行程问题讲义
小升初典型奥数:行程问题(讲义)-2023-2024学年六年级下册数学全国通用

3.A,B两地相距540千米.甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快.设两辆车同时从A地出发后第一次和第二次相遇都在途中P地.那么到两车第三次相遇为止,乙车共走了多少千米?
13.上海小学有一长 米长的环形跑道,小亚和小胖同时从起跑线起跑,小亚每秒钟跑 米,小胖每秒钟跑 米.
小亚第一次追上小胖时两人各跑了多少米?
小亚第二次追上小胖两人各跑了多少圈?
14.龟兔进行1000米的赛跑,小兔心想:我1分钟能跑100米,而你乌龟每分钟只能跑10米,哪是我的对手.比赛开始后,当小兔跑到全程一半时,发现把乌龟甩得老远,便在路旁睡着了.当乌龟跑到距终点还有40米时,小兔醒了拔腿就跑.当胜利者到达终点时,另一个距终点还有几米?
10.甲乙两车从相距800千米的两地同时相向而行,已知甲车每小时行42千米,乙车每小时行58千米,两车相遇时乙车行了多少千米?
11.一列火车通过一条长1260米的桥梁(车头上桥到车尾离桥)用了60秒,用同样的速度火车穿越2010米的隧道用了90秒,这列火车的车速和车身长度分别是多少?
12.甲、乙两站从上午6时开始每隔8分同时相向发出一辆公共汽车,汽车单程运行需45分。有一名乘客乘坐6点16分从甲站开出的汽车,途中他能遇到几辆从乙站开往甲站的公共汽车?
=54000÷10÷60
=90(分钟)
他们应该是7:30出发的。
答:小明和小红出发时间是7:30。
第十六讲行程问题(专项复习讲义)小升初数学专项复习讲义(苏教版)(含答案)

第十六讲行程问题(专项复习讲义)小升初数学专项复习讲义(苏教版)(含答案)第十六讲行程问题(专项复习讲义)(知识梳理+专项练习)1、行程问题行程问题:关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。
解答这类问题首先要搞清楚速度、时间、路程、方向、杜速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。
2、解题关键及规律同时同地相背而行:路程=速度和×时间。
同时相向而行:相遇时间=速度和×时间同时同向而行(速度慢的在前,快的在后):追及时间=路程速度差。
同时同地同向而行(速度慢的在后,快的在前):路程=速度差×时间。
一、选择题1.从家到学校,小明要走8分钟,小红要走12分钟,则小明与小红的速度比为()A.8:12 B.2:3 C.3:2 D.12:82.平平骑自行车从甲地到乙地,开始时0.2时骑了3千米,剩下的路又以每分钟0.3千米的速度骑了18分钟,平平从甲地到乙地骑自行车的平均速度是()千米/时。
A.8.4 B.12 C.14 D.16.83.一列火车长200米,以每分钟1200米的速度经过一座大桥,从车头进到车尾出一共用了2分钟.求桥的长度是多少米?正确的算式是()A.1200×2+200 B.1200×2-200 C.(1200+200)×2 D.(1200-200)×24.小明由家去学校然后又按原路返回,去时每分钟行a米,回来时每分钟行b米,求小明来回的平均速度的正确算式是()。
A.(a+b)÷2 B.2÷(a+b)C.1÷(+)D.2÷(+)5.芳芳和媛媛各走一段路.芳芳走的路程比媛媛多,芳芳用的时间比媛媛多,芳芳和媛媛的速度比是( ).A.5:8 B.8:5 C.27:20 D.16:156.船在水中行驶的时候,水流增加对船的行驶时间()。
A.增加B.减小C.不增不减D.都有可能二、填空题7.甲、乙二人分别从,两地出发相向而行.如果二人同时出发,则12小时相遇;如果甲先出发2小时后,乙再出发,则3小时后二人共走完全程的.甲、乙二人的速度比是( ).8.从甲城到乙城,汽车要8小时,客车要10小时,则汽车的速度比客车快25%。
四年级数学专题讲义第十七讲 行程问题

第十七讲行程问题我们把研究路程、速度、时间以及这三者之间关系的一类问题,总称为行程问题.在对小学数学的学习中,我们已经接触过一些简单的行程应用题,行程问题主要涉及时间(t)、速度(v)和路程(s)这三个基本量,它们之间的关系如下:(1)速度×时间=路程可简记为:s = vt(2)路程÷速度=时间可简记为:t = s÷v(3)路程÷时间=速度可简记为:v = s÷t显然,知道其中的两个量就可以求出第三个量.涉及到两个或两个以上物体运动的问题,其中最常见的是相遇问题和追及问题.相遇问题:速度和×相遇时间=路程和S V t=⨯和和追及问题:速度差×追及时间=路程差S V t=差差对于上面的公式大家已经不陌生了,在下面的学习中我们将和小朋友们一起复习回顾以前的相关知识,而后拓展提高!〖经典例题〗例1、甲、乙两人从A、B两地同时出发,相对而行.如果两人按原来的速度前进,那么4小时后相遇;如果两人各自都比原定速度提高1千米/小时,那么他们经过3小时就相遇,则A、B两地的距离是多少千米?分析:加速后3小时多走了2×3=6(千米),这正好是加速前第四小时走的路程,所以按原速度两人1小时共走6千米,A、B两地相距6×4=24(千米).例2、A、B两村相距2800米,小明从A村出发步行5分钟后,小军骑车从B村出发,又经过10分钟两人相遇,已知小军骑车比小明步行每分钟多行130米,小明每分钟行多少米?分析:相遇时,小明行驶了5+10=15分钟,小军行驶了10分钟.小军骑车比小明步行每分钟多行130米,那么10分钟小军就比小明多行驶了130×10=1300米,也就是如果小军和小明的速度一样的话,小明和小军可以行驶2800-1300=1500米,相当于小明行驶了15+10=25分钟,从而可以求出小明的速度:1500÷25=60米/分。
行程问题-二次相遇问题讲义1

