7 雷达信号处理 14

合集下载

雷达信号与数据处理--雷达信号处理基础 ppt课件

雷达信号与数据处理--雷达信号处理基础  ppt课件

A 2
Q(
f

f0)
X( f ) A 2
A 2
Q(
f

f0)
f
f0
f0
X ( f ) sin π f
π f

fr ( f nfr )
n
fr 1/ Tr
6
随机信号与功率谱:
随机信号是指不可能用数学公式来确切地描述的信号,如接收机热噪声等。
x(t)
t
随机信号样本的波形
t
的矩形脉冲
Tr
x(t
)


A
cos(2πf0t 0,
),
t NTr / 2 t NTr / 2
A 2
Q(
f

f0)
z( f )
A
2
A 2 Q( f f0)
f
-f0
0
f0
X(
f
)

A 2
Q( f

f0) Q(
f

f0 )
Q( f ) sin(π f ) π f
9
广义平稳随机信号的自相关函数具有厄米特性质
Rx
(m)

E
xn
x* nm


Rx*
(m)
如果一个随机信号的所有统计特性都可以由它的某次样本来决定,就说它 是各态历经的。一个具有各态历经的性质的随机信号一定是狭义平稳的, 而且其数学期望运算可以用单次样本的时间平均运算来替代。
对于广义平稳的随机信号,常用功率谱来表征随机信号的频率特征。随机 信号功率谱等于其自相关函数的傅里叶变换。
Eg 表示数学期望

雷达侦察的信号处理

雷达侦察的信号处理
脉冲重频分选可以分为两部分,脉冲重复间隔 的确定以及重频确定后的分选(序列检索)。
从任一PDWi,j起,如能其后出现N个连续的周期 都能与某雷达信号的tPRI特征相符合,则此PDWi,j 便被作为该雷达的一个分选脉冲;如果在T时间内
的分选脉冲数多于检测门限V,便判为该雷达存
在,否则为不存在。——动态关联法
20
如果在输入信号 si(t) 中同时存在两个信号si1(t)、
si2(t),则由于信号的交调,将使合成信号si(t)的包络 呈现较复杂的起伏。 |si(t)|={|si1|2+|si2|2+2|si2|cos[(ω1-ω2)t+ φ1-φ2]}1/2
图4―5 si(t)中同时存在两个信号时的包络
(2)由信号处理设备根据不同的雷达和雷达信号特 征,对输入的实时PDW信号流进行辐射源分选、 参数估计、辐射源识别、威胁程度判别和作战态 势判别等。
3
雷达侦察系统前端输出的{PDWi}∞i=0的具体内容 和数据格式取决于侦察系统前端的组成和性能。 在典型的侦察系统
{PDWi (AOAi , fRFi ,tTOAi , PWi , APi , Fi )}i0
(a)合成矢量;(b)合成波形
21
τPW的测量
门限检测启动前,脉宽计数器的初值为零, 门限检测信号①启动 脉宽计数器对时钟②计数,当sv(t)低于门限UT时,信号①使计数器 停止计数,①的后沿使读出脉冲触发器产生锁存信号③,将脉宽 计数值存入τPW参数锁存器,③的后沿微分信号④使脉宽计数器 重新清零,以便进行下一脉冲的脉宽测量。
与下一个中心 值进行比较
N
误差范围?
N
和所有类别中 心进行了比较?
Y 将该脉冲作为新类

【计算机仿真】_雷达信号处理_期刊发文热词逐年推荐_20140724

【计算机仿真】_雷达信号处理_期刊发文热词逐年推荐_20140724

推荐指数 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2009年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
2009年 科研热词 合成孔径雷达 风切变探测 韦布尔分布 零记忆非线性变换 距离走动 距离-多普勒 脉冲对处理 目标识别 目标定位 电磁特性 探地雷达 快速傅立叶变换 建模 小波变换 小斜视角 多频连续波雷达 多目标信号 卫星影像 加速度、速度估计 前视风切变雷达 分布目标模型 仿真 推荐指数 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
推荐指数 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2012年 序号 1 2 3 4源自5 6 7 8 92012年 科研热词 超宽带 等效相位中心原理 直达波去除 目标检测 步进变频穿墙雷达 奇异值分解 合成孔径雷达 下视成像 三维成像 推荐指数 1 1 1 1 1 1 1 1 1
2008年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
科研热词 雷达信号 阵列 阈值函数 计算机仿真 表面穿透雷达 特征分解 测速 波达方向估计 步进频率表面穿透雷达 快速傅里叶变换 快速傅立叶变换法 建模 小波阈值去噪 多重信号分类法 双通道连续波雷达 光控平面阵
2010年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
科研热词 雷达电子战 随机序列 随机地表模型 计算机仿真 脉冲多普勒雷达 目标回波 电磁散射 混沌信号 杂波 抗干扰 快速傅氏运算二维分解 宽带数宁波束形成 回波信号 噪声 功率谱 信号处理 仿真

