计算方法第七章非线性方程与方程组的数值解法

合集下载

数值分析第七章非线性方程的数值解法

数值分析第七章非线性方程的数值解法

数值分析第七章非线性方程的数值解法在数值分析中,非线性方程和非线性方程组的求解是非常重要的问题。

线性方程是指变量之间的关系是线性的,而非线性方程则指变量之间的关
系是非线性的。

非线性方程的数值解法是通过迭代的方式逼近方程的解。

非线性方程的求解可以分为两类:一元非线性方程和多元非线性方程组。

接下来,我们将对这两类方程的数值解法进行介绍。

对于一元非线性方程的数值解法,最常用的方法是二分法、牛顿法和
割线法。

二分法是一种直观易懂的方法,其基本思想是通过迭代将方程的解所
在的区间逐渐缩小,最终找到方程的解。

二分法的缺点是收敛速度较慢。

牛顿法是一种迭代法,其基本思想是通过选择适当的初始值,构造出
一个切线方程,然后将切线方程与x轴的交点作为新的近似解,并不断迭代,直到满足精度要求。

牛顿法的优点是收敛速度较快,但其缺点是初始
值的选择对结果影响很大,容易陷入局部极值。

割线法是对牛顿法的改进,其基本思想是通过选择两个初始值,构造
出一条割线,然后将割线与x轴的交点作为新的近似解,并不断迭代,直
到满足精度要求。

割线法的收敛速度介于二分法和牛顿法之间。

对于多元非线性方程组的数值解法,最常用的方法是牛顿法和拟牛顿法。

牛顿法的思想同样是通过构造切线方程来进行迭代,但在多元方程组中,切线方程变为雅可比矩阵。

牛顿法的优点是收敛速度快,但同样受初
始值的选择影响较大。

拟牛顿法是对牛顿法的改进,其基本思想是通过逼近Hessian矩阵来进行迭代,从而避免了计算雅可比矩阵的繁琐过程。

拟牛顿法的收敛性和稳定性较好,但算法复杂度相对较高。

第7章非线性方程组的数值解法

第7章非线性方程组的数值解法
( 1, 1 )
f 1 y f 2 2 y
2 y ( 1,1 ) 2
( 1,1 )
( y 3) ( 1, 1 )
( 1, 1 )
( x 1) ( 1 , 1 ) 2
( 1,1 )
f 1 f 2 2 2[ 2 * ( 3) ( 2 ) * ( 2 )] 4 f1 f2 g10 x ( 1,1) x ( 1,1) x f 1 f 2 g 2 2[ 2 * ( 3) 2 * ( 2 )] 20 20 y y f 1 y f 2 ( 1, 1 ) ( 1, 1 )

f ( x0 h, y0 k ) f ( x0 , y0 ) ( h k ) f ( x0 , y0 ) x y 1 2 ( h k ) f ( x 0 , y0 ) 2! x y 1 n ( h k ) f ( x 0 , y0 ) n! x y 1 n 1 ( h k ) f ( x0 h, y0 k ) ( n 1)! x y
2
2

0
得 f 1 f 1 ( g10 x g 20 y ) f 1 ( g10 ( g f 1 g f 1 ) 2 ( g 10 20 10 x y f 2 g 20 x f 2 g 20 x f 2 ) f2 y f 2 2 ) ( x y
1
f 1 ( x 0 , y0 ) f ( x , y ) 2 0 0
从n到n+1的迭代格式为:
f 1 ( x n , y n ) xn 1 x n x y y f 2 ( xn , yn ) n 1 n x