二次相遇问题1.甲乙两车同步从A、B两地相向而行,在距B地54千米处相遇,它们各自达到对方车站后立即返回,在距A地42千米处相遇。
请问A、B两地相距多少千米?2.两汽车同步从A、B两地相向而行,在离A城52千米处相遇,达到对方都市后立即以原速沿原路返回,在离A城44千米处相遇。
两都市相距多少千米?3.甲乙两车分别从A、B两地同步相向而行,甲、乙两车旳速度比是7:11,相遇后继续行使,分别达到A、B两地后立即返回,第二次相遇时甲车距B地80千米,A、B两地相距多少千米?4.甲乙两队学生从相隔18千米旳两地同步出发相向而行.一种同窗骑自行车以每小时15千米旳速度在两队之间不断地来回联系.甲队每小时行5千米,乙队每小时行4千米.两队相遇时,骑自行车旳同窗共行多少千米?5.A,B两地相距540千米。
甲、乙两车来回行驶于A,B两地之间,都是达到一地之后立即返回,乙车较甲车快。
设两辆车同步从A地出发后第一次和第二次相遇都在途中P地。
那么两车第三次相遇为止,乙车共走了多少千米?6.小张与小王分别从甲、乙两村同步出发,在两村之间来回行走(达到另一村后就立即返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇旳地点离乙村多远(相遇指迎面相遇)?7.快车和慢车分别从A,B两地同步开出,相向而行.通过5小时两车相遇.已知慢车从B到A用了12.5小时,慢车到A停留半小时后返回.快车到B停留1小时后返回.问:两车从第一次相遇到再相遇共需多少时间?8.A、C两地相距2千米,C、B两地相距5千米。
甲、乙两人同步从C地出发,甲向B地走,达到B地后立即返回;乙向A地走,达到A 地后立即返回。
如果甲速度是乙速度旳1.5倍,那么在乙达到D地时,尚未能与甲相遇,他们还相距0.5千米,这时甲距C地多少千米?9.张明和李军分别从甲、乙两地同步想向而行。
张明平均每小时行5千米;而李军第一小时行1千米,第二小时行3千米,第三小时行5千米,……(持续奇数)。
【小升初专题讲义】第十七讲行程问题专题精讲(解析版)

【小升初专题讲义】第十七讲行程问题专题精讲(解析版)一、基本公式:1.路程=速度×时间2.速度=路程÷时间3.时间=路程÷速度二、问题类型1.相遇问题:①相遇时间=总路程÷速度和②速度和=总路程÷相遇时间③总路程=速度和×相遇时间2.追及问题:①追及时间=路程差÷速度差②速度差=路程差÷追及时间③路程差=速度差×追及时间3.流水行船问题:①顺水速度=船速+水速②逆水速度=船速-水速③船速=(顺水速度+逆水速度)÷2④水速=(顺水速度-逆水速度)÷24.列车过桥问题:(1) 火车过桥(隧道):火车过桥(隧道)时间=(桥长+车长)÷火车速度(2) 火车过树(电线杆、路标):火车过树(电线杆、路标)时间=车长÷火车速度(3) 火车过人:①火车经过迎面行走的人:迎面错过的时间=车长÷(火车速度+人的速度)②火车经过同向行走的人:追及的时间=车长÷(火车速度-人的速度)(4) 火车过火车:①错车问题:错车时间=(快车车长+慢车车长)÷(快车速度+慢车速度)②超出问题:错车时间=(快车车长+慢车车长)÷(快车速度-慢车速度)考点1 一般行程问题【例1】小王骑公共自行车从家去上班,每分钟行350米,用了20分钟,下午下班沿原路回家,每分钟比去时多骑50米,多少分钟到家?【精析】先根据路程=速度×时间,求出家到单位的距离,再求出下班的速度,最后根据时间=路程÷速度即可解答。
【答案】350×20=7000(米)350+50=400 (米/分)7000÷400=17.5(分钟)答:17.5分钟到家。
【归纳总结】本题考查知识点:依据速度,时间以及路程之间的数量关系解决冋题。
考点2 相遇问题【例2】甲乙两车分别从相距480千米的A 、B 两城同时出发,相向而行,已知甲车从A 城到B 城需6小时,乙车从B 城到A 城需12小时。
华杯赛培训讲义行程问题

