材料成形技术--第3章 塑性成形

合集下载

材料成形技术基础(问答题答案整理)

材料成形技术基础(问答题答案整理)

材料成形技术基础(问答题答案整理)第二章铸造成形问答题:合金的流动性(充型能力)取决于哪些因素?提高液态金属充型能力一般采用哪些方法?答:因素及提高的方法:(1)金属的流动性:尽量采用共晶成分的合金或结晶温度范围较小的合金,提高金属液的品质;(2)铸型性质:较小铸型与金属液的温差;(3)浇注条件:合理确定浇注温度、浇注速度和充型压头,合理设置浇注系统;(4)铸件结构:改进不合理的浇注结构。

影响合金收缩的因素有哪些?答:金属自身的化学成分,结晶温度,金属相变,外界阻力(铸型表面的摩擦阻力、热阻力、机械阻力)分别说出铸造应力有哪几类?答:(1)热应力(由于壁厚不均、冷却速度不同、收缩量不同)(2)相变应力(固态相变、比容变化)(3)机械阻碍应力铸件成分偏析分为几类?产生的原因是什么?答:铸件成分偏析的分类:(1)微观偏析晶内偏析:产生于具有结晶温度范围能形成固溶体的合金内。

(因为不平衡结晶)晶界偏析:(原因:(两个晶粒相对生长,相互接近、相遇;(晶界位置与晶粒生长方向平行。

)(2)宏观偏析正偏析(因为铸型强烈地定向散热,在进行凝固的合金内形成一个温度梯度)逆偏析产生偏析的原因:结晶速度大于溶质扩散的速度铸件气孔有哪几种?答:侵入气孔、析出气孔、反应气孔如何区分铸件裂纹的性质(热裂纹和冷裂纹)?答:热裂纹:裂缝短,缝隙宽,形状曲折,缝内呈氧化颜色冷裂纹:裂纹细小,呈连续直线状,缝内有金属光泽或轻微氧化色。

七:什么是封闭式浇注系统?什么是开放式浇注系统?他们各组元横截面尺寸的关系如何?答:封闭式浇注系统:从浇口杯底孔到内浇道的截面逐渐减小,阻流截面在直浇道下口的浇注系统。

(ΣF内<ΣF 横<f直下端<f直上端)< bdsfid="120" p=""></f直下端<f直上端)<> 开放式浇注系统:从浇口杯底孔到内浇道的截面逐渐加大,阻流截面在直浇道上口的浇注系统。

塑性成形的特点与基本生产方式

塑性成形的特点与基本生产方式

一.板料冲压的基本工序
分离工序:落料、冲孔、切断、切口 变形工序:弯曲、拉深、翻边、成形
1、分离工序
将冲压件与板料按要求的轮廓线分离的工序,如剪 切、落料、冲孔。落料和冲孔总称为冲裁。
(2)冲裁件断裂面
① 蹋角带 ② 光亮带:表面光滑,断
面质量最好。 ③ 剪裂带:表面粗糙,略
带斜度。 ④ 毛刺:微裂纹出现时产
July 2021
2、Our destiny offers not only the cup of despair, but the chalice of opportunity. (Richard Nixon, American President )命运给予我们的不是失望之酒,而是机会之杯。二〇二一年六月十七日2021年6月17日星期四
难易程度。
衡量指标:
塑性 变形抗力
目 标:
塑性好 变形抗力小
影响锻造性能的因素:(1)金属本质 (2)变形条件
1. 金属本质的影响
纯金属锻造性能好
化学成分
合金差 碳钢,含碳量越少,锻造性能越好
硫、磷含量越少,可锻性越好
内部组织
纯金属、固溶体可锻性好 金属碳化物差 细晶粒好,粗晶粒差
2. 变形条件的影响
(1)变形温度
适当高温利于锻造
过热
温度过高产生
过烧 氧化
脱碳
在始锻与终锻温度之间
温 度 /C °
1538A 固相线液相线 L
1250 始锻温度L+A
碳 钢

E
A


G 912

800
A+Fe3CⅡ

A+F
K

(完整word版)塑性成形方法

(完整word版)塑性成形方法

第五节其它塑性成形方法随着工业的不断发展,人们对金属塑性成形加工生产提出了越来越高的要求,不仅要求生产各种毛坯,而且要求能直接生产出更多的具有较高精度与质量的成品零件.其它塑性成形方法在生产实践中也得到了迅速发展和广泛的应用,例如挤压、拉拔、辊轧、精密模锻、精密冲裁等。

一、挤压挤压:指对挤压模具中的金属锭坯施加强大的压力作用,使其发生塑性变形从挤压模具的模口中流出,或充满凸、凹模型腔,而获得所需形状与尺寸制品的塑性成形方法.挤压法的特点:(1)三向压应力状态,能充分提高金属坯料的塑性,不仅有铜、铝等塑性好的非铁金属,而且碳钢、合金结构钢、不锈钢及工业纯铁等也可以采用挤压工艺成形。