非线性方程组数值解法

非线性方程组数值解法

非线性方程组数值解法

非线性方程组数值解法是通过数值方法解决非线性方程组问题的一种解法。

非线性方程组不像普通的线性方程组,它们往往没有普遍的解析解,一般只有数值解。

因此,非线性方程组的数值解法非常重要。

非线性方程组数值解法的基本思想是,将非线性方程组分解为多个子问题,并采用一种迭代算法求解这些子问题。

最常见的数值方法有牛顿法、拟牛顿法和共轭梯度法等。

牛顿法是利用曲线上的点的二次近似,将非线性方程分解为两个子问题,转换为求解一个简单的一元方程的问题来求解非线性方程组的数值解。

拟牛顿法利用有限差分方法来求解非线性方程组的数值解,共轭梯度法利用解的搜索方向,进行有效的搜索,通过解的最优性条件收敛到解。

非线性方程组数值解法是目前应用最广泛的数值解法,它能很好地求解非线性方程组。

不仅能有效求解复杂的非线性方程组,还能求出较精确的数值解。

此外,非线性方程组数值解法运算速度快,可以对模型进行实时定位和跟踪,非常适合模拟复杂的动态系统。

总之,非线性方程组数值解法是一种求解复杂非线性方程组的有效解法,它的准确性高,运算速度快,广泛应用于现实世界中的多种工程与科学计算问题。

Ch7 非线性方程与方程组的数值解法(2)

Ch7 非线性方程与方程组的数值解法(2)
( g ( x) x) 2 ( x) x . g ( g ( x)) 2 g ( x) x
4 / 19
几何意义 Aitken 加速:
y y = g(x)
一般地有:
( x K 1 x K )2 ˆ xK xK xK 2 xK 1 xK 2
y=x
15 / 19
例 再求x 3 x 1 0在1.5附近的根x * .
解:依次用牛顿法 0 1.5,x0 0.6,简化牛顿法 0 0.6, x x 牛顿下山法 1,折半, 1 / 32,计算结果如下:
k 0 1 2 3 4 xk 1.5 1.34783 1.32520 1.32472 xk 0.6 17.9 发散 xk 0.6 1.140625 1.36181 1.32628 1.32472 f(xk) -1.384 -0.656643 0.1866 0.00667 0.0000086
x0 , x1 g ( x0 ), x 2 g ( x1 ), ˆ x 0 , x3 g ( x 2 ), ˆ x1 , x 4 g ( x3 ), ......
P(x1, x2) P(x0, x1)
ˆ x K 比x K 收敛得略快。
Steffensen 加速:
x x1 x* x2 x0
2 / 19

2 x1
2 x1x * x * x2 x0 x2 x * x0 x * x * ,
2 2
x1 x * x0 x * x2 x * x1 x *
2 2 2 x2 x0 x1 x2 x0 2 x0 x1 x0 x2 x0 x1 x* x0 x2 2 x1 x0 x2 2 x1 x0

数值分析--第7章非线性方程与方程组的数值解法

数值分析--第7章非线性方程与方程组的数值解法

k
y.

(2.4) 时序列 {xk }
收敛到
x
*.
25
再证明估计式(2.5),由(2.4)有
xk1 xk (xk )(xk1) L xk xk1 .
反复递推得
xk

1 2 k 1
0.005,
只需 k 6 ,即只要二分6次,便能达到预定的精度.
11
计算结果如表7-2.
表7 2
k
ak
0 1.0
bk
xk
1.5
1.25
1 1.25
1.375
2
1.375 1.3125
3 1.3125
1.3438
4
1.3438 1.3281
5
1.3281 1.3203
6 0.3203
对于 x *的某个近似值 x0,在曲线 y (x)上可确定 一点 P0,它以 x0为横坐标,而纵坐标则等于(x0 ) x1.
过 P0 引平行 x轴的直线,设此直线交直线 y x于点 Q1, 然后过 Q1再作平行于 y轴的直线,与曲线 y (x) 的交点
17
记作 P1,则点 P1 的横坐标为 x1 ,纵坐标则等于 (x1) x2.
(2.(2)2.5)
证明 设 x*[a, b] 是 (x)在 [a, b]上的唯一不动点, 由条件,可知 {xk }[a, b],再由(2.4)得
xk x* (xk1)(x*)
L xk1 x* Lk x0 x*.
因(x0)

L(y1),故L当x
f (x) 0
(1.1)
其中 x R, f (x) C[a, b], [a, b]也可以是无穷区间.