行 程 问 题行程问题为小学和初中数学学习的重要应用问题,在行程问题中,除特别指出外,都假定速度是常数,即匀速运动,匀速运动的基本公式十分简单: 路程=时间⨯速度但是由于路程的多样化,时间前后的差别,以及速度的变化,使得行程问题变得复杂而丰富多彩。
行程问题虽然是实际问题的初级近似,但地,由于它的各色各样的变化,使得中小学的数学知识中的许多知识点能有趣而生动地融汇其中,而成为学生能力培养的有力工具。
在各届华杯赛中,行程问题是各类问题出现频率最高的问题之一。
求解行程问题一般分如下步骤:1。
审题 2。
画示意图 3。
找关键要素 4。
列关系式 5。
分析 6。
给出答案。
下面将通过具体的问题来解释这六个步骤。
行程问题中的方程方法列方程求解行程问题是最通常的方法,也是最为有效的方法。
多数行程问题可以用列方程解方程的方法来求解。
列方程就是上述步骤中第四步中建立一个或几个含有未知数的条件等式,而第五步中的分析就是解方程。
例1.甲、乙二人从相距60千米的两地同时相向而行,6小时后相遇。
如果二人的速度每小时个增加1千米,那么相遇地点距前一次相遇地点1千米。
问:甲、乙二人速度个多少?解。
设甲的速度为每小时v 千米。
因为,两人6小时相遇,所以,二人的速度和为10千米。
乙的速度为每小时10-v 千米。
二人的速度个增加1千米,速度和为12千米,因此,需要小时)(51260=相遇。
第一次甲的行程为6v ,第二次甲的行程为5(v +1),相差1千米:.6,1)1(56==+-v v v 答。
二人的速度分别为每小时6千米和每小时4千米。
例2. 快、中、慢三辆车同时从同一地出发, 沿一公路追赶前面一个骑自行车的人,这三辆车分别用6分钟、10分钟、12分钟追上骑自行车的人。
现知快车每小时走24千米,中车每小时走20千米。
那么慢车每小时走多少千米?解。
设自行车速度为每小时v 千米,慢车每小时a 千米,三车出发时自行车在他们前面L 千米。
行程问题-火车过桥问题讲义

火车过桥问题两列火车错车用的时间是:(A的车身长+B的车身长)÷(A车的速度+B车的速度)两列火车超车用的时间是:(A的车身长+B的车身长)÷(A车的速度-B车的速度)(注:A车追B车)火车过桥问题,可用下面的关系式求火车通过的时间:(列车长度+桥的长度)÷列车速度火车通过两座桥,或通过一座桥,隧道,车头走过的长度是:桥长+火车长或隧道长+火车长其中火车长一样,比较长和隧道长,再比较所用的时间的差,就又求出火车的速度以及车身长。
人坐在列车上往窗外看另一列车,相当人在一定时间内走过一座桥。
例1 一列慢车,车身长120米,车速是每秒15米,一列快车车身长160米,车速是每秒20米,两车在双轨轨道上相向而行,从车头相遇到车尾相离要用多少秒钟?练习11、在有上、下行的轨道上,两列火车相对开来,甲列车的车身长235米,每秒行驶25米,乙列车的车身长215米,每秒行驶20米。
求这两列火车从车头相遇到车尾离开需要多少秒钟。
2、一列货车和一列客车在互相平行的双轨道上行驶,货车车身长180米,每秒行20米;客车车身长270米,每秒行25米。
两车相向而行,从车头相遇到车尾离开,需要多少时间?3、一列慢车车身长125米,车速是每秒17米;一列快车车身长140米,车速是每秒22米,慢车在前面行驶,快车从后面追上到完全超过需多少秒?例2 一列火车长150米,每秒行20米,全车通过一座450米长的大桥,需多长时间?练习24、一列火车全长215米,每秒行驶25米,要经过长960米的大桥,求全车通过要多少秒?5、一列火车经过南京长江大桥,大桥长6700米,这列火车长140米,火车每分钟行400米,这列火车通过长江大桥需要多少分钟?6、一列火车长200米,全车通过长700米的桥需要30秒钟,这列火车每秒行多少米?7、一列火车长240米,这列火车每秒行15米,从车头进山洞到全车出山洞共用20秒,山洞长多少米?例3 一列客车通过860米长的大桥,需要45秒钟,用同样速度穿过620米长的隧道需要35秒钟,求这列客车行驶的速度及车身的长度各多少米。
五年级下册数学讲义10-行程问题-教师

240÷2÷(6÷2-0.5)-240÷6=8千米
【答案】260千米
2、小李和小张同时从A、B两地相向而行,他们相遇时距A、B两地中点处8千米,已知小李的速度是小张的1.2倍,那么A、B两地之间的距离是多少?
解:先找出所行的路程差,即可以找出小李的路程,在计算两地之间的路程。8×2÷(1.2-1)×1.2=96千米
96÷1.2=80千米,96+80=176千米
列方程,得:138.9+54.2x+61.6x=660 所以x=4.5(小时)
3、星期天,芳芳从家出发,去盈盈家玩,3分钟后,盈盈从家出发,去接芳芳,结果两人正好从两家的中点相遇,芳芳每分钟行60米,盈盈每分钟行80米,芳芳和盈盈两家之间距离是多少米?
解析:设芳芳和盈盈两家之间距离是x米
则,芳芳所用的时间为( )分钟,盈盈所用的时间为( )分钟
列方程,得:37.5+2.5x=150解得:x=45千米/时
答:汽车的速度是45千米/时。
2、北京和呼和浩特之间的铁路全长660千米,两列火车分别从两地开出,相向而行。
(1)两列火车同时出发,一列火车平均每小时行54.2千米,另一列火车平均每小时行61.6千米,5小时后两列火车还相距多少千米?
(2)甲车从呼和浩特开出,平均每小时行54.2千米,它先行138.9千米后,乙车再从北京出发,平均每小时行61.6千米,乙车开出几小时后与甲车在途中相遇?
1.相遇问题:
行程问题专题讲义

