中考数学专题《二次根式及其运算》

合集下载

【名师面对面】2015中考数学总复习 第1章 第4讲 二次根式及其运算课件

【名师面对面】2015中考数学总复习 第1章 第4讲 二次根式及其运算课件

4.已知 x=2- 3,y=2+ 3,求 x2-xy+y2 的值.
∵x=2- 3,y=2+ 3,∴x+y=(2- 3)+(2+ 3)=4, xy=(2- 3)×(2+ 3)=1,∴x2-xy+y2=(x+y)2-3xy= 42-3=13
二次根式综合计算与化简问题,一般先化简再代入 求值,最后的结果要化为分母不含根号的数或者是 最简二次根式;也可以利用所给条件整体考虑.
原式=a2+6a,当 a= 2-1 时,原式=4 2-3
二次根式的概念和性质
1.(2014· 武汉)若 x-3在实数范围内有意义,则 x 的取值范 围是( C ) A.x>0 有意义( A ) A.-2 B.1 C .2 D.3 【解析】第1题根据二次根式有意义的条件得出关于x的不等 式;第2题二次根式的被开方数是非负数,可以逐个代入, 也可以先判断x的取值范围. B.x>3 C.x≥3 D.x≤3
利用二次根式有意义的条件求字母的取值范围时,
首先考虑被开方数为非负数,其次还要考虑其他
限制条件,如分母不等于0等,往往转化为不等式 (组)解决.
二次根式的简单计算
1.(2014· 孝感)下列二次根式中,不能与 2合并的是( C ) A. 1 2 B. 8 C. 12 D. 18
2.(2014· 济宁)如果 ab>0,a+b<0,那么下面各式:
第4讲 二次根式及其运算
1.了解二次根式、最简二次根式的概念.
2.了解二次根式加、减、乘、除运算法则,会
用它们进行有关实数的简单四则运算.
二次根式的知识点是新课标的基本考查内容之一,常常以
填空题、选择题形式出现. 1.二次根式的基本运算要求熟练掌握,二次根式的运算以 整式的运算为基础,其法则、公式都与整式类似,特别是二 次根式的加减,没有提出同类二次根式的概念,完全参照合

中考数学总复习《二次根式》练习题附带答案

中考数学总复习《二次根式》练习题附带答案

中考数学总复习《二次根式》练习题附带答案一、单选题1.√123÷√213×√125值为()A.1B.3C.√33D.√7 2.若√(a−b)2=b﹣a,则()A.a>b B.a<b C.a≥b D.a≤b 3.与√a3b不是同类次根式的是()A.1√abB.√baC.√ab2D.√ba34.下列运算正确的是()A.√3+3=3√3B.4√2−√2=4C.√2+√3=√5D.3√3−√3=2√35.若代数式1x−1+√x有意义,则实数x的取值范围是()A.x≠1B.x≥0C.x≠0D.x≥0且x≠1 6.a、b在数轴上的位置如图所示,那么化简√(b−a)2的结果是()A.a-b B.a+b C.b-a D.-a-b7.设实数a,b在数轴上对应的位置如图所示,化简√a2+|a+b|的结果是()A.-2a+b B.2a+b C.-b D.b8.若√3−m为二次根式,则m的取值为()A.m≤3B.m<3C.m≥3D.m>39.下列运算正确的是()A.(x−y)2=x2−y2B.|√3−2|=2−√3C.√8−√3=√5D.﹣(﹣a+1)=a+110.已知2<a<4,则化简√1−2a+a2+√a2−8a+16的结果是() A.2a﹣5B.5﹣2a C.﹣3D.311.下列运算中正确的是()A.√2+√3=√5B.(−√5)2=5C.3√2−2√2=1D.√16=±4 12.下列计算正确的是()A.(m−n)2=m2−n2B.(2ab3)2=2a2b6C.√8a3=2a√a D.2xy+3xy=5xy 二、填空题13.计算:√45﹣√25× √50=.14.若√12x是一个整数,则x可取的最小正整数是3.(判断对错)15.计算:√24−√12√3=.16.如果x2﹣3x+1=0,则√x2+1x2−2的值是.17.化简:√75=.18.已知实数a,b,c在数轴上的位置如图所示,化简代数式√a2−|a+c|+√(b−c)2−|−b|三、综合题19.完成下列问题:(1)若n(n≠0)是关于x的方程x2+mx+2n=0的根,求m+n的值;(2)已知x,y为实数,且y= √2x−5+√5−2x﹣3,求2xy的值.20.阅读材料,解答问题:(1)计算下列各式:①√4×9=,√4×√9=;②√16×25=,√16×√25=.通过计算,我们可以发现√a×b=(a>0,b>0)从上面的结果可以得到:√8=√2×√4=2√2,√12=√3×√4=2√3(2)根据上面的运算,完成下列问题①化简:√24②计算:√27+√48③化简:√a2b(a>0,b>0)21.在数学课外学习活动中,小明和他的同学遇到一道题:已知a=12+√3,求2a2−8a+1的值.他是这样解答的:∵a=2+√3=√3(2+√3)(2−√3)=2−√3,∴a−2=−√3∴(a−2)2=3,a2−4a+4=3∴a2−4a=−1∴2a2−8a+1=2(a2−4a)+1=2×(−1)+1=−1.请你根据小明的解析过程,解决如下问题:(1)1√3+√2=;(2)化简 √2+1+√3+√2√4+√3⋯+√256+√255 ; (3)若 a =√10−3,求 a 4−6a 3+a 2−12a +3 的值. 22.已知 x =√3+12 , y =√3−12与 m =xy 和 n =x 2−y 2 . (1)求m ,n 的值;(2)若 √a −√b =m +72, √ab =n 2 求 √a +√b 的值. 23.计算: (1)√135•2 √3 •(﹣ 12 √10 ); (2)√3a 2b •( √b a ÷2 √1b). 24.计算下列各题 (1)计算:( 12 )﹣2﹣6sin30°﹣( √7−√5)0+ √2 +| √2 ﹣ √3 | (2)化简:( x+2x 2−2x ﹣ x−1x 2−4x+4 )÷ x−4x ,然后请自选一个你喜欢的x 值,再求原式的值.参考答案1.【答案】A2.【答案】D3.【答案】C4.【答案】D5.【答案】D6.【答案】A7.【答案】D8.【答案】A9.【答案】B10.【答案】D11.【答案】B12.【答案】D13.【答案】√514.【答案】对15.【答案】2√2−216.【答案】√517.【答案】5√318.【答案】019.【答案】(1)将x=n 代入方程x 2+mx+2n=0得n 2+mn+2n=0,则n(n+m+2)=0 因为n≠0,所以n+m+2=0即m+n=-2.(2)因为y=√2x −5+√5−2x -3有意义,则{2x −5≥05−2x ⩾0解得{x ⩾52x ≤52则x=52 所以y=0+0-3=-3即2xy=2×52×(-3)=-15. 20.【答案】(1)6;6;20;20;√a ×√b(2)解:①√24=√4×6=√4×√6=2√6;②√27+√48=√3×9+√3×16=√3×√9+√3×√16=3√3+4√3=7√3 ;③√a 2b =√a 2⋅√b =a √b (a >0,b >0).21.【答案】(1)√3−√2(2)解:原式 =√2−1+√3−√2+√4−√3+⋯+√256−√255=−1+√2−√2+√3−√3+√4−⋯−√255+√256=√256−1=16−1=15 ;(3)解: ∵ a =√10−3 =√10+3 ∴a −3=√10∴(a −3)2=10即 a 2−6a +9=10 .∴a 2−6a =1 .∴a 4−6a 3=a 2∴a 4−6a 3+a 2−12a +3=2a 2−12a +3=2(a 2−6a)+3=2+3=5 .22.【答案】(1)解:由题意得, m =xy =√3+12×√3−12=12 n =(x +y)(x −y)=(√3+12+√3−12)(√3+12−√3−12)=√3 (2)解:由(1)得, √a −√b =4 √ab =3 ∴(√a +√b)2=(√a −√b)2+4√ab =42+4×3=28∵√a +√b >0∴√a +√b =2√723.【答案】(1)解: √135 •2 √3 •(﹣ 12 √10 ) =2×(﹣ 12 ) √135×3×10 =﹣ √16×3=﹣4 √3(2)解: √3a 2b •( √b a ÷2 √1b)= √3a2b × √ba× 12× √b= √3424.【答案】(1)解:原式=4﹣6× 12﹣1+ √2+ √3﹣√2 = √3;(2)解:原式=[x+2x(x−2)﹣x−1(x−2)2]•xx−4= (x+2)(x−2)−x(x−1)x(x−2)2•xx−4=x−4x(x−2)2•xx−4=1 (x−2)2当x=10时,原式= 1 64.。

2020年中考数学必考专题04 二次根式的运算(解析版)

2020年中考数学必考专题04 二次根式的运算(解析版)

专题04 二次根式的运算1.二次根式:形如式子a (a ≥0)叫做二次根式。

(或是说,表示非负数的算术平方根的式子,叫做二次根式)。

2.二次根式有意义的条件:被开方数≥0 3.二次根式的性质: (1)是非负数;(2)(a )2=a (a ≥0);(3)==a a 2(4)非负数的积的算术平方根等于积中各因式的算术平方根的积, 即=·(a ≥0,b ≥0)。

(5)非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根,即= (a ≥0,b>0)。

反之,4.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。

5.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。

6.分母有理化:分母有理化就是通过分子和分母同乘以分母的有理化因式,将分母中的根号去掉的过程,混合运算中进行二次根式的除法运算,一般都是通过分母有理化而进行的。

7.分母有理化的方法:分子分母同乘以分母的有理化因式。

8.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式。

())0,0(0,0>≥=≥≥=⨯b a b ab a b a ab b a 专题知识回顾(>0)(<0)0 (=0);9.找有理化因式的方法:(1)分母为单项式时,分母的有理化因式是分母本身带根号的部分。

如:①的有理化因式为,②的有理化因式为。

(2)分母为多项式时,分母的有理化因式是与分母相乘构成平方差的另一部分。

即的有理化因式为,的有理化因式为,的有理化因式为10.二次根式的加减,先把各个二次根式化成最简二次根式,再将同类二次根式分别合并。

一般地,二次根式的加减法可分以下三个步骤进行:(1)将每一个二次根式都化简成最简二次根式(2)判断哪些二次根式是同类二次根式,把同类二次根式结合成一组(3)合并同类二次根式11.二次根式的乘法两个二次根式相乘,把被开方数相乘,根指数不变,即(≥0,≥0)。

2025年中考数学考点分类专题归纳之二次根式

2025年中考数学考点分类专题归纳之二次根式

2025年中考数学考点分类专题归纳二次根式知识点一、二次根式的相关概念和性质1. 二次根式形如(0)a a ≥的式子叫做二次根式. 备注:二次根式a 有意义的条件是0a ≥ ,即只有被开方数0a ≥时,式子a 才是二次根式,a 才有意义.2.二次根式的性质;;.3. 最简二次根式1)被开方数是整数或整式;2)被开方数中不含能开方的因数或因式.满足上述两个条件的二次根式,叫做最简二次根式.4. 同类二次根式几个二次根式化成最简二次根式后,被开方数相同,这几个二次根式就叫同类二次根式.备注:判断是否是同类二次根式,一定要化简到最简二次根式后,看被开方数是否相同,再判断.知识点二、二次根式的运算1. 乘除法(1)乘除法法则:备注:⋅= . (1)当二次根式的前面有系数时,可类比单项式与单项式相乘(或相除)的法则,如a b c d ac bd-⨯-≠-⨯- .(2)被开方数a、b一定是非负数(在分母上时只能为正数).如(4)(9)492.加减法将二次根式化为最简二次根式后,将同类二次根式的系数相加减,被开方数和根指数不变,即合并同类二次根式.1.(2024•达州)二次根式中的x的取值范围是()A.x<﹣2 B.x≤﹣2 C.x>﹣2 D.x≥﹣22.(2024•绥化)若y有意义,则x的取值范围是()A.x且x≠0 B.x C.x D.x≠03.(2024•兰州)下列二次根式中,是最简二次根式的是()A.B.C.D.4.(2024•无锡)下列等式正确的是()A.()2=3 B. 3 C. 3 D.()2=﹣35.(2024•盘锦)若式子有意义,则x的取值范围是_______.6.(2024•绵阳)等式成立的x的取值范围在数轴上可表示为()A.B.C.D.7.(2024•临安区)下列各式计算正确的是()A.a12÷a6=a2B.(x+y)2=x2+y2C.D.8.(2024•郴州)下列运算正确的是()A.a3•a2=a6B.a﹣2C.32D.(a+2)(a﹣2)=a2+4 9.(2024•孝感)下列计算正确的是()A.a﹣2÷a5B.(a+b)2=a2+b2C.22D.(a3)2=a510.(2024•德阳)下列计算或运算中,正确的是()A.2B.C.623D.﹣3 11.(2024•陇南)使得代数式有意义的x的取值范围是_____.12.(2024•巴中)已知|sinA|0,那么∠A+∠B=_____.13.(2024•广州)如图,数轴上点A表示的数为a,化简:a___.14.(2024•山西)计算:(31)(31)=____.15.(2024•镇江)计算:___.16.(2024•烟台)与最简二次根式5是同类二次根式,则a=___.17.(2024•哈尔滨)计算610的结果是__ .18.(2024•武汉)计算的结果是__________.19.(2024•盘锦)计算:_ _.20.(2024•滨州)观察下列各式:1,1,1,……请利用你所发现的规律,计算,其结果为__ .21.(2024•莱芜)如图,正三角形和矩形具有一条公共边,矩形内有一个正方形,其四个顶点都在矩形的边上,正三角形和正方形的面积分别是2和2,则图中阴影部分的面积是___.22.(2024•大连)计算:(2)22﹣223.(2024•陕西)计算:()×()+|1|+(5﹣2π)0。

第4讲二次根式及其运算(讲义)(原卷版)-2024年浙江中考数学一轮复习

第4讲二次根式及其运算(讲义)(原卷版)-2024年浙江中考数学一轮复习

第一单元 数与式第4讲 二次根式及其运算1.了解二次根式和最简二次根式的概念,知道二次根式a 中被开方数a 为非负数并且a 也是非负数.2.了解二次根式(根号下仅限于数)的加、减、乘、除运算法则并掌握二次根式的性质.3.能根据二次根式的运算法则及性质进行二次根式的加、减、乘、除和综合运算.1.二次根式的有关概念:(1)二次根式:式子 叫做二次根式.(2)最简二次根式需满足两个条件:①被开方数 .②被开方数中 的因数或因式.(3)二次根式有意义的条件:被开方数非负2.二次根式的性质:(1)(a )2= (a ≥0).(2)a 2= =⎩⎪⎨⎪⎧a (a >0),0(a =0),-a (a <0).(3)ab = (a ≥0,b ≥0).(4)ab=(a≥0,b>0).二次根式的双重非负性是指它的被开方数与结果均为非负数.3.二次根式的运算:(1)二次根式加减法的实质是合并同类二次根式.(2)二次根式的乘法:a·b=(a≥0,b≥0).(3)二次根式的除法:ab=(a≥0,b>0).运算结果中的二次根式,一般都要化成最简二次根式或整式.■考点一二次根式的相关概念►◇典例1:(2023•恩阳区模拟)若代数式有意义,则实数x的取值范围是.【变式训练】1.(2023•婺城区一模)在二次根式中,字母x的取值范围是.2.(2023•慈溪市模拟)若分式有意义,则x的取值范围是()A.x>2 B.x≤2 C.x=2 D.x≠2■考点二二次根式的性质►◇典例2:(2022•河北)下列正确的是()A.=2+3 B.=2×3 C.=32D.=0.7【变式训练】1.(2022•桂林)化简的结果是()A.2B.3 C.2D.22.(2022•内蒙古)实数a在数轴上的对应位置如图所示,则+1+|a﹣1|的化简结果是()A.1 B.2 C.2a D.1﹣2a■考点三二次根式的运算►◇典例3:(2021•西宁)计算:(+3)(﹣3)﹣(﹣1)2.【变式训练】1.(2023•娄星区校级一模)下列各式计算正确的是()A.B.C.D.2.(2022•青岛)计算(﹣)×的结果是()深度讲练A .B.1 C .D.33.(2022•甘肃)计算:×﹣.4.(2023•兰州模拟)计算:.■考点四二次根式的化简求值及应用►◇典例4:(2020•金华二模)先化简,再求值:(a +)(a ﹣)﹣a(a﹣2),其中a =+1.【变式训练】1.(2022•瑞安市校级三模)当时,代数式(a﹣1)2﹣2a+2的值为.真题演练1.(2023•金华)要使有意义,则x的值可以是()A.0 B.﹣1 C.﹣2 D.22.(2021•杭州)下列计算正确的是()A.=2 B.=﹣2 C.=±2 D.=±2 3.(2022•湖北)下列各式计算正确的是()A.B.C.D.4.(2021•金华模拟)代数式在实数范围内有意义时,x的取值范围为()A.x>﹣1 B.x≥﹣1 C.x≥﹣1且x≠0 D.x≠05.(2023•萧山区一模)已知,则实数a的值为()A.9 B.3 C.D.±36.(2023•南湖区一模)下列各式中,正确的是()A.(﹣3)2=9 B.(﹣2)3=﹣6 C.D.7.(2021•丽水模拟)若方程组,设x+y=a2,x﹣y=b2,则代数式的值为()A.B.C.D.8.(2022•杭州)计算:=;(﹣2)2=.9.(2022•萧山区一模)计算:=.10.(2023•青山区模拟)计算:﹣3=.11.(2023•杭州)计算:=.12.(2023•浙江模拟)若最简根式与是同类二次根式,则m=.13.(2023•龙游县一模)已知:a=()﹣1+(﹣)0,b=(+)(﹣),则=.14.(2023•临汾模拟)计算:=.15.(2023•萧山区一模)婷婷对“化简:”的解答过程如下:解:原式=2×3=(2×3)×()2=6×2=12.试问婷婷的解答过程是否正确?若正确,请再写出一种解答过程;若有错误,请写出正确的解答过程.16.(2021•永嘉县校级模拟)计算:﹣+3+.17.(2023•舟山二模)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=(m+n)2,用含m、n的式子分别表示a、b,得:a=,b=;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+=(+)2;(3)若a+6=(m+n)2,且a、m、n均为正整数,求a的值.18.(2023•张家界)阅读下面材料:将边长分别为a,a+,a+2,a+3的正方形面积分别记为S1,S2,S3,S4.则S2﹣S1=(a+)2﹣a2=[(a+)+a]•[(a+)﹣a]=(2a+)•=b+2a例如:当a=1,b=3时,S2﹣S1=3+2根据以上材料解答下列问题:(1)当a=1,b=3时,S3﹣S2=,S4﹣S3=;(2)当a=1,b=3时,把边长为a+n的正方形面积记作S n+1,其中n是正整数,从(1)中的计算结果,你能猜出S n+1﹣S n等于多少吗?并证明你的猜想;(3)当a=1,b=3时,令t1=S2﹣S1,t2=S3﹣S2,t3=S4﹣S3,…,t n=S n+1﹣S n,且T=t1+t2+t3+…+t50,求T的值.。