非线性方程组数值解法课件

非线性方程组数值解法课件
非线性方程组数值 解法课件
目 录
• 非线性方程组概述 • 迭代法求解非线性方程组 • 牛顿法求解非线性方程组 • 拟牛顿法求解非线性方程组 • 非线性方程组数值解法的应用
01
非线性方程组概述
非线性方程组的定义与分类
定义
非线性方程组是由多个非线性方 程组成的数学模型,描述了多个 变量之间的关系。
在工程问题中的应用
航空航天工程
土木工程
非线性方程组数值解法用于设计和优 化飞行器、卫星和火箭的结构和性能。
在建筑设计、桥梁和高层建筑的结构 分析中,非线性方程组数值解法用于 模拟结构的承载能力和稳定性。
机械工程
在机械设计中,非线性方程组数值解 法用于分析复杂机械系统的动力学特 性和稳定性。
在金融问题中的应用
拟牛顿法的收敛性分析主要基于Hessian 矩阵的条件数和近似矩阵的误差界。在适 当的条件下,拟牛顿法能够保证全局收敛 性和局部超线性收敛性。
拟牛顿法的实现
总结词
拟牛顿法的具体实现可以通过不同的算法实 现,如DFP算法和BFGS算法等。
详细描述
DFP算法(Davidon-Fletcher-Powell)和 BFGS算法(Broyden-Fletcher-GoldfarbShanno)是两种常见的拟牛顿算法。它们 的主要区别在于近似矩阵的更新方式。DFP 算法采用三对角化方法更新近似矩阵,而 BFGS算法采用迭代更新的方式。在实际应 用中,BFGS算法通常比DFP算法更受欢迎, 因为它在大多数情况下都能提供更好的收敛 效果。
05
非线性方程组数值解法的 应用
在物理问题中的应用
量子力学方程
非线性方程组数值解法在 量子力学中用于描述微观 粒子的行为和相互作用。

非线性方程(组)的数值解法——牛顿法、弦切法

非线性方程(组)的数值解法——牛顿法、弦切法

需要求导数!
9
简化的Newton法
简化的 Newton 法
基本思想:用 f’(x0) 替代所有的 f’(xk)
xk 1
f ( xk ) xk f '( x0 )
线性收敛
10
Newton下山法
Newton下山法
基本思想:要求每一步迭代满足下降条件
f x k 1 f x k
非线性方程组的数值解法牛顿法弦切法非线性方程组数值解法非线性方程数值解法非线性方程的数值解法非线性方程组迭代解法非线性方程组的解法非线性方程组解法微分方程数值解法常微分方程的数值解法微分方程数值解法pdf
计算方法
第七章
非线性方程(组)的数值解法
—— Newton 法 —— 弦截法、抛物线法
1
本讲内容
13
举例
例:求 x4 - 4x2 + 4=0 的二重根 x* 2 (1) 普通 Newton 法
x2 2 1 ( x ) x 4x
(2) 改进的 Newton 法 x2 2 2 ( x) x
2x
(3) 用 Newton 法解 (x) = 0
x ( x 2 2) 3 ( x) x x2 2
f [ xk , xk 1 , xk 2 ]( x xk )( x xk1 )
xk 1 xk
2 f ( xk )
2 4 f ( xk ) f [ xk , xk 1 , xk 2 ]
f [ xk , xk1 ] f [ xk , xk1 , xk2 ]( xk xk1 )
f ( x) ( x) x f '( x )
1 '( x*) 1 m