在一定变形量下,某些高碳钢、轴承钢、甚至高速钢等也可以进行挤压成形。

对于要进行轧制或锻造的塑性较差的材料,如钨和钼等,为了改善其组织和性能,也可采用挤压法对锭坯进行开坯。

(2)挤压法可以生产出断面极其复杂的或具有深孔、薄壁以及变断面的零件。

(3)可以实现少、无屑加工,一般尺寸精度为IT8~IT9,表面粗糙度为Ra3。

2~0。

4μ m,从而(4)挤压变形后零件内部的纤维组织连续,基本沿零件外形分布而不被切断,从而提高了金属的力学性能.(5)材料利用率、生产率高;生产方便灵活,易于实现生产过程的自动化.挤压方法的分类:1.根据金属流动方向和凸模运动方向的不同可分为以下四种方式:(1)正挤压金属流动方向与凸模运动方向相同,如图2—69所示。

(2)反挤压金属流动方向与凸模运动方向相反,如图2—70所示.(3)复合挤压金属坯料的一部分流动方向与凸模运动方向相同,另一部分流动方向与凸模运动方向相反,如图2—71所示。

(4)径向挤压金属流动方向与凸模运动方向成90°角,如图2—72所示。

图2-69 正挤压图2—70 反挤压图2—71 复合挤压图2-72 径向挤压2.按照挤压时金属坯料所处的温度不同,可分为热挤压、温挤压和冷挤压三种方式:(1)热挤压变形温度高于金属材料的再结晶温度。

金属塑性成形课件

金属塑性成形课件

2023-11-06•金属塑性成形概述•金属塑性成形工艺•金属塑性成形设备•金属塑性成形技术的发展趋势•金属塑性成形过程中的缺陷与质量控制目•金属塑性成形实例分析录01金属塑性成形概述金属塑性成形是一种使金属材料发生塑性变形,以获得所需形状、尺寸和性能的加工方法。

金属塑性成形广泛应用于机械制造、航空航天、汽车、电子等领域,是一种重要的材料加工技术。

金属塑性成形的定义金属塑性成形可以制造出复杂形状的零件,并且能够获得较高的精度和表面质量。

与切削加工相比,金属塑性成形具有更高的材料利用率和更低的能耗。

金属塑性成形过程中材料的变形是均匀的,因此可以避免应力集中和裂纹等缺陷。

金属塑性成形的特点03金属塑性成形的基本原理包括应力状态、屈服准则、塑性流动规律等。

金属塑性成形的基本原理01金属塑性成形的原理是基于金属的塑性变形规律,即在外力作用下,金属材料会发生形状和尺寸的变化。

02在金属塑性成形过程中,材料的变形受到应力状态、变形温度、变形速度等因素的影响。

02金属塑性成形工艺自由锻工艺自由锻是利用冲击力或静压力使金属坯料变形,并施加外力将其锻造成所需形状和尺寸的锻造方法。

定义特点流程应用自由锻具有较大的灵活性,可以生产形状各异的锻件,但生产效率较低,适用于单件或小批量生产。

自由锻的流程包括坯料准备、加热、变形和锻后冷却。

自由锻主要用于大型锻件和难变形材料的加工,如轴、轮毂、法兰等。

模锻工艺模锻是利用模具使金属坯料变形,并施加外力将其锻造成所需形状和尺寸的锻造方法。

定义模锻具有较高的生产效率,且能获得较为精确的形状和尺寸,但模具制造成本较高。

特点模锻的流程包括坯料准备、加热、放入模具、变形、锻后冷却和修整。

流程模锻广泛应用于中小型锻件的生产,如齿轮、轴套、法兰等。

应用板料冲压工艺板料冲压是利用冲压机将金属板料变形,并施加外力将其冲制成所需形状和尺寸的加工方法。

定义板料冲压具有较高的生产效率,且能获得较为精确的形状和尺寸,但模具对材料的厚度和硬度有一定要求。

第十六章 第三篇 塑性成形力学

第十六章 第三篇 塑性成形力学

第三篇塑性成形力学塑性成形又称为塑性加工,是材料成形的基本方法之一,它是利用材料的塑性(即产生一定的永久变形又不破坏其完整性的能力)而获得所需形状与尺寸的工件的一种加工方法。

由于塑性加工一般是在外力作用下完成的,所以又称之为压力加工.通常所见的轧制、拉拔、锻造、挤压、冲压等成形方法都属于塑性加工的范畴。

一、塑性加工的特点一般说来,在现代制造业中,塑性加工的主体是金属的塑性加工.同材料成形的其他加工方法相比,金属塑性加工的主要优点有:(1) 金属材料经过相应的塑性变形后,其结构致密,组织改善,性能提高。

因此,凡是对强度和冲击韧度要求较高的零件大都采用塑性加工的方法来制造,例如连杆,曲轴等用于传动的零件主要是通过塑性加工生产出来。

(2) 金属塑性加工主要通过材料的塑性变形来实现体积的转移与重新分配,而不是部分切除金属的多余体积,因而工件的材料利用率较高,流线分布合理,从而也进一步提高了工件的强度。