雷达信号处理原理

雷达信号处理原理

雷达信号处理原理雷达(Radar)是利用电磁波传播的原理,通过接收和处理信号来探测、定位和追踪目标的一种技术。

雷达信号处理是指对接收到的雷达回波信号进行解调、滤波、增强、特征提取等一系列处理操作,以获取目标的位置、速度、形状、材料等信息。

本文将介绍雷达信号处理的基本原理及其主要方法。

一、雷达信号处理基本原理雷达信号处理的基本原理可以归纳为以下几个步骤:回波信号采集、信号预处理、目标检测、参数估计和跟踪。

1. 回波信号采集雷达将发射出的脉冲信号转化为电磁波,通过天线向目标发送,并接收目标反射回来的回波信号。

回波信号会包含目标的位置、形状、速度等信息。

2. 信号预处理由于雷达接收到的回波信号存在噪声、多径干扰等问题,需要对信号进行预处理。

预处理的主要目标是消除噪声、降低多径干扰,并使信号满足后续处理的要求。

3. 目标检测目标检测是指在预处理后的信号中判断是否存在目标。

常用的目标检测算法包括:恒虚警率检测、动态门限检测、自适应门限检测等。

目标检测的结果通常是二值化图像,目标区域为白色,背景区域为黑色。

4. 参数估计参数估计是指根据目标检测结果,对目标的位置、速度、方位角等参数进行估计。

常用的参数估计方法包括:最小二乘法、卡尔曼滤波等。

参数估计的结果可以用来进一步对目标进行跟踪和识别。

5. 跟踪目标跟踪是指根据参数估计的结果,对目标在时间上的变化进行预测和跟踪。

常用的目标跟踪算法包括:卡尔曼滤波、粒子滤波等。

目标跟踪的结果可以用来对目标进行轨迹分析和行为预测。

二、雷达信号处理方法雷达信号处理方法主要包括:滤波、相关、谱估计、目标识别等。

1. 滤波滤波是对信号进行频率或时间域的处理,常用于去除噪声、消除多径干扰等。

常见的滤波器包括:低通滤波器、高通滤波器、带通滤波器等。

滤波的方法有时域滤波和频域滤波两种。

2. 相关相关是利用信号的自相关或互相关性质,计算信号之间的相似度。

在雷达信号处理中,相关常用于目标的距离测量和速度测量。

第三章雷达信号模型及信号处理

第三章雷达信号模型及信号处理
Suppose that we want to measure the position and speed of an object -- for example a car going through a radar speed trap. Naively, we assume that (at a particular moment in time) the car has a definite position and speed, and how accurately t l we can measure these th values l d depends d on the th quality lit of f our measuring i equipment i t -- if we improve i th the precision of our measuring equipment, we will get a result that is closer to the true value. In particular, we would assume that how precisely we measure the speed of the car does not affect its position, and vice versa. In 1927, 1927 German physicist Werner Heisenberg proved that these assumptions are not correct. correct Quantum mechanics shows that certain pairs of physical properties, like position and speed, cannot both be known to arbitrary precision. That is, the more precisely one property is known, the less precisely the other can be known. This statement is known as the uncertainty principle (or Heisenberg's uncertainty principle). The uncertainty principle isn't a statement about the accuracy of our measuring equipment, equipment but about the nature of the system itself -- our naive assumption that the car had a definite position and speed was incorrect. On a scale of cars and people, these uncertainties are too small to notice, but when dealing with atoms and electrons they become critical. yp principle p shows mathematically y that the p product of the uncertainty y in the p position and momentum of The uncertainty a particle (momentum is velocity multiplied by mass) could never be less than a certain value, and that this value was related to Planck's constant.