行程问题专题目录一、前言 (2)1、学习行程问题的意义 (2)2、学习行程问题的障碍 (2)3、学习行程问题的方法 (2)4、基础知识列表 (2)二、基础模型化行程问题 (3)1、相遇问题 (3)2、追及问题 (5)3、流水行程问题 (7)4、火车行程问题 (9)三、拓展性行程问题 (11)1、环形跑道行程问题 (11)2、多次相遇行程问题 (14)3、时钟问题 (15)4、牛吃草问题 (16)5、电梯问题 (17)6、接送问题 (18)7、狗追兔子问题 (19)8、图形行程问题 (19)四、小升初行程问题 (20)1、五升六考试题 (20)2、小升初考试题 (24)五、竞赛训练 (38)1、希望杯 (38)2、华杯赛 (40)一、前言1、学习行程问题的意义我们任意翻开一套试卷,只要是一套综合的测试,大概就会发现少则一道多则三五道的行程问题。
统计以往成都市“小升初”试卷和华奥赛试卷,行程问题一般占试卷分值的15左右,都拥有非常显赫的地位,都是命题者偏爱的题型。
所以学习好这个专题很重要。
2、学习行程问题的障碍小学生“行程问题”的学习障碍,主要源于以下几个的原因:1)行程分类较细,变化较多。
行程问题一般分为:基础模型化行程问题(如相遇问题、追及问题、流水问题、火车过桥问题、环形路线问题等等);复合型行程问题(如多人同行、走走停停、不断往返等等);拓展性行程问题(如牛吃草问题、爬电梯问题、最短路线问题、最长路线问题、效率问题);特殊行程问题等等。
同时行程跟工程不一样,工程抓住工作效率和比例关系就可以解决绝大部分问题,但是行程则没有一个关键点可以抓住,因为每一个类型重点都不一样。
比如相遇问题关键要抓住速度和,追击问题则要抓住速度差。
2)行程问题是动态过程进行演绎和推理。
奥数中静态的知识学生很容易学会。
比如:例 1:数线段,一段线段被均分成 4 部分,请问一共有多少条线段。
教给学生方法,学生知道了:1+2+3+4=10 段。
第6讲 基本行程问题+讲义

第6讲基本行程问题【知识点汇总】行程问题,归根到底就是研究路程、时间和速度之间的关系一、行程问题三要素及其基本关系(1)路程是表示长度的量。
单位是长度单位,如:米、千米等。
(2)速度是表示运动快慢的量,就是单位时间内经过的路程。
单位是长度与时间的复合单位,如:米/秒,千米/小时等。
(3)时间单位是秒、分钟和小时等。
(4)三要素的基本关系如下:路程=速度×时间速度=路程÷时间时间=路程÷速度(在运用这些公式进行计算时,要注意单位的统一)二、平均速度平均速度=总路程÷总时间三、相遇问题基本公式:路程和=速度和×相遇时间速度和=路程和÷相遇时间相遇时间=路程和÷速度和四、追及问题基本公式:路程差=速度差×追及时间速度差=路程差÷相遇时间相遇时间=路程差÷速度差五、两人行程(1)相向而行;(2)背向而行;(3)同向而行【课前热身】(1)5小时内行驶200(2)一颗子弹射出2秒钟后,恰好击中1800米处的目标,(3)汽车以每小时80千米的速度行驶,经过3小时后,(4)小亮以每分钟70(1)两人同时从家中出发在同一条路上同向而行,3分钟后两人相距多少米?(2)两人同时从家中出发在同一条路上背向而行,3分钟后两人相距多少米?(3)两人同时从家中出发在同一条路上相向而行,3分钟后两人相距多少米?(5)长跑运动员每秒跑4米,如果按照这个速度跑完24千米,【例1】小华和小明两家相距400米,小华每分钟行60米,小明每分钟行70米,甲、乙两地相距450千米,快车和慢车分别从甲、乙两地出发相向而行,快车每小时行驶60千米,慢车每小时行驶30千米。
试问:(1)如果两车同时出发,几小时后相遇?(2)如果慢车比快车早出发3小时,当两车相遇时快车行驶了多远?【例3】有一座桥,过桥需先上坡,再走一段平路,再下坡。
并且上坡、平路、下坡的路程相等,都是60米,小华骑自行车过桥时,上坡、平路、下坡的速度分别是3米/秒、4米/秒、6米/秒,求云老师过桥的平均速度?A、B两地相距400千米,甲、乙两车分别从A、B同时出发,相向而行。
行程问题讲义,学生版

行程问题知识点拨:发车问题( 1 )、一般间隔发车问题。
用 3 个公式迅速作答;汽车间距= (汽车速度+行人速度)×相遇事件时间间隔汽车间距= (汽车速度-行人速度)×追及事件时间间隔汽车间距=汽车速度×汽车发车时间间隔( 2)、求到达目的地后相遇和追及的公共汽车的辆数。
标准方法是:画图——尽可能多的列 3 个好使公式——结合 s 全程= v ×t-结合植树问题数数。
( 3 ) 当出现多次相遇和追及问题——柳卡火车过桥火车过桥问题常用方法⑴ 火车过桥时间是指从车头上桥起到车尾离桥所用的时间,因此火车的路程是桥长与车身长度之和 .⑵ 火车与人错身时,忽略人本身的长度,两者路程和为火车本身长度;火车与火车错身时,两者路程和则为两车身长度之和 .⑶火车与火车上的人错身时,只要认为人具备所在火车的速度,而忽略本身的长度,那么他所看到的错车的相应路程仍只是对面火车的长度 .对于火车过桥、火车和人相遇、火车追及人、以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行 .接送问题根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:( 1)车速不变 -班速不变-班数 2 个(最常见)(2)车速不变 -班速不变-班数多个(3)车速不变 -班速变-班数 2 个(4)车速变 -班速不变-班数 2 个标准解法:画图+列 3 个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。
时钟问题:时钟问题可以看做是一个特殊的圆形轨道上 2 人追及问题,不过这里的两个“人”分别是时钟的分针和时针。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是 2 个指针“每分钟走多少角度”或者“每分钟走多少小格”。
四年级数学奥数培优讲义-专题08行程问题(含解析)