(3) 用塑性加工生产的工件可以达到较高的精度,可以实现少、无切削的要求。

例如,精密冲裁和冷挤压生产的齿轮可不经切削加工而直接使用,精锻叶片的复杂曲面可达到只需切削的精度。

(4) 塑性加工具有很高的生产率,且容易实现机械化和自动化。

例如,在12000*10kN 的机械压力机上锻造汽车用的6拐曲轴仅需40s;在曲柄压力机上压制一个汽车履盖件仅需几秒时间。

(5) 几乎所有薄壁零件,尤其是大,中型板壳零件,例如汽车履盖件,只能采用塑性加工的方法来制造。

综上所述,由于塑性加工的工艺特点,使其在现代制造业中得到了广泛的应用。

特别是在汽车、航空、家电和日用品等工业部门中,塑性加工更是主要的加工方法,但是,塑性加工也有不足的地方。

这主要表现在:(1) 同材料成形的其他加工方法相比,塑性加工的投资大,尤其是大,中型履盖件的成形模具制造过程的经费多和时间长,常常是制约新产品迅速投产的一个瓶颈。

(2) 对环境会产生一定程度的污染,但同材料成形的其他方法相比,它所造成的环境污染又是较少的。

塑性成形

塑性成形

第一章塑性:在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力称为塑性。

是指材料的永久变形能力。

塑性加工:金属铸锭或连铸坯在外力作用下使其产生塑性变形,变形后不仅能使其断面的形状和尺寸改变,而且也能改变其组织与性能。

这一过程称为塑性加工金属塑性加工的特点:加工后组织性能得到改善和提高,经塑性成型,使其结构致密,组织改善材料利用率高,主要依靠金属在塑性状态下的体积转移来实现生产率高,可实现连续化生产精度高,精密塑性成型塑性加工的分类:按加工时工件的受力和变形方式:按加工时工件的温度特征:热加工(Hot forming)冷加工(Cold forming)温加工(Warm forming)金属塑性加工的力学和热力学条件:力学状态:拉力、压力、剪切力、弯折、扭转、残余应力热力学条件:变形温度、变形速度、变形程度变形抗力:金属对变形的抵抗力画受力图内力:由于外力的机械作用或是因物体的整体性使物体不均匀变形受到互相限制而引起物体内原子之间的距离发生改变时,在物体内部产生的一种互相平衡的力。

产生内力的原因:(1)为了平衡外部的机械作用所产生的内力;(2)由于物理或物理-化学过程所产生的相互平衡的内力。

内力产生的实质:由于原子被迫偏离其平衡位置,使原子间距改变。

应力:内力的强度称为应力,即单位面积上所作用的内力。

应力状态:所谓物体处于应力状态,就是物体内的原子被迫偏离其平衡位置的状态。

变形速度:变形速度是变形程度对时间的变化率,或者是应变对时间的变化率,也称为应变速率。

可用下式表示:第二章晶体:原子按一定的几何规律在空间作周期性排列晶格:用直线将原子中心连接起来,构成的空间格子空间点阵:在空间由点排列起来的无限阵列,其中每一个点都与其它所有的点都具有相同的环境。

晶胞:只包含一个阵点的六面体晶界: 晶粒和晶粒之间的界面晶面: 晶体中,由原子组成的平面晶向: 由原子组成的直线常见的缺陷:点缺陷:包括空位、间隙原子、异质原子线缺陷:位错形成位错的方式:即局部滑移和局部位移面缺陷:(1)表面:指所研究的金属材料系统与周围气相或液相介质的接触面。

第三章 固态材料塑性成形 材料成型技术基础

第三章  固态材料塑性成形 材料成型技术基础

检验 锻件
1)绘制锻件图
锻件图是以零件图为基础结合自由锻过程 特征绘制的技术资料。 锻件图是组织生产过程、制定操作规范、 控制和检查产品品质的依据。
锻件图绘制时要考虑的因素:
(1) 敷料 敷料是为了简化锻件形状、便于锻造而增 添的金属部分。自由锻适宜于锻制形状简单的锻件,对零 件上一些较小的凹挡、台阶、凸肩、小孔、斜面和锥面等 应进行适当的简化,以减少锻造的困难,提高生产率。 (2) 加工余量 自由锻件的精度低、表面品质较差,需 再经切削加工才能成为零件,应留足加工余量。锻件加工 余量的大小与零件的形状、尺寸、加工精度和表面粗糙度 等因素有关,通常自由锻件的加工余量为4~6mm。 (3) 锻件公差 锻件名义尺寸的允许变动量。自由锻 件的公差一般为±1~±2mm 。
塑性成形应避免在脆性区 (蓝脆区与热脆区)加热
2)变形速度
变形速度↑,使金属晶体的临界剪应力升 高,断裂强度过早达到,塑性降低;再结晶来 不及克服加工硬化,可锻性↓; 变形速度↑,变形产生的热效应提高温度, 可锻性↑。
3)应力状态 塑性变形时,三各方向的压应力的数目越多, 则金属表现的塑性越好;拉应力的数目越多, 则塑性越差。且同号应力状态下引起的变形抗 力大于异号应力状态下的变形抗力。
举 例
双联齿轮,批量为10件/月,材料为45钢。
该双联齿轮属小批量生产,采用自由锻。
φ25mm的孔,放加工余量后小于φ20mm,无法锻 出。不采用锻孔,该孔由机械加工成形。
退刀槽用敷料。
半径上工余量放3.5mm,高度上工余量放3mm。
锻件公差取±1mm。
2)坯料尺寸计算
坯料质量可按下式计算: G坯料=G锻件+G烧损+G料头 式中 G烧损——加热时坯料表面氧化烧损 的质量(通常第一次加热取被加热金属的2%~ 3%,以后各次加热取1.5%~2%) G料头——锻造中被切掉或冲掉的那 部分金属质量