雷达信号处理基础理论研究与应用

雷达信号处理基础理论研究与应用

雷达信号处理基础理论研究与应用雷达信号处理是一门交叉学科,涉及到数学、物理、电子等多个领域。

其主要研究对象是雷达数据,即通过雷达接收到的回波信号,结合雷达技术以及信号处理技术对其进行分析、处理和识别,实现对目标的探测、跟踪和定位。

雷达信号处理的基础理论主要包括信号检测、参数估计和目标识别等方面。

其中,信号检测是雷达信号处理的基础,其研究的是如何在噪声背景下有效地识别目标回波信号,并提取出其中的信息。

在信号检测中,常用的指标有信噪比、虚警概率和漏警概率等,其目的是在尽可能保持目标检测正确率的同时,尽量减小误检率和漏检率。

参数估计是雷达信号处理中比较重要的一环,其研究的是如何从雷达接收到的信号中提取目标的相关参数。

雷达信号中的目标参数主要包括目标的距离、速度和角度等方面,常用的方法有FFT、MTI、FMCW等。

此外,由于雷达信号经常会因为多径效应、杂波干扰等因素而变形,所以参数估计还需要进行补偿或去除,以得到准确的目标参数。

目标识别是雷达信号处理中的核心问题之一,其研究的是如何从接收到的雷达信号中判断目标的种类、性质以及状态。

常用的目标识别方法有基于统计特征的方法、基于模式识别的方法以及神经网络等。

这些方法可以通过对目标回波信号的幅度、相位、波形等无穷多的方面进行分析来实现目标的识别。

除了基础理论研究外,雷达信号处理在实际应用中也发挥了重要的作用。

在军事、民用、环保、医疗等领域,雷达信号处理技术都有广泛的应用。

在军事领域中,雷达信号处理是实现军事情报、指挥控制以及武器装备识别等任务的基础。

通过对雷达信号的处理,可以实现对飞机、导弹、舰船等目标的探测、跟踪和定位,为军队的战术决策提供强有力的依据。

在民用领域中,雷达信号处理技术也有广泛的应用。

例如,在气象探测、地震勘探、航空、交通、导航、测绘等领域中都有用到雷达信号处理技术,为相应的工作提供重要的技术支持。

在环保领域中,雷达信号处理技术也有重要的应用。

雷达信号处理技术在目标识别中的应用教程

雷达信号处理技术在目标识别中的应用教程

雷达信号处理技术在目标识别中的应用教程雷达技术是一种通过发送和接收电磁波来感知和探测目标的无线通信技术。

在雷达系统中,信号处理是非常重要的环节,它能够提取出目标的特征信息,并对目标进行识别。

本文将介绍雷达信号处理技术在目标识别中的应用教程。

一、雷达信号处理的基本流程雷达信号处理是从雷达接收到的回波信号中提取目标信息的过程。

其基本流程可以分为以下几个步骤:回波信号接收、杂波抑制、脉冲压缩、目标检测和跟踪、特征提取和目标识别。

1. 回波信号接收雷达通过发射电磁波,并接收由目标反射回来的回波信号。

回波信号包含了目标的位置、距离、速度等信息。

在接收回波信号时,需要采用合适的天线和接收系统来接收信号,并进行放大和滤波处理。

2. 杂波抑制在接收到的回波信号中,除了目标所反射的信号外,还包含了一些其他无关的杂波信号。

杂波抑制的目的是将这些杂波信号降低到一个较低的水平,以减小对目标的干扰。

常用的杂波抑制方法包括滤波、干扰消除等。

3. 脉冲压缩脉冲压缩是为了提高雷达系统的分辨能力和测距精度而进行的信号处理技术。

当发射的脉冲信号宽度较宽时,可以在接收端利用滤波器对回波信号进行压缩处理,使其变窄,并提高脉冲的能量密度。

4. 目标检测和跟踪目标检测是识别回波信号中是否存在目标的过程。

常用的目标检测算法有恒虚警率检测(CFAR)等。

目标跟踪是在连续的雷达回波信号中追踪目标的位置和运动状态。

常用的目标跟踪算法有卡尔曼滤波、粒子滤波等。

5. 特征提取和目标识别特征提取是从目标的回波信号中提取出与目标特征相关的参数或特征。

可以利用这些特征对目标进行识别。

常用的特征包括目标形状、速度、散射截面等。

目标识别是根据特征将目标与其他物体进行区分和识别的过程。

常用的目标识别算法有支持向量机、神经网络等。

二、雷达信号处理技术的应用雷达信号处理技术在目标识别中有着广泛的应用。

以下是几个典型的应用领域:1. 军事领域雷达在军事领域中起着至关重要的作用。

雷达信号处理概述

雷达信号处理概述

雷达信号处理概述雷达信号处理是指对观测到的信号进行分析、变换、综合等处理,以达到抑制干扰、杂波等非期望信号,增强有用信号,并估计有用信号的特征参数,或是将信号变成某种更符合要求的形式。

随着微电子技术的迅速发展,信号处理的方式也从早期的模拟域发展到几乎都采用数字域。

数字信号处理以数字或符号序列表示信号,用数值计算的方法完成对信号的各种处理。

模拟信号转换为数字信号的过程(采样、量化)如下图所示。

数字信号处理的主要方法有数字卷积(时域处理)、频谱分析(频域处理)、数字滤波(包括有限冲激响应滤波器(FIR)和无限冲激响应滤波器(IIR))等。

雷达信号处理的任务雷达信号处理的任务就是最大程度地抑制噪声和干扰,提取与目标属性有关的信息。

从狭义上讲,雷达信号处理是指对经接收机处理后的信号进行处理,在多种干扰背景中完成目标检测与信息的提取,主要包括干扰抑制、目标检测、信息提取。

从广义上讲,雷达信号处理涉及各种不同发射波形的选择、检测理论、性能评估以及天线和显示终端或数据处理计算机之间的电路装置(硬件和软件),以完成所要求的信号之间的变换和参数提取。

具体来说,信号处理包括信号产生、信号提取、信号变换三大类,其中信号产生包括调制、上变频、倍频、合成、放大和波束形成等;信号提取包括解调、下变频、分频、滤波、检测和成像等;信号变换包括频率变换、A/D变换、相关、放大及延时等。

根据雷达的任务及其工作环境,对雷达信号处理的要求是:•能够处理海量信息,即不仅能够获取目标的位置和数量等常规信息,还能获取目标的属性或图像信息•实时性强,使完成一次处理所用的时间与雷达的数据率相匹配•鲁棒性好,能够在复杂的电磁环境(特别是强电磁干扰环境)下正常工作实现上述要求取决于雷达的以下能力:•有效抑制杂波和干扰的能力•目标回波能量的有效收集能力,主要措施有:①改善天线的主瓣增益,降低旁瓣②降低天线转速,增加每个波位的驻留时间③选择能量利用率高的信号形式④提高雷达发射信号的峰值功率⑤距离维匹配滤波(脉冲压缩)⑥方位维一次扫描周期内对个波位的多个脉冲的相干和非相干积累⑦扫描周期间的积累(航迹提取)•高效的空间搜索能力•良好的空间分辨能力,主要措施有:①尽可能地增大天线的功率孔径积,提高角分辨能力②改进测角方式,提高角度测量精度③使用距离波门(时域滑窗)进行距离跟踪,减小多目标在频域的混叠④使用大带宽信号和脉冲压缩技术,提髙距离分辨能力⑤采用频率滤波,提高速度分辨能力⑥通过合成孔径,提高方位分辨能力⑦两天线干涉合成,提高俯仰角分辨能力•良好的环境适应能力:①自适应杂波抑制(自适应滤波、自适应CFAR、杂波图等)②自适应数字波束形成③智能化特征抽取和目标识别算法④多模式协同工作(例如预警机、多模式SAR)雷达信号处理的分类雷达信号处理的分类方法较多,按处理域分为时域信号处理、空域信号处理、频域信号处理、极化域信号处理和多域联合信号处理。