初中数学 中考复习二次根式专题练习(含答案)

初中数学 中考复习二次根式专题练习(含答案)

二次根式复习一、知识归纳 (一)二次根式定义1注意:(12,(2)被开方数是非负数2、二次根式在实数范围内有意义的条件是 a ≥0 。

(二)二次根式的性质1、二次根式的双重非负性≥0,a ≥0a ≥0)表示非负数a 的算术平方根,≥0,2、)2=a (a ≥0)(0)0(0)(0)a a a a a a ⎧⎪===⎨⎪-⎩><(三)、最简二次根式和同类二次根式 1、最简二次根式的两个条件:(1)被开方数不含 ;(2)被开方数不含 的因数或因式。

满足:(1)根号内不含有分母,有分母的先通分,再将分母开出来 (2)根号内每个因式或因数的指数都小于根指数2,如果根号内含有因式或因数的指数大于根指数2,就利用,将每个因式或因数的指数都小于根指数2(3)分母内不含有根式,如果分母内含有根号,则利用分母有理化,将根号划去。

(1)判断一个二次根式是否是最简二次根式,要紧扣最简二次根式的特点: ①被开方数不含分母;②被开方数不能含开得尽方的因数或因式.即把每一个因数或因式都写成底数较小、乘方的形式后,因数或因式的指数小于2.③若被开方数是和(或差)的形式,则先把被开放方数写成积的形式,再作判定,若无法写成积(或一个数)的形式,则为最简二次根式.=简二次根式.=,且因式2和22()x y +的指数都是1,是最简二次根式.22a b +无法变成一个数(或因式)式.(2)化简二次根式一般例如为两步:一如果被开方数是分数或分式,利用分母有理化化简;二化去被开方数中的分母之后,再将被开方数分解成几个数相乘的形式或分解因式,然后利用积的算术平方根的性质把能开得尽方的因数或因式开出来.若被开方数中不含分母,则只需第二步.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式.同类二次根式与同类项类似. 对同类二次根式的理解应注意以下几点:(1)判断几个二次根式是否是同类二次根式时,首先将二次根式化为最简二次根式,其次看被开方数是否相同.(2)几个二次根式是否是同类二次根式,只与被开方数和根指数有关,与根号外的系数无关. 将同类二次根式的系数相加减,根指数与被开方数保持不变.(1)二次根式的系数就是这个二次根式根号外的因式(或因数),它包含前面的符号.(2)当二次根式的系数为带分数时,必须将其化为假分数.(3)不是同类二次根式,千万不要合并.(四)二次根式的运算0)=≥,≥0a b=≥,>00)a b≥,≥0a b0)=≥,>00)a b二次根式的加减实质上就是合并同类二次根式.4、二次根式加减的步骤:(1)先将二次根式化成。

2022-2023年数学中考第一轮复习-专题二二次根式

2022-2023年数学中考第一轮复习-专题二二次根式

专题二:二次根式1:考向解读1.了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、算术平方根、立方根.2.了解乘方与开方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.3.了解二次根式、最简二次根式的概念,了解二次根式(根号下仅限于数)加、减、乘、的化简与运算(分母有理化).2:导图导学3:考点数的乘方负数的奇次幕是负数,负数的偶次幂是正数,正数的任何次幂都是正数,0的任何正整数次幂都是0.这样的二次根式叫做最简二次根式.(3)同类二次根式:当二次根式化为最简二次根式后,如果被开方数相同,那么这几个二次根式叫做同类二次根式.二次根式的运算二次根式的性质:0(0)a a≥≥,2()(0)a a a=≥.2(0),||(0)a aa aa a≥⎧==⎨-<⎩.(0,0)ab a b a b=⋅≥≥.(0,0)a aa bb b=≥>.4:解题技巧化简二次根式的步骤(易错点)(1)把被开方数分解因式(或因数) ;(2)把各因式(或因数)积的算术平方根化为每个因式(或因数)的算术平方根的积;(3)如果因式中有平方式(或平方数),应用关系式(a)2=a(a≥0)把这个因式(或因数)开出来,将二次根式化简。