金属材料成型_3.6超塑性成型

金属材料成型_3.6超塑性成型

5)超塑性无模拉拔成形
利用超塑性材料在超塑性状态下对温度的敏感性,只在被加工 的棒料或管材外部加设感应加热圈,并在棒料或管材的两端施加载 荷,当感应圈移动时,就会形成横截面周期变化,甚至非周期变化 的棒形零件,或者是变壁厚的管形零件。
TWO
2
超塑性成型工艺特点
1)金属塑性大为提高,过去认为只能采用铸造成形而不能锻造成形 的镍基合金,也可进行超塑性模锻成形,因而扩大了可锻金属的种类。
图3-36 飞机上采用的部分SPF、SPF/DB构件
FOUR
4
超塑性成型重点企业
Luxfer 的集团公司 Superform USA 及其附属公司 Superform Aluminium 是全球最大的铝、镁和钛超塑成型零件供 应商,主要为航空航天、汽车、卡车、铁路、医疗系统和建筑行 业提供零件。Airstair 是一种内置于小型飞机门内的四级楼梯,需 要制造有23 个焊接部件的铝组件。但 Superform USA 使用 PA M - S TA M P 对 该 组 件 进 行 了 整 体 设 计 , 实 现 了 更 轻 量 、 刚 性 和 低成本的解决方案。
图3-35 径向辅助压力拉深原理示意
4)超塑性挤压成形
将毛坯直接放入模具内一起加热到最佳的超塑性温度,保持恒 温,以恒定的慢速加载、保压,在封闭的模具中进行压缩成形的工 艺。它是利用超塑性合金在变形中的极低变形抗力进行挤压成形, 故所使用的模具简单,寿命高,对变形程度大的零件,可一次成形, 省去了中间退火程序,工序得到简化。它可成形零件和模具。
近年来,我国新机研制及改进机型中,前缘襟翼、鸭翼、整体壁板和 腹鳍等大尺寸钛合金构件采用SPF/DB技术。针对型号对金属防热结构的 需求,航天材料及工艺研究所开展了钛合金波纹板SPF 技术研究,成功 制备出TC4 钛合金防热瓦等热结构部件。