非线性方程(组)的解法

非线性方程(组)的解法

lnim(bn
an )
lim
n
2n1
(b
a)
0
lim
n
an
lim
n
bn
x

x
cn
1 2
(an
bn
)为
x 的近似解。
7
二分法
迭代终止准则
an - bn

x - cn
bn an 2
2
8
2.2一般迭代法
2.2.1 迭代法及收敛性
对于 f (x) 0 有时可以写成 x (x) 形式 如: x3 x 1 0 x 3 x 1
12
例题
例2.2.1 试用迭代法求方程 f (x) x3 x 1 0
在区间(1,2)内的实根。 解:由 x 3 x 1建立迭代关系
xk1 3 xk 1 k=0,1,2,3…… 计算结果如下:
13
例题
精确到小数点后五位
x 1.32472 1 105
2
14
例题 但如果由x x3 1建立迭代公式
xk1 xk3 1 k 1,2,...
仍取 x0 1.5,则有 x1 2.375 ,x2 12.39 显 然结果越来越大,{xk }是发散序列
15
2.3 Newton迭代法
设x*是方程f (x) = 0的根, 又x0 为x* 附近的一个值,
将f (x) 在x0 附近做泰勒展式:
f (x)
二分法
用二分法(将区间对平分)求解。

a1
a, b1
b, c1
1 2
(a1
b1 )
若 f (a1) f (c1) 0,则[a1, c1] 为有根区间,否 则 [c1,b1]为有根区间

数值分析第七章 非线性方程与方程组的数值解法0607)

数值分析第七章  非线性方程与方程组的数值解法0607)

一、二分法
3. 二分法的一个例题
例2 求x3 x 1 0在[1.0,1.5]内的一个实根,准确到
小数点后2位.
k ak
bk
xk
f(xk)符号
0 1.0
1.5
1.25

1 1.25
1.375
+
2
1.375 1.3125

3 1.3125
1.3438
+
4
1.3438 1.3281
+
5
1.3281 1.3203
续,并且
(x*) (x*) ( p1) (x*) 0, ( p) (x*) 0,
只要相邻两次 计算结果的偏
|
xk
x* |
Lk 1 L
|
x1
x0
|
.
(2.5)
差足够小即可
保证近似值xk 具有足够精度
|
xk
x* |
1 1 L
|
xk 1
xk
|
.
(2.6)
二、不动点迭代法
3. 存在性与收敛性
• 局部收敛性
- 定义1 设(x)有不动点x*,若对任意x0∈{ x*
的某个邻域R},迭代公式(2.2)产生的序列 {xk}∈R,且收敛到x*,则称迭代法(2.2)局部 收敛.
2). 存在正数L<1,使对任意x,y∈[a, b]都有
| (x) ( y) | L | x y |;
则(x)在[a, b]上存在唯一的不动点x*.
二、不动点迭代法
3. 存在性与收敛性
• 全局收敛的充分条件
- 定理2 设(x) 满足定理1中两条件,则对任意
x0∈[a, b],迭代法收敛,并有误差估计式

数值分析 第七章 非线性方程(组)的数值解法.

数值分析 第七章 非线性方程(组)的数值解法.
x0
y
,这样就可得缩小有根区间 a1 , b1
y=f(x) y=f(x)
x* a a1 x1 a2 x* x0 b1 b2 b a x0 a1 x1 a2 b b1 b2
23/87 郑州大学研究生2014-2015学年课程 数值分析 Numerical Analysis
§7.2 二分区间法 ② 对压缩了的有根区间 a1 , b1 施行同样的手法, b 即取中点 x a 2 ,将区间 a1 , b1 再分为两半,然 后再确定有根区间 a 2 , b2 ,其长度是 a1 , b1 的 二分之一。
长h=(B-A)/n(n是正整数),在[A,B]内取定节点:xi=x0+ih (i=0,1,2,…,n),从左至右检查f (xi)的符号,如发现xi与端点x0 的函数值异号,则得到一个缩小的有根子区间[xi-1,xi]。
y
0 A
a1 b1 a2 b2
B
x
20/87 郑州大学研究生2014-2015学年课程 数值分析 Numerical Analysis
§7.1 引言
数值解法的三个步骤 ① 判定根的存在性。即方程有没有根?如果有 根,有几个根? ② 确定根的分布范围。即将每一个根用区间隔 离开来,这个过程实际上是获得方程各根的 初始近似值。(隔离根) ③ 根的精确化。将根的初始近似值按某种格式 逐步精确化,直到满足预先要求的精度为止。
10/87 郑州大学研究生2014-2015学年课程 数值分析 Numerical Analysis
3/87 郑州大学研究生2014-2015学年课程 数值分析 Numerical Analysis
§7.1 引言 当 f (x)不是x的线性函数时,称对应的函数方程
f (x)=0为非线性方程。

