:
拟合得到图像:
01020304050607080
计算得到非线性误差为:
表4 LABVIEW 测得数据计算得到非线性误差
六. 试验后感
通过本次实验,我了解了用全桥电路对物体侧重的方便性,以及全桥电路的
高灵敏性,相信通过本次实验可以帮助我在以后的实验以及生活中更好地运用全桥电路。