二次根式运算中的注意事项(1)一般将最后结果化为最简二次根式,并且分母中不含二次根式。

(2)二次根式的加减:先将二次根式化为最简二次根式,再把被开方数相同的二次根式(即同类二次根式)进行合并。

(合并方法为:将系数相加减,二次根式部分不变),不能合并的直接抄下来。

常见二次根式化简求值的九种技巧一、估算法二、公式法三、拆项法四、换元法 五、整体代入法 六、因式分解法 七、配方法 八、辅元法 九、先判后算法 考点1:二次根式有意义的条件 1.(2022•衡阳)如果二次根式1a -有意义,那么实数a 的取值范围是( ) A .1a > B .1a C .1a < D .1a 【分析】根据二次根式有意义的条件:被开方数为非负数,即可得出a 的取值范围. 【解答】解:由题意得:10a -, 1a ∴, 故选:B . 2.(2022•日照)若二次根式32x -在实数范围内有意义,则x 的取值范围为 32x . 【分析】根据二次根式的被开方数是非负数列出不等式,解不等式得到答案.【解答】解:由题意得:320x -,解得:32x , 故答案为:32x.举一反三1.(202236x -x 的取值范围是( )A .2x >B .2x <C .2xD .2x【分析】根据二次根式有意义的条件:被开方数是非负数即可得出答案.【解答】解:360x -,2x ∴,故选:D .2.(2022•广州)代数式11x +有意义时,x 应满足的条件为( ) A .1x ≠- B .1x >- C .1x <- D .1x - 【分析】直接利用二次根式有意义的条件、分式有意义的条件分析得出答案. 【解答】解:代数式11x +有意义时,10x +>, 解得:1x >-. 故选:B . 3.(2022•常州)若二次根式1x -有意义,则实数x 的取值范围是( ) A .1x B .1x > C .0x D .0x > 【分析】根据二次根式有意义的条件,可得:10x -,据此求出实数x 的取值范围即可. 【解答】解:二次根式1x -有意义, 10x ∴-,解得:1x .故选:A .考点二:二次根式的定义1.(2022秋•二道区校级期中)下列式子中,不是二次根式的是( )A .3B .0.6C .12D .3π-【分析】根据二次根式的定义进行判断.【解答】解:3,0.6,1为二次根式,2而30π-<,所以3π-不是二次根式.故选:D.2.(2022春•泸县校级期中)下列式子中是二次根式的是()A.x B.3-C.2-D.38【分析】根据二次根式的定义:一般地,我们把形如(0)a a的式子叫做二次根式判断即可.【解答】解:A选项,x缺少条件0x,当0x<时,x不是二次根式,故该选项不符合题意;B选项,30-<,故该选项不符合题意;>,故该选项符合题意;C选项,20D选项,38是三次根式,故该选项不符合题意;故选:C.举一反三1.(2022秋•新蔡县校级月考)下列各式中,一定是二次根式的是()A a B21a+C32D2-【分析】(0)a a的式子叫做二次根式.【解答】解:A.当0a<aa+B21C32是三次根式,故此选项不合题意;D2-故选:B.2.(2022秋•宛城区校级月考)下列各式中,一定是二次根式的是() A.4-B.21x+x-C.32a D.21【分析】根据二次根式的定义进行判断.【解答】解:A.被开方数为负数,不是二次根式,故此选项不合题意;B.x的值不确定,被开方数的符号也不确定,不能确定是二次根式,故此选项不合题意;C.根指数是3,不是二次根式,故此选项不合题意;D.被开方数恒为正数,是二次根式,故此选项符合题意.故选:D.3.(2022秋•榆树市月考)下列各式中,一定是二次根式的是() A.3-B.32a C.22a+D.29a-【分析】根据二次根式的定义:一般地,我们把形如(0)a a的式子叫做二次根式.【解答】解:A.3-,被开方数是负数,二次根式无意义,故此选项不合题意;B.32a,三次根式,故此选项不合题意;a+,是二次根式,故此选项符合题意;C.22a-,被开方数有可能是负数,二次根式无意义,故此选项不合题意;D.29故选:C.考点三:考向3 二次根式的性质与化简1.(2021•娄底)2、5、m是某三角形三边的长,则22-+-等于((3)(7)m m)A.210-C.10D.4m-B.102m【分析】直接利用三角形三边关系得出m的取值范围,再利用二次根式的性质化简得出答案.【解答】解:2、5、m是某三角形三边的长,5252m ∴-<<+, 故37m <<, ∴22(3)(7)m m -+- 37m m =-+- 4=. 故选:D . 2.(2022•遂宁)实数a 、b 在数轴上的位置如图所示,化简22|1|(1)()a b a b +--+-= 2 . 【分析】根据数轴可得:10a -<<,12b <<,然后即可得到10a +>,10b ->,0a b -<,从而可以将所求式子化简. 【解答】解:由数轴可得,10a -<<,12b <<,10a ∴+>,10b ->,0a b -<,22|1|(1)()a b a b ∴+--+-1(1)()a b b a =+--+-11a b b a =+-++-2=,故答案为:2.举一反三1.(2022•内蒙古)实数a 21|1|a a +-的化简结果是( )A .1B .2C .2aD .12a -【分析】根据数轴得:01a <<,得到0a >,10a -<||a =和绝对值的性质化简即可.【解答】解:根据数轴得:01a <<,0a ∴>,10a -<,∴原式||11a a =++-11a a =++-2=.故选:B .2.(2022( )A .B .3C .D .2【分析】将被开方数12写成平方数4与3的乘积,再将4开出来为2,易知化简结果为.【解答】===故选:A .3.(2022•河北)下列正确的是( )A23=+ B 23⨯ C 23= D 0.7【分析】A 0,0)a b 判断B 选项;根据||a 判断C 选项;根据算术平方根的定义判断D 选项.【解答】解:A 、原式=B 、原式23=⨯,故该选项符合题意;C 、原式29,故该选项不符合题意;D 、20.70.49=,故该选项不符合题意;故选:B .考点4:最简二次根式1.(2021•桂林)下列根式中,是最简二次根式的是( ) A .19 B .4 C .2a D .a b + 【分析】直接根据最简二次根式的概念:(1)被开方数不含分母,分母中不含根号;(2)被开方数中不含能开得尽方的因数或因式判断即可. 【解答】解:11.93A =,不是最简二次根式; .42B =,不是最简二次根式; 2.||C a a =,不是最简二次根式; .D a b +,是最简二次根式. 故选:D . 2.(2022•杭州)计算:4= ;2(2)-= .【分析】根据二次根式的性质、有理数的乘方法则计算即可.【解答】解:42=,2(2)4-=,故答案为:2,4.举一反三1.(2022秋•忻州月考)下列二次根式是最简二次根式的是( )A 12B 3C 12D 2a 【分析】根据最简二次根式的概念判断即可.【解答】解:A 124323⨯=,被开方数中含能开得尽方的因数,不是最简二次根式,本选项不符合题意;B 3是最简二次根式,本选项符合题意;C 122=D 2||a a =,被开方数中含能开得尽方的因数,不是最简二次根式,本选项不符合题意;故选:B .2.(2021•益阳)将452化为最简二次根式,其结果是( ) A .452 B .902 C .9102 D .3102 【分析】根据二次根式的性质进行化简即可. 【解答】解:459523102222⨯⨯==⨯, 故选:D . 3.(2022秋•永春县期中)下列二次根式是最简二次根式的是( ) A .13 B .18 C .7 D .12 【分析】根据最简二次根式的定义进行判断即可. 【解答】解:13.33A =,因此13不是最简二次根式,所以选项A 不符合题意; .1832B =,因此18不是最简二次根式,所以选项B 不符合题意;.7C 是最简二次根式,因此选项C 符合题意;.1223D =,因此12不是最简二次根式,所以选项D 不符合题意; 故选:C .考点5:二次根式的乘除法1.(2022•山西)计算:1182⨯的结果为 . 【分析】按照二次根式的乘法法则计算即可.【解答】解:原式93==.故答案为:3.2.(2022•衡阳)计算:28⨯= .【分析】原式利用二次根式的乘法法则计算,将结果化为最简二次根式即可.【解答】解:原式28164=⨯==.故答案为:4举一反三1.(2022•呼和浩特)下列运算正确的是( ) A 1822=± B .222()m n m n +=+C .1211x x x-=--D .2229332y x xy x y-÷=-【分析】利用二次根式的乘法的法则,完全平方公式,分式的减法的法则,分式的除法的法则对各项进行运算即可. 【解答】解:A 1822,故A 不符合题意; B 、222()2m n m mn n +=++,故B 不符合题意;C 、21221xx x x x--=--,故C 不符合题意; D 、2229332y x xy x y-÷=-,故D 符合题意; 故选:D .2.(202211622正确的是( ) A .4B .2C 7D .2±【分析】直接利用二次根式的乘除运算法则化简,进而得出答案. 【解答】解:原式11622=÷⨯4=2=.故选:B .3.(202223= .【分析】根据二次根式的乘法法则进行计算即可. 【解答】236= 6.考点61.(2021•潍坊)下列运算正确的是( ) A .2211()24a a a -=-+ B .1221()a a --=C .33a ab b-=- D .623=【分析】根据完全平方公式判断A ,根据负整数指数幂判断B ,根据分式的基本性质判断C ,根据二次根式的除法判断D .【解答】解:A 选项,原式214a a =-+,故该选项正确;B 选项,原式122211()()a a a-===,故该选项正确;C 选项,根据分式的基本性质,分子,分母都乘或除以一个不为0的数,分式的值不变,不能分子,分母都加3,故该选项错误;D 选项,原式2=,故该选项错误;故选:AB .2.(2021•娄底)计算:0111(2021)()2cos45221π--++-︒+. 【分析】根据零指数幂,分母有理化,负整数指数幂,特殊角的三角函数值计算即可.【解答】解:原式222121222(2)1-=++-⨯- 12122=+-+-2=.举一反三1.(2022秋•嘉定区月考)下列结论正确的是( ) A 22a b +是最简二次根式 B x y -x y + C 2(12)12-D a ba b-=+【分析】根据最简二次根式的定义,有理化因式的定义,不等式的解法即可得到结论.【解答】解:A 是最简二次根式,故本选项正确,符合题意;BC 1,故本选项错误,不符合题意;D=故选:A .2.(2022•信阳二模)下列式子运算正确的是( ) A .632a a a ÷= B .22(2)4a a =C 1=D .22()(2)2x y x y x y -+=+【分析】根据整式运算相关的法则和分母有理化逐项判断. 【解答】解:632a a ÷=,故A 错误,不符合题意;22(2)4a a =,故B 正确,符合题意;1,故C 错误,不符合题意;22()(2)2x y x y x xy y -+=+-,故D 错误,不符合题意;故选:B .3.(2022春•孝义市期末)下列是最简二次根式的是( )AB C D 【分析】根据最简二次根式的定义解决此题.【解答】解:A 不是最简二次根式,那么A 不符合题意.B 不是最简二次根式,那么B 不符合题意.C .根据最简二次根式的定义,C 不符合题意.D.根据最简二次根式的定义,15是最简二次根式,那么D符合题意.故选:D.考点7:同类二次根式1.(2021•泰州)下列各组二次根式中,化简后是同类二次根式的是() A.8与3B.2与12C.5与15D.75与27【分析】一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.先将各选项进行化简,再根据被开方数是否相同进行判断即可.【解答】解:A、822=和3不是同类二次根式,本选项不合题意;B、1223=与2不是同类二次根式,本选项不合题意;C、5与15不是同类二次根式,本选项不合题意;D、7553=是同类二次根式,本选项符合题意.=,2733故选:D.2.(2020•上海)下列二次根式中,与3是同类二次根式的是() A.6B.9C.12D.18【分析】根据同类二次根式的定义解决此题.【解答】解:A.根据同类二次根式的定义,6与3不是同类二次根式,那么A 不符合题意.B.根据算术平方根以及同类二次根式,93=与3不是同类二次根式,那么B 不符合题意.=与3是同类二次C.根据二次根式的性质以及同类二次根式的定义,1223根式,那么C符合题意.D.根据二次根式的性质以及同类二次根式的定义,1832=与3不是同类二次根式,那么D 不符合题意. 故选:C .举一反三1.(2022秋•浦东新区校级月考)下列四组二次根式,不是同类二次根式的是( ) A 313B 850C 34x 38xD 3x 233a x 【分析】根据同类二次根式的定义:化成最简二次根式后,被开方数相同的叫做同类二次根式,即可解答. 【解答】解:A 、133=∴313故A 不符合题意;B 、822=5052=∴850故B 不符合题意;C 、342x x x 3822x x ,∴34x 38x故C 符合题意;D 、2333a x ax x =∴3x 233a x故D 不符合题意; 故选:C .2.(20222022m +2可以合并,则m 的值为( ) A .2020B .2020-C .2024D .2024-【分析】2022m +22022m +2的被开方数相同,即20222m +=.【解答】解:最简二次根式2022m +与2可以合并,则2022m +与2是同类二次根式,20222m ∴+=.解得2020m =-. 故选:B .3.(2022春•綦江区校级月考)若8和最简二次根式37m -是同类二次根式,则m 的值为( ) A .5m =B .2m =C .3m =D .6m =【分析】先把8化为最简二次根式22,再根据同类二次根式得到372m -=,然后解方程即可. 【解答】解:822=,372m ∴-=, 3m ∴=.故选:C .考点8:二次根式的加减法1.(2022•鞍山)下列运算正确的是( ) A .2810+= B .3412a a a ⋅= C .222()a b a b -=-D .2336(2)8ab a b -=-【分析】利用二次根式的加法的法则,完全平方公式,同底数幂的乘法的法则,积的乘方的法则对各项进行运算即可.【解答】解:A 、2832+=,故A 不符合题意;B 、347a a a ⋅=,故B 不符合题意;C 、222()2a b a ab b -=-+,故C 不符合题意;D 、2336(2)8ab a b -=-,故D 符合题意;故选:D .2.(2022•宁夏)下列运算正确的是( ) A .220--=B .826-=C .3362x x x +=D .326()x x -=【分析】直接利用二次根式的加减、合并同类项、幂的乘方与积的乘方法则分别化简,进而判断得出答案.【解答】解:A .224--=-,故此选项不合题意;B .822-=,故此选项不合题意;C .3332x x x +=,故此选项不合题意;D .326()x x -=,故此选项符合题意;故选:D .举一反三1.(2022•鄂尔多斯)下列运算正确的是( ) A .32235523a b a b a b += B .2363(2)6a b a b -=-C .2124-=-D 2832=【分析】把每一选项按照运算法则计算后判断结果即可.【解答】解:32232a b a b +不能合并,因为不是同类项,A 选项错误;2363(2)8a b a b -=-,B 选项也错误;2124-=,C 选项也错误; 2832=D 选项正确.故选:D .2.(2022123( ) A 15B .32C .33D .53【分析】根据二次根式的加法法则,先化简,再合并同类二次根式.【解答】解:12323333+=+=. 故选:C .3.(2022秋•沈河区校级月考)下列计算正确的是( ) A .2(2)2-=-B .43331-=C .235+=D .1222= 【分析】直接利用二次根式的性质以及二次根式的加减运算法则分别计算,进而得出答案.【解答】解:2.(2)2A -=,故此选项不合题意;.43333B -=,故此选项不合题意; .23C +无法合并,故此选项不合题意;12.22222D =⨯=,故此选项符合题意; 故选:D .考点9:二次根式混合运算1.(2022•朝阳)计算:637|4|÷--= . 【分析】先算除法,去绝对值,再合并即可. 【解答】解:原式6374=÷-34=-1=-.故答案为:1-.2.(2022•泰安)计算:48633⋅-= . 【分析】化简二次根式,然后先算乘法,再算减法. 【解答】解:原式238633=⨯-⨯4323=- 23=,故答案为:23.举一反三1.(2022•安顺)估计1()(2552)5A.4和5之间B.5和6之间C.6和7之间D.7和8之间【分析】直接利用二次根式的性质结合估算无理数的大小方法得出答案.【解答】解:原式210=<<,310452106∴<<,故选:B.2.(2022•湖北)下列各式计算正确的是()A235÷D236=B.43331C1226【分析】利用二次根式的加减法的法则,二次根式的乘除法的法则对各项进行运算即可.【解答】解:A23A不符合题意;B、43333,故B不符合题意;=C不符合题意;C1223D236,故D符合题意;故选:D.3.(2022•青岛)计算1的结果是()(2712)3A3B.1C5D.3【分析】先根据二次根式的乘法进行计算,再根据二次根式的性质进行计算,最后算减法即可.【解答】解:1(2712)3112712=⨯⨯3394=-32=-1=,故选:B .考点10:二次根式的化简求值1.(2022•内蒙古)已知x ,y 是实数,且满足1228y x x =-+-+,则xy 的值是 .【分析】根据负数没有平方根求出x 的值,进而求出y 的值,代入计算即可求出值.【解答】解:1228y x x =-+-+,20x ∴-,20x -,2x ∴=,18y =, 则原式1112842=⨯==, 故答案为:122.(2022秋•浦东新区校级月考)已知15x x-=,那么1x x+的值为 .【分析】把所求的式子转为条件的形式,再进行求解即可. 【解答】解:15x x-=,∴1x x+21()x x =+21()4x x =-+2(5)4=+54=+3=.故答案为:3.举一反三1.(2021•包头)若21x =,则代数式222x x -+的值为( ) A .7B .4C .3D .322-【分析】利用条件得到12x -两边平方得221x x -=,然后利用整体代入的方法计算.【解答】解:21x =+,12x ∴-2(1)2x ∴-=,即2212x x -+=,221x x ∴-=, 222123x x ∴-+=+=.故选:C .2.(2022秋•琼山区校级月考)已知51x =时,则代数式223x x ++的值( ) A .1B .4C .7D .3【分析】根据完全平方公式以及二次根式的性质即可求出答案. 【解答】解:51x =-时,15x ∴+=2(1)5x ∴+=,2215x x ∴++=,2237x x ∴++=,故选:C .3.(2022春•东莞市月考)若1220223x =1220223y ,则222x xy y ++的值( )A .12B .4C .2022D .8【分析】先利用x 、y 的值计算出22x y +=,再利用完全平方公式得到2222()x xy y x y ++=+,然后利用整体代入的方法计算.【解答】解:1220223x =+,1220223y =-, 22x y ∴+=,22222()(22)8x xy y x y ∴++=+==.故选:D .考点11:二次根式的应用1.(2022秋•新蔡县校级月考)如图,在长方形中放入面积分别为32和18的正方形m 和正方形n ,则图中阴影部分的周长为 .【分析】先根据正方形的面积公式求得两个正方形的边长,再根据图形求得阴影部分的长与宽,最后根据矩形的周长公式求得结果. 【解答】解:根据题意得,2(321818)⨯-+242=⨯ 82=,故答案为:82.2.(2022秋•仁寿县校级月考)若直角三角形斜边长为4,周长为432+,则三角形面积等于 .【分析】由周长可得出两直角边的关系,再利用勾股定理列出另一方程求出两直角边之积进而求得三角形的面积. 【解答】解:设两直角边长分别为x ,y ;则22443216x y x y ⎧++=+⎪⎨+=⎪⎩, 解得1xy =.故这个三角形的面积为1122xy =, 故答案为:12.举一反三1.(20221250的周长为( ) A .23102B .4352C .43102D .4352或23102【分析】分腰长为1250关系进行验证,可求得其周长.【解答】12121250,不满足三角形的三边关系;50125050系,此时周长为23102综上可知,三角形的周长为23102 故选:A .2.(2022•雄县校级开学)如图,在一个长方形中无重叠的放入面积分别为29cm 和28cm 的两张正方形纸片,则图中空白部分的面积为( )A .21)cmB .21cmC .26)cmD .28)cm【分析】根据HLFG MCEF S S S =+矩形矩形空白部分,需求HC 以及LM .由题意得()229ABCH S HC cm ==正方形,()22228LMEF S LM LF MF cm ====正方形,故3HC cm =,)LM LF MF cm ===,进而解决此题.【解答】解:如图所示:由题意知:()229ABCH S HC cm ==正方形,()22228HCDG S LM LF ME cm ====正方形.3()HC cm ∴=,)LM LF MF cm ===.HLFG MCDE S S S ∴=+矩形矩形空白部分HL LF MC ME =⋅+⋅ HL LF MC LF =⋅+⋅()HL MC LF =+⋅ ()HC LM LF =-⋅(3=-⨯2)cm =.故选:D .3.(2022春•孝义市期末)如图,从一个大正方形中裁去面积为26cm 和215cm 的两个小正方形,则留下阴影部分的面积为( )A.2B.221cm C.2D.2【分析】根据小正方形的面积得到边长即可得到大正方形的边长,根据阴影部分的面积=大正方形的面积-两个小正方形的面积即可得出答案.【解答】解:两个小正方形的面积为15和6,∴,+=--∴阴影部分的面积26151526615=+--2)cm=,故选:A.专题二:练习一.选择题1.(2022秋•榆树市期中)下列计算正确的是( ) ABCD 3-2.(2022秋•恩阳区 月考)x ( ) A .1.5B .1-C .3-D .9-3.(2022秋•新蔡县校级月考)已知x 、y 为实数,且1y =,则x y +的值是( ) A .2022B .2023C .2024D .20254.(2022秋•文山市校级月考)下列二次根式中,是最简二次根式的是( )AB C D 5.(2022秋•新蔡县校级月考)下列各式计算正确的是( ) A=B = C=D 6.(2022秋•汝州市校级月考)下列二次根式中,最简二次根式是( )A .B C .D 7.(2022秋•泌阳县校级月考)若代数式有意义,则实数x 的取值范围是()A .1x ≠B .0xC .1x -D .0x 且1x ≠-8.(2022秋•泌阳县校级月考)下列二次根式中,是最简二次根式的是( ) ABC D9.(2022秋•宛城区校级月考)下列根式中为最简二次根式的是( )AB C D 10.(2022秋•泌阳县校级月考)下列运算正确的是( ) AB .2C D 11.(2022秋•渝中区校级月考)下列计算正确的是( )A3-B 2=C 123D .2(10-=12.(2022秋•邓州市校级月考)已知ABC ∆的面积为212cm ,底边为,则底边上的高为( )A .B .C D .13.(2022秋•邓州市校级月考)下列二次根式中属于最简二次根式的是( )ABC D14.(2022秋•商水县月考)如图,数轴上表示1和的对应点分别为A 、B ,点B 关于点A 的对称点是C ,设C 点 表示的数为x ,则x +( )A .1B .1C 1D .215.(2022秋•安溪县校级月考)已知y =,则20202021()()x y x y +-的值为( ) A .2B .2C .1-D .116.(2022秋•安溪县校级月考)下列计算正确的是( )A2=-B .26=C D .=17.(2022秋•西安月考)下列计算中正确的是( ) A=B .1C 8D18.(2022( ) A .2BC D 19.(2022春•重庆月考)下列二次根式是最简二次根式的是( )AB C D 0)a >20.(2022秋•禅城区校级月考)实数a 、b 在轴上的位置如图所示,且||||a b >,则化||a b -的结果为( )A .2a b +B .2a b -+C .bD .2a b -21.(202230b -=,则b 的取值范围是( ) A .3b >B .3b <C .3bD .3b22.(2022春•鲤城区校级期中)下列计算错误的是( ) A=B .3=C =D 23.(2022( ) A .1x >B .1xC .1x ≠D .1x24.(2022有意义的实数x 的取值范围是( ) A .2xB .3x 且2x ≠C .2x >且3x ≠D .2x 且3x ≠25.(2022春•福山区期中)下列计算中,正确的是( ) A .21 B .3=C 3D =26.(2022春•鼓楼区校级期中)下列运算正确的是( )A .3=B =C 3=-D .215=27.(2022( ) A .0B .3C .D .28.(2022春•东莞市月考)下列各组二次根式中,能进行合并的是( ) ABC D29.(2022春•东莞市月考)下列二次根式中,最简二次根式是( )AB C D 30.(2022春•东莞市校级期中)当a 满足( ) A .3aB .3a >C .3a -D .3a >-31.(2022春•仓山区校级期中)下列计算正确的是( )A4B 32=C 5=±D 1=-32.(2022春•东莞市校级期中)下列计算正确的是( ) A=B =C5-D 1=33.(2022春•杭州期中)下列运算正确的是( )A=B .26=C D 2=-34.(2022秋•高新区校级月考)若实数a ,b ,c 在数轴上的对应点的位置如图所示,则化简||b c +( )A .b c a +-B .b c a ++C .b c a ---D .b c a --+35.(2022春•北京期中)下列二次根式计算正确的是( ) A=BC D36.(2022春•武隆区校级期中)把二次根式化简为( ) A .B C .D 二.填空题37.(2022秋•忻州月考)若最简二次根式则x=.38.(2022=的值为.39.(20222)<<=.x40.(2022秋•仁寿县校级月考)计算:20212022⋅=.41.(2022.42.(2022在实数范围内有意义,则x的取值范围是.43.(2022秋•高新区校级月考)若3y=,则xy的值为.44.(2022秋•虹口区校级月考)设x=y=t为时,代数式22++=.2062202022x xy y45.(2022秋•虹口区校级月考)若x,y满足6y=,则x y⋅的平方根为.46.(2022秋•虹口区校级月考)在二次根式;.(填写编号)47.(2022秋•仁寿县校级月考)若直角三角形的两边长为a、b,且满足b-==.|4|048.(2022秋•虹口区校级月考)已知x=,则654322--+-+.x x x x49.(2022秋•二道区校级期中)当1x=.50.(2022秋•渝中区校级月考)若两不等实数a,b满足8b+,则a+=,8.三.解答题51.(2022秋•禅城区校级月考)计算.(1)01)|-(252.(2022秋•浦东新区校级月考)先化简,+,其中5x =,15y =.53.(2022. 54.(2022秋•薛城区校级月考)计算:(1)+(2)2011)()|1(2)3π---+--55.(202256.(202257.(2022春•江汉区校级月考)计算:(1(2)747a .一.选择题1.【解答】解:AA选项不符合题意;B==B选项不符合题意;C==C选项符合题意;D.原式6318=⨯=,所以D选项不符合题意;故选:C.2.【解答】解:由题意得,210x +,解得0.5x -,3210.50-<-<-<-<,故选项A符合题意.故选:A.3.【解答】解:20230x -,20230x-,20230x∴-=,2023x∴=,1y∴=,202312024x y∴+=+=,故选:C.4.【解答】解:A是最简二次根式,故本选项符合题意;B的被开方数的因数不是整数,不是最简二次根式,故本选项不符合题意;C不符合题意;D不是最简二次根式,故本选项不符合题意;故选:A .5.【解答】解:A ,故A 不符合题意;B =B 不符合题意;C C 不符合题意;D D 符合题意;故选:D .6.【解答】解:A 、原式=,故A 不符合题意.B 、原式=B 不符合题意.C 、C 符合题意.D 、原式||a =,故D 不符合题意.故选:C .7.【解答】解:根据题意得:100x ≠⎪⎩, 解得0x .故选:B .8.【解答】解:AB 不是最简二次根式,故此选项不合题意;C D不是最简二次根式,故此选项不合题意; 故选:A .9.【解答】=式,故A 选项不符合题意;是最简二次根式,故B 选项符合题意;=C 选项不符合题意;,被开方数含能开得尽方的因式,不是最简二次根式,故D 选项不符合题意;故选:B .10.【解答】解:A A 不符合题意;B 、=B 不符合题意;C C 不符合题意;D D 符合题意;故选:D .11.【解答】解:A 3=,故此选项不合题意;B 2=,故此选项符合题意;C =,故此选项不合题意;D .2(20-=,故此选项不合题意; 故选:B .12.【解答】解:ABC ∆的面积为212cm ,底边为,∴底边上的高为:122)cm ⨯÷=. 故选:B .13.【解答】解:A 故本选项不符合题意;B 的被开方数中的因数不是整数,不是最简二次根式,故本选项不符合题意;C 的被开方数中的因数不是整数,不是最简二次根式,故本选项不符合题意;D 是最简二次根式,故本选项符合题意; 故选:D .14.【解答】解:由题意可得:1AB CA ==,则C点坐标为:11)2x=-=-故22x==.故选:D.15.【解答】解:y=,∴20 20xx-=⎧⎨-=⎩,20x∴-=,解得2x=,y∴=20202021()()x y x y∴+-20202020()()()x y x y x y=+--2020[()()]()x y x y x y=+--222020()()x y x y=--20201(2=⨯2=+故选:B.16.【解答】解:A|2|2=-=,故本选项不符合题意;B.24312=⨯=,故本选项不符合题意;CD.4(2=⨯=,故本选项符合题意;故选:D.17.【解答】解:A=B.=C=D 故选:A .18.【解答】解:A .2不是同类二次根式,故本选项不合题意;B =C =,与不是同类二次根式,故本选项不合题意;D = 故选:B .19.【解答】解:2=不是最简二次根式,=C 是最简二次根式;(0)D a >,因此不是最简二次根式; 故选:C .20.【解答】解:实数a 、b 在轴上的位置可知,0a b <<,且||||a b >, 0a b ∴-<,∴原式a b a =-+-2b a =-,故选:B .21.【解答】解:30b -=,即|3|3b b -=-,30b ∴-, 即3b ,故选:D .22.【解答】解:A =A 不符合题意;B 、B 符合题意;C =C 不符合题意;D=D不符合题意;故选:B.23.【解答】解:由题意得:10x-,解得:1x,故选:B.24.【解答】解:由题意得:20x-且30x-≠,解得:2x且3x≠,故选:D.25.【解答】解:A.原式=A选项不符合题意;B.3B选项不符合题意;C.原式C选项不符合题意;D.原式=,所以D选项符合题意.故选:D.26.【解答】解:A.3不能合并,所以A选项不符合题意;B B选项不符合题意;=,所以C选项不符合题意;C.原式3D.原式1=,所以D选项符合题意.5故选:D.27.【解答】解:原式===.故选:A.28.【解答】解:A不能合并,故此选项不符合题意;B、∴C、=,∴不是同类二次根式,不能合并,故此选项不符合题意;D、==,∴故选:B.29.【解答】解:|a=不是最简二次根式;C故选:D.30.【解答】解:由题意得,30a+,解得3a-,故选:C.31.【解答】解:A、原式=,故A不符合题意.B、原式3=,故B符合题意.2=,故C不符合题意.C、原式5D、原式1=,故D不符合题意.故选:B.32.【解答】解:A A不符合题意;B=B符合题意;C5,故C不符合题意;D D不符合题意;故选:B.,故选项A正确,符合题意;33.【解答】212=,故选项B错误,不符合题意;C错误,不符合题意;2,故选项D错误,不符合题意;故选:A.34.【解答】解:根据题意得:0∴+<,b c<<<,0c b a||+=---,b c b c a故选:C.35.【解答】==,故选项A错误,不符合题意;==C错误,不符合题意;不能合并,故选项D错误,不符合题意;故选:B.36.【解答】解:10->,a∴<,a∴二次根式0<,∴二次根式化简为故选:A.二.填空题37.【解答】解:最简二次根式∴+=,x25解得:3x=,故答案为:3.38.【解答】解:=,22∴,220∴-=,0∴=,0≠,∴0=,∴25a b ∴=,∴ 5035255b b b b b b++=-+ 5829b b =2=.39.【解答】解:原式11)=-2=,故答案为:2.40.【解答】解:原式2021=⨯⨯2021(1)=-⨯1=-⨯=, 故答案为:41.【解答】0)x y z =>>>,两边平方得:13x y z ++++ 比较系数得:13x y z ++=①,5xy =②,7xz =③,35yz =④,由②得:5x y =,代入③得:57z y=, 即:75y z =, 代入④得:225y =,5y ∴=,1x ∴=,7z =,∴原式.42.【解答】解:由题意得:230x -且20x -≠, 解得:32x 且2x ≠, 故答案为:32x且2x ≠. 43.【解答】解:根据题意,得310130x x -⎧⎨-⎩, 解得13x =,所以3y =,所以1313xy =⨯=.故答案为:1.44.【解答】解:(1t xy t ==,42x y t +==+,2206220220()2222022x xy y x y xy ∴++=++=,20(42)2222022t ∴++=,解得:2t =或3t =-(舍去)2t ∴=.故答案为:2.45.【解答】解:x ,y 满足6y =, ∴30620x x -⎧⎨-⎩, 解得3x =,6y ∴=,18x y ∴⋅=,x y ∴⋅的平方根为=±.故答案为:±46.【解答】解:=,=⑤23=∴②⑤. 故答案为:②⑤.47.【解答】解:|4|0b -=,即|3||4|0a b -+-=,3a ∴=,4b =, ∴该直角三角形的斜边长的平方22223425a b =+=+=, 故答案为:25.48.【解答】解:2022x ==654322x x x x ∴--+-+5432(2x x x x x =--+-+-54322x x x x =-+-+54322x x x x =-+-+-432[1]2x x x x =-+-+-4321]2x x x =-+-+432(202220211)2x x x =--+-+-322x x =-+2(2x x x =-+-22x x =+22x x =+[2]x x =+-2]x =+(202120222)x =-+x ==49.【解答】解:当1x =时,原式3=, 故答案为:3.50.【解答】解:38a b +=,8b +=,0a b ∴-+,0∴-=, a b ≠,∴≠∴3=,16a b ++=,7a b ∴+=,27∴-=,∴21=,∴原式32124=+=.故答案为:21.三.解答题51.【解答】解:(1)原式1=1=+(2)原式=+23=+5=.52.【解答】===当5x=,15y=时,原式===.53.【解答】=4=4=.54.【解答】解:(1)原式=÷==;2(2)原式=---+51911=.755.【解答】解:原式===56.【解答】解:原式==.57.【解答】解:(1==+-4=;4(2)747a2=⨯+a a747=147=20。