雷达信号处理原理

雷达信号处理原理

雷达信号处理原理雷达信号处理原理是指将雷达接收到的信号进行处理和分析的过程,以提取有用的信息和数据。

雷达信号处理是雷达技术的核心之一,对于雷达系统的性能和效果起着重要的影响。

一、信号接收与采样雷达系统首先接收到由雷达发射器发射出来的脉冲信号。

这些信号经过天线接收后,进入到接收机中。

在接收机中,会进行信号预处理,包括了低噪声放大、滤波和混频等环节。

经过预处理后的信号会进行采样,将连续的模拟信号转换为离散的数字信号。

二、脉冲压缩在雷达接收到信号后,有时候会出现回波信号的时间宽度很宽的情况,这样就会导致目标的分辨能力变差。

为了解决这个问题,需要对信号进行脉冲压缩处理。

脉冲压缩通过降低脉冲信号的时域宽度,来提高雷达的分辨能力。

三、目标检测与跟踪在经过脉冲压缩后,雷达系统需要进行目标检测和跟踪。

目标检测是指通过对接收到的信号进行处理,找出其中的目标信息,即在雷达图像或雷达数据中找到目标的位置和特征。

目标跟踪是指对已经检测到的目标进行跟踪,通过对目标连续观测信息的处理,估计目标的位置和运动状态。

四、信号解调与波形重建在目标检测和跟踪之后,雷达系统需要对信号进行解调和波形重建。

解调是将接收到的信号还原成原始的调制信号,以便进一步分析和处理。

波形重建是指通过对解调后的信号进行处理和滤波,将信号还原成接收到的原始信号。

五、特征提取与分析在信号解调和波形重建之后,雷达系统需要进行特征提取和分析。

特征提取是指从原始信号中提取出与目标有关的特征和参数,比如目标的尺寸、速度、形状等。

特征分析是对提取出的特征进行进一步的处理和分析,以得到更深入的目标信息。

六、信号处理算法与技术雷达信号处理过程中,需要运用各种信号处理算法和技术。

常见的信号处理算法包括了滤波、频谱分析、时域分析、相关分析等。

此外,雷达信号处理还与数字信号处理、图像处理等领域相结合,采用了很多先进的技术和方法。

七、数据处理与决策最后,经过了信号接收、压缩、检测、跟踪、解调、波形重建、特征提取和分析等多个环节的处理,雷达系统会得到一系列的数据和信号。

雷达通信中的信号处理技术

雷达通信中的信号处理技术

雷达通信中的信号处理技术雷达通信是一种广泛应用于军事和民用领域的重要技术,其通过发送和接收电磁波来探测目标和传输信息。

在这个过程中,信号处理技术是至关重要的,它可以帮助我们提取有用的信息并抑制干扰信号。

在本文中,我们将深入探讨雷达通信中的信号处理技术。

一、信号处理的基本原理信号处理是指在不同的信号中寻找有用的信息或者从信号中去除噪声的处理技术。

在雷达通信中,信号处理的主要任务是从发射的电磁波中提取目标的信息,并从接收到的信号中分离出目标信号和噪声信号。

为了实现这个目标,我们需要采用一系列的信号处理技术。

其中最基本的技术是对信号进行变换。

我们可以将一个信号转换为另一种形式,例如从时域转换为频域,或者从空间域转换为波数域。

这种变换可以使我们更好地理解和处理信号。

对于雷达通信来说,主要采用的是时域和频域变换技术。

时域变换是指通过对信号进行时间轴方向的变换来提取信息,例如对信号进行滤波、抗混叠等处理。

频域变换是指通过对信号进行频率轴方向的变换来提取信息,例如进行傅里叶变换、谱分析等处理。

二、信号处理的应用在雷达通信中,信号处理技术的应用非常广泛。

其中最重要的应用就是目标检测和跟踪。

通过对接收到的信号进行分析,我们可以确定目标的位置、速度、方向和大小等信息,进而进行目标的跟踪和追踪。

此外,信号处理技术还可以用于雷达通信的数据传输和压缩。

在雷达通信的数据传输过程中,由于信号包含大量的冗余信息,因此我们需要进行数据压缩来减小数据传输的量。

在此过程中,信号处理技术可以帮助我们分析和提取信号中的冗余信息,从而实现更有效率的数据压缩。

三、信号处理技术的发展趋势随着雷达通信技术的不断发展,信号处理技术也在不断地发展和改进。

未来,我们可以预测信号处理技术将向以下几个方面发展:1、高精度目标检测和跟踪技术。

随着雷达通信技术的提高,我们需要从信号中提取更精确的目标信息,因此需要开发更高效的目标检测和跟踪技术。

2、低信噪比信号处理技术。

雷达信号处理基础

雷达信号处理基础

雷达信号处理基础雷达信号处理是一种技术,用于收集、分析和加工获得的信号,以满足特定用途。

它由模型发展和预测,数据预处理,专用传感器和信号处理器,以及用于信号处理的算法等构成。

雷达信号处理技术多用于军事用途,最常见的是雷达信号处理系统,它用于探测外部空间和追踪物体的位置及运动情况。

1.达信号的概念雷达信号是指从天空或特定区域发射到接收器的电磁脉冲信号。

这种脉冲信号有三个特点:频率,幅值和过程。

频率一般按照秒计算,幅值是指信号的强弱,而过程指的是以定义的时间节点发射和接收信号的过程。

2.达信号处理的基本原理雷达信号处理的基本原理,指的是通过分析接收到的信号,对信号进行改变,获得更多信息的过程。

通常的信号处理技术有:滤波技术、时域技术、频域技术、压缩感知技术、综合技术和定位技术等几种。

综合考虑这些技术,可以更加有效地分析信号,从而更加有效地处理信号。

3.达信号处理的基本结构雷达信号处理的基本结构,是由传感器、处理器、滤波器、信号发射器和接收器组成的。

其中,传感器用于采集信号,处理器用于解码信号,滤波器用于处理信号并减少噪音,信号发射器用于发射信号,而接收器用于接收信号。

4.达信号处理的应用雷达信号处理的应用非常广泛,其中,最常见的应用是军事领域,用于收集敌人的信号,分析及采取有效的对抗方式。

此外,雷达信号处理也广泛应用在气象、公共安全、海洋监测等领域,例如用于流量检测、冰川探测等。

5.达信号处理的发展随着科技的进步,雷达信号处理技术也得到了快速发展,主要体现在以下几个方面:一是传感器技术的进步,例如改良结构和传感器性能,使处理的信号更加准确;二是算法技术的进步,使处理的信号更加快速准确;三是相关技术的发展,如计算机视觉技术,激光时域反射技术,多普勒雷达技术,以及智能信号处理技术等。

