What is Envelope Tracking

合集下载

MAXIM TINI Power SoCs 说明书

MAXIM TINI Power SoCs 说明书
EEPROM, EPROM, NV SRAM, OTP, ROM MAXQ®, 8051, ARM®, DSP
Capacitive multitouch, proximity, ambient light, RGB Smartphones, tablets, e-readers, media players
I2C/SPI™/JTAG GPIO
RTC
MEMORY DDR POWER
AUDIO CODEC HEADPHONE, MIC, SPEAKER AMPS
SENSORS AMPS AND ADCs MISC. ADC CHANNELS
CONNECTORS CURRENT LIMIT AND OVP PROTECTION
Building Blocks DC-DC converters, LED drivers, LDOs, charge pumps
Chargers, fuel gauges, battery security/safety Filters, comparators, op amps, video amps
TOUCH SCREEN SPEAKER
TINI Power SoC
DUAL PROCESSOR POWER
AUDIO SUBSYSTEM
BASEBAND PROCESSOR
MOBILE TV
BLUETOOTH®/ 802.11
HEADPHONES
USB Li+ BATTERY
TOUCH-SCREEN CONTROL
Maxim Integrated Products, Inc. • 120 San Gabriel Drive Sunnyvale, CA 94086 • 1-408-737-7600

Doherty高效功率放大器的设计

Doherty高效功率放大器的设计

Abstract : Base on the Doherty technique , a power amplifier with high efficiency operating from 2 010 to 2 025 MHz was designed and realized1 An optimal bilateral2pull method was used to increase efficiency of the single power amplifier1 Source2pull and load2pull simulation of the transistor were used to obtain the optimal match network , and the Doherty power amplifier was optimized1 The simulation result shows that in high PAR signal , the PA E (power added efficiency) of the Doherty power amplifier has 10 % increase compared to traditional balanced class AB power amplifier1 The experimental testing result are PA E 30 % , gain 919 dB. The power amplifier configuration is simple and it can be used in wireless communication1
(a) Doherty 功放的实测效率
3 实验验证和测试结果分析
311 板材的选择 对于一般的 RF 板材 , 其介电常数会随着放大

Buck三电平变换器的PWM滑模控制

Buck三电平变换器的PWM滑模控制

Buck三电平变换器的PWM滑模控制黄勤;罗成渝;凌睿【摘要】针对Buck三电平变换器飞跨电容电压闭环与输出电压闭环相互耦合的问题,利用解耦控制技术分别独立地设计控制器对两个闭环进行控制。

其中,为了降低对参数变化和负载扰动的敏感性,设计基于PWM的滑模变结构控制器对输出电压进行控制。

仿真试验结果表明,与传统PWM控制器相比,该方法在保持对飞跨电容电压进行有效控制的同时能减小输出电压的超调量,缩短调节时间。

%For the mutual coupling problem of flying capacitor voltage and output voltage in three-level Buck converter, decoupling technology is used to design controllers to control two closed loops. In order to reduce the sensitivity to parameter variations and load disturbances, a Sliding Mode Controller based on PWM(PWM-SMC)is designed to control output voltage. Simulation results show that, comparing to the traditional PWM controller, the proposed controller not only con-trols effectively the flying capacitor voltage, but also shortens overshoot of output voltage and cuts down time of adjust-ment process.【期刊名称】《计算机工程与应用》【年(卷),期】2015(000)011【总页数】5页(P256-260)【关键词】三电平变换器;解耦控制;滑模变结构控制;脉宽调制【作者】黄勤;罗成渝;凌睿【作者单位】重庆大学自动化学院,重庆 400030;重庆大学自动化学院,重庆400030;重庆大学自动化学院,重庆 400030【正文语种】中文【中图分类】TP2731 引言在高输入/输出电压的功率变换场合,具有合适耐压值的功率开关器件的选取往往比较困难。

2021华为射频机考题目

2021华为射频机考题目

华为射频技术方向笔试题目一、单项选择1.频综因电源波纹太大,近端有杂散,恶化积分相噪,从而恶化接收机灵敏度指标,下面措施有改善的是()A.提高鉴相频率B.增大环路增益C.提升VCO相噪D.增大VCO输出功率2.驻波检测电路是通过测量正反向功率的差值的大小来确定驻波的大小。

正确错误3.输入信号带宽1MHz,功率谱密度为-60dBm/Hz,信噪比为20dB,通过一个增益为20dB、噪声系数为3dB的放大器,其输出信噪比为()A.12dBB.17dBC.15dBD.20Db4.对于理想磁导体表面,下列描述正确的是()A.磁场切向分量为零B.磁场、电场切向分量都为零C.电场切向分量为零 C.磁场、电场切向分量都不为零5.外差式接收机混频器前面往往会有一个镜频干扰滤波器,其主要作用是()A.改善接收机噪声B.增加稳定性C.提高增益D.提高动态范围6.对于一个有源器件来说,以下哪些场景会导致噪声系数减小()A.输入部分损耗减小B.增益减小C.环境温度增高D.线性提升7.一个放大器在1dB压缩点的输入功率为1dBm,输出功率为20dBm,该放大器的线性增益为()A.19B.21C.20D.228.一个理想定向耦合器,耦合度为30dB,方向性为20dB,假如输入信号功率为1W,那么耦合端和隔离端输出信号功率各为多少?()A.1 mW、100 mWB.1 mW、0.01 mWC.10 mW、1 mWD.0.1 mW、10 mW9.一段微带传输线的输入功率为30dBm,输出功率为29.7dBm,那么这段传输线的插入损耗是多少()A.0.3 dBmB.0.5 dBmC.0.3dBD.0.5dB10.关于理想的T型结,下列说法正确的是()A.输入端口匹配B.两输出端口隔离C.两输出端口匹配D.有耗11.两个发射通功率均为14,分别馈给两个间距为半波长的Patch天线,Patch单元天线的增益为5dBi。