数值分析 李庆扬 第7章 非线性方程与方程组的数值解法

数值分析 李庆扬 第7章  非线性方程与方程组的数值解法
由定理2可得:迭代法是收敛的。 (2)当
x x3 1
时,在区间
1,2
有:
x 3 x 2 1
不满足定理的条件,无法保证迭代收敛。
a , b
上)
(2) 存在正常数 L 1 ,使对任意
x , y a , b 都有
x y L x y
(迭代函数的增量小于自变量的增量) 则
14
x 在 a , b
上存在唯一的不动点 x 。
2017年1月4日
*
《数值分析》 黄龙主讲
证明:先证不动点存在性。 若
x , y a , b 有
x y x y L x y , a , b
因此,可将上述定理 1 和定理 2 中的条件(2)改为:
x L 1
21
2017年1月4日
《数值分析》 黄龙主讲
例如:
(2) 存在正常数 L 1 ,使对任意
x y L x y
则对任意 由
x0 a , b :
xk 1 xk 得到的迭代序列 xk
收敛到
x 的不动点 x*
,并有误差估计
k L x k x* x1 x0 1 L
17
2017年1月4日
*
最终取值: x
误差:取有根区间
ak , bk 的中点 (
ak bk xk 作为近似根,则: 2 b ak b a x* x k k k 1 2 2
特点:算法简单,可保证收敛,但收敛太慢。用于求近似解。
8
2017年1月4日
《数值分析》 黄龙主讲
P214例2 求方程 f x x 3 x 1 0 在区间 1.0 ,1.5 内的一个实根, 要求准确到小数点后的第二位。

数值分析教案_非线性方程的数值解法

数值分析教案_非线性方程的数值解法

定理 2(不动点迭代法的全局收敛性定理) 设 ( x) C[a, b] 满足定理 1 中的两个条 件,则对任意的 x0 [a, b] ,由(2.1)式生成的迭代序列 {xk } 收敛到 ( x) 在 [a, b] 上的不 动点,且有
| x* xk | | xk 1 xk | , 1 L
ak bk ) 。记第 n 次过程得到的隔根区间为 2
[an , bn ] ,则 [a0 , b0 ] [a1, b1 ] [a2 , b2 ] [an , bn ]
an x* bn , n 0,1, 2,
bn an bn 1 an 1 2 b0 a0 2n
k
则称迭代方程(2.1)收敛。 2.2 不动点的存在性与迭代法的收敛性 定义 若存在常数 L ,使对任何 x1 , x2 [a, b] 有
| ( x1 ) ( x2 ) | L | x1 x2 |
则称 ( x) 在 [a, b] 上满足 Lipschitz(利普希茨)条件, L 称为 Lipschitz 常数。 显然, 若 ( x) 在 [a, b] 上满足 Lipschitz 条件, 则 ( x) 在 [a, b] 上连续。 若 ( x ) 在 [ a, b] 上一阶导数存在且有界,则 ( x) 在 [a, b] 上满足 Lipschitz 条件。 定理 1(不动点存在性定理) 设 ( x) C[a, b] 满足以下两个条件: (1)对任意 x [a, b] ,有 ( x) [a, b] ; (2) ( x) 在 [a, b] 上满足 Lipschitz 条件,且 Lipschitz 常数 L 1 ; 则 ( x) 在 [a, b] 上存在唯一的不动点。 证明:先证明不动点的存在性,记 g ( x) x ( x) ,由定理条件有 g (a) a (a) 0 及 g (b) b (b) 0 ,若有一等号成立,则 g (a) 0 或 g (b) 0 ,即 有不动点,否则必 有 g (a) g (b) 0 ,因 g ( x) C[a, b] ,则必有 x* [a, b] 使 g ( x* ) x* ( x* ) 0 ,x* 即为 的 不动点。