综上所述,雷达信号处理是一种重要而有效的技术,它可以帮助我们更好地收集信号,从而更快更准确地分析信号。

随着技术的进步,雷达信号处理技术也在不断发展,这将为人类发展带来更多更好的服务。

雷达信号处理中的目标检测与跟踪技术

雷达信号处理中的目标检测与跟踪技术

雷达信号处理中的目标检测与跟踪技术雷达(Radar)是一种利用电磁波进行探测和测距的技术,广泛应用于军事、航空航天以及民用领域。

雷达信号处理中的目标检测与跟踪技术是在雷达应用过程中必不可少的环节,旨在提取目标信息并实现对目标的实时跟踪。

目标检测是雷达信号处理的第一步,其目的是从杂波中识别出目标信号。

在目标检测中,常用的方法有能量检测法、匹配滤波法和统计检测法等。

能量检测法是一种基于信号能量的方法,当接收到的信号能量超过一定阈值时,认为检测到了目标。

匹配滤波法则是将已知目标的参考信号与接收到的信号进行相关运算,通过寻找相关峰值来检测目标。

统计检测法则是基于统计学原理进行目标检测,利用雷达回波信号的统计特性来判断是否存在目标。

目标跟踪是在目标检测的基础上,对目标进行实时跟踪和预测。

雷达目标跟踪技术主要分为两类:点目标跟踪和航迹跟踪。

对于点目标跟踪,通常采用卡尔曼滤波器、扩展卡尔曼滤波器等滤波算法进行实时跟踪。

卡尔曼滤波器通过将目标位置和速度作为状态变量建立状态方程,并结合观测方程对目标进行预测和修正。

扩展卡尔曼滤波器则是对非线性系统进行近似线性化处理,将卡尔曼滤波器扩展到非线性系统上。

而航迹跟踪则是对目标的航迹进行预测和估计,常用的方法有最小二乘法、贝叶斯滤波法等。

在雷达信号处理中,还有一类重要的技术是目标特征提取。

目标特征提取是指从雷达回波信号中提取出与目标特征属性相关的信息。

常用的特征提取方法有时域特征、频域特征和小波变换等。

时域特征是指根据雷达回波信号的幅度、距离延迟、时间间隔等特征进行目标识别。

频域特征则是通过对雷达回波信号进行傅里叶变换,提取出目标的频谱特征。

小波变换则是将时域和频域结合起来,通过不同尺度波形进行目标特征提取。

目标检测与跟踪技术的研究在军事和民用领域有着广泛应用。

在军事领域,雷达目标检测与跟踪技术能够实现对目标的远程监视和侦察,为军事行动提供重要支持。

在民用领域,雷达目标检测与跟踪技术应用于航空交通管制、地震监测和气象预警等方面,对于保障公共安全和提高生活质量具有重要意义。

航空航天行业中的机载雷达信号处理技术使用教程

航空航天行业中的机载雷达信号处理技术使用教程

航空航天行业中的机载雷达信号处理技术使用教程航空航天行业中的机载雷达是一项关键技术,广泛用于飞行器上,以完成多种任务,如导航、障碍物检测和目标追踪。

而机载雷达信号处理技术则是机载雷达系统中的核心部分,通过对接收到的雷达信号进行处理和分析,提取目标信息并做出相应的响应和决策。

本教程将介绍机载雷达信号处理技术的基本原理和常见应用。

一、机载雷达信号处理的基本原理机载雷达信号处理的基本原理可以简单概括为以下几个步骤:1. 接收信号采样:机载雷达接收到的雷达信号是由雷达发射的电磁波经过目标散射后返回的,接收信号需要通过采样来获取波形数据。

2. 预处理:接收到的信号通常会受到各种噪声和干扰的影响,预处理步骤旨在去除或减小这些噪声和干扰,如滤波、降噪和增益控制等。

3. 目标检测:目标检测是机载雷达信号处理的核心任务之一,它需要通过信号处理算法来识别目标的存在与否,并确定目标的空间位置和速度等重要信息。

4. 目标跟踪:当目标被检测到后,机载雷达需要通过信号处理技术对目标进行跟踪,以实时获取目标的运动轨迹和状态变化。

5. 数据融合和分析:机载雷达往往不仅仅是单一的传感器,常常需要与其他传感器进行数据融合,通过综合多源信息来对目标进行更准确的判断和分析。

二、机载雷达信号处理的常见技术应用机载雷达信号处理技术在航空航天行业中有广泛的应用,以下列举了其中几个常见的技术应用:1. 高分辨率成像:机载雷达信号处理技术可以通过合成孔径雷达(SAR)技术实现高分辨率的地面成像,通过多波束和多极化技术,可以获得目标的形状、结构和材料等详细信息。

2. 面向地理定位与导航:机载雷达信号处理可以通过地理定位和导航技术,为飞行器提供准确的位置信息,使其能够在复杂的环境中进行安全和可靠的定位和导航。

3. 目标识别与分类:机载雷达信号处理技术可以通过对目标雷达回波的特征提取和分析,实现目标的识别与分类,比如识别和分类飞机、船舶、车辆等目标。

雷达信号处理

雷达信号处理

雷达信号处理技术与系统设计第一章绪论1.1 论文的背景及其意义近年来,随着电子器件技术与计算机技术的迅速发展,各种雷达信号处理技术的理论与应用研究成为一大热门领域。

雷达信号的动目标检测(MAD)是利用动目标、地杂波、箔条和气象干扰在频谱上的差别,抑制来自建筑物、山、树、海和雨之类的固定或低速杂波信号。

区分运动目标和杂波的基础是它们在运动速度上的差别,运动速度不同会引起回波信号频率产生的多普勒频移不相等,这就可以从频率上区分不同速度目标的回波。

固定杂波的中心频率位于零频,很容易设计滤波器将其消除。

但对于运动杂波,由于其多普勒频移未知,不能像消除固定杂波那样很容易地设计滤波器,其抑制就变得困难了从本质上来讲,雷达信号的检测问题就是对某一坐标位置上目标信号“有”或“无”的判断问题。

最初,这一任务由雷达操作员根据雷达屏幕上的目标回波信号进行人工判断来完成。

后来,出现了自动检测技术,一开始为固定或半固定门限检测,这种体制下当干扰和杂波功率水平增加几分贝,虚警概率将急剧增加,以至于显示器画面饱和或数据处理过载,这时即使信噪比很大,也不能作出正确的判断。