塑性成形原理知识点

塑性成形原理知识点

塑性成形原理知识点塑性成形是一种利用金属材料的塑性变形能力,在一定的条件下通过压力使金属材料发生塑性变形,从而获得所需形状的加工方法。

塑性成形技术是金属加工工艺中的重要分支,广泛应用于汽车、航空、航天、电子、家电、建筑等工业领域。

1.塑性变形:在塑性成形过程中,金属材料通过外力作用下的塑性变形使其形状发生改变。

塑性变形是金属材料中原子的相对位置发生改变而引起的宏观形变,其主要表现为材料的延伸、压缩、弯曲等。

塑性变形是金属材料的塑性性质所决定的,不同材料的塑性性能不同。

2.应力-应变关系:金属材料受到外力作用时,材料内部会产生应力,应力与应变之间存在一定的关系。

在塑性成形过程中,材料会发生塑性变形,使其产生应变。

应力-应变关系是描述材料塑性变形过程中应力和应变之间关系的数学模型,常用的模型有胡克定律模型和流变模型。

3.材料流动:塑性成形过程中,材料会发生流动从而获得所需的形状。

材料流动是指塑性材料在外力作用下,发生内部原子的相对位移和重新组合,从而使整个材料的结构发生变化。

材料流动是实现塑性成形的关键,其流动性能决定了成形工艺的可行性和成品质量。

4.成形工艺:塑性成形工艺是金属材料经过一系列工艺操作,通过压力使其发生塑性变形,最终获得所需形状的过程。

常见的塑性成形工艺包括冲压、拉伸、挤压、压铸、滚压等。

不同工艺适用于不同形状的零件,根据材料的性质和零件的要求选择合适的成形工艺。

5.工艺过程控制:塑性成形过程中,需要对各个环节进行控制以确保成品质量。

工艺过程控制包括工艺参数的选择、设备的调整、模具结构的设计等。

在塑性成形过程中,要控制好温度、应力、应变速率等因素,以避免过大的变形应力引起材料的断裂或变形过大导致零件尺寸偏差。

塑性成形技术不仅可以实现复杂形状的制造,而且可以提高材料的强度和刚度,降低材料的质量,节省原材料和能源。

因此,塑性成形技术在现代工业生产中具有重要的地位和应用价值。

第三章固态成形技术

第三章固态成形技术

Page 13
3.2.2 塑性变形基本规律
⑴体积不变规律
金属固态成形加工中金 属变形后的体积等于变形前 的体积(又叫质量恒定定理 )
⑵最小阻力定律
金属在塑性变形过程中 ,其质点都将沿着阻力最小 的方向移动。(最小周边法则 ) (3)加工硬化
材 料 科 学 与 工 程 系 Department of Materials Science & Engineering
Page 20
3.3.1 自由锻造
2)计算坯料质量和尺寸
①确定坯料质量: G坯料=G锻件+G烧损+G料头 式中:G坯料——坯料质量。 G锻件——锻件质量。 G烧损——加热时坯料因表面氧化而烧损的 质量,第一次加热取被加热金属质量分数的 2%~3%,以后各次加热取1.5%~2.0%; G料头——锻造过程中被冲掉的那部分金属 的质量,如冲孔时坯料中部的料芯,修切端部产 生的料头等。
材料成形技术基础
第三章 固态材料塑性成形过程
材 料 科 学 与 工 程 系 Department of Materials Science & Engineering
Page 1
主要内容
第1节 第2节 第3节 第4节 第5节 概述
金属塑性成形过程的理论基础 锻造方法 板料成形方法
其它他塑性成形简介
Page 24
3.3.1 自由锻造
典型锻件的锻造比
锻件名称 计算 部位 锻造比 锻件 名称 计算 部位 锻造比
碳素钢轴类 最大 零件 截面
合金钢轴类 最大 零件 截面 热轧辊 冷轧辊 齿轮轴 辊身 辊身 最大 截面
2.0~2.5
2.5~3.0 2.5~3.0 3.5~5.0 2.5~3.0

第3章 塑性成形习题.doc

第3章 塑性成形习题.doc

第三章塑性成形一、思考题1. 常用的金属压力加工方法有哪些?各有何特点?2. 何为塑性变形?塑性变形的机理是什么?3. 碳钢在锻造范围内变形时,是否有加工硬化现象?4. 将直径150mm的圆钢,锻造成直径75mm的主轴。

试计算锻造比Y。

5. 铅的熔点327°C,鸨的熔点3380°Co铅在室温进行变形,鸨在900°C进行变形。

试判断它们属于何种塑性变形。

6. 用T12钢,锻造钳工用的刮刀,试用铁碳合金状态图,确定始锻温度及终锻温度,并简要说明理由。

7. 纤维组织是怎样形成的?它的存在有何利弊?8. 如何提高金属的塑性?最常有的措施是什么?9. “趁热打铁”的含意何在?10. 锻压工艺的成型特点是什么?锻件与铸件相比最显著的优点是什么?为什么?11. 为什么重要的巨型锻件必须采用自由锻造的方式制造?12. 重要的轴类锻件为什么在锻造过程中安排徹粗工序?13. 原始坯料长150mm若拔长450mm时,锻造比是?14. 试述自由锻、胎模锻和模锻的特点及适用范围。

15. 下列制品该选用那种锻造方法制作?活搬手(大批量)家用炉钩(单件)自行车大梁(大批量)铳床主轴(成批)大六角螺钉(成批)起重机吊钩(小批)万吨轮主传动轴(单件)16. 板料冲压生产有何特点?应用范围如何?17. 比较落料和拉深工序的凹凸模结构及间隙有什么不同?为什么?18. 冲模结构分为哪几类?各有何特点?19. 压力加工先进工艺有那些特点?20. 精密模锻需要那些措施才能保证产品的精度?21. 何谓超塑性?超塑性成形有何特点?22. 右图零件,用自由锻制坯,试修改零件结构设计不合理之处。

二、自测题判断题(正确的打",错误的打X)1. 金属塑性变形时只产生形状的变化,而不发生体积的变化。

()2. 可锻性是金属固有的一种属性,它不随压力加工方式的变化而变化。

()3. 冷拔可以提高产品的强度和表面质量。

()4. 金属经热锻并冷却后,锻件内部的晶粒沿变形方向拉长,并产生碎晶。

第3章 金属材料的塑性成形——压力加工

第3章 金属材料的塑性成形——压力加工
可锻性的优劣一般常用金属的塑性和变形抗力两个 指标来综合衡量。
其优劣主要取决于金属本身和变形时的外部条件。
影响可锻性的因素
(1) 金属的成分:纯金属好于合金,fcc好于bcc好 于hcp,低碳钢优于高碳钢,低碳低合金钢优于 高碳高合金钢;有害杂质元素一般使可锻性变坏
(2) 金属的组织:单相组织好于多相组织;铸态下 的柱状组织、粗晶粒组织、晶界上存在偏析或有 共晶莱氏体组织使可锻性变差
2、研究与开发塑性加工过程的计算机模拟技术与模具 CAD/CAE/CAM技术等。
3、研究与开发柔性成形技术、增量成形技术、净成形技 术、近净成形技术、复合成形技术等。
4、研究与开发使环境净化的加工技术,如低噪音、小/ 无震动、节省能源、资源或再利用的加工技术。
§3.2 金属的塑性加工成形性
金属的塑性加工成形性/可锻性(Forgeability) : 用来衡量金属在外力作用下发生塑性变形而不易 产生裂纹的能力,是金属重要的工艺性能之一;
(3) 加工条件 1) 变形温度:一般变形温度的升高,可提高金 属的可锻性;但注意过热、过烧问题
不同合金系8种典型金属的可锻性
Ⅰ—纯金属及单相合金(铅合金、 钼合金、镁合金);Ⅱ—纯金属及 单相合金(晶粒长大敏感者)(铍、镁 合金、钨合含、钛合金);Ⅲ—具 有不溶解组分的合金(高硫钢,含 硒不锈钢);Ⅳ—具有可溶组分的 合金(含氧化物的钼合金,含可溶 性碳化物和氮化物的不锈钢); Ⅴ—加热时形成有塑性第2相的合 金(高铬不锈钢);Ⅵ—加热时形成 低熔点第2相的合金(含硫的铁、含 锌的镁合金);Ⅶ—冷却时形成有 塑性第2相的合金(碳钢和低合金钢 、-钛合金和钛合金);Ⅷ—冷 却时形成脆性第2相的合金(高温合
可显著减小总变形力,用小设备加工大零件。