中考数学总复习《二次根式》练习题附有答案

中考数学总复习《二次根式》练习题附有答案

中考数学总复习《二次根式》练习题附有答案一、单选题(共12题;共24分)1.若最简二次根式√a+2与√2a−3是可以合并的二次根式,则a的值为()A.5B.13C.-2D.322.使式子√x+1x−1有意义的x的取值范围是()A.x>1B.x≠1C.x≥1且x≠1D.x≥−1且x≠13.若等式√m2−4=√m+2⋅√m−2成立,则m的取值范围是()A.m≥−2B.m≥2C.−2≤m≤2D.m≥44.在函数y=1√x+3中,自变量x的取值范围是()A.x≥−3B.x≥−3且x≠0 C.x≠0D.x>−35.下列计算正确的一项是()A.√36=±6B.√0.49=0.7C.√919=313D.√(3−23)2=3−1136.计算正确的是()A.√114=112B.7a-5a=2C.(-3a)3=-9a3D.2a(a-1)=2a2-2a7.下列运算正确的是()A.2√2-√2=2B.a3·a2=a5C.a8÷a2=a4D.(﹣2a2)3=﹣6a68.下面是二次根式的是()A.12B.−3C.√3D.0 9.若式子√x−3有意义,则x的取值范围是()A.x≥3B.x≤3C.x>3D.x=3 10.有下列说法:①一元二次方程x2+px-1=0不论p为何值必定有两个不相同的实数根;②若b=2a+12c,则一元二次方程ax2+bx+c=0必有一根为-2;③代数式x2+√x+1+1有最小值1;④有两边和第三边上的高对应相等的两个三角形全等;其中正确的是()A.①④B.①②C.①②③D.①②③④运算结果在哪两个整数之间()11.估计(√24−√12)⋅√13A.0和1B.1和2C.2和3D.3和4 12.下列运算正确的是()A.√3+√4=√7B.(−√3)2=−3C.2√3−√3=2D.√3×√2=√6二、填空题(共6题;共7分)13.式子√x−1中x的取值范围是14.计算:(√3−√2)2012(√3+√2)2013=.15.若√x−5不是二次根式,则x的取值范围是16.若|a-b+1|与√a+2b+4互为相反数,则a=,b=.17.若x,y为实数,且y=2022+√x−4+√4−x,则x+y=.18.已知√24n是整数,则正整数n的最小值是.三、综合题(共6题;共86分)19.如图,在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,2),且(a+2)2+ =0,(1)求a,b的值;(2)在坐标轴上存在一点M,使△COM的面积是△ABC的面积的一半,求出点M 的坐标.(3)如图2,过点C做CD△y轴交y轴于点D,点P为线段CD延长线上一动点,连接OP,OE平分角△AOP,OF△OE,当点P运动时,的值是否会改变?若不变,求其值;若改变,说明理由.20.有这样一类题目:将√a±2√b化简,如果你能找到两个数m、n,使m2+n2=a 且mn=√b,a±2√b将变成m2+n2±2mn,即变成(m±n)2,从而使√a±2√b得以化简.(1)例如,∵5+2√6=3+2+2√6=(√3)2+(√2)2+2√2×√3=(√3+√2)2 ∴√5+2√6=√(√3+√2)2= ,请完成填空. (2)仿照上面的例子,请化简√4−2√3;(3)利用上面的方法,设A =√6+4√2,B =√3−√5,求A +B 的值.21.计算:(1)(√12−3)0+√24−(−12)−1 ; (2)已知 y =√2−x +√x −2−3 ,求 (x +y)2021 的立方根;(3)如图,一次函数 y =kx +b 的图像分别与x 轴、y 轴交于点A 、B ,且经过点 (−1,32) ,求 △AOB 的面积.22.阅读下列计算过程:√2+1=√2(√2+1)(√2−1)=√2−1√3+√2=√3√2)(√3+√2)(√3−√2)=√3−√2√5+2=√5(√5+2)(√5−2)=√5−2试求: (1)1√11+√10的值;(2)1√n+√n−1的值;(3)求1+√2√2+√3√3+√4+⋅⋅⋅√199+√200 的值.23.计算:(1)√8+2 √3﹣(√27+ √2)(2)√23÷ √223× √25(3)(7+4 √3)(7﹣4 √3)24.(1)一个正数的平方根是a+3与2a﹣15,求a的值.(2)已知√a−16+(b+2)2=0,求ab的立方根.(3)已知x、y为实数,且y=√x−9−√9−x+√4.求√x+√y的值.参考答案1.【答案】A2.【答案】D3.【答案】B4.【答案】D5.【答案】B6.【答案】D7.【答案】B8.【答案】C9.【答案】A10.【答案】B11.【答案】A12.【答案】D13.【答案】x≥114.【答案】√3+√215.【答案】x<516.【答案】-2;-117.【答案】202618.【答案】619.【答案】(1)解:∵(a+2)2+ =0∴a+2=0,b-3=0∴a=﹣2,b=3;(2)解:如图1,过点C作CT△x轴,CS△y轴,垂足分别为T、S.∵A(﹣2,0),B(3,0)∴AB=5∵C(﹣1,2)∴CT=2,CS=1∴△ABC的面积=AB•CT=5∵△COM的面积=△ABC的面积∴△COM的面积=若点M在x轴上,即OM•CT=∴OM=2.5.∴M的坐标为(2.5,0)(﹣2.5,0)若点M在y轴上,即OM•CS=∴OM=5∴点M坐标(0,5)或(0,﹣5)综上所述:点M的坐标为(0,5)或(﹣2.5,0)或(0,﹣5)或(2.5,0);(3)解:如图2,的值不变,理由如下:∵CD△y轴,AB△y轴∴△CDO=△DOB=90°∴AB△CD∴△OPD=△POB.∵OF△OE∴△POF+△POE=90°,△BOF+△AOE=90°∵OE平分△AOP∴△POE=△AOE∴△POF=△BOF∴△OPD=△POB=2△BOF.∵△DOE+△DOF=△BOF+△DOF=90°∴△DOE=△BOF∴△OPD=2△BOF=2△DOE∴=2.20.【答案】(1)√3+√2(2)解:∵4−2√3=3+1−2√3=(√3)2+1−2√3=(√3−1)2∴√4−2√3=√(√3−1)2=√3−1.(3)解:∵A=6+4√2=4+2+4√2=(√4)2+(√2)2+2×√4×√2=(2+√2)2∴A=√6+4√2=2+√2∵B=3−√5=6−2√52=5+1−2√52=(√5)2+12−2×1×√52=(√5−1)22∴B=√3−√5=√(√5−1)22=√5−1√2=√10−√22=12√10−12√2∴把A式和B式的值代入A+B中,得:A+B=2+√2+12√10−12√2=2+12√10+√2221.【答案】(1)解: 原式= 1+2√6+2=3+2√6;(2)解: ∵y=√2−x+√x−2−3∴2−x≥0,x−2≥0∴x≤2∴x=2∴y=−3∴(x+y)2021=(2−3)2021=−1;∴(x+y)2021的立方根为−1;(3)解: 由图像可得点B的坐标为(0,3),然后把点B(0,3)和点(−1,32)代入一次函数y=kx+b得:{b=3−k+b=32,解得:{k=32b=3∴一次函数的解析式为y=32x+3令y=0时,则有0=32x+3,解得:x=−2∴OA=2,OB=3∴S△AOB=12×2×3=3.22.【答案】(1)解:√11+√10=√11−√10(√11+√10)(√11−√10)=√11−√10(2)解:1√n+√n−1=√n−√n−1(√n+√n+1)(√n−√n−1)=√n−√n−1n−(n−1)=√n−√n−1(3)解:11+√21√2+√3+1√3+√41√199+√200=√2−1+√3−√2+√4−√3+···+√199−√198+√200−√199=√200−1=10√2−1. 23.【答案】(1)解:原式=2 √2+2 √3﹣3 √3﹣√2 = √2﹣√3(2)解:原式= √23×38×25= √1010(3)解:原式=49﹣48=124.【答案】(1)解:∵一个正数的平方根是a+3与2a﹣15∴(a+3)+(2a﹣15)=0∴a=4;(2)解:∵√a−16+(b+2)2=0∴a﹣16=0,b+2=0∴a=16,b=﹣2∴√a b3=√16−23=﹣2;(3)解:∵y=√x−9−√9−x+√4∴x=9,y=2∴√x+√y=√9+√2=3+√2。