为克服这些问题进而发展了自适应恒虚警(Constant FalseAlarm Rate,CFAR)检测。

CFAR 检测使得雷达在多变的背景信号中能够维持虚警概率的相对稳定,这种虚警概率的稳定性对于大多数的雷达,如搜索警戒雷达、跟踪雷达、火控雷达等。

第二章 雷达信号数字脉冲压缩技术2.1 引言雷达脉冲压缩器的设计实际上就是匹配滤波器的设计。

根据脉冲压缩系统实 现时的器件不同,通常脉冲压缩的实现方法分为两类,一类是用模拟器件实现的 模拟方式,另一类是数字方式实现的,主要采用数字器件实现。

脉冲压缩处理时必须解决降低距离旁瓣的问题,否则强信号脉冲压缩的旁瓣 会掩盖或干扰附近的弱信号的反射回波。

这种情况在实际工作中是不允许的。

采 用加权的方法可以降低旁瓣,理论设计旁瓣可以达到小于-40dB 的量级。

雷达信号处理算法

雷达信号处理算法

雷达信号处理算法1. 引言雷达信号处理算法是指对雷达接收到的原始信号进行处理和分析,从中提取出有用的信息,并对目标进行检测、跟踪和识别。

雷达信号处理算法在雷达系统中起着至关重要的作用,它直接影响到雷达系统的性能和功能。

本文将介绍雷达信号处理算法的基本原理、常用算法以及其在雷达系统中的应用。

2. 雷达信号处理算法的基本原理雷达信号处理算法的基本原理是通过对接收到的雷达信号进行数字信号处理,提取出目标的信息。

其主要步骤包括:2.1 雷达信号接收雷达系统通过发射一定频率的电磁波并接收其反射回来的信号来实现目标检测。

接收到的信号包含目标的回波信号以及噪声。

2.2 信号预处理为了提高信号的质量和减小噪声的影响,需要对接收到的信号进行预处理。

常用的预处理方法包括滤波、降噪和增强等。

2.3 目标检测目标检测是指从接收到的雷达信号中提取出目标的存在信息。

常用的目标检测方法包括门限检测、相关检测和匹配滤波等。

2.4 目标跟踪目标跟踪是指在连续的雷达扫描中,对目标进行跟踪和预测其位置和运动状态。

常用的目标跟踪方法包括卡尔曼滤波和粒子滤波等。

2.5 目标识别目标识别是指对目标进行分类和识别。

常用的目标识别方法包括特征提取和模式识别等。

3. 常用的雷达信号处理算法3.1 基于门限检测的目标检测算法门限检测是一种简单且有效的目标检测算法,它通过设置一个合适的门限值,将接收到的信号与门限值进行比较,从而判断目标是否存在。

门限检测算法的优点是计算简单,但缺点是对噪声敏感,容易产生误检。

3.2 基于相关检测的目标检测算法相关检测是一种利用信号与目标特征之间的相关性进行目标检测的方法。

它通过计算接收到的信号与目标特征之间的相关系数,从而判断目标是否存在。

相关检测算法的优点是对噪声的抑制能力较强,但缺点是对目标特征的要求较高。

3.3 基于匹配滤波的目标检测算法匹配滤波是一种根据目标的特征模板进行目标检测的方法。

它通过将接收到的信号与目标特征模板进行比较,从而得到匹配度。

信号处理技术在雷达中的应用

信号处理技术在雷达中的应用

信号处理技术在雷达中的应用雷达是一种利用电磁波的反射和散射来探测目标的仪器。

利用雷达可以快速、准确地探测到目标的位置、速度和方向等信息,而这些信息对于军事、民用等方面都有很重要的意义。

而在雷达中,信号处理技术则是至关重要的一环。

本文将介绍信号处理技术在雷达中的应用。

一、信号处理技术在雷达中的作用信号处理技术是指将采集到的信号进行处理以提取目标信息的一系列技术。

在雷达中,信号处理技术起到了至关重要的作用。

传统雷达采用的是模拟信号处理技术,而现代雷达则采用数字信号处理技术。

信号处理技术在雷达中的主要作用有以下几个方面:1. 去除杂波和干扰雷达在探测目标时,其发射出的信号会遭遇到一些杂波和干扰,而这些干扰如果不进行处理,就会影响到雷达的探测效果。

信号处理技术可以通过滤波、降噪等手段去除杂波和干扰,从而提高雷达的抗干扰性能。

2. 提取目标信息雷达探测到目标后,需要提取出目标的位置、速度、方向等信息。

信号处理技术可以通过解调、频谱分析、卷积等手段从信号中提取出目标信息,从而实现雷达对目标的精确探测和识别。

3. 集成雷达数据雷达在探测目标时会产生大量的数据。

信号处理技术可以对这些数据进行集成处理,从而实现多雷达的协同探测和目标跟踪。

4. 增强雷达性能信号处理技术可以通过改进雷达算法、优化雷达设计等手段来增强雷达的性能。

例如,可以通过最小二乘法对雷达数据进行处理,从而提高雷达的探测精度和分辨率。

二、基于数字信号处理的雷达随着数字技术的不断发展,数字信号处理技术逐渐成为雷达中不可或缺的一环。

利用数字信号处理技术,可以更加准确、快速地探测目标,提取目标信息,同时还可以更加容易地集成多雷达数据,实现多雷达的协同工作。

数字信号处理技术主要包括数字滤波、快速傅里叶变换、数字信号处理器等。

其中,数字信号处理器是一种专门用于处理数字信号的处理器。

利用数字信号处理器,可以对雷达数据进行实时处理,从而提高雷达的探测性能和实时性。

雷达信号处理原理

雷达信号处理原理

雷达信号处理原理雷达(Radar)是一种利用无线电波进行探测和测量的技术,广泛应用于军事、航海、气象等领域。

雷达系统中最关键的环节之一就是信号处理,它负责从接收到的雷达回波信号中提取信息并进行处理与分析。

本文将介绍雷达信号处理原理及其主要步骤。

一、雷达信号的特点雷达信号是通过发射并接收无线电波形成的回波信号。

这些回波信号受到目标散射、多径效应、噪声等因素的影响,具有以下几个特点:1. 回波信号的强度与目标之间的距离成反比关系,可以通过测量回波信号的强度来推断目标的距离。