专题08行程问题1.A 、B 两地相距330千米,一辆客车和货车同时分别从A 、B 两地相向出发,客车以60千米/时的速度行驶,货车以50千米/时的速度行驶,客车和货车行驶几小时后相遇?2.同方向行驶的火车,快车每秒行30米,慢车每秒行22米.如果从辆车头对齐开始算,则行24秒后快车超过慢车,如果从辆车尾对齐开始算,则行28秒后快车超过慢车.快车长多少米,慢车长多少米?3.现有速度不变的甲、乙两车,如果甲车以现在速度的2倍去追乙车,5小时后能追上,如果甲车以现在速度的3倍去追乙车,3小时后能追上.那么甲车以现在的速度去追,几小时后能追上乙车?4.货车和客车同时从两地相对开出,货车速度是68千米/时,客车速度是95千米/时,经过2.8小时相遇,两地相距多少千米?5.甲、乙两车从相距325千米的两地同时相向而行,2.5小时后还相距65千米,已知甲车每小时行45千米,乙车每小时行多少千米?6.兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。
哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇,问他们家离学校有多远?7.甲乙两地相距770千米,一列客车和一列货车同时从甲乙两地相对开出,货车每小时行50千米,客车的速度是货车的1.2倍,两车开出后几小时相遇?8.甲、乙两车同时从A 、B 两地出发相向而行,4小时相遇后又相距9千米,已知甲车行完全程要7小时,乙车每小时行27千米,AB 两地间的路程是多少千米?9.学校组织学生步行去野外实习,每分钟走80米,出发9分钟后,班长发现有重要东西还在学校,就以原速度返回,找到东西再出发时发现又耽搁了18分钟,为了在到达目的地之前赶上队伍他改骑自行车,速度为260米/分,当他追上学生队伍时距目的地还有120米.求走完全程学生队伍步行需多长时间?10.甲、乙两人分别从相距 35.8千米的两地出发,相向而行.甲每小时行 4 千米,但每行 30 分钟就休息 5 分钟;乙每小时行 12 千米,则经过多少时间两人相遇?19.A、B两地相距960km。
行程问题辅导讲义 解析版讲解

一.没一般行程问题D10–002一辆货车以每小时65千米的速度前进,一辆客车在它后面1500米,以每小时80千米速度同向行驶,客车超过货车前1分钟,两车相距__米。
题说:南京市第三届“兴趣杯”少年数学邀请赛初赛C卷第9题答案:250(米)解析:要求客车超过火车前1分钟两车相距多少米,只需求两车行驶1分钟所产生的路程差即可,但是要注意的问题是要先进行单位换算:(80-65)×160=0.25(千米)=250(米)D10–003 两辆汽车同时从某地出发到同一目的地,路程165千米,甲车比乙车早到0.8小时,当甲车到达目的地时,乙车离目的地24千米。
甲车行驶全程用了多少小时?题说:第一届《小数报》数学竞赛第二试第4题答案:4.7小时解析:根据题意可知乙行驶24千米所用时间是0.8小时,所以乙的速度是24÷0.8=30千米/小时,乙行驶全程所用时间是165÷30=5.5小时,甲行驶全程所用时间是5.5-0.8=4.7小时。
D10–006一个人从县城骑车去乡办厂。
他从县城骑车出发,用30分钟时间行完了一半路程。
然后,他加快了速度,每分钟比原来多行50米。
又骑了20分钟后,他从路旁的里程标志牌上知道,必须再骑2千米才能赶到乡办厂,求县城到乡办厂之间的总路程。
题说:第五届《小数报》数学竞赛决赛第2题答案:18000(米)解析:由题意可知此人10分钟所行驶的路程是50×20+2000=3000米,从而求出此人的速度:3000÷10=300米/分钟,那么县城到乡办厂之间的总路程是300×30×2=18000米。
D10–007小明每天早晨6:50从家出发,7:20到校。
老师要求他明天提早6分钟到校。
如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校。
问:小明家距学校多远?题说:第六届《小数报》数学竞赛初赛第1题答案:3000(米)解析:小明24分钟比原来多行驶25×24=600米,那么它行驶的正常速度是600÷6=100米/分钟,所以小明家距学校100×30=3000米。
北师大版四年级第十次讲义(行程问题基础)

一、关于s 、v 、t 三者的基本关系速度×时间=路程 可简记为:s vt =路程÷速度=时间 可简记为:t s v =÷路程÷时间=速度 可简记为:v s t =÷二、相遇甲从A 地到B 地,乙从B 地到A 地,然后两人在途中相遇,实质上是甲和乙一起走了A ,B 之间这段路程,如果两人同时出发,那么相遇总路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间一般地,相遇问题的关系式为:速度和×相遇时间=路程和,即=tS V 和和 总结: 总路程=速度和×相遇时间总路程÷速度和=相遇时间总路程÷相遇时间=速度和知识框架行程问题例题精讲【例 1】韩雪的家距离学校480米,原计划7点40从家出发8点可到校,现在还是按原时间离开家,不过每分钟比原来多走16米,那么韩雪几点就可到校?【例 2】一天,梨和桃约好在天安门见面,梨每小时走200千米,桃每小时走150千米,他们同时出发2小时后还相距500千米,则梨和桃之间的距离是多少千米?【例 3】甲、乙两地相距100千米。
下午3点,一辆马车从甲地出发前往乙地,每小时走10千米;晚上9点,一辆汽车从甲地出发驶向乙地,为了使汽车不比马车晚到达乙地,汽车每小时最少要行驶多少千米?【例 4】甲、乙两辆汽车分别从A、B两地出发相向而行,甲车先行三小时后乙车从B地出发,乙车出发5 小时后两车还相距15千米.甲车每小时行 48千米,乙车每小时行 50千米.求A、B两地间相距多少千米?【例 5】小燕上学时骑车,回家时步行,路上共用50分。
如果往返都步行,则全程需要70分。
求往返都骑车所需的时间。
【例 6】一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46千米,货车每小时行48千米。
小学奥数讲义:行程问题