塑性成型

塑性成型

第一章1.什么是金属的塑性?什么是塑性成形?塑性成形有何特点?塑性----在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力;塑性变形----当作用在物体上的外力取消后,物体的变形不能完全恢复而产生的残余变形;塑性成形----金属材料在一定的外力作用下,利用其塑性而使其成型并获得一定力学性能的加工方法,也称塑性加工或压力加工;塑性成形的特点:①组织、性能好②材料利用率高③尺寸精度高④生产效率高2.试述塑性成形的一般分类。

Ⅰ.按成型特点可分为块料成形(也称体积成形)和板料成型两大类1)块料成型是在塑性成形过程中靠体积转移和分配来实现的。

可分为一次成型和二次加工。

一次加工:①轧制----是将金属坯料通过两个旋转轧辊间的特定空间使其产生塑性变形,以获得一定截面形状材料的塑性成形方法。

分纵轧、横轧、斜轧;用于生产型材、板材和管材。

②挤压----是在大截面坯料的后端施加一定的压力,将金属坯料通过一定形状和尺寸的模孔使其产生塑性变形,以获得符合模孔截面形状的小截面坯料或零件的塑性成形方法。

分正挤压、反挤压和复合挤压;适于(低塑性的)型材、管材和零件。

③拉拔----是在金属坯料的前端施加一定的拉力,将金属坯料通过一定形状、尺寸的模孔使其产生塑性变形,以获得与模孔形状、尺寸相同的小截面坯料的塑性成形方法。

生产棒材、管材和线材。

二次加工:①自由锻----是在锻锤或水压机上,利用简单的工具将金属锭料或坯料锻成所需的形状和尺寸的加工方法。

精度低,生产率不高,用于单件小批量或大锻件。

②模锻----是将金属坯料放在与成平形状、尺寸相同的模腔中使其产生塑性变形,从而获得与模腔形状、尺寸相同的坯料或零件的加工方法。

分开式模锻和闭式模锻。

2)板料成型一般称为冲压。

分为分离工序和成形工序。

分离工序:用于使冲压件与板料沿一定的轮廓线相互分离,如冲裁、剪切等工序;成型工序:用来使坯料在不破坏的条件下发生塑性变形,成为具有要求形状和尺寸的零件,如弯曲、拉深等工序。