2. 回波信号的频率会发生多普勒频移,可以通过测量频率的变化来推断目标的速度。

3. 回波信号中包含了目标的形状、尺寸、材料等信息,可以通过对回波信号进行解调和分析来识别目标。

二、雷达信号处理的主要步骤雷达信号处理的主要步骤包括:回波信号的采集、滤波与降噪、多普勒频率补偿、脉冲压缩、解调与目标识别等。

1. 回波信号的采集:雷达接收到的回波信号通过接收天线输入到接收机中,经过放大、调频等处理后转化为模拟电信号。

2. 滤波与降噪:为了提取目标信号并抑制噪声,需要对回波信号进行滤波与降噪处理。

常用的滤波器包括低通滤波器和带通滤波器,可以通过滤波器的参数设置来实现对回波信号频域的控制。

3. 多普勒频率补偿:由于目标的运动会导致回波信号的多普勒频移,需要对回波信号进行多普勒频率补偿以还原目标的真实速度信息。

补偿方法一般采用混频器或数字信号处理算法实现。

4. 脉冲压缩:脉冲压缩是提高雷达分辨率的重要手段。

通过压缩脉冲信号的时间宽度,可以实现对目标距离分辨率的改善。

常用的脉冲压缩技术包括线性调频脉冲压缩和矩形脉冲压缩等。

5. 解调与目标识别:解调是将回波信号从模拟电信号转化为数字信号的过程,可以利用解调技术提取回波信号中的信息。

解调后的信号经过目标识别算法进行处理,可以实现目标的识别与定位。

三、雷达信号处理的关键技术雷达信号处理涉及到多种关键技术,其中包括:1. 数字信号处理(DSP):借助计算机及数学算法对信号进行处理与分析,实现信号的滤波、降噪、压缩等操作。

雷达信号处理技术及其在无人机探测中的应用

雷达信号处理技术及其在无人机探测中的应用

雷达信号处理技术及其在无人机探测中的应用雷达是一种常用于探测目标的无线电设备,利用电磁波向周围的物体发射,然后接收反弹回来的信号。

通过对信号的处理,可以获取目标的位置、速度以及其他相关信息。

在现代战争中,雷达技术被广泛应用于目标探测、导航、通信等领域。

随着无人机技术的快速发展,雷达信号处理技术也得到了广泛关注,成为了实现无人机探测的重要手段之一。

雷达信号处理技术是指通过对雷达信号进行数字处理,提取出信号的特征信息,从而实现目标识别、跟踪等功能。

主要包括信号预处理、信号处理和目标特征提取三个阶段。

在信号预处理阶段,主要对原始信号进行滤波、降噪等处理,以消除信号中的杂波干扰,提高信号质量。

这个过程是基础,但也最为繁琐,因为雷达接收到的信号可能受到很多干扰因素的影响,如噪声、杂波、反射等等。

需要通过一系列的滤波、统计等方式,将这些干扰信号剔除,使得信号中所包含的目标信息更加清晰。

在信号处理阶段,主要利用数字信号处理技术对预处理后的信号进行分析和处理,包括目标检测、跟踪等。

其中目标检测是指在雷达扫描时,利用算法识别出目标所在的位置和速度等信息。

通常可以采用维纳滤波、匹配滤波、多普勒处理等方式进行处理。

跟踪则是指对目标进行持续的监测和追踪,以实现目标的动态控制和管理。

在目标特征提取阶段,主要是对目标进行特征描述和抽取,以进一步实现目标识别和分类。

这包括目标形状、大小、粘滞度和纹理等特征,旨在建立一个用于识别和分类目标的特征集合。

目标识别和分类是无人机探测中最为重要的功能之一,可以实现自动对目标进行跟踪、识别和分类等操作。

应用于无人机探测中,雷达信号处理技术可以实现对目标的无死角覆盖、长距离探测和高精度定位等功能,是实现无人机智能化探测的关键之一。

与光学、红外和声纳探测相比,雷达具有很强的穿透能力,在夜间或低能见度条件下仍然可以进行有效的探测。

此外,雷达使用的电磁波具有很高的穿透性,可以穿过建筑物、障碍物和树木等障碍物,从而实现对遮挡目标的探测。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A meteorological radar doesn't only locate a target, but it estimate its value!
16
4
有效照射深度
近似圆柱体
V = π ⎜⎛ r θ ⎟⎞⎜⎛ r ϕ ⎟⎞ h = π⎜⎛ rθ ⎟⎞2 h , h =τc ⎝ 2 ⎠⎝ 2 ⎠ 2 ⎝ 2 ⎠ 2
Qt
(θ ,φ
)
=
PtG (θ ,φ )
4π R2
天线增益函数
天线的瞄准方向通常是天线最大增益方向,即 Gmax=G(0,0)
13
• 将增量在全空间进行积分,就得到了总的接收功 率,这就是广义的雷达距离方程:
∫ Pr
=
Ptλ 2
(4π )3 Ls
V
G2 (θ ,φ R4La ( R
))dσ
(
R,θ

17
满足瑞利散射时,有:
σi
= π5 λ4
K 2 Di6
K
2
=
m2 −1 m2 +2
2
m为复折射指数,对于厘米波段,当温度在0~20度时 水态时: K 2 =0.93
冰态时: K 2 =0.20
19
在第二节中已知,单位体积内的散射截面积为:
η = ∑ σi 单位体积
那么,气象目标的雷达方程可写为:
∑ Pr