中考数学5年真题(2019-2023)专题汇总解析—二次根式

中考数学5年真题(2019-2023)专题汇总解析—二次根式

中考数学5年真题(2019-2023)专题汇总解析—二次根式考点1二次根式一、单选题1.(2023)A.25与30之间B.30与35之间C.35与40之间D.40与45之间【答案】D【详解】解∶∵160020232025<<.即4045<,40与45之间.故选D.【点睛】本题主要考查了估算无理数的大小,正确估算无理数的取值范围是解题关键.2.(2023年江苏省无锡市中考数学真题)实数9的算术平方根是()A.3B.3±C.19D.9-【答案】A【分析】根据算术平方根的定义即可求出结果.3=,故选:A.【点睛】本题考查了平方根和算术平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.3.(2023年重庆市中考数学真题(A卷)的值应在()A .7和8之间B .8和9之间C .9和10之间D .10和11之间【答案】B【分析】先计算二次根式的混合运算,再估算结果的大小即可判断.=4=+∵2 2.5<<,∴45<<,∴849<+<,故选:B .【点睛】此题考查了二次根式的混合运算,无理数的估算,正确掌握二次根式的混合运算法则是解题的关键.4.(2019·广东·的结果是()A .4-B .4C .4±D .2【答案】B【分析】根据算术平方根的定义进行求解即可.,故选B.【点睛】本题考查了算术平方根,熟练掌握算术平方根的定义是解题的关键.5.(2020·广西贵港·在实数范围内有意义,则实数x 的取值范围是()A .1x <-B .1x ≥-C .0x ≥D .1x ≥【答案】B【分析】根据二次根式的被开方数为非负数即可得出的取值范围.∴x+1≥0∴x≥﹣1故选:B【点睛】本题考查了二次根式有意义的条件,解答本题的关键是掌握二次根式有意义:被开方数为非负数.6.(2020·山东聊城·÷).A.1B.53C.5D.9【答案】A【分析】利用二次根式的乘除法则计算即可得到结果.÷==1=,故选:A.【点睛】本题主要考查了二次根式的乘除法,熟练掌握运算法则是解题的关键.7.(2023年辽宁省大连市中考数学真题)下列计算正确的是()A.0=B.+=C=D)26=-【答案】D【分析】根据零指数幂,二次根式的加法以及二次根式的性质,二次根式的混合运算进行计算即可求解.【详解】解:A.)1=,故该选项不正确,不符合题意;B.=C.=D.)26=-,故该选项正确,符合题意;故选:D .【点睛】本题考查了零指数幂,二次根式的加法以及二次根式的性质,二次根式的混合运算,熟练掌握二次根式的运算法则是解题的关键.8.(2021·广东·统考中考真题)若0a =,则ab =()AB .92C .D .9【答案】B【分析】根据一个实数的绝对值非负,一个非负实数的算术平方根非负,且其和为零,则它们都为零,从而可求得a 、b 的值,从而可求得ab 的值.【详解】∵0a ≥0≥,且0a =∴0a =0==即0a =,且320a b -=∴a =b∴92ab ==故选:B .【点睛】本题考查了绝对值和算术平方根的非负性,一般地,几个非负数的和为零,则这几个非负数都为零.9.(2022·河北·统考中考真题)下列正确的是()A23=+B 23=⨯CD 0.7=【答案】B【分析】根据二次根式的性质判断即可.【详解】解:23=≠+,故错误;=⨯,故正确;23=≠≠,故错误;0.7故选:B.【点睛】本题主要考查二次根式的性质,掌握二次根式的性质是解题的关键.10.(2023()A.点P B.点Q C.点R D.点S【答案】B<<【详解】解:∵479<<,<<23Q,故选:B.11.(2023年河北省中考数学真题)若a b===()A.2B.4C D【答案】A【分析】把a b【详解】解:∵a b==2==,故选:A.【点睛】本题考查了求二次根式的值,掌握二次根式的乘方和乘除运算是解题的关键.12.(2019·四川资阳·统考中考真题)设x=x的取值范围是()A.23x<<B.34x<<C.45x<<D.无法确定【答案】B【分析】根据无理数的估计解答即可.【详解】解:∵91516<<,∴34<<,故选B.【点睛】此题考查估算无理数的大小,关键是根据无理数的估计解答.13.(2021·广东·统考中考真题)设6a,小数部分为b,则(2a b+的值是()A.6B.C.12D.【答案】A的整数部分可确定a的值,进而确定b的值,然后将a与b的值代入计算即可得到所求代数式的值.【详解】∵34<<,∴263<<,∴62a=,∴小数部分624b==∴(((22244416106a b+=⨯+-=+-=-=.故选:A.【点睛】本题考查了二次根式的运算,正确确定6a与小数部分b的值是解题关键.二、填空题14.(2019·江苏苏州·x的取值范围为.【答案】6x≥【分析】根据根式有意义的条件,得到不等式,解出不等式即可.-60x≥,解出得到6x≥.【点睛】本题考查根式有意义的条件,能够得到不等式是解题关键.15.(2020·广西·=.【分析】利用二次根式的性质化简,再相减.==【点睛】本题考查了二次根式的减法,解题的关键是掌握二次根式的化简及性质.16.(2021·天津·统考中考真题)计算1)的结果等于.【答案】9【分析】根据二次根式的混合运算法则结合平方差公式计算即可.【详解】21)19=-=.故答案为9.【点睛】本题考查二次根式的混合运算.掌握二次根式的混合运算法则是解答本题的关键.17.(2023年湖北省武汉市数学真题)写出一个小于4的正无理数是.【分析】根据无理数估算的方法求解即可.<4<..【点睛】本题主要考查了无理数的估算,准确计算是解题的关键.18.(2023x 的取值范围是.【答案】13x ≥-【分析】根据二次根式有意义的条件得到130x +≥,解不等式即可得到答案.∴130x +≥,解得13x ≥-,故答案为:13x ≥-【点睛】此题考查了二次根式有意义的条件,熟知被开方式为非负数是解题的关键.19.(2019·河南·12--==.【答案】112【分析】本题涉及二次根式化简、负整数指数幂两个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.12--122=-112=.故答案为11 2.【点睛】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、二次根式等考点的运算.20.(2021·安徽·统考中考真题)埃及胡夫金字塔是古代世界建筑奇迹之一,其底面是正方形,侧面是全等的等腰三角形,1-,它介于整数n和1n+之间,则n的值是.【答案】11即可完成求解.2.236≈;1 1.236≈;因为1.236介于整数1和2之间,所以1n=;故答案为:1.分即可;该题题干前半部分涉及到数学文化,后半部分为解题的要点,考查了学生的读题、审题等能力.21.(20231+=.【答案】3【分析】根据求一个数的立方根,有理数的加法即可求解.1+=213+=,故答案为:3.【点睛】本题考查了求一个数的立方根,熟练掌握立方根的定义是解题的关键.22.(2023年上海市中考数学真题)已知关于x2=,则x=【答案】18【分析】根据二次根式的性质,等式两边平方,解方程即可.【详解】解:根据题意得,140x -≥,即14x ≥,2=,等式两边分别平方,144x -=移项,18x =,符合题意,故答案为:18.【点睛】本题主要考查二次根式与方程的综合,掌握含二次根式的方程的解法是解题的关键.23.(2023年黑龙江省绥化市中考数学真题)若式子x有意义,则x 的取值范围是.【答案】5x ≥-且0x ≠/0x ≠且5x ≥-【分析】根据分母不为零,二次根式的被开方数是非负数,列出不等式计算即可.【详解】∵式子∴50x +≥且0x ≠,∴5x ≥-且0x ≠,故答案为:5x ≥-且0x ≠.【点睛】本题考查了分母不为零,二次根式的被开方数是非负数,熟练掌握二次根式和分式有意义的条件是解题的关键.24.(2023年黑龙江省齐齐哈尔市中考数学真题)在函数12y x +-中,自变量x 的取值范围是.【答案】1x >且2x ≠【分析】根据分式有意义的条件,二次根式有意义的条件得出10,20x x ->-≠,即可求解.【详解】解:依题意,10,20x x ->-≠∴1x >且2x ≠,故答案为:1x >且2x ≠.【点睛】本题考查了求函数自变量的取值范围,熟练掌握分式有意义的条件,二次根式有意义的条件是解题的关键.三、解答题25.(2019·福建·统考中考真题)先化简,再求值:(x -1)÷(x -21xx-),其中x【答案】1x x -,1+2【分析】先化简分式,然后将x 的值代入计算即可.【详解】解:原式=(x−1)÷221x x x-+()()211xx x =-⋅-1x x =-当x +1时,12=+【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.26.(2022·福建·统考中考真题)先化简,再求值:2111aa a -⎛⎫+÷ ⎪⎝⎭,其中1a =.【答案】11a -.【分析】根据分式的混合运算法则化简,再将a 的值代入化简之后的式子即可求出答案.【详解】解:原式()()111a a a a a+-+=÷()()111a a a a a +=⋅+-11a =-.当1a =时,原式2=.【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解题的关键.27.(2023年安徽中考数学真题)先化简,再求值:2211x x x +++,其中1x =.【答案】1x +【分析】先根据分式的性质化简,最后将字母的值代入求解.【详解】解:2211x x x +++()211x x +=+1x =+,当1x =-时,∴原式11+=.【点睛】本题考查了分式化简求值,解题关键是熟练运用分式运算法则进行求解.28.(20232133-⎛⎫- ⎪⎝⎭【答案】6-【分析】根据立方根、负整数指数幂及二次根式的运算可进行求解.【详解】解:原式2293=-+6=-.【点睛】本题主要考查立方根、负整数指数幂及二次根式的运算,熟练掌握立方根、负整数指数幂及二次根式的运算是解题的关键.29.(2023年吉林省长春市中考数学真题)先化简.再求值:2(1)(1)a a a ++-,其中3a =.【答案】31a +1+【分析】根据完全平方公式以及单项式乘以单项式进行化简,然后将字母的值代入进行计算即可求解.【详解】解:2(1)(1)a a a ++-2221a a a a =+++-31a =+当a =311==【点睛】本题考查了整式乘法的化简求值,实数的混合运算,熟练掌握完全平方公式以及单项式乘以单项式的运算法则是解题的关键.30.(2023年内蒙古通辽市中考数学真题)计算:21tan 453-⎛⎫+︒-⎪⎝⎭【答案】0【分析】根据负整数次幂、特殊角的三角函数值、算术平方根化简,然后在计算即可.【详解】解:21tan 453-⎛⎫+︒-⎪⎝⎭9110=+-,0=.【点睛】本题主要考查了负整数次幂、特殊角的三角函数值、算术平方根等知识点,掌握基本的运算法则是解答本题的关键.31.(2019·河南·统考中考真题)先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中x =【答案】3x【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x 的值代入计算可得.【详解】解:原式212(2)22(2)x x x x x x x +--⎛⎫=-÷ ⎪---⎝⎭322x x x-=⋅-3x=,当x ===.【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.32.(2023年辽宁省营口市中考数学真题)先化简,再求值:524223m m m m-⎛⎫++⋅⎪--⎝⎭,其中tan 45m =︒.【答案】26--m ,原式16=-【分析】先根据分式的混合计算法则化简,然后根据特殊角三角函数值和二次根式的性质求出m 的值,最后代值计算即可.【详解】解:524223m m m m-⎛⎫++⋅⎪--⎝⎭()22245223m m m m m-⎛⎫-=-⋅⎪---⎝⎭()222923m m m m--=⋅--()()()332223m m m m m+--=⋅--()23m =-+26m =--,∵tan 45m =︒,∴415m =+=,∴原式25610616=-⨯-=--=-.【点睛】本题主要考查了分式的化简求值,求特殊角三角函数值,化简二次根式等等,正确计算是解题的关键.33.(2023·重庆九龙坡·的值应在()A .2和3之间B .3和4之间C .4和5之间D .5和6之间【答案】A【分析】根据二次根式的乘法进行计算,以及估算无理数的大小的方法解答即可.=6=∵91416<<,∴34<,∴43-<<-,∴263<<,故选:A .【点睛】本题考查了估算无理数的大小和二次根式的运算.解题的关键是掌握二次根式的运算方法,以及估算无理数的大小的方法.34.(2023·辽宁丹东·统考二模)在函数y =x 的取值范围是()A .12x -<≤B .21x -<≤C .12x ≤≤D .12x <≤【答案】D【分析】根据函数有意义的条件得到2010x x -≥⎧⎨->⎩,解不等式组即可得到自变量x 的取值范围.【详解】解:由题意得2010x x -≥⎧⎨->⎩,解不等式组得12x <≤,故选:D .【点睛】此题考查了自变量的取值范围,熟练掌握二次根式和分式有意义的条件是解题的关键.35.(2023·安徽蚌埠·统考三模)下列运算正确的是()A 3=B .()3328a a -=-C =D .112235+=【答案】B【分析】根据二次根式的性质,积的乘方法则,二次根式的加法运算法则,有理数的加法运算法则依次判断即可得出答案.【详解】解:A 333==B .()3328a a -=-,故此选项符合题意;CD .11522365+=≠,故此选项不符合题意.故选:B .【点睛】本题考查二次根式的性质,积的乘方法则,二次根式的加法运算法则,有理数的加法运算法则.掌握相应的运算法则和性质是解题的关键.36.(2023·河北沧州·校考模拟预测)下列运算中,正确的是().A3=±B 2=C 2=D 8=-【答案】C【分析】利用二次根式的化简的法则对各项进行运算即可.【详解】解答:解:A 3=,故A 不符合题意;B 2=-,故B 不符合题意;C 2=,故C 符合题意;D 8=,故D 不符合题意;故选:C .【点睛】本题主要考查二次根式的化简,解答的关键是对相应的运算法则的掌握.37.(2023·四川泸州·四川省泸县第一中学校考三模)实数2的平方根为()A .2B .2±C D .【答案】D【分析】利用平方根的定义求解即可.【详解】∵2的平方根是.故选D .【点睛】此题主要考查了平方根的定义,注意一个正数的平方根有2个,它们互为相反数.38.(2023·西南大学附中校考三模)估计(3-)A .0和1之间B .2和3之间C .3和4之间D .4和5之间【答案】A【分析】由题意知(34-,由1.4 1.5=<<=,可得4.2 4.5<<,0.240.5<<,然后判断作答即可.【详解】解:(34-⨯,∵1.4 1.5=<<=,∴4.2 4.5<<,∴0.240.5<<,∴估算(3-0和1之间,故选:A .39.(2023·河北石家庄·校联考一模)下列计算正确的是()A =B1=-C =D 23=【答案】C【分析】根据二次根式加法、二次根式减法、二次根式乘法、二次根式除法分别进行判断即可.【详解】解:AB 0-=,故选项错误,不符合题意;C =D 1=,故选项错误,不符合题意.故选:C .【点睛】此题考查了二次根式的加法、减法、乘法、除法,熟练掌握运算法则是解题的关键.40.(2023·江苏无锡·校考二模)函数y x的取值范围是()A .5x ≥-B .5x ≤-C .5x ≥D .5x ≤【答案】C【详解】试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数x 50x 5-≥⇒≥.故选C.考点:1.函数自变量的取值范围;2.二次根式有意义的条件.41.(2023·湖南长沙·校联考二模)4的算术平方根是()A .2B .2±C .8D .16【答案】A【分析】如果一个数x 的平方等于(0)a a ≥,那么这个数x 叫做a 的平方根,可以表示为平方根叫做a 的算术平方根.正数的算术平方根是正数,0的算术平方根是0,负数没有算术平方根.【详解】解:42=,故选:A .【点睛】本题考查算术平方根的定义,明确平方根与算术平方根的区别与联系是本题的关键.42.(2023·重庆九龙坡·重庆市育才中学校考一模)x)A .0B .2C .3D .5【答案】D【分析】根据二次根式有意义的条件进行求解即可.∴40x -≥,即4x ≥,∴四个选项中只有D 选项中的5符合题意,故选:D .【点睛】本题主要考查了二次根式有意义的条件,熟知二次根式有意义的条件是被开方数大于等于零是解题的关键.43.(2023·甘肃平凉·的结果是.【答案】2【分析】根据二次根式的性质进行化简即可.2=.故答案为:2.()()(0000a a a a a a ⎧⎪===⎨⎪-⎩>)<.44.(2021·黑龙江大庆·=【答案】4【分析】先算4(2)-,再开根即可.==4=故答案是:4.【点睛】本题考查了求一个数的4次方和对一个实数开根号,解题的关键是:掌握相关的运算法则.45.(2023·广东茂名·校考一模)已知实数x,y |4|0y -=,则1x y -=⎛⎫⎪⎝⎭.【答案】2【分析】根据算术平方根的非负性,绝对值的非负性得出24x y ==,,进而根据负整数指数幂进行计算即可求解.40y -=0≥,40y -≥,∴20x -=,40y -=,∴24x y ==,,∴11112422x y ---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭===.故答案为:2.【点睛】本题主要考查了算术平方根和绝对值的非负性、负整数次幂等知识点,根据非负性正确求得x 、y 的值是解答本题的关键.46.(2023·福建福州·校考二模)已知2a =2b =22a b ab -的值等于.【答案】【分析】先求出a b -=1ab =,再由()22a b ab ab a b -=-进行求解即可.【详解】解:∵2a =2b =∴22a b -=++=((22431ab =+⨯-=-=,∴22a b ab -()ab a b =-1=⨯=故答案为:【点睛】本题主要考查了二次根式的混合运算、求代数式的值,正确得到a b -=1ab =是解题的关键47.(2023·山东聊城·x 的取值范围是.【答案】12x ≥【分析】根据二次根式有意义的条件可得210x -≥,即可.【详解】解:由题意得:210x -≥,解得:12x ≥,故答案为:12x ≥.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.48.(2023·安徽滁州·校考模拟预测)计算)11-的结果等于.【答案】22【分析】直接利用平方差公式进行简便运算即可.【详解】解:)2211123122=-=-=,故答案为:22【点睛】本题考查的是二次根式的乘法运算,熟练的利用平方差公式进行简便运算是解本题的关键.49.(2023·陕西西安·校考模拟预测)-64的立方根是.【答案】-4【分析】直接利用立方根的意义,一个数的立方等于a ,则a 的立方根是这个数进行求解.【详解】解:根据立方根的意义,一个数的立方等于a ,则a 的立方根是这个数,可知-64的立方根为-4.故答案为:-4.【点睛】本题考查了立方根,解题的关键是掌握一个数的立方等于a ,则a 的立方根是这个数.50.(2023·云南昭通·x 的取值范围是.【答案】x>8【分析】由分式的分母不等于零和二次根式的被开方数是非负数得到x﹣8>0.【详解】解:由题意,得x﹣8>0,解得x>8.故答案是:x>8.【点睛】考查了分式有意义的条件和二次根式有意义的条件,注意,二次根式在分母上,所以不能取到0.51.(2023·四川泸州·四川省泸县第一中学校考三模)函数y=x的取值范围是.【答案】x>3【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件.x30x3x>3x30x3-≥≥⎧⎧⇒⇒⎨⎨-≠≠⎩⎩.52.(2023·河南洛阳·统考一模)计算:22-=.【答案】74-【分析】先计算22-,再算减法.【详解】解:原式17244=-=-.故答案为:74-.【点睛】本题考查了实数的计算,掌握负整数指数幂、二次根式的化简是解决本题的关键.53.(2023·安徽蚌埠·统考三模)计算:212022--=.【答案】2023【分析】根据有理数的乘方,二次根根式的性质,化简绝对值进行计算即可求解.【详解】解:212022--=122022-++2023=,故答案为:2023.【点睛】本题考查了有理数的乘方,二次根根式的性质,化简绝对值,正确的计算是解题的关键.54.(2022·新疆·x的取值范围是.【答案】x≥3【分析】直接利用二次根式有意义的条件得到关于x的不等式,解不等式即可得答案.【详解】由题意可得:x—3≥0,解得:x≥3,故答案为:x≥3【点睛】本题考查了二次根式有意义的条件,熟练掌握二次根式的被开方数是非负数是解题的关键.55.(2023·黑龙江哈尔滨·统考三模)计算=.【答案】【分析】先根据二次根式的性质化简,然后根据二次根式的加减法则求解即可.【详解】解:=-2=-=故答案为:【点睛】本题主要考查了二次根式的性质、二次根式的加减运算等知识点,灵活运用二次根式的的性质化简是解题的关键.x的取值范围是.56.(2023·云南昆明·一模)要使式子3有意义,x≥【答案】5【分析】二次根式中的被开方数是非负数,依此即可求解.x-≥,【详解】解:依题意有:50x≥.解得5x≥.故答案为:5【点睛】本题考查了二次根式有意义的条件,关键是熟悉二次根式中的被开方数是非负数的知识点.57.(云南省丽江市华坪县2020-2021=.【答案】6【分析】利用二次根式的乘法法则进行求解即可.==.6故答案为:6.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式的乘法法则和二次根式的性质是解题的关键.58.(2023·山西·模拟预测)计算:=.【答案】【分析】先化简二次根式,再根据二次根式的加减计算法则求解即可.【详解】解:3=⨯=+=故答案为:【点睛】本题主要考查了二次根式的加减计算,二次根式的化简,正确计算是解题的关键.59.(2023·重庆沙坪坝·重庆八中校考模拟预测)如果2y=+,那么yx的值是.【答案】225【分析】根据二次根式有意义的条件,求出,x y的值,进而求出y x的值即可.【详解】解:∵2y=,∴150,150x x -≥-≥,∴15150x x -=-=,∴15,2x y ==,∴215225y x ==;故答案为:225.【点睛】本题考查二次根式有意义的条件,代数式求值.熟练掌握二次根式的被开方数是非负数,是解题的关键.60.(江西省崇仁县第二中学2016-2017学年八年级上学期第二次月考数学试题)计算:=【答案】61.(2015年初中毕业升学考试(山东滨州卷)数学(带解析))计算的结果为.【答案】﹣1【分析】此题用平方差公式计算即可.【详解】22=-23=-1=-62.(2023·黑龙江哈尔滨·=.【答案】3【分析】根据二次根式的化简方法和运算法则进行计算.【详解】解:原式33==【点睛】本题考查二次根式的计算,在化简二次根式的基础上再把同类二次根式合并.63.(福建省永春县第一中学2017【分析】根据二次根式乘法,加减法运算法则计算即可.【详解】解:原式=【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的化简方法是解题的关键.64.(2023·广东茂名·校考一模)先化简,再求值:2121211x x x x +⎛⎫÷+ ⎪-+-⎝⎭其中1x +.【答案】11x -;2【分析】先通分算括号内的,把除化为乘,再约分,化简后将x 的值代入计算.【详解】解:212(1)211x x x x +÷+-+-211(1)1x x x x ++=÷--211(1)1x x x x +-=⋅-+11x =-,当1x =+时,原式=2=.【点睛】本题考查了分式化简求值,掌握分式的基本性质,将分式通分和约分进行化简是关键.65.(2023·四川泸州·011+()3-23-【答案】【分析】根据实数的混合运算法则即可求解.011+()3-23-=(1+32-=1+32-+【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质及运算法则.66.(2023·安徽六安·1+【分析】先计算算术平方根.化简绝对值,求解立方根,再合并即可.1+=+-413=【点睛】本题考查是算术平方根的含义,化简绝对值,求解立方根,实数的混合运算,掌握“算术平方根与立方根的含义”是解本题的关键.67.(2022·新疆·统考中考真题)计算:20-+(2)|(3【分析】分别计算有理数的乘方、绝对值、二次根式及零指数幂,再进行加减即可.【详解】解:原式451=++=【点睛】本题考查有理数的乘方,绝对值和二次根式的化简及零指数幂的性质,属于基础题,正确运算是=.解题的关键.要熟练掌握:任何一个不等于零的数的零次幂都等于1a。

二次根式及其运算

二次根式及其运算
第一章 数与式
命题点4 二次根式及其运算(10年4考)
2023年中考数学
2022版课标要求
1. 了解二次根式、最简二次根式的概念;
2. 了解二次根式(根号下仅限于数)加、减、乘、除运算法则,会用它们进行简单的四则运算.
1.二次根式:形如 (实质:先化为最简二次根式,再合并同类二次根式.
(4)混合运算:先乘除,再加减,有括号先算括号里的(或先去掉括号).失分警示:二次根式运算的最终结果应化为最简二次根式.
7. 非负数的性质
(1)非负数:在实数范围内,正数和零统称为非负数,常见的非负数有:①任意实数 的绝对值是非负数,即 ;②任意实数 的平方是非负数,即 ;③任意非负数 的算术平方根是非负数,即 .