塑性成形课程设计方案

塑性成形课程设计方案

塑性成形课程设计方案一、课程目标知识目标:1. 让学生理解塑性成形的基本概念,掌握金属材料的塑性变形原理。

2. 使学生了解不同塑性成形工艺的特点及适用范围,如锻造、挤压、拉伸等。

3. 引导学生掌握塑性成形工艺参数对成形件质量的影响,如变形程度、变形速度、温度等。

技能目标:1. 培养学生运用塑性成形原理分析和解决实际问题的能力。

2. 提高学生动手操作塑性成形设备的能力,熟练掌握基本操作步骤。

3. 培养学生运用计算机辅助设计软件进行塑性成形工艺设计和模拟的能力。

情感态度价值观目标:1. 培养学生对塑性成形技术的兴趣,激发其探索金属加工领域的热情。

2. 培养学生的团队合作精神,使其在小组讨论和实践中学会互相尊重、协作。

3. 增强学生的环保意识,了解塑性成形工艺在资源利用和环境保护方面的意义。

分析课程性质、学生特点和教学要求,本课程将目标分解为以下具体学习成果:1. 学生能够阐述塑性变形原理,并举例说明其应用。

2. 学生能够分析不同塑性成形工艺的优缺点,并选择合适的工艺解决实际问题。

3. 学生能够运用所学知识,设计简单的塑性成形工艺,并进行模拟分析。

4. 学生能够熟练操作塑性成形设备,掌握基本操作步骤,并注意安全事项。

5. 学生能够在小组合作中发挥积极作用,共同完成塑性成形工艺设计和实践任务。

6. 学生能够关注塑性成形技术在环保方面的作用,提出改进措施,为可持续发展贡献力量。

二、教学内容根据课程目标,教学内容主要包括以下几部分:1. 塑性成形基本概念:介绍塑性变形、塑性成形工艺、弹性极限、屈服极限等基本概念。

2. 金属材料的塑性变形原理:讲解金属材料的塑性变形机制,如滑移、孪生等,以及影响金属材料塑性的因素。

3. 塑性成形工艺:详细介绍锻造、挤压、拉伸、弯曲等常见塑性成形工艺的原理、特点和应用。

4. 塑性成形工艺参数:讲解变形程度、变形速度、温度等工艺参数对成形件质量的影响。

5. 塑性成形设备与操作:介绍常见塑性成形设备的功能、结构及操作步骤,强调安全注意事项。

工程材料及成型技术基础第3章 金属的塑性变形

工程材料及成型技术基础第3章 金属的塑性变形
42
吊钩内部的纤 维组织 (左:合理; 右:不合理, 应使纤维流线 方向与零件工 作时所受的最 大拉应力的方 向一致)
43
3)热加工常会使复相合金中的各个相沿着加工变形 方向交替地呈带状分布,称为带状组织。 带状组织会使金属材料的力学性能产生方向性,特 别是横向塑性和韧性明显降低。一般带状组织可以通过 正火来消除。
滑移面 +
滑移方向
=
滑移系
原子排列 密度最大的 晶面
滑移面和 该面上的一 个滑移方向
三种典型金属晶格的滑移系
晶格 滑移面 {110}
体心立方晶格 {111} {110}
面心立方晶格
密排六方晶格
{111}
滑移 方向
滑移系
6个滑移面
×
2个滑移方向
=
12个滑移系
BCC
4个滑移面
×
3个滑移方向
=
12个滑移系
35
这是因为此时的变形量较小,形 成的再结晶核心较少。当变形度 大于临界变形度后,则随着变形度 的增大晶粒逐渐细化。当变形度 和退火保温时间一定时,再结晶 退火温度越高,再结晶后的晶粒 越粗大。
36
再结晶晶粒大小随加热温 度增加而增加。
临界变形度处的再结晶 晶粒特别粗大
变形度大于临界变形 度后,随着变形度的增 大晶粒逐渐细化
41
(2) 出现纤维组织 在热加工过程中铸态金属的偏析、 夹杂物、第二相、晶界等逐渐沿变 形方向延展,在宏观工件上勾画出 一个个线条,这种组织也称为纤维 组织。纤维组织的出现使金属呈现 各向异性,顺着纤维方向强度高, 而在垂直于纤维的方向上强度较低。 在制订热加工工艺时,要尽可能使 纤维流线方向与零件工作时所受的 最大拉应力的方向一致。

金属塑性成形原理第三章金属塑性成形的力学基础第五节应力应变关系(本构关系)

金属塑性成形原理第三章金属塑性成形的力学基础第五节应力应变关系(本构关系)

1 2 3
(1 m ) ( 2 m ) ( 3 m )
根据Levy-Mises方程
d 1 d 2 d 3 d ( 1 m ) ( 2 m ) ( 3 m )
第五节 塑形变形时的应力应变关系
塑性变形时应力与应变的关系称 为本构关系,其数学表达式称为 本构方程或物理方程。
主要内容:



5.1 弹性变形时的应力应变关系 5.2 塑性变形时应力应变关系特点 5.3 增量理论 5.4 全量理论 5.5 应力应变顺序对应规律
5.1 弹性变形时的应力应变关系
5.1 弹性变形时的应力应变关系
在弹性变形中包括改变体积的变形和改变形状的变形。前者与应力球 张量成正比,后者与应力偏张量成正比,写成张量形式:
比列及差比形式:
x y y z z x xy yz zx 1 x y y z z x xy yz zx 2G
x y

d y - d z
y z
d z - d x d z x
d x d ( x m )
d x d y d( x m y m ) d ( x y )
(d x d y )2 ( x y )2 d2
1 d ij' d ij' d ij' 1 1-2 2G d ij d ij' d ij' d m ij 2G E d 1-2 d m m E
增量理论特点:

Prandtl-Reuss理论与Levy-Mises理论 的差别在于前者考虑弹性变形而后者 不考虑 都指出了塑性应变增量与应力偏量之 间的关系 整个变形由各个瞬时变形累加而得, 能表达加载过程的历史对变形的影响, 能反映出复杂的加载情况
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用塑性成形加工方法有:1)自由锻造;2)模型锻 造;3)挤压;4)拉拔;5)轧锻;6)板料冲压。如图 3-1所示。
塑性成形主要用于主轴、曲轴、连杆、齿轮、叶轮、 炮筒、枪管、吊钩、飞机和汽车零件等力学性能要求高 的重要零部件。
图3-1 各种塑性成形方法
第 1节 塑性成形方法
3.1.1 锻造
3.1.1.1自由锻
图3-20 空气锤
图3-21 双柱拱式蒸汽—空气自由锻锤
1—工作气缸 2—落下部分 3—机架 4—砧座 5—操作手柄 6—滑阀 7—进气管 8—滑阀气缸 9—活塞 10—锤杆 11——排气管
1—工作缸 2—工作柱塞 3—上横梁 4—活动横梁 5—立柱 6—下横梁 7—回程缸 8—回程柱塞 9—回程横梁 10—拉杆 11—上砧 12—下砧
3)精整工序:修整锻件的最后尺寸和形状,消除表面的不 平和歪扭,使锻件达到图纸要求的工序。如修整鼓形、平 整端面、校直弯曲。
3.自由锻的特点
优点:
1)自由锻使用工具简单,不需要造价昂贵的模具;
2)可锻造各种重量的锻件,对大型锻件,它是唯一方法
3)由于自由锻的每次锻击坯料只产生局部变形,变形金属 的流动阻力也小,故同重量的锻件,自由锻比模锻所需的 设备吨位小。
图3-22 自由锻水压机本体结构
2. 自由锻工序
根据作用与变形要求的不同,可分为基本工序、辅助 工序和精整工序。
1)基本工序:改变坯料的形状和尺寸以达到锻件基本成形 的工序,包括镦粗、拔长、冲孔、弯曲、切割、扭转、错 移等。最常用的是镦粗、拔长、冲孔。
2)辅助工序:为了方便基本工序的操作,而使坯料预先产 生某些局部变形的工序。如压钳口、倒棱和切肩。
与自由锻相比,模锻的优点是:
1)由于有模膛引导金属的流动,锻件的形状可以比较复 杂;
2)锻件内部的锻造流线比较完整,从而提高了零件的力 学性能和使用寿命。
3)锻件表面光洁,尺寸精度高,节约材料和切削加工工 时;
4)生产率较高;
5)操作简单,易于实现机械化;
6)生产批量越大成本越低。
模锻的缺点:
1)模锻是整体成形,摩擦阻力大,故模锻所需设备吨位大, 设备费用高;
图3-25d 切断模膛
3)弯曲模膛。使坯料弯曲的模膛,如图3-25-c所示。
4)切断模膛。如图3-25d所示。
(2)模锻模膛
1)预锻模膛。为改善金属流动条件,使锻件最终成形前 获得接近终锻形状的模膛。
2)终锻模膛。模锻时最后成形用模膛,需有飞边槽。带 冲孔连皮和飞边的锻件如图3-26所示。
根据模锻件的复杂程度,可将锻模设计为单膛锻模和 多膛锻模,简单锻件如齿轮坯可仅设计为单膛锻模;对弯 曲连杆可设计为多膛锻模,如图3-27所示。
2)锻模加工工艺复杂,制造周期长,费用高。故只适用于 中小型锻件的成批或大批生产。如图3-23所示为典型模锻 件。
模锻广泛应用于国防工业和机械制造业,按质量计算 模锻件在飞机上占85%,坦克占70%,汽车占80%,机 车占60%。
图3-23 典型模锻件
按使用设备不同,模锻可分为:锤上模锻、胎模锻、曲 柄压力机上模锻、摩擦压力机上模锻、平锻机上模锻等。
1. 锤上模锻
锤上模锻即在模锻锤上的模锻。模锻锤的构造如图3-24a 所示,锻模结构如图3-24b所示,由带有燕尾的上模和下模 组成。
模膛根据其功能不同可分为制坯模膛和模锻模膛两大类:
(1)制坯模膛。用于将形状复杂的模锻件初步锻成近似锻 件的模膛。又可分为:
1)拔长模膛。减少坯料某部分横截面积,增加该部分长度, 如图3-25a所示。
图3-26 带冲孔连皮和飞边的模锻齿轮坯
1-飞边 2-分模面 3-冲孔连皮 4-锻件
图3-27 弯曲连杆的模锻过程
优点:
1)改善金属的组织,提高金属的力学性能;
2)节约金属材料和切削加工工时,提高金属材料的利 用率和经济效益;
3)具有较高的劳动生产率;
4)适应性广。
缺点: 1)锻件的结构工艺性要求较高,内腔复杂零件难以锻造; 2)锻造毛坯的尺寸精度不高,一般需切削加工; 3)需重型机器设备和较复杂模具,设备费用与周期长; 4)生产现场劳动条件较差。
自由锻指将金属坯料放在锻造设备的上下抵铁之间, 施加冲击力或压力,使之产生自由变形而获得所需形状的 成形方法。坯料在锻造过程中,除与上下抵铁或其它辅助 工具接触的部分表面外,都是自由表面,变形不受限制, 锻件的形状和尺寸靠锻工的技术来保证,所用设备与工具 通用性强。
自由锻主要用于单件、小批生产,也是生产大型锻件 的唯一方法。
2)滚压模膛。翻转操作使零件成形的模膛。如图3-25b所示。
图3-24a 模锻锤
1—锤头 2—上模 3—飞边槽 4—下模 5—模垫 6、7、10—楔铁 8—分模面 9—模膛
图3-24b 锤上锻模
a)开式 b)闭式 图3-25a 拔长模膛
a)开式 b)闭式 图3-25b 滚压模膛
图3-25c 弯曲模膛
缺点:
1)锻件的形状和尺寸靠锻工的操作技术来保证,故尺寸精 度低,加工余量大,金属材料消耗多;
2)锻件形状比较简单,生产率低,劳动强度大。故自由锻 只适用于单件或小批量生产。
3.1.1.2 模锻
模锻是将加热好的坯料放在锻模模膛内,在锻压力 的作用下迫使坯料变形而获得锻件的一种加工方法。坯 料变形时,金属的流动受到模膛的限制和引导,从而获 得与模膛形状一致的锻件。
第3章 塑性成形
3.1 塑性成形方法及其应用 3.2 锻造工艺设计 3.3 冲压工艺设计 3.4 锻压件的结构工艺性
塑性成形:指固态金属在外力作用下产生塑性变形,获 得所需形状、尺寸及力学性能的毛坯或零件的加工方法。 具有较好塑性的材料如钢和有色金属及其合金均可在冷 态或热态下进行塑性成形加工。的有锻锤和压力机。
1)空气锤:它由电动机直接驱动,打击速度快,锤击能 量小,适用于小型锻件;其结构与原理如图3-20所示。
2)蒸汽—空气锤:利用蒸汽或压缩空气作为动力,构造 及工作原理如图3-21所示,适用于中小型锻件。
3)水压机:以压力代替锤锻时的冲击力,适用于锻造大 型锻件;其工作过程包括空程、工作行程、回程、悬空。 其原理和结构如图3-22所示。
相关文档
最新文档