7非线性方程求根

7非线性方程求根

for k = 1 : n x = g(x); fprintf('k=%2d, x=%.7f\n',k,x); if abs(x-xt)<tol, break, end
end xt = fzero(f,[3,4]);
fprintf('True solution: x = %.7f\n', xt)
% Steffenson 加速
Numerical Analysis
12
解的存在唯一性
解的存在唯一性
定理:设 (x) C[a,b] 且满足
(1) 对任意的 x[a,b] 有 (x)[a,b]
(2) 存在常数 0<L<1,使得任意的 x, y[a,b] 有
(x)(y)Lxy
则(x) 在 [a,b] 上存在唯一的不动点 x*
Numerical Analysis
8
不动点迭代
基本思想
构造 f (x) = 0 的一个等价方程: x (x)
f (x) = 0 f (x) 的零点
等价变换
x = (x) (x) 的不动点
2019/11/5
Numerical Analysis
9
不动点迭代
具体过程 任取一个迭代初始值 x0 ,计算
非线性方程可能有(无穷)多个解,求解时必须强调求解区间
非线性方程一般没有直接解法,通常都使用迭代算法求解
2019/11/5
Numerical Analysis
4
非线性方程数值解法
几个基本概念
实根与复根 根的重数
f(x)=(x–x*)m ·g(x) 且 g(x*) 0, 则 x*为 f(x)=0 的 m 重根 有根区间:[a, b] 上存在 f (x) = 0 的一个实根

数值分析 清华李庆杨第五版第七章 非线性方程的数值求法

数值分析 清华李庆杨第五版第七章 非线性方程的数值求法

x轴交点的横坐标。
由高等数学知识知, 设f (x)为区间[a,b]上的单
值连续, 如果f (a)·f (b)<0 , 则[a,b]中至少有一个 实根。如果f (x)在[a,b]上还是单调地递增或递减, 则仅有一个实根。
y
y=f(x)
a b x

由此可大体确定根所在子区间,方法有: (1) 画图法 (2) 逐步搜索法
y=x y Q2 P* P2 x* x2 x1 x0 x x1 x3 x* x2 x0 x P1 Q1 P0 y
y= (x)
(x )
P y=x
*
y= (x )
(a)
0 ( x * ) 1
(b)
1 ( x * ) 0
y
P
*
y=x
y
y= (x) (x )
f ( x * ) f ( x * ) f
( m 1)
( x * ) 0, f
( m)
( x* ) 0
当f(x)不是x的线性函数时,称对应的函数方程 为非线性方程。如果f(x)是多项式函数,则称为代数 方程,否则称为超越方程(三角方程,指数、对数方 程等)。一般称n次多项式构成的方程
如果由迭代格式 xk 1 ( xk ) 产生的序列 x n 收敛, 即 *
lim x n x
n
则称迭代法收敛。
实际计算中当然不可能也没必要无穷多步地做 下去, 对预先给定的精度要求ε,只要某个k满足
x k x k 1
即可结束计算并取
当然,迭代函数
x
*
xk
( x)
3 x k 1 2 ( x k ) x k 1