2.二次根式有意义的条件:被开方数____________0.
大于或等于
3.最简二次根式满足的条件
(1)被开方数不含______;
分母
(2)被开方数中不含能开得尽方的____________.
因数或因式
4. 同类二次根式:化为最简二次根式后,被开方数相同的几个二次根式称为同类二次根式.如 (化简后为 )与 就是同类二次根式.
(2) <m></m> ___ <m></m> ;
5.二次根式的性质
(1) ,二次根式具有双重非负性;
(3) 注意:只有当 时, .
-
6.二次根式的运算
(1)乘法运算: <m></m> _____ <m></m> ;
(2)除法运算: <m></m> _ ___或 <m></m> ________ <m></m> ;

中考数学专题03二次根式-三年(2019-2021)中考真题数学分项汇编(全国通用)(解析版)

中考数学专题03二次根式-三年(2019-2021)中考真题数学分项汇编(全国通用)(解析版)

专题03.二次根式一、单选题1.(2021·取1.442 )A .-100B .-144.2C .144.2D .-0.01442【答案】B【分析】类比二次根式的计算,提取公因数,代入求值即可.【详解】33 1.442= 33333(13-=--=-144.2=- 故选B .【点睛】本题考查了根式的加减运算,类比二次根式的计算,提取系数,正确的计算是解题的关键.2.(2021· ).A .321-+B .321+-C .321++D .321--【答案】A【分析】根据有理数运算和二次根式的性质计算,即可得到答案.2==∵3212-+=,且选项B 、C 、D 的运算结果分别为:4、6、0故选:A .【点睛】本题考查了二次根式、有理数运算的知识;解题的关键是熟练掌握二次根式、含乘方的有理数混合运算的性质,即可得到答案.3.(2021·湖北恩施土家族苗族自治州·,,这三个实数中任选两数相乘,所有积中小于2的有( )个.A .0B .1C .2D .3 【答案】C【分析】根据题意分别求出这三个实数中任意两数的积,进而问题可求解.【详解】解:由题意得:(2,==-=∴所有积中小于2的有2-两个;故选C .【点睛】本题主要考查二次根式的乘法运算,熟练掌握二次根式的乘法运算是解题的关键.4.(2021·湖南常德市·中考真题)计算:11122⎛⎫+-⋅= ⎪⎝⎭( )A .0B .1C .2D 【答案】B 【分析】先将括号内的式子进行通分计算,最后再进行乘法运算即可得到答案.【详解】解:11122⎛⎫-⋅ ⎪ ⎪⎝⎭=1122⋅=415-=1.故选:B . 【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则以及乘法公式是解答此题的关键. 5.(2021·湖南衡阳市·中考真题)下列计算正确的是( )A 4=±B .()021-=C =D 3=【答案】B【分析】利用算术平方根,零指数幂,同类二次根式,立方根逐项判断即可选择.4=,故A 选项错误,不符合题意;0(2)1-=,故B 选项正确,符合题意;C 选项错误,不符合题意;D 选项错误,不符合题意;故选B .【点睛】本题考查算术平方根,零指数幂,同类二次根式,立方根.掌握各知识点和运算法则是解答本题的关键.6.(2021·浙江杭州市·中考真题)下列计算正确的是( )A 2=B 2=-C 2=±D 2=± 【答案】A 【分析】由二次根式的性质,分别进行判断,即可得到答案.2==,故A 正确,C 2,故B 、D 错误;故选:A . 【点睛】本题考查了二次根式的性质,解题的关键是掌握性质进行判断.7.(2021·上海中考真题)下列实数中,有理数是( )A B C D 【答案】C【分析】先化简二次根式,再根据有理数的定义选择即可【详解】A 2;B 3C 12为有理数;D 故选:C 【点睛】本题考查二次根式的化简、无理数的定义、有理数的定义、熟练掌握有理数的定义是关键8.(2021·江苏苏州市·中考真题)计算2的结果是( )A B .3 C .D .9【答案】B【分析】直接根据二次根式的性质求解即可.【详解】解:2=3,故选B .【点睛】此题主要考查了二次根式的性质,熟练掌握2(0)a a =≥是解答此题的关键.9.(2021·甘肃武威市·中考真题)下列运算正确的是( )A 3=B .4=C =D 4=【答案】C【分析】直接根据二次根式的运算法则计算即可得到答案.=A 错;=B 错;=C 2=,故D 错.故选:C .【点睛】此题考查的是二次根式的运算和化简,掌握其运算法则是解决此题关键.10.(2021· )A.7 B .C .D .【答案】B【分析】根据二次根式的运算法则,先算乘法再算减法即可得到答案;===B .【点睛】本题主要考查了二次根式的混合运算,掌握二次根式的运算法则是解题的关键.11.(2021·浙江嘉兴市·中考真题)能说明命题“若x 为无理数,则x 2也是无理数”是假命题的反例是()A .1x =B .1x =C .x =D .x =【答案】C【分析】根据反例满足条件,但不能得到结论,所以利用此特征可对各选项进行判断.【详解】解:A 、)221=3x =-B 、)221x =C 、(22=18x =,是有理数,符合题意;D 、22=5x =-,是无理数,不符合题意;故选:C .【点睛】本题考查了无理数的概念以及二次根式的运算,熟练掌握运算法则和定义是解题的关键. 12.(2021·重庆中考真题)下列计算中,正确的是( )A .21=B .2=C =D 3=【答案】C【分析】根据二次根式运算法则逐项进行计算即可.【详解】解:A. =,原选项错误,不符合题意;B. 2不是同类二次根式,不能合并,原选项错误,不符合题意;C. =D. =C .【点睛】本题考查了二次根式的运算,解题关键是熟练运用二次根式运算法则,进行准确计算.13.(2020·是同类二次根式的是( )AB C D 【答案】C【分析】先把每个二次根式进行化简,化成最简二次根式,后比较被开方数即可.【详解】的被开方数不相同,故不是同类二次根式;3==被开方数相同,故是同类二次根式;=被开方数不同,故不是同类二次根式.故选:C .【点睛】本题考查了二次根式的化简,同类二次根式,熟练掌握根式化简的基本方法,灵活运用同类二次根式的定义判断解题是求解的关键.14.(2020·内蒙古赤峰市·中考真题)估计( ( ) A .4和5之间B .5和6之间C .6和7之间D .7和8之间 【答案】A 【分析】根据二次根式的混合运算法则进行计算,再估算无理数的大小.【详解】(,∵4<6<9,∵<3,∴<5,故选:A.【点睛】此题考查了二次根式的混合运算,无理数的估算,正确掌握二次根式的运算法则、会进行无理数的大小估算是解题的关键.15.(2020·辽宁朝阳市· )A .0B C .D .12【答案】B 【分析】根据二次根式的性质化简第一项,根据二次根式的乘法化简第二项,然后合并即可.【详解】解:原式= =B . 【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解答本题的关键.16.(2020·辽宁丹东市·中考真题)在函数y =x 的取值范围是( ) A .3x ≤B .3x <C .3x ≥D .3x > 【答案】A【分析】根据二次根式有意义,列不等式9-3x≥0,求出x 的取值范围即可.【详解】解:根据二次根式有意义,所以,9-3x≥0,解得,x≤3.故选:A .【点睛】本题主要考查函数自变量的取值范围的知识点,二次根式中的被开方数必须是非负数,否则二次根式无意义.17.(2020·湖北宜昌市·其运算结果能成为有理数的是( ).A .BC .3D .0【答案】D 【分析】分别计算出各选项的结果再进行判断即可.【详解】A .B =C .3D .00=,是有理数,正确.故选:D .【点睛】此题主要考查了二次根式的运算,辨别运算结果,区分运算结果是否是有理数是解题的关键.18.(2020·山东菏泽市·中考真题)函数5y x =-的自变量x 的取值范围是( ) A .5x ≠B .2x >且5x ≠C .2x ≥D .2x ≥且5x ≠【答案】D【分析】由分式与二次根式有意义的条件得函数自变量的取值范围. 【详解】解:由题意得:20,50x x -≥⎧⎨-≠⎩解得:2x ≥且 5.x ≠ 故选D . 【点睛】本题考查的是函数自变量的取值范围,掌握分式与二次根式有意义的条件是解题的关键. 19.(2020·黑龙江绥化市·中考真题)下列等式成立的是( )A 4=±B 2=C .-=D .8=- 【答案】D【分析】根据算术平方根、立方根、二次根式的化简等概念分别判断.【详解】解:A. 4=,本选项不成立;B. 2=-,本选项不成立;C. a a a-=-= D. 8=-,本选项成立.故选:D. 【点睛】本题考查了二次根式的化简与性质,正确理解二次根式有意义的条件、算术平方根的计算等知识点是解答问题的关键.20.(2020·山东济宁市·中考真题)下列各式是最简二次根式的是( )A B C D 【答案】A 【分析】根据最简二次根式的定义即可求出答案.【详解】解:A B =C a =,不是最简二次根式,故选项错误;D = A. 【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型. 21.(2020·江苏泰州市·中考真题)下列等式成立的是( )A .3+=B =C= D 3= 【答案】D【分析】根据二次根式的运算法则即可逐一判断.【详解】解:A 、3和不能合并,故A 错误;B =B 错误;C===,故C 错误;D 3=,正确;故选:D . 【点睛】本题考查了二次根式的运算,解题的关键是掌握基本的运算法则.22.(2019·湖北恩施土家族苗族自治州·中考真题)函数11=-+y x 中,自变量x 的取值范围是( ) A .23x ≤ B .23x ≥ C .23x <且1x ≠- D .23x ≤且1x ≠- 【答案】D【分析】根据分式及二次根式有意义的条件解答即可.【详解】∵11=+y x x+1≠0,2-3x≥0,解得:23x ≤且1x ≠-,故选D. 【点睛】本题考查分式及二次根式有意义的条件,要使分式有意义,分母不为0;要使二次根式有意义,被开方数大于等于0.23.(2019·湖北宜昌市·中考真题)古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记2a b c p ++=,那么三角形的面积为S =ABC ∆中,A ∠,B ,C ∠所对的边分别记为a ,b ,c ,若5a =,6b =,7c =,则ABC ∆的面积为( )A .B .C .18D .192【答案】A 【分析】利用阅读材料,先计算出p 的值,然后根据海伦公式计算ABC ∆的面积;【详解】7a =,5b =,6c =.∴56792p ++==,∴ABC ∆的面积S ==A .【点睛】考查了二次根式的应用,解题的关键是代入后正确的运算,难度不大.24.(2019·湖北中考真题)“分母有理化”是我们常用的一种化简的方法,如:7==+除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:设x =,>,故0x >,由22332x ==+=,解得x =,即=)A .5+B .5C .5D .5-【答案】D进行化简,然后再进行合并即可.【详解】设x =<0x <,∴266x =-+,∴212236x =-⨯=,∴x =5=-,∴原式5=--5=-D . 【点睛】本题考查了二次根式的混合运算,涉及了分母有理化等方法,弄清题意,理解和掌握题中介绍的方法是解题的关键.25.(2019·山东聊城市·中考真题)下列各式不成立的是( )A= B =C 5== D = 【答案】C【分析】根据二次根式的性质、二次根式的加法法则、除法法则计算,判断即可.33-==,A 选项成立,不符合题意;==B 选项成立,不符合题意;==,C 选项不成立,符合题意;==D 选项成立,不符合题意; 故选C . 【点睛】本题考查的是二次根式的混合运算,掌握二次根式的性质、二次根式的混合运算法则是解题的关键.26.(2019·江苏常州市·中考真题)下列各数中与2+ )A .2+B .2CD .2 【答案】D【分析】利用平方差公式可知与2+2;【详解】(22431=-=;故选D .【点睛】本题考查分母有理化;熟练掌握利用平方差公式求无理数的无理化因子是解题的关键.27.(2021· )A .4B .4±C .D .±【答案】C()0,0,a b a b=≥≥直接化简即可得到答案.==故选:.C【点睛】本题考查的是二次根式的化简,掌握积的算术平方根的含义是解题的关键.28.(2020·重庆中考真题)下列计算中,正确的是()A=B.2+=C=D.2【答案】C【分析】根据同类二次根式的概念与二次根式的乘法逐一判断可得答案.【详解】解:AB.2C==D.2不是同类二次根式,不能合并,此选项错误;故选:C.【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的乘法法则与同类二次根式的概念.29.(2020·山东聊城市·).A.1B.53C.5D.9【答案】A【分析】利用二次根式的乘除法则计算即可得到结果.=÷=1=,故选:A.【点睛】本题主要考查了二次根式的乘除法,熟练掌握运算法则是解题的关键.30.(2020·内蒙古鄂尔多斯市·中考真题)中,x的取值范围在数轴上表示正确的是()A.B.C.D.【答案】D【分析】根据二次根式的性质,被开方数大于或等于0,可以求出x 的范围. 【详解】解:根据题意得3+x ≥0,解得:x ≥﹣3, 故x 的取值范围在数轴上表示正确的是.故选D .【点睛】本题考查了二次根式的性质,二次根式中的被开方数必须是非负数,否则二次根式无意义. 二、填空题目31.(2021·天津中考真题)计算1)的结果等于_____. 【答案】9【分析】根据二次根式的混合运算法则结合平方差公式计算即可.【详解】21)19=-=.故答案为9.【点睛】本题考查二次根式的混合运算.掌握二次根式的混合运算法则是解答本题你的关键.32.(2021·湖北武汉市·_______________________.【答案】5【分析】根据二次根式的性质进行求解即可.5=5,故答案为5.【点睛】本题考查了二次根式的性质,熟练掌握二次根式的性质是解题的关键.33.(2021·浙江丽水市·有意义,则x 可取的一个数是__________. 【答案】如4等(答案不唯一,3x ≥)【分析】根据二次根式的开方数是非负数求解即可.有意义,∴x ﹣3≥0,∴x ≥3,∴x 可取x ≥3的任意一个数,故答案为:如4等(答案不唯一,3x ≥.【点睛】本题考查二次根式、解一元一次不等式,理解二次根式的开方数是非负数是解答的关键.34.(2021·四川广安市·中考真题)在函数y =x 的取值范围是___.【答案】1x 2≥【详解】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负12x 10x 2-≥⇒≥.35.(2021·湖北黄冈市·这个数叫做黄金分割数,著名数学家华罗庚优选法中的0.618法就应用了黄金分割数.设a =12b +=,则1ab =,记11111S a b =+++,2221111S a b =+++,…,1010101111S a b=+++.则1210S S S +++=____.【答案】10【分析】先根据1ab =求出1111n n nS a b=+++(n 为正整数)的值,从而可得1210,,,S S S 的值,再求和即可得.【详解】解:1ab =,111111()1nn n n n n n a S a b a a b ∴=+=+++++(n 为正整数), 11()n n n n a a a ab =+++,111nnna a a =+++,1=, 12101S S S ===∴=,则121010S S S +++=,故答案为:10.【点睛】本题考查了二次根式的运算、分式的运算,正确发现一般规律是解题关键.36.(2021·湖南岳阳市·中考真题)已知1x x +=,则代数式1x x+=______. 【答案】0【分析】把1x x+=直接代入所求的代数式中,即可求得结果的值.【详解】10x x+==故答案为:0. 【点睛】本题考查了求代数式的值,涉及二次根式的减法运算,整体代入法是解决本题的关键.37.(2021·四川眉山市·中考真题)观察下列等式:1311212x ===+⨯;2711623x ===+⨯;313111234x ===+⨯;…… 根据以上规律,计算12320202021x x x x ++++-=______.【答案】12021-【解答】解:13111212x =+==+⨯;2711623x ==+⨯;313111234x ===+⨯; ⋯12320201111111111112021111120212020120211223342020202122334202020212021x x x x ∴+++⋯+-=++++++⋯++-=+-+-+-+⋯+--=-⨯⨯⨯⨯, 故答案为:12021-. 【点睛】本题考查了二次根式的化简和找规律,解题关键是根据算式找的规律,根据数字的特征进行简便运算.38.(2021·x 的取值范围是________. 【答案】0x >【分析】根据分式及二次根式有意义的条件可直接进行求解. 【详解】解:由题意得:0x ≠且20x≥,∴0x >;故答案为0x >. 【点睛】本题主要考查二次根式及分式有意义的条件,熟练掌握二次根式及分式有意义的条件是解题的关键.39.(2020·山东青岛市·中考真题)计算:-⨯=______. 【答案】4【分析】根据二次根式的混合法则运算计算即可.【详解】解:原式3⎫⎛=⎪ ⎪⎝⎭3=⨯4=,故答案为:4. 【点睛】本题考查二次根式的混合运算,熟练掌握运算顺序和运算法则是解题关键.40.(2020·山西中考真题)计算:2-=_____________.【答案】5【分析】先利用完全平方公式、二次根式的性质进行化简,然后合并同类项,即可得到答案.【详解】解:223=+-5=;故答案为:5.【点睛】本题考查了二次根式的性质,完全平方公式,解题的关键是熟练掌握运算法则进行化简.41.(2020·江苏南通市·中考真题)若m <<m +1,且m 为整数,则m =_____. 【答案】5【分析】利用二次根式的估值方法进行计算即可.【详解】解:=<<5<6,又∵m <m +1,∴m =5,故答案为:5.【点睛】本题考查了二次根式的估值求参数值的问题,熟练掌握二次根式的估值计算是解题的关键.42.(2020·湖南益阳市·中考真题)m 的结果为正整数,则无理数m 的值可以是__________.(写出一个符合条件的即可)【分析】根据2为12,即可得到一个无理数m 的值.【详解】解:∵212=,∴12m 时m (答案不唯一).【点睛】本题考查了二次根式,注意2a =是解题的关键.43.(2020·内蒙古中考真题)计算:2+=______.【分析】先将乘方展开,然后用平方差公式计算即可.【详解】解:2-==22⎡⎤-⎢⎥⎣⎦-.【点睛】本题考查了二次根式的混合运算以及平方差公式的应用,掌握二次根式混合运算的运算法则和平方差公式是解答本题的关键.44.(2020·湖南邵阳市·中考真题)在如图方格中,若要使横、竖、斜对角的3个实数相乘都得到同样的结果,则2个空格的实数之积为________.【答案】【分析】先将表格中最上一行的3个数相乘得到,然后中间一行的三个数相乘以及最后一行的三个数相等都是【详解】解:由题意可知,第一行三个数的乘积为:2=设第二行中间数为x ,则16⨯⨯=x x =设第三行第一个数为y ,则3⨯=y y =∴2个空格的实数之积为xy ==.【点睛】本题考查了二次根数的乘法运算法则,熟练掌握二次根式的加减乘除运算法则是解决此类题的关键.45.(2020·==,则ab =_________. 【答案】6【分析】根据二次根式的运算法则即可求解.【详解】∵-==∴a=3,b=2∴ab =6故答案为:6.【点睛】此题主要考查二次根式的运算,解题的关键是熟知其运算法则.46.(2020·甘肃金昌市·中考真题)已知5y x =+,当分别取1,2,3,……,2020时,所对应y 值的总和是__________.【答案】2032【分析】先化简二次根式求出y 的表达式,再将x 的取值依次代入,然后求和即可得.【详解】545y x x x =+=--+当4x <时,4592y x x x =--+=- 当4x ≥时,451y x x =--+= 则所求的总和为(921)(922)(923)111-⨯+-⨯+-⨯++++75312017=+++⨯2032=故答案为:2032.【点睛】本题考查了二次根式的化简求值、绝对值运算等知识点,掌握二次根式的化简方法是解题关键.47.(2020·江苏南京市·的结果是__________.【答案】1 3【分析】先化成最简二次根式,再根据二次根式的加减法法则计算出分母,最后约分即可.==13=,故答案为:13.【点睛】本题考查了二次根式的混合运算,掌握二次根式的加减法法则是解题的关键.48.(2020·黑龙江绥化市·中考真题)在函数15yx=+-中,自变量x的取值范围是_________.【答案】3x≥且5x≠【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【详解】根据题意得:301050xxx-≥⎧⎪+>⎨⎪-≠⎩,解得:3x≥且5x≠.故答案为:3x≥且5x≠.【点睛】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.49.(2020·青海中考真题)对于任意不相等的两个实数a,b(a > b )定义一种新运算a※,如3※,那么12※4=______【分析】按照规定的运算顺序与计算方法化为二次根式的混合运算计算即可.【详解】解:12※4==【点睛】此题考查二次根式的化简求值,理解规定的运算顺序与计算方法是解决问题的关键.50.(2019·四川绵阳市·中考真题)单项式1ax y--与2是同类项,则b a=______.【答案】1【分析】先根据同类项的定义列出方程,再结合二次根式的性质求出a ,b 的值,然后代入代数式计算即可.【详解】解:由题意知1a --=,即1a -, ∴10,10a b ,1a =,1b =,则()111b a ==,故答案为1.【点睛】此题考查了同类项的定义和二次根式的性质,属于基础题,解答本题的关键是掌握同类项的定义,难度一般.51.(2019·辽宁营口市·中考真题)和则这个长方形的面积为________.【答案】【分析】长方形的面积计算公式为长乘以宽,和按照二次根式乘法的运算法则计算,并化简成最简单二次根式即可.和==【点睛】本题考查了二次根式在长方形面积计算中的应用,明确二次根式乘法运算法则及如何化为最简二次根式是解题的关键.52.(2019·四川内江市·中考真题)若1001a a -=,则21001a -=_____. 【答案】1002.【分析】根据绝对值的性质和二次根式的性质,即可解答【详解】∵10020a -≥,∴1002a ≥.由1001a a -=,得1001a a -++=,1001=,∴210021001a -=.∴210011002a -=.故答案是:1002. 【点睛】此题考查绝对值的非负性,二次根式的性质,解题关键在于掌握运算法则 53.(2019·山东枣庄市·中考真题)观察下列各式:11111122⎛⎫=+=+- ⎪⨯⎝⎭,111112323⎛⎫=+=+- ⎪⨯⎝⎭,111113434⎛⎫=+=+- ⎪⨯⎝⎭,请利用你发现的规律,计算:____. 【答案】201820182019. 【分析】根据题意找出规律,根据二次根式的性质计算即可.12018++11111111122320182019⎛⎫⎛⎫⎛⎫=+-++-+++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1111111201812233420182019=+-+-+-++-201820182019=,故答案为201820182019. 【点睛】本题考查的是二次根式的化简、数字的变化规律,掌握二次根式的性质是解题 的关键.54.(2019·山东菏泽市·中考真题)已知x =,那么2x -的值是_____.【答案】4【分析】将所给等式变形为x -=【详解】∵x =,∴x =(22x =,∴226x -+=,∴24x -=,故答案为:4【点睛】本题考查了二次根式的运算,解题的关键是熟练运用二次根式的运算以及完全平方公式.注意正确的变形可以使得运算简便.55.(2019·湖南益阳市·中考真题)观察下列等式:①3﹣=﹣1)2,②5﹣=)2,③7﹣=﹣2,…请你根据以上规律,写出第6个等式____________.【答案】213-=【分析】第n 个等式左边的第1个数为2n+1,根号下的数为n(n+1),利用完全平方公式得到第n 个等式右边的式子为)2(n≥1的整数).【详解】∵①3﹣﹣1)2,②5﹣=)2,③7﹣=2,…,∴第n 个等式为:(2n+1)-)2,∴第6个等式为:213-=,故答案为213-=.【点睛】本题考查了规律题,涉及了二次根式的混合运算,通过所给等式发现等式左边与右边的变化规律是解题的关键.56.(2019·山东滨州市·中考真题)计算:21|2|2-⎛⎫--= ⎪⎝⎭_________.【答案】2+【分析】根据根式的计算法则计算即可.【详解】解:原式422=-=+2+.【点睛】本题主要考查根式的计算,注意绝对值的计算,这是同学们往往容易计算错误的,应当引起重视.57.(2019·山东青岛市·0-=___________.【答案】1【分析】根据二次根式混合运算的法则计算即可.0211=-=.故答案为. 【点睛】本题考查了二次根式的混合运算,熟记法则是解题的关键.58.(2020·辽宁营口市·中考真题)()()=_____. 【答案】12【分析】直接利用平方差公式计算得出答案.【详解】解:原式=()2)2=18﹣6=12.故答案为:12. 【点睛】本题考查了二次根式的混合运算,正确运用乘法公式是解题关键. 三、解答题59.(2021·湖南长沙市·中考真题)计算:(02sin 451-++°【答案】5.【分析】先化简绝对值、特殊角的正弦值、零指数幂、二次根式的乘法,再计算实数的混合运算即可得.【详解】解:原式212=⨯+14=+5=. 【点睛】本题考查了化简绝对值、特殊角的正弦值、零指数幂、二次根式的乘法等知识点,熟练掌握各运算法则是解题关键.60.(2021·山东临沂市·中考真题)计算221122⎫⎫+-⎪⎪⎭⎭.【答案】【分析】化简绝对值,同时利用平方差公式计算,最后合并.【详解】解:221122⎫⎫+-⎪⎪⎭⎭11112222⎡⎤⎡⎤⎫⎫⎫⎫+-⎪⎪⎪⎪⎢⎥⎢⎥⎭⎭⎭⎭⎣⎦⎣⎦【点睛】本题考查了二次根式的混合运算,解题的关键是合理运用平方差公式进行计算.61.(2021·四川遂宁市·中考真题)计算:()101tan 60232-⎛⎫-+︒-+- ⎪⎝⎭π【答案】-3【分析】分别利用负整指数幂,特殊角的三角函数值,绝对值,零指数幂,二次根式的性质化简,再进行计算即可.【详解】解:()101tan 60232-⎛⎫-+︒-+- ⎪⎝⎭π(=2-=221--=3-【点睛】本题考查了负整指数幂,特殊角的三角函数值,绝对值,零指数幂,二次根式的化简等知识点,熟悉相关性质是解题的关键.62.(2020·广西玉林市·()23.141π--+【答案】10.【分析】先计算零指数幂、绝对值运算、算术平方根,再计算二次根式的乘法、去括号、有理数的乘方,然后计算二次根式的加减法即可得.【详解】原式211)3=-+19=++10=.【点睛】本题考查了零指数幂、绝对值运算、算术平方根、二次根式的加减法与乘法等知识点,熟记各运算法则是解题关键.63.(2020·上海中考真题)计算:1327(12)﹣2+|3. 【答案】0.【分析】利用分数的指数幂的意义,分母有理化,负指数幂的意义,绝对值的性质计算后合并即可.【详解】原式=133(3)+ 2﹣4+32﹣4+3.【点睛】本题考查了分数指数幂的运算,负指数幂的运算,绝对值的意义以及分母有理化运算,熟练掌握实数的运算法则是解题的关键.64.(2019·2318- 【答案】-3.【分析】首先进行二次根式的化简、去绝对值符号以及二次根式的乘法,然后再合并同类二次根式即可.2318-124-+=-3. 【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.65.(2019·辽宁大连市·中考真题)计算:22)+【答案】7【分析】直接利用完全平方公式以及结合二次根式的性质化简进而得出答案.【详解】解:原式346=+-34=+-7=. 【点睛】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.祝你考试成功!祝你考试成功!。