行程问题1、总公式:路程=速度×时间时间=路程÷速度速度=路程÷时间2、相遇问题的主要数量关系是:速度和×相遇时间=总路程总路程÷速度和=相遇时间总路程÷相遇时间=速度和路程差÷速度差=相遇时间3、追及问题的基本数量关系:路程差÷速度差=时间甲走的路程=乙走的路程+原来的路程差甲速×时间=乙速×时间+原来的路程差4、流水行船问题中各种速度之间的关系:顺水速度=船速 + 水流速度逆水速度=船速 - 水流速度水流速度=(顺水速度 - 逆水速度)÷2船速=(顺水速度 + 逆水速度)÷25、火车过桥问题:如图,假设有一个人站在火车头的A点处,当火车过桥时,A点实际运动的路程是:车长+桥长基本数量关系:过桥的路程 = 桥长 + 车长车速 = (桥长 + 车长)÷过桥时间6、比例关系:当路程一定时,速度和时间成反比当速度一定时,路程和时间成正比当时间一定时,路程和速度成正比7、主要解决思想和方法:熟练掌握基本公式,在解题过程中可以通过画图法帮助理解题意,理清思路。
常用方法:线段图法、比例法、方程法、假设法等。
【例题】1、甲、乙两地相距285千米,两辆汽车分别从两地同时相对开出,3小时后在途中相遇。
已知甲车每小时行50千米,那么乙车每小时行多少千米?2、甲、乙两人同时相向而行,甲步行从A地到B地,乙骑车从B地到A地,2小时相遇。
相遇时乙比甲多行16千米。
已知甲步行时每小时走4千米。
两人相遇后仍用原速度继续前进,甲还要多少时间到达B地?3、甲、乙两人从相距46千米的A、B两地出发相向而行,甲先出发1小时。
他们两人在乙出发后4小时相遇,又已知甲比乙每小时快2千米。
求甲、乙两人的速度。
4、“八一”建军节那天,某少先队以每小时4千米的速度从学校往相距17千米的解放军营房慰问,出发0.5小时后,解放军闻讯前往迎接,每小时比少先队员快2千米,再过几小时,他们在途中相遇?5、清晨4时,甲车从A地,乙车从B地同时相对开出,原指望在上午10时相遇,但在6时30分,乙车因故停在中途C地,甲车继续前进350千米,在C地与乙车相遇。
行程问题讲义