)
=
PtG

,φ ) dσ (
4π R2
R,θ

)
考虑天线有效孔径,以及各种损耗,进一步得到增量的接收功率
dPr
=
PtG2 (θ ,φ ) λ2dσ ( R,θ ,φ ) (4π )3 R4Ls La ( R)
14
3、气象目标的雷达方程
• 气象目标属分布式目标范畴,距离门的回 波强度是分辨体积内所有粒子后向散射的 叠加。因此,与点目标雷达方程相比较, 解析气象目标的雷达方程要明确:
27
10 lg Z = 20 lg R +10 lg Pr −10 lg C
dBZ= 20lgR+(10lgPr −10lgPmin) −(10lgC −10lgPmin)
dBZ = 20 lg R +10 lg Pr −10 lg C
Pmin
Pmin
26
dB→dBZ 经过了距离订正 图像上的dBZ值远近可
5
天线有效接收面积
Ae
=
λ2 4π
G
Pr
=
Ss (π ) Ae
=
PtGσ (4πr2)2
Ae
6
不计衰减 回到雷达处的散射功率密度
7
8
2
目标接收到的功率
计入损耗 天线接收的功率
9
基本点目标雷达方程
10
点目标雷达方程推导过程总结
11
12
3
2、分布式目标雷达方程
• 点目标雷达方程是进行推导面散射、体散射雷达方 程的起点。对此,必须考虑天线功率增益随方位和 仰角的变化。那么发射的能流密度可写为:
=
PtG2λ2
(4π )3r4
σ
=
PtG2λ2
(4π )3r4
ηV
=
PtG2λ2
(4π )3r4
V σi
单位体积
∑ =
PtG2λ2
(4π )3r4
π⎜⎛ ⎝
rθ 2
⎟⎞2 ⎠
h 2
σi
单位体积
18
因此可以得到:
∑ ∑ σ i
单位面积
=
π5 λ4
K2
Di6
单位体积
又因为雷达反射率因子可以定义为
反射率因子
)
对于气象目标而言,要具体分析后向散射截面 与粒子直径、电磁波长之间的约束关系,以及 雷达扫描的空间分辨率与雷达参数的关系。
15
• 考虑位于距离和角度坐标(R,θ,φ)处的一个微小增量体积 dV的散射,假设该体积单元的增量RCS为dσm2,dσ也是随 空间位置而变化的。dV的增量后向散射功率为
dPb
以比较
28
7
计算1:
• 一雷达测得距离等于10km处的降水回波功率 度为70dBuw,1小时后该回波移到距离为 200km的地方,若降水目标的形状、强弱不 变,其它变化可以忽略,问:雷达测得的回 波功率应是多少?
29
10 −8
计算2:
• 距离为100公里处的雷达实测回波强度(功 率)值为10-8W,雷达常数C为10,则订正后 的雷达回波强度为多少dBZ?
• dBZ= 10lgPr+20lgR-10LgC=-80+40-10

=-50dBZ
31
• 根据气象雷达方程,
• 10lgPr1 = 10lgC + 10logZ – 20logR1 = 70dB • 10lgPr2 = 10lgC + 10logZ – 20logR2 = ? • (2)-(1)Æ
33
Rain Attenuation
The expected percentage of drops of specific sizes over precipitation rates is shown below.
34
4 强度回波积累及平均概念
35
36
9
驻留时间
• 天线扫描经历同一气象目标所花费的时间。 通常以天线波束3dB宽度作为驻留同一目标的 有效宽度。
N
∑ Z = Di6 i =1
20
5
∑ 因此
:
Pr
=
PtG 2λ2hθϕ
1024(ln 2)π 2r 2
σi
单位体积
∑ ⇒=
PtG 2λ2τcθϕ
1024(ln 2)π 2r 2
σi
单位体积
⇒=
PtG 2λ2τcθϕπ 3 K 2 Z
1024(ln 2)λ2r 2
21
Pr
=
c r2
Z
23
气象雷达常数
气象雷达原理与系统
电子工程学院 大气探测学院
1
1、点目标雷达方程
第六章 气象雷达信号处理基础(三) ——雷达方程、目标检测
• 点目标雷达方程 • 气象目标雷达方程 • 反射率、反射率因子、dBZ • 距离订正、强度回波积分处理 • 应用及分析
2
3
4
1
S s (π ) =
PtG σ (4π r 2 )2
• 10lgPr2 -70=-20log200+20log10

=-20(2+0.301)+20=-26dB
• 10lgPr2 =70-26=44(dBuw)
• 因此,雷达测得的回波功率应是44dBuw。
----(1) ----(2)
30
增加探测距离分析:
32
8
应用(1)----降水测量
The rainfall rate R can be empirically related to the reflectivity factor Z by the expression: Z = aRb
44
分辨率为0.54nm的基本谱宽
11
PPI Scan
45
基本反射率
47
观测现象
46
双旁 翅辨 状产 回生 波的
48
12
RHI Scan
RHI1
49
旁瓣回波
50
RHI上的假尖顶回波
51
52
13
53
14
37
径向内的雷达数据样本采集
驻留时间与样本数
样本数: M = PRF ×θ3dB
ω
PRF : 脉冲重复频率 θ3dB :3dB波束宽度(deg) ω :天线扫描速率(deg/s)
38
PPI扫描的数据样本
39
40
10
距离库间平均处理
41
42
分辨率为0.13nm的基本谱宽
43
分辨率为0.27nm的基本谱宽
Pr
=
π3
1024(ln
2)
Pt G 2θϕh λ2
K r2
2
Z
令雷达常数
:
C
=
π 3PtG2θϕh
1024(ln 2)λ2
K
2
Pr
=
c r2
Z
22
•dBZ=10lgZ/Z0
•Z0=1mm6/m3
24
6
Z = Pr r 2 c
25
dBZ = 20 lg R + dB − 10 lg C Pmin
dBZ = 20lg R + dB − A
相关文档
最新文档