非线性代数方程组的数值解法

非线性代数方程组的数值解法

公式
a n (K T (a 0 )) 1Ψ(a n )
则只需对上式右端项中的 Ψ(a进n )行回代就行了。
这种方法称为修正的牛顿法。
2 牛顿法和修正牛顿法
(a) 100(a 0.1a 2 ) 90 0
an an 1 108
使用修正的牛顿法求解 非线性方程组,虽然 每一步迭代所花费的计 算时间减少了,但迭代 过程的收敛速度也降低 了。为了提高修正牛顿 法的收敛速度可采用某 些过量修正加速技术。
由相互垂直的条件可得
aim1
1i
1 i1 m
i 1 2
i 1 m
(umi ) (umi )T
T
iБайду номын сангаас1 1
i 1 2
im
4 增量弧长法
自修正法平衡迭代
综上所述,弧长法求解步骤为:
1)选定荷载参考值 R,和本步荷载因子 1m,解

a
1 m
,由
l 2
(1m
)2
(
1 1
)T
(
1 1
)求弧长。
2)修改切线刚度矩阵并三角化。检查对角元,
则 Δan≈-KT(an)-1 Pn , an+1=an+Δan 如此逐步计算,即可得到非线性方程的解答,
这就是牛顿-拉夫森法。
2 牛顿法和修正牛顿法
Δan≈-KT(an)-1 Pn , an+1=an+Δan
直至 Δan 满足收敛性
2 牛顿法和修正牛顿法
如果在迭代计算的每一步内,矩阵KT都用初始 近似解KT0计算,在这种情况下,仅第一步迭代 需要完全求解一个线性方程组,如果将KT0三角 分解并存储起来,而以后各步迭代中采用迭代
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设方程f(x)=0在区间[a,b]内有根,二分法就是逐步 收缩有根区间,最后得出所求的根。具体过程如下
① 取有根区间[a,b]之中点, 将它分为两半,分点
x0
ab 2
,这样就可缩小有根区间
y
y=f(x)
y=f(x)
a
x1
x* x0
bቤተ መጻሕፍቲ ባይዱ
a1
b1
a2
b2
x*
a
x0
x1
b
a1
1b31
a2
b2
二分法求根过程
根据连续函数的性质可知, f(x)= 0在
(a,b)内必有实根,称区间[a,b]为有根区间。为明确
起见,假定方程f(x)=0在区间[a,b]内有惟一实根x*。
二分法的基本思想是: 首先确定有根区间,将区
间二等分, 通过判断f(x)的符号, 逐步将有根区间
缩小, 直至有根区间足够地小, 便可求出满足精度
x0 , x1 , x2 ,, xk , 该序列以根x*为极限
只要二分足够多次(即k足够大),便有 x* xk
上述每个区间都是前一个区间的一半,因此 ak ,bk
的长度
bk
ak
1 2
(bk
1
ak 1 )
1 2k
(b
a )
14
二分法求根过程
当k→∞时趋于零,这些区间最终收敛于一点x* 即为 所求的根 。
每次二分后,取有根区间 ak ,bk
的中点
1 xk 2 (ak bk )
作为根的近似值,得到一个近似根的序列
7
画图法
• 画出y = f (x)的略图,从而看出曲线与x轴交点的 大致位置。
• 也可将f (x) = 0分解为1(x)= 2(x)的形式,1(x) 与 2(x)两曲线交点的横坐标所在的子区间即为含根 区间。 例如 xlogx-1= 0 可以改写为logx=1/x 画出对数曲线y=logx,与双曲线y= 1/x,它们交 点的横坐标位于区间[2,3]内
在m阶导数,则是方程f(x)的m重根(m>1) 当且仅当
f (x* ) f (x* ) f (m1) (x* ) 0, f (m) (x* ) 0
2
非线性方程的概念
当f(x)不是x的线性函数时,称对应的函数方程 为非线性方程。如果f(x)是多项式函数,则称为代数 方程,否则称为超越方程(三角方程,指数、对数方 程等)。一般称n次多项式构成的方程
8
画图法
y y1 x
y gx
0
2 3
x
9
搜索法
对于给定的f (x),设有根区间为[A,B],从x0=A出 发,以步长h=(B-A)/n(n是正整数),在[A,B]内取定 节点:xi=x0+ih (i=0,1,2,…,n),从左至右检查f (xi) 的符号,如发现xi与端点x0的函数值异号,则得到一个 缩小的有根子区间[xi-1,xi]。
6
有根区间的确定
由高等数学知识知, 设f (x)为区间[a,b]上的单值 连续, 如果f (a)·f (b)<0 , 则[a,b]中至少有一个实根。 如果f (x)在[a,b]上还是单调地递增或递减,则仅有 一个实根。
y
y=f(x)
a
x b
大体确定根所在子区间的方法有:
(1) 画图法
(2) 逐步搜索法
y
0 A a1 b1a2 b2
Bx
10
例题
例7.1 方程f(x)=x3-x-1=0 确定其有根区间 解:用试凑的方法,不难发现
f(0)<0 f(2)>0 在区间(0,2)内至少有一个实根 设从x=0出发,取h=0.5为步长向右进行根的 搜索,列表如下
0 0.5 1.0 1.5 2
x
f(x) – –
第7章 非线性方程与方程组 的数值解法
§7.1 方程求根与二分法 §7.2 不动点迭代法及其收敛性 §7.3 迭代收敛的加速方法
§7.4 §7.5 §7.6
牛顿法 弦截法与抛物线法 求根问题的敏感性与多项式的零点
§7.7 非线性方程组的数值解法
1
§7.1 方程求根与二分法
在科学研究和工程设计中, 经常会遇到的一大类 问题是非线性方程
an x n an1 x n1 a1 x a0 0 (an 0)
为n次代数方程,当n>1时,方程显然是非线性的
一般稍微复杂的3次以上的代数方程或超越方程,
很难甚至无法求得精确解。本章将介绍常用的求解
非线性方程的近似根的几种数值解法
3
求根步骤
通常方程根的数值解法大致分为三个步骤进行 ① 判定根的存在性。即方程有没有根?如果有