行程问题一、基本知识点1、常见题型:一般行程问题,相遇问题,追及问题,流水问题,火车过桥问题。
2、行程问题特点:已知速度、时间、和路程中的两个量,求第三个量。
3、基本数量关系:速度x时间=路程速度和x时间(相遇时间)=路程和(相遇路程)速度差x时间(追及时间)=路程差(追击路程)二、考点分析1.火车过桥:火车过桥路程=桥长+车长过桥时间=路程÷车速过桥过程可以通过动手演示来帮助理解。
2.水流问题:顺水速度=静水速度+水流速度逆水速度=静水速度-水流速度顺水速度-逆水速度=2x水流速度3.追及问题:追击路程÷速度差=追及时间追击距离÷追及时间=速度差4.相遇问题:相遇路程÷相遇时间=速度和相遇路程÷速度和=相遇时间三、解决行程问题的关键画线段图,标出已知和未知。
能够从线段图中分析出数量关系,找到解决问题的突破口。
四、练习题(一)火车过桥1.一列火车长150米,每秒行20米,全车要通过一座长450米的大桥,需要多长时间2.一列客车通过860米的大桥要45秒,用同样的速度穿过620米的隧道要35秒,求客车行驶的速度和车身的长度。
3.一列车长140米的火车,以每秒10米的速度通过一座大桥,共用30秒,求大桥的长度。
4.一人在铁路便道上行走,一列客车从身后开来,在她身旁通过的时间为7秒,已知客车长105米。
每小时行72千米,这个人每秒行多少米5.在有上下行的轨道上,两列火车相对开出,甲车长235米,每秒行25米,乙车长215米,每秒行20米,求两车从车头相遇到车尾离开要多长时间。
6.一人沿铁路边的便道行走,一列火车从身后开来,在身旁通过的时间为15秒,车长105米,每小时行千米,求步行速度。
7.公路两旁的电线杆间隔都是30米,一位乘客坐在运行的汽车中,他从看到第一根电杆到看到第26根电线杆正好是3分钟。
这辆汽车每小时行多少米8.一列火车长700米。
从路边的一颗大树旁边通过用分钟。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
輩与学生共奋战—、基本知识点1、常见题型:一般行程问题,相遇问题,追及问题,流水问题,火车过桥问题。
2、行程问题特点:已知速度、时间、与路程中得两个量,求第三个量。
3、基本数量关系:速度X时间=路程速度与X时间(相遇时间)=路程与(相遇路程)速度差X时间(追及时间)=路程差(追击路程)二、考点分析1、火车过桥:火车过桥路程=桥长+车长过桥时间=路程F车速过桥过程可以通过动手演示来帮助理解。
2、水流问题:顺水速度二静水速度+水流速度逆水速度=靜水速度-水流速度顺水速度-逆水速度=2x水流速度3、追及问题:追击路程m速度差=追及时间追击距离三追及时间=速度差4、相遇问题:相遇路程F相遇时间=速度与相遇路程m速度与=相遇时间三、解决行程问题得关键画线段图,标出已知与未知。
能够从线段图中分析出数量关系,找到解决问题得究破口。
四、练习题(一)火车过桥1、一列火车长150米,每秒行20米,全车要通过一座长450米得大桥,需要多长时间?2、一列客车通过860米得大桥要45秒,用同样得速度穿过620米得隧道要35秒,求客车行驶得速度与车身得长度。
3、一列车长140米得火车,以每秒W米得速度通过一座大桥,共用30秒,求大桥得长度。
4、一人在铁路便道上行走,一列客车从身后开来,在她身旁通过得时间为7秒,已知客车长105米。
每小时行72千米,这个人每秒行多少米?5、在有上下行得轨道上,两列火车相对开出,甲车长235米,每秒行25米,乙车长215米,每秒行20米,求两车从车头相遇到车尾离开要多长时间。
6、一人沿铁路边得便道行走,一列火车从身后开来,在身旁通过得时间为15秒,车长W5米,每小时行28、8千米,求步行速度。
7、公路两旁得电线杆间隔都就是30米,一位乘客坐在运行得汽车中,她从瞧到第一根电杆到瞧到第26根电线杆正好就是3分钟。
这辆汽车每小时行多少米?8、一列火车长700米。
从路边得一颗大树旁边通过用1、75分钟。
以同样得速度通过一座桥,从车头上桥到车尾离开桥共用4分钟。
这座大桥长多少米?9、某小学组织346人排成两路纵队,相邻两排前后相距0、5米,队伍每分钟走65米,要通过长889米得桥,队伍从上桥到离开,共需多少时间?10、两地相距240千米,甲乙两人骑自行车同时从两地出发,相向而行,8小时后相遇,甲每小时比乙快3、6千米,甲得速度就是多少?(二)流水问题1、一条小船在静水中得速度就是每小时5千米,如果在水流每小时1千米得水中顺流而下,速度应就是多少?如果就是逆流呢?2、两地相距280千米,一艘轮船从甲地到乙地就是顺流航行,船在静水中得速度就是每小时17千米,水流速度就是每小时3千米。
这艘轮船在两地间往返一次要几小时?3、一艘船在水中顺流而下,每小时行16千米,在同样得水中逆流而上,每小时行12千米,求水流速度与船在静水中得速度。
4、一条沿江顺流而下,由甲港到乙港用2小时,两港之间得航程就是31千米,船在静水中得速度就是每小时9千米,当此船按原速度逆流而上返回甲港要多长时间?5、飞鱼号轮船在一条河流里顺流而下行200千米要10小时,逆流而上行20千米要10小时,这艘轮船在静水中航行880千米用多长时间?6、沿江两个码头之间相距W5千米,乘船往返一次就是6小时。
去时比回时多1小时,那么水得流速就是多少?船在静水中得速度水多少?7、一艘船舶在静水中得速度就是每小时25千米,一条河水流速度就是每小时5千米,这艘船往返于甲乙两地之间一共用了9小时,求甲乙两港之间得距离。
8、一条船往返于99千米得甲乙两个码头之间,从甲港到乙港用4小时,返回时每小时行18千米,求这条船往返得平均速度。
(保留一位小数)9、一位短跑选手,顺风跑90米,用了W秒,在同样得风速下,逆风跑70米也要用W秒,在没风得时候,跑100米要多少秒?(三)、追及与相遇1、甲乙二人分别从两地同时相向而行,8小时可以相遇。
如果每人每小时少行1、5千米,那么10小时后相遇,问两地间距离。
2、一辆面包车得速度就是每小时60千米,在面包车开出30分钟后,一辆小轿车沿着同一行驶线以每小时80千米得速度追面包车,几个小时可以追上?追上时离出发地多远?3、家离公园4、8千米,弟弟从家出发,以每分钟60米得速度步行去公园,哥哥在15分钟后骑车从家出发追弟弟,貓车得速度就是每分钟240米。