人教版九年级数学二次根式及其运算课件

人教版九年级数学二次根式及其运算课件

(2)(-3)2- 4 +( 1 )-1; 2 解:原式=9-2+2=9 (3)已知 10 的整数部分为a,小数部分为b,求a2-b2的值. 解:∵3< 10 <4,
∴ 10 的整数部分a=3,小数部分b= 10 -3. ∴a2-b2=32-( 10-3)2 =9-(10-6 10 +9) =-10+6 10 .
3.与二次根式相关的求值问题 条件二次根式的求值,问题往往与整式、分式综合起来, 因此技巧性较强,解题不要急于动手,宜先统筹好解题的 方法与过程.通常是将已知式与求值式化简后,再按照求 代数式的方法进行,以简便、准确为目的.
基础自测
1.(2011· 泉州)(-2)2的算术平方根是( A )A. 2B.±2C.-2D. 2
解析: -22 = -2=2.
2.(2011· 广安)下列运算正确的是( C ) A.-(-x+1)=x+1 B. 9 - 5 = 4 C. 3-2=2- 3 D.(a-b)2=a2-b2 解析:因为 3 <2, 3 -2<0,所以= 3-2-( 3 -2) =- 3 +2=2- 3 .
数使分母变形为m2(m为正整数)的形式,即可将其移到
根号外.
2.二次根式加减,即化简之后合并同类二次根式. 3.二次根式乘除结果要化简为最简二次根式.
知能迁移2
(1)(2011· 潍坊)下面计算正确的是( B ) B. 27 ÷ 3 =3 D.
A.3+ 3 =3 3 C.
2· 3 = 5
-22=-2
解:∵a-b=(3+2
5)-(3-2 5 )=4 5 , ab=(3+2 5 )(3-2 5 )=-11,
∴a2b-ab2=ab(a-b)=(-11)×4 5 =-44 5 .

2020年中考数学一轮复习基础考点专题10二次根式(含解析)

2020年中考数学一轮复习基础考点专题10二次根式(含解析)

专题10 二次根式考点总结【思维导图】【知识要点】知识点一二次根式的有关概念和性质二次根式概念:一般地,我们把形如(?≥0)的式子叫做二次根式,“ ”称为二次根号。

【注意】1.二次根式,被开方数a可以是一个具体的数,也可以是代数式。

2.二次根式是一个非负数。

3.二次根式与算术平方根有着内在联系,(?≥0)就表示a的算术平方根。

二次根式有意义的条件:由二次根式的意义可知,当a≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。

二次根式的性质:1.含有两种相同的运算,两者都需要进行平方和开方。

2.结果的取值范围相同,两者的结果都是非负数。

3.当a≧0时,考查题型一利用二次根式非负性解题1.(2013·四川中考真题)已知实数x,y,m满足,且y为负数,则m的取值范围是()A.m>6 B.m<6 C.m>﹣6 D.m<﹣6【答案】A【解析】根据算术平方根和绝对值的非负数性质,得:,解得:。

∵y为负数,∴6﹣m<0,解得:m>6。

故选A。

2.(2016·四川中考真题)若 +b2﹣4b+4=0,则ab的值等于()A.﹣2 B.0 C.1 D.2【答案】D【解析】试题分析:由,得:a﹣1=0,b﹣2=0.解得a=1,b=2.ab=2.故选D.3.(2012·湖北中考真题)若与|x﹣y﹣3|互为相反数,则x+y的值为()A.3 B.9 C.12 D.27【答案】D【解析】依题意得 .∴x+y=27.故选D.考查题型二判断二次根式有意义的取值范围1.(2013·四川中考真题)若代数式有意义,则实数x的取值范围是()A. B. C. D.且【答案】D【解析】根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须且x≠1。

故选D。

2.(2018·内蒙古中考真题)代数式中x的取值范围在数轴上表示为()A. B.C. D.【答案】A【详解】由题意,得:3﹣x≥0且x﹣1≠0,解得:x≤3且x≠1,在数轴上表示如图:.故选A.3.(2018·山东中考真题)若式子有意义,则实数m的取值范围是A. B.且C. D.且【答案】D【详解】由题意可知:∴m≥﹣2且m≠1故选D.考查题型三根据二次根式性质进行化简1.(2012·湖南中考真题)实数a、b在数轴上的位置如图所示,且|a|>|b|,则化简的结果为()A.2a+b B.-2a+b C.b D.2a-b【答案】C【解析】试题分析:利用数轴得出a+b的符号,进而利用绝对值和二次根式的性质得出即可:∵由数轴可知,b>0>a,且 |a|>|b|,∴ .故选C.2.(2016·山东中考真题)实数a,b在数轴上对应点的位置如图所示,化简|a|+ 的结果是( )A.﹣2a-b B.2a﹣b C.﹣b D.b【答案】A【详解】由图可知:,∴ ,∴ .故选A.3.(2011·北京中考真题)如果,则a的取值范围是()A. B. C. D.【答案】B【解析】试题分析:根据二次根式的性质1可知:,即故答案为B. . 4.(2015·湖北中考真题)当1<a<2时,代数式+|1-a|的值是( ) A.-1 B.1 C.2a-3 D.3-2a【答案】B【解析】试题解析:∵1<a<2,∴ =|a-2|=-(a-2),|a-1|=a-1,∴ +|a-1|=-(a-2)+(a-1)=2-1=1.故选A.5.(2011·四川中考真题)已知,则的值为()A. B. C. D.【答案】A【解析】试题解析:由,得,解得.2xy=2×2.5×(-3)=-15,故选A.知识点二二次根式的运算二次根式的乘法法则:【注意】1、要注意这个条件,只有a,b都是非负数时法则成立。

中考数学总复习 第05讲 二次根式及其运算课件(考点精

中考数学总复习 第05讲 二次根式及其运算课件(考点精

考点2 二次根式的运算
【例2】 (1)(2012·黔东南州)下列等式一定成 立的是( B )
A. 9 4 5
B. 5 3 15
C. 9 3
D. 92 9
考点2 二次根式的运算
(2)计算: 24- 23+ 23-2
1 6
解 原式=2 6-12 6+13 6-13 6=32 6.
(3)(2012·南通) 计算: 48÷ 3- 21× 12+ 24 解 原式= 16- 6+2 6=4+ 6.
求值问题“五招”
(1)巧用乘法公式;(2)巧用平方;(3)巧用配方; (4)巧用换元;(5)巧用倒数.
1.(2013·嘉兴)二次根式中 x 3 ,x的取值范围是 x≥3
2.(2011·杭州)下列各式中,正确的是( B )
A. 32 3
B. 32 3
C. 32 3
D. 32 3
3.(2012·金华)一个正方形的面积为15,估计它的边
(2)若几个非负数的和为零,则每一个非负数都等于零;
两个防范
(1)求 a2时,一定要注意确定 a 的大小,应注意利用等式 a2=|a|,当问题中已知条件不能直接判定 a 的大小时就要分 类讨论;
(2)一般情况下,我们解题时,总会习惯地把重点放在探 求思路和计算结果上,而忽视了一些不太重要、不直接影响求 解过程的附加条件.要特别注意,问题中的条件没有主次之分, 都必须认真对待.
请完成考点跟踪突破
(3)(2012·安顺)计算 12 3 3 3 .
考点3 二次根式混合运算
【例 3】 计算:(1)(3 2-1)(1+3 2)-(2 2-1)2; 解 原式=(3 2)2-1-[(2 2)2-4 2+1] =18-1-8+4 2-1=8+4 2.

中考数学专题复习题:二次根式的乘除法

中考数学专题复习题:二次根式的乘除法

中考数学专题复习题:二次根式的乘除法一、单项选择题(共6小题)1.下列各式①√8;②√0.3;③√12;④√3;⑤√a2+1;其中一定是最简二次根式的有()A.4 个B.3 个C.2个D.1个2.已知x是整数,√3⋅√6x是整数,则x的最小值()A.2B.3C.4D.183.计算(5√2−2√5)×√15的结果是()A.√10−√2B.√2−2C.√10−2D.√2−√104.计算(1+√2)2024(1−√2)2023的结果是()A.√2−1B.−1C.1D.−1−√25.通过“由特殊到一般”的方法探究下面二次根式的运算规律:特例1:√1+13=√3+13=√4×13=2√13;特例2:√2+14=√8+14=√9×14=3√14;特例3:√3+15=√15+15=√16×15=4√15……应用发现的规律求√2024+12026×√4052的值()A.2024B.2025√2C.2023D.2023√2 6.下列各式中,化简正确的是()A.√(−16)×(−25)=√−16×√−25=20B.√12×27=√4×√81=18C.√16+94=√16+√94=4+32=112D.√4925=√4×√925=2×35=65二、填空题(共4小题)7.计算√3÷√2×2√5÷√110的结果为________.8.计算(√7+√2)(√7−√2)的结果是________.9.长方形的面积为18cm2,一边长为2√3cm,则另一边长为________cm.10.设6−√10的整数部分为a ,小数部分为b ,那么(2a +√10)b =________.三、解答题(共5小题)11.计算:(1)√8×√18; (2)√1.2×102×√3×105;(3)√2×√5×√10;(4)14√12×3√3. 12.计算下列各题.(1)√(−5)2×(−3)2;(2)√(−4)×259×(−169);(3)√−a ⋅√−ab 3;(4)2b √ab 3⋅(−32√a 3b ⋅3√a b ) (a >0,b >0).13.计算:(1)√48÷√3−√13×√18+√24;(2)(√5+1)(√5−1)+(−2)0−√273.14.请观察式子:9√127=√9227=√3,−2√12=−√222=−√2,仿照上面的方法解决下列问题:(1)化简:①5√25;②−7√37;③a√−1a (a <0).(2)把(1−a )√1a−1中根号外的因式移到根号内,化简的结果是________.15.填空(可用计算器计算):√4×9=__________,√4×√9=__________;√4×5=__________,√4×√5=__________;√916=__________,√9√16=__________; √32=__________,√3√2=__________.比较左右两边的等式,你发现了什么?你能用字母表示发现的规律吗?。

[精]中考数学考点专题:二次根式的运算

[精]中考数学考点专题:二次根式的运算

中考数学考点专题:二次根式的运算二次根式的运算1.二次根式:形如式子(≥0)叫做二次根式。

(或是说,表示非负数的算术平方根的式子,叫做二次根式)。

2.二次根式有意义的条件:被开方数≥03.二次根式的性质:(1)是非负数;(2)()2= (≥0);(3)(4)非负数的积的算术平方根等于积中各因式的算术平方根的积,即= ·(a≥0,b≥0)。

(5)非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根,即= (a≥0,b>0)。

反之,4.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。

5.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。

6.分母有理化:分母有理化就是通过分子和分母同乘以分母的有理化因式,将分母中的根号去掉的过程,混合运算中进行二次根式的除法运算,一般都是通过分母有理化而进行的。

7.分母有理化的方法:分子分母同乘以分母的有理化因式。

8.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式。

9.找有理化因式的方法:(1)分母为单项式时,分母的有理化因式是分母本身带根号的部分。

如:① 的有理化因式为,② 的有理化因式为。

(2)分母为多项式时,分母的有理化因式是与分母相乘构成平方差的另一部分。

即的有理化因式为,的有理化因式为,的有理化因式为10.二次根式的加减,先把各个二次根式化成最简二次根式,再将同类二次根式分别合并。

一般地,二次根式的加减法可分以下三个步骤进行:(1)将每一个二次根式都化简成最简二次根式(2)判断哪些二次根式是同类二次根式,把同类二次根式结合成一组(3)合并同类二次根式11.二次根式的乘法两个二次根式相乘,把被开方数相乘,根指数不变,即(≥0,≥0)。