+
+
可以看出,在[1.0,1.5]内必有一根
11
搜索法
• 用逐步搜索法进行实根隔离的关键是选取步长h • 要选择适当h ,使之既能把根隔离开来,工作量
又不太大。 • 为获取指定精度要求的初值,可在以上隔离根的
基础上采用对分法继续缩小该含根子区间
二分法可以看作是搜索法的一种改进。
12
二分法求根过程
根,有几个根? ② 确定根的分布范围。即将每一个根用区间隔
离开来,这个过程实际上是获得方程各根的 初始近似值。 ③ 根的精确化。将根的初始近似值按某种方法 逐步精确化,直到满足预先要求的精度为止
4
二分法
二分法又称二分区间法,是求解方程(7.1)的近
似根的一种常用的简单方法。
设函数f(x)在闭区间[a,b]上连续,且f(a)f(b)<0,
② 对压缩了的有根区间 a1,b1 施行同样的手法,
即取中点
x1
a1
b1 2
,将区间 a1, b1
再分为两半,然
后再确定有根区间 a2 ,b2 ,其长度是 a1, b1 的
二分之一
③ 如此反复下去,若不出现 f (xk ) 0 ,即可得出一 系列有根区间序列:
a, b a1 , b1 a2 , b2 ak , bk
要求的近似根。
5
有根区间的确定
• 为了确定根的初值,首先必须圈定根所在的范围, 称为圈定根或根的隔离。
• 在上述基础上,采取适当的数值方法确定具有一定 精度要求的初值。
• 对于代数方程,其根的个数(实或复的)与其次数 相同。至于超越方程,其根可能是一个、几个或无 解,并没有什么固定的圈根方法
• 求方程根的问题,就几何上讲,是求曲线 y=f (x)与 x轴交点的横坐标。
f(x)=0
(7.1)
的求根问题,其中f(x)为非线性函数。
方程f(x)=0的根, 亦称为函数f(x)的零点
如果f(x)可以分解成 f (x) (x x* )m g(x) ,其中m为正 整数且 g(x* ) 0 ,则称x*是f(x)的m重零点,或称方 程f(x)=0的m重根。当m=1时称x*为单根。若f(x)存
相关文档
最新文档