求: (1)苛哥在离家多远得地方追上弟弟?(2)哥哥追上弟弟后,不久到达公园又折回,过不久又与弟弟相遇,相遇时离公园多远?4、儿童节同学们去瞧电影,排成一列队伍以每秒1米得速度行进,队伍长300米,马老师因有事以每秒1、5米得速度从队尾追到排头,又立刻返回队尾,马老师又回到队尾一共用了多长时间?5、兄弟二人同时步行去车站,16分钟后到达车站,弟弟离车站还有240米,哥哥得速度就是每分钟82米,弟弟每分钟多少米?6、甲乙两辆汽车分别以不同得速度同时从A、B两地相对开出,途中相遇。
相遇点距A地60千米,相遇后两车继续前进,到达目得地后立刻返回,在途中第二次相遇,这时距A地40千米,第一次相遇距B地多远?7、姐姐得速度就是每分钟75米,妹妹得速度就是每分钟65米,在妹妹先出发20分钟后,姐姐追妹妹,多长时间追上?这时离家多远?8、一辆卡车以每小时30千米得速度从A地去B地,出发1小时后,一辆轿车以每小时50千米得速度也从A地去B地,比卡车早半小时到达B地。
求两地间得距离。
9、解放军菜部以每小时6千米得平均速度前进,在行进中排尾得通讯员以每小时7、5千米得速度到排头,当赶上排头后立即返回,当通讯员回到排尾时,队伍行进了0、4千米,通讯员从排尾追到排头走来多少千米?10.甲乙二人同时从两地骑车相向而行,甲得速度就是每小时20千米,乙得速度就是每小时18千米,两人相遇时距中点3千米,甲乙两地间得距离就是多少千11,一只兔子以每秒5米得速度奔跑,在它后面40米处,一只狗以每秒9米得速度在追,几秒钟后狗能追上兔?12、甲乙两地相距W0千米,两人同时从两地出发,相向而行,甲每小时6千米,乙每小时4千米,甲带着一只狗,狗每小时行10千米,这只狗与甲一起出发,碰到乙得时候就掉头跑相甲,碰到甲后又掉头跑向乙,直到二人相遇,这只狗跑了多少千13、一列火车下午1点30分从甲地出发,每小时行60千米,1小时后,另一列火车以同样得速度从乙地出发,当天下午6点两车相遇,求甲乙两地距离。
(四)综合练习1、小明与小刚同时从甲乙两地相对出发,小明每分钟走80千米,小刚每分钟走75 千米,两人在距离中点15千米得地方相遇,求两地间得距离。
2、从甲站到乙站铁路长640千米,两列火车同时从两地相对开出,甲站开出得火车每小时行75千米,从乙站开出得火车每小时行80千米,1小时后两车相距多远?5小时后两车相距多远?3、修一条路,甲队每小时修900米,乙队每小时修750米,两队各从公路得一端修起,结果甲队比乙队早2小时到达公路得中点。
这条公路长多少米?4、一个仓库位于相距246千米得两地中点,两辆汽车同时出发分别送货到两地,一辆汽车每小时46千米,另一辆汽车每小时51千米,送到目得地后马上返回,3 小时后两车相距多远?5、甲乙二人同时从东城出发去西城,甲骑车每分钟行250米,乙步行每分钟行90 米,甲骑车到西城后立即返回,在离西城3200米处与乙相遇,求两地间得距离。
6、一辆汽车从仓库往工厂运货,去时每小时行40千米,回来空车每小时行60千米。
求这辆车得平均速度。
7、A汽车每小时行40千米,B汽车每小时行45千米,辆汽车同时从同一地点向同一方向行驶,2小时后,B汽车回原地取东西,并在原地停留半小时后追A汽车,问距离原地多少千米处追上B车?8、A、B车分别从东西两地同时相向开出,A车得速度就是50千米/小时,B车得速度就是40千米/小时,当A车驶过东西两地距离得一半多50千米时,与B车相遇, 东、西两地间相距多少千米?9、菜人周末去爬山,上山时每小时行4千米,原路返回时每小时行6千米,此人往返得平均速度就是每小时多少千米?10.AB两车从东西两地同时相向而行,第一次相遇时A车离西地50千米,两车继续前行,到达西东两地后,立即返回,相遇时离东地30千米,AB两地相距多少千1K AB两车从东西两地同时相向而行,第一次相遇时A车离西地50千米,两车继续前行,到达西东两地后,立即返回,相遇时车离西地30千米。
AB两地相距多少千12、小明每分钟走50米,小红每分钟走60米,两人从相距660米得两村同时沿一条公路相对出发,8分钟后两人相距多远?13、菜人匀速在公路上步行,路边有距离相等得电线杆,她从第一根走到第15根所用时间为15分钟,如果走30分钟,应该走到第几根?14、AB两村相距2800米。
小明从A村步行出发5分钟后,小军骑车从B村出发,又经过W分钟两人相遇,已知小军骑车比小明步行每分钟多行160米。
求小明步行*得速度O15、两地相距240千米,AB两人骑车同时从两地出发,相向而行,8小时后相遇,A每小时比B每小时快3、6千米,A得速度就是多少?16、一辆客车从A地开往B地,每小时行驶75千米,预计3小时到达,行了1小时,机器发生故障,就地维修了20分钟,要想准时到达而不误事,以后每小时应加快多少千米?17、两列火车相向而行,甲车每小时行36千米,乙车每小时行54千米,两车错车时,甲车上得一位乘客发现:从乙车得车头经过她得车窗到车尾经过她得车窗,共用了14秒,求乙车得车长?18、甲乙两地相距280千米,一辆汽车原定用8小时从甲地开往乙地。
车行了一半路程后,在途中停了30分钟,如果汽车要按原定时间到达,那么,行驶后半段路程时,应提速多少?19、两地得距离就是1120千米,两列火车同时相向开出,甲车每小时行60千米,乙车每小时行48千米,在乙车出发时,从里面飞出一只鸽子,以每小时80千米得速度向甲车飞去,在鸽子碰到甲车时,乙车离目得地还有多远?20、龟兔赛跑,同时出发,全程8000米,龟每分爬30米,兔每分跑330米,兔子跑了W分钟后,就停下来睡了200分钟,醒来后立即以原速向前奔跑,当兔子追上龟时,离终点还有多远?21、一支2400米长得队伍以每分90米得速度行进,队伍前段得联络员用12分钟到队尾传达命令,联络员每分跑多少米?22、甲乙两车同时从AB两地相对开出,第一次相遇在离A地80千米处,相遇后两车继续前进,到达目得地后立即返回,第二次相遇在离B地60米处,求两地间得距23、快慢两车同时从甲乙两地相向而行,快车每小时行45千米,慢车每小时行20千米,两车不断往返于两地,当第三次相遇后,快车又行了360千米与慢车相遇,求甲乙两地距离。
24、甲乙两队学生从相距17千米得两地出发,相向而行。
一个同学骑车以每刻钟3、5千米得速度往返于两队之间进行联络。