两个二次根式相除,把被开方数相除,根指数不变,即(≥0,>0)。

专题05 二次根式(课件)-备战2023年中考数学一轮复习课件(全国通用)

专题05 二次根式(课件)-备战2023年中考数学一轮复习课件(全国通用)

【考点】二次根式的乘除法 【分析】按照二次根式的乘法法则计算即可. 【解答】解:原式 9 3 . 故答案为:3.
知识点4 :二次根式的化简与运算
典型例题
【例18】(2022•青岛)计算 ( 27 12) 1 的结果是(

3
A. 3 3
B.1
C. 5
D.3
【考点】二次根式的混合运算
【解答】解:( 27 12) 1 27 1 12 1 9 4=3-2=1,
典型例题
【例21】(3分)(2021•天津6/25)估计 17 的值在( ) A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间
【考点】估算无理数的大小. 【分析】本题需先根据 17 的整数部分是多少,即可求出它的范围. 【解答】解:∵ 17 4.12 , ∴ 17 的值在4和5之间. 故选:C. 【点评】本题主要考查了估算无理数的大小,在解题时确定无理数的整数部分即 可解决问题.
(2)若 b3 a ,则b叫做a的立方根.
知识点1 :数的乘方与开方
典型例题
【例1】(2022•宜宾)4的平方根是( )
A.2
B.-2
C.16D.±2
【考点】平方根 【解答】解:∵(±2)2=4, ∴4的平方根是±2, 故选:D. 【点评】本题考查平方根的定义,解题的关键是正确理解平方根 的定义,本题属于基础题型.
中考数学一轮复习
05 二次根式
中考命题说明
考点
课标要求
考查角度
了解平方根、算术平方根、
会用平方运算求百以内整数的平方根,会
立方根的概念,会用根号
乘方与
用立方运算求百以内整数(对应的负整数)
1
表示数的平方根、算术平

2024成都中考数学复习专题 实数(含二次根式) (含答案)

2024成都中考数学复习专题 实数(含二次根式)   (含答案)

2024成都中考数学复习专题 实数(含二次根式)基础题1. (2023江西)下列各数中,正整数...是( ) A. 3 B. 2.1 C. 0 D. -2 2. (2023武汉)实数3的相反数是( )A. 3B. 13C. -13 D. -33. (2023烟台)-23的倒数是( )A. 32B. 23C. -23D. -32 4. (2023大连)-6的绝对值是( )A. -6B. 6C. 16D. -165. (2023舟山)-8的立方根是( ) A. -2 B. 2 C. ±2 D. 不存在6. (2023河南)下列各数中最小的数是( )A. -1B. 0C. 1D. 37. 某段水域水位低于警戒线10 cm ,由于当天晚上下雨,第二天水位上涨了15 cm ,若以警戒线为基准,则第二天水位( ) A. 高于警戒线10 cm B. 高于警戒线15 cm C. 低于警戒线15 cm D. 高于警戒线5 cm8. (北师七上P33习题第5题改编)小红和她的同学共买了4袋标注质量为450 g 的食品,她们对这4袋食品的实际质量进行了检测,检测结果(用正数记超过标注质量的克数,用负数记不足标注质量的克数)如下表:最接近标准质量的是( )A. 第1袋B. 第2袋C. 第3袋D. 第4袋9. (2023广东省卷)2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.C919可储存约186 000升燃油,将数据186 000用科学记数法表示为()A. 0.186×105B. 1.86×105C. 18.6×104D. 186×10310. “雪龙2”号极地科考破冰船是我国继“向阳红10”号、“极地”号和“雪龙”号之后的第4艘极地科考船,总长122.5米,排水量近1.4万吨,将数据1.4万用科学记数法表示为()A. 1.4×105B. 1.4×104C. 14×103D. 0.14×10611. (2023青羊区模拟)清代诗人袁枚创作了一首诗《苔》:“白日不到处,青春恰自来.苔花如米小,也学牡丹开.”歌颂了苔在恶劣环境下仍有自己的生命意向.若苔花的花粉粒直径约为0.000 008 4米,用科学记数法表示0.000 008 4=8.4×10n,则n为()A. -5B. 5C. -6D. 612. (2023包头)定义新运算“⊗”,规定:a⊗b=a2-|b|,则(-2)⊗(-1)的运算结果为()A. -5B. -3C. 5D. 313. (2023江西)若a-4有意义,则a的值可以是()A. -1B. 0C. 2D. 614. (北师七上P74复习题第9题改编)如图,数轴上的单位长度为1,有三个点A,B,C,若点A,B表示的数互为相反数,则图中点C对应的数是()第14题图A. -2B. 0C. 1D. 415. (2023威海)面积为9的正方形,其边长等于()A. 9的平方根B. 9的算术平方根C. 9的立方根D. 9的算术平方根16. (2023扬州)已知a=5,b=2,c=3,则a,b,c的大小关系是()A. b>a>cB. a>c>bC. a>b>cD. b>c>a17. 下列计算正确的是( ) A. 22=2 B. (-2)2=-2 C. 22=±2 D.(-2)2=±218. 下列式子中,属于最简二次根式的是( )A. 4B. 5C. 0.2D. 1319. (2023烟台改编)可以与2合并的是( )A. 4B. 6C. 8D. 12 20. (2023大连)下列计算正确的是( ) A. (2)0= 2 B. 23+33=56 C. 8=4 2 D. 3(23-2)=6-2321. 如图,将一把损坏的刻度尺贴放在数轴上(数轴的单位长度是1 cm),刻度尺上“0 cm”和“3 cm”分别对应数轴上的-3和0,则x 的值可以是( )第21题图A. 2B. 3C. 2D. 5 22. (2023徐州) 2 023的值介于( ) A. 25与30之间 B. 30与35之间 C. 35与40之间 D. 40与45之间23. (2023河北)若a =2,b =7,则14a 2b 2=( ) A. 2 B. 4 C. 7 D. 224. [新考法—结论开放](2023武汉)写出一个小于4的正无理数是________. 25. (2023滨州)计算2-|-3|的结果为________. 26. (2023黄冈)(-1)2+(13)0=________.27. (2023杭州)计算:2-8=________.28. (2023山西)计算:(6+3)(6-3)的结果为________.29. (2023连云港)如图,数轴上的点A ,B 分别对应实数a ,b ,则a +b ________0.(用“>”“<”或“=”填空)第29题图30. (2023营口)若二次根式1+3x 有意义,则x 的取值范围是________. 31. (2023湘潭)已知实数a ,b 满足(a -2)2+|b +1|=0,则a b =________. 32. (2023陕西)计算:5×(-10)-(17)-1+|-23|.33. (2023济宁)计算:12-2cos 30°+|3-2|+2-1.34. 计算:(-1)3+8÷22+|2-1|×22.35. (2023沈阳改编)计算:(π-2 023)0+(-3)2+(13)-2-4sin 30°.拔高题36. (2023河北)光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于9.46×1012 km.下列正确的是( ) A. 9.46×1012-10=9.46×1011 B. 9.46×1012-0.46=9×1012 C. 9.46×1012是一个12位数 D. 9.46×1012是一个13位数37. (2023杭州)已知数轴上的点A ,B 分别表示数a ,b ,其中-1<a <0,0<b <1.若a ×b =c ,数c 在数轴上用点C 表示,则点A , B ,C 在数轴上的位置可能是( )A BC D38. (2023重庆A 卷)估计2(8+10)的值应在( ) A. 7和8之间 B. 8和9之间 C. 9和10之间 D. 10和11之间39. (2023黄冈)请写出一个正整数m 的值使得8m 是整数:m =________. 40. (2023包头)若a ,b 为两个连续整数,且a <3<b ,则a +b =________. 41. (2023成都定心卷)比较大小:3-52____38.(填“>”“<”或“=”)第42题图42. (2023兰州)如图,将面积为7的正方形OABC 和面积为9的正方形ODEF 分别绕原点O 顺时针旋转,使OA ,OD 落在数轴上,点A ,D 在数轴上对应的数字分别为a ,b ,则b -a =________.43. (2022随州)已知m 为正整数,若189m 是整数,则根据189m =3×3×3×7m =33×7m 可知m 有最小值3×7=21.设n 为正整数,若300n是大于1的整数,则n 的最小值为________,最大值为________.参考答案与解析1. A2. D3. D4. B5. A【解析】根据立方根的定义,(-2)3=-8,∴-8的立方根是-2.6. A7. D【解析】∵15+(-10)=5(cm),∴第二天水位高于警戒线5 cm.8. D9. B10. B【解析】1.4万=1.4×104 .11. C【解析】0.000 008 4=8.4×10-6,∴n=-6.12. D【解析】由题意可得(-2)⊗(-1)=(-2)2-|-1|=4-1=3.13. D【解析】∵二次根式a-4有意义,∴a-4≥0,解得a≥4,结合选项可知D符合条件.14. C【解析】∵点A,B表示的数互为相反数,故C点左边一个单位处为0点,则点C 对应的数是1.15. B【解析】∵正方形的面积等于边长的平方,∴面积为9的正方形,其边长等于9的算术平方根.16. C【解析】∵3<4<5,∴3<4<5,即3<2<5,则a>b>c.17. A【解析】A.22=|2|=2,符合题意;B.(-2)2=|-2|=2,不符合题意;C.22=|2|=2,不符合题意;D.(-2)2=|-2|=2,不符合题意.18. B【解析】4=2,0.2=55,13=33,只有5为最简二次根式.19. C【解析】∵8=22,与2是同类二次根式,只有同类二次根式才可以合并,故选C.20. D【解析】A.(2)0=1,故该选项不正确,不符合题意;B.23+33=53,故该选项不正确,不符合题意;C.8=22,故该选项不正确,不符合题意;D.3(23-2)=6-23,故该选项正确,符合题意.21. D【解析】结合题图可知,x的值在刻度尺的“5 cm”和“6 cm”之间,即x的值在数轴上的2和3之间,∵(5)2=5,∴(5)2在4和9之间,∴5在2和3之间,则x的值可以是5.22. D【解析】∵252=625,302=900,352=1 225,402=1 600,452=2 025,∴1 600<2 023<2 025,∴ 2 023的值介于40与45之间.23. A 【解析】∵a =2 ,b =7 ,∴14a 2b 2 =14×27=4 =2. 24. 2 (答案不唯一)25. -1 【解析】原式=2-3=-(3-2)=-1. 26. 2 27. -228. 3 【解析】原式=(6 )2-(3 )2=6-3=3.29. < 【解析】由题图知,a <0<b ,且|a |>|b |,∴a +b <0. 30. x ≥-13 【解析】根据题意得1+3x ≥0,∴x ≥-13.31. 12 【解析】∵(a -2)2+|b +1|=0,(a -2)2≥0,|b +1|≥0,∴a -2=0,b +1=0,∴a=2,b =-1,∴a b =2-1=12 .32. 解:原式=-52 -7+|-8| =-52 -7+8 =-52 +1.33. 解:原式=23 -2×32 +2-3 +12=23 -3 +2-3 +12=52. 34. 解:原式=-1+8÷4+1-22=-1+2+1-22=2-22. 35. 解:原式=1+3+9-4×12=1+3+9-2 =11.36. D 【解析】9.46×1012复原后的数有12+1=13位整数.37. B 【解析】∵-1<a <0,0<b <1,a ×b =c ,∴-1<-b <a ×b <0,∴-1<-b <c <0.∵|a ×b |<|a |,∴|c |<|a |,∴点A ,B ,C 在数轴上的位置可能的只有B 选项.38. B 【解析】原式=4+20 ,∵16 <20 <25 ,∴4<20 <5,∴8<4+20 <9.39. 2(答案不唯一) 【解析】当m =2时,8m =16 =4,符合题意,∴m 的值可以为2(答案不唯一).40. 3 【解析】∵1<3<4,∴1<3 <2,∴a =1,b =2,则a +b =1+2=3. 41. > 【解析】∵5 ≈2.236,∴3-52 ≈0.382,38 =0.375,∴3-52 >38.42. 3-7 【解析】∵正方形OABC 的面积为7,∴OA =7 ,∴a =7 .∵正方形ODEF 的面积为9,∴OD =9 =3,∴b =3,∴b -a =3-7 . 43. 3;75 【解析】∵300n=100×3n=103n为整数,且n 为正整数,∴n 的最小值为3.∵300n 是大于1的整数,∴当103n=2时,n 取得最大值,∴3n =15,解得n =75.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考专题
二次根式及其运算
考点一 二次根式 式子 a(a≥0)叫做二次根式.
二次根式中被开方数一定是非负数,否则就没意义,并有 a≥0.
考点二 最简二次根式 最简二次根式必须同时满足条件: 1.被开方数的因数是正整数,因式是整式; 2.被开方数不含能开的尽方的因数或因式. 考点三 同类二次根式 几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二 次根式.
B. 2· 3= 6
C. 4- 2= 2
D. -32=-3
【解析】 2· 3= 2×3= 6.
【答案】B
2.(2010·芜湖)要使式子 aa+2有意义,a 的取值范围是(
)
A.a≠0
B.a>-2 且 a≠0
C.a>-2 或 a≠0
D.a≥-2 且 a≠0
【解析】a+2≥0 且 a≠0,故 a≥-2 且 a≠0.
【答案】D
3.(2010·绵阳)要使 3-x+ 1 有意义,则 x 应满足( ) 2x-1
A.12≤x≤3
B.x≤3 且 x≠12
1 C.2<x<3
D.12<x≤3
【解析】3-x≥0 且 2x-1>0,故12<x≤3. 【答案】D
4.(2010·济南)下列各式中,运算正确的是( )
A. 6÷ 3= 2 C.a6÷a3=a2
【答案】D
6.(2010·绵阳)下列各式计算正确的是( ) A.m2·m3=m6 B. 1631= 16· 13=43 3 C. 3 23+33=2+3=5 D.(a-1) 1-1 a=- 1-a2·1-1 a=- 1-a(a<1)
【解析】∵a<1,∴a-1<0, ∴(a-1) 1-1 a=- 1-a2·1-1 a=- 1-a.
考点四 二次根式的性质
1. a(a≥0)是非负数;
2.( a)2=a(a≥0); 3. a2=|a|=a-aaa≥ <00 ;
4. ab= a· b(a≥0,b≥0);
5.
a= b
a(a≥0,b>0). b
考点五 二次根式的运算
1.二次根式的加减法 先将各根式化为最简二次根式,然后合并同类二次根式. 2.二次根式的乘除法
【解析】xy=( a- b)( a+ b)=| a|2-| b|2=a-b.
A.a-2
B.2-a
C.a
D.-a
(3)(2010·嘉兴)设 a>0,b>0,则下列运算错误的是( )
A. ab= a· b B. a+b= a+ b
C.( a)2=a
D.
ba=
a b
(4)(2009·山西)在下列二次根式中,与 a是同类二次根式的是( ) A. 2a B. 3a2 C. a3 D. a4
A.3
B.-3
C.±3
D.9
(2)(2010·山西)估算 31-2 的值( )
A.在 1 和 2 之间
B.在 2 和 3 之间
C.在 3 和 4 之间
D.在 4 和 5 之间
(3)(2010·常州)下列运算错误的是( ) A. 2+ 3= 5 B. 2· 3= 6 C. 6÷ 2= 3 D.(- 2)2=2
B.2 2+3 3=5 5 D.(a3)2=a5
【解析】 6÷ 3= 6÷3= 2.
【答案】A
5.(2010·中山)下列式子运算正确的是( )
A. 3- 2=1
B. 8=4 2
C. 1 = 3 3
1 D.2+
+1 3 2-
=4 3
【解析】 1 2+
+1 3 2-
=2- 3
3+2+
3=2-
3+2+
3=4.
【点拨】(1)题考查 3x-1≥0,则 x≥13.
(2)题考查 a2=|a|=a-aa≥a0<0 .由题意得,原式=|a-1|-1=1-a-1=-a.
(3)题考查二次根式的性质和运算. (4)题考查同类二次根式的概念.
【解答】(1)C (2)D (3)B (4)C
(1)(2010·眉山)计算 -32的结果是( )
C. 8=4
D. -32=-3
4.已知 a<0,那么| a2-2a|可化简为( C ) A.-a B.a C.-3a D.3a
5.若 y= 1-x+ x-1+2 成立,则 x+y=3.
6.计算:2
18-
12-( 18+ 2-2
1 3)
2 3
3-4
2.
7.计算:( 6- 5)( 6+ 5)+ 3. 1+ 3
8.计算:(13)-3+( 3-2 010)0-( 27-6tan 30°) 28- 3.
考点训练 6
二次根式及其运算
二次根式及其运算
训练时间:60分钟 分值:10
训练时间:60分钟 分值:100分
一、选择题(每小题 3 分,共 42 分)
1.(2010·德化)下列计算正确的是( )
A. 20=2 10
【答案】D
7.(2011 中考预测题)下列二次根式中,最简二次根式是( )
A. 2x2
B. b2+1
1 C. x
D. 4a
【解析】选项 A 中含有完全平方式 x2,选项 C 的被开方式不是整式,选项 D 中含有完 全平方数 4.
【答案】B
8.(2011 中考预测题)若 x= a- b,y= a+ b,则 xy 的值为( ) A.2 a B.2 b C.a+b D.a-b
二次根式的乘法: a· b= ab(a≥0,b≥0);
二次根式的除法: a= a(a≥0,b>0).
b
b
二次根式的运算结果一定要化成最简二次根式.
(1)(2010·无锡)使 3x-1有意义的 x 的取值范围是( )
A.x>13
B.x>-13
C.x≥13
D.x≥-13
(2)(2010·广州)若 a<1,化简 a-12-1=( )
(4)(2010·江西)化简 3- 3(1- 3)的结果是( ) A.3 B.-3 C. 3 D.- 3
【点拨】(1)原式= -32= 9=3. (2)因为 5< 31<6,所以 5-2< 31-2<6-2,即 3< 31-2<4. (3)二次根式的加减运算,实质是合并同类二次根式. 2与 3不是同类二次根式,故 2+ 3即为最简结果. (4)原式= 3- 3+3=3.
【解答】(1)A (2)C (3)A (4)A
1.下列二次根式中,最简二次根式是( C )
1 A. 2
B. 4根式的是( B )
2
3
A. 18 B. 27 C. 3 D. 2
3.下列计算正确的是( B )
A. 2+ 3= 5 B. 2· 3= 6
相关文档
最新文档