则该简易1*2阵列的ERIP是多少dBm?()A.25B.19C.22D.2812.下列传输线,工作带宽最窄的是()A.同轴线B.带状线C.波导D.微带线13.天线增益与天线方向性系数的关系是()A.天线增益=天线方向性系数*天线效率B.天线方向性系数=天线增益C.天线方向性系数=天线增益*天线效率D.天线方向性系数和天线增益没有关系14.无线信号在水面上传播比在空气中传播的损耗小,无线信号的频率越高,在空气中传播的损耗越大,绕射损耗大。

2.4 GHz SiGe HBT E类高功率放大器

2.4 GHz SiGe HBT E类高功率放大器

2.4 GHz SiGe HBT E类高功率放大器尤云霞;陈岚;王海永;吴玉平;吕志强【摘要】针对无线通信飞速发展对高功率和高效率功率放大器的需求,提出了一种Cascode结构的2.4 GHz E类高功率放大器。

它采用单端接地和单级放大的电路形式。

基于国内新研制的0.18μm SiGe BiCMOS工艺,实现了片内全集成,包括输入与输出匹配网络,具有结构简单、高集成度等特点。

同时,考虑了器件的击穿电压,高电流下的电迁移和高功率的稳定性等问题,并进行了优化设计。

结果表明,在10 V 电源电压时,放大器的输出功率高达30 dBm,效率PAE为39.69%,最大功率增益达14 dB。

%For the needs of high power and high efficiency power amplifier in the rapid development of wireless com-munication,a 2. 4GHz class E high power amplifier was designed,which was based on Cascode configuration. It employed single-ended and one stage amplification circuit format. All the devices including input and output matching networks were integrated on chip which was based on a 0 . 18 μm SiGe BiCMOS technology newly researched in a domestic foundry. It had advantages of simple structures and high integration. At the same time,it also considered devices’ breakdown voltage,electro migration with high current and stability of high power and so on problems to design optimization. Results showed that the powe r amplifier’s output power could reach up to 30 dBm,PAE to 39. 69% and maximum power gain was 14 dB of power supply 10 V.【期刊名称】《电子器件》【年(卷),期】2014(000)002【总页数】5页(P235-239)【关键词】功率放大器;E类;Cascode结构;功率器件【作者】尤云霞;陈岚;王海永;吴玉平;吕志强【作者单位】中国科学院微电子研究所,北京100029;中国科学院微电子研究所,北京100029;中国科学院微电子研究所,北京100029;中国科学院微电子研究所,北京100029;中国科学院微电子研究所,北京100029【正文语种】中文【中图分类】TN432;TN722.7.5随着第3代移动通信、蓝牙、Wi-Fi与Zigbee等无线通讯的飞速发展,射频收发器要求的性能也越来越高。

提高全固态高频功率放大器工作效率的几种方法

提高全固态高频功率放大器工作效率的几种方法

提高全固态高频功率放大器工作效率的几种方法
提高全固态高频功率放大器工作效率的几种方法有以下几种:
1. 优化功率晶体管的工作点:通过调整功率晶体管的偏置电流和工作电压,可以使功率晶体管在最佳工作状态下工作,从而提高效率。

2. 采用高效的功率结构:选择高效的功率晶体管结构,如Doherty结构、Envelope Tracking结构等,可以在减小功率损耗的同时提高放大器的效率。

3. 优化匹配网络:合理设计匹配网络,使得功率放大器在输出负载状态下具有最佳的功率传输效率。

4. 提高热导率:采用高导热性材料和结构,有效管理功率晶体管的热量,防止功率晶体管过热,提高工作效率。

5. 降低损耗:通过选择低损耗的材料和器件,降低放大器中的损耗,提高放大器的效率。

6. 优化电源设计:采用高效的电源设计,提供稳定和高效的电源供应,降低电源损耗,提高放大器的工作效率。

7. 采用电源管理技术:利用电源管理技术,如功率追踪、功率调整等,根据实际工作要求动态调整电源供应,进一步提高功率放大器的效率。

总之,通过优化功率晶体管工作点、采用高效的功率结构、优化匹配网络、提高热导率、降低损耗、优化电源设计和采用电源管理技术等方法,可以提高全固态高频功率放大器的工作效率。

功率放大器综述

功率放大器综述

为了降低通信运营商的运营成本,减小冷却成本,易于热控制,就 要求提高PA的效率。
为了减小功率放大的级数和功率管的使用数量,以更低的功率进行 驱动,降低成本,就要求提高放大器的增益。
二、功率放器的分类
A类功率放大器的导通角θ=360°,高线性度,最高效率也只有50%, 常用于小信号放大。
B类放大器由于采用零偏置,导通角θ=180°,理想状态下的 效率最高可达到78.5%,常用于中低频大功率放大电路。
射频功率放大器的应用
射频功率放大器由于具有工作电压低、尺寸小、线性度高、噪声低 等优点,广泛应用在卫星通信、移动通信、雷达和电子战以及各种 工业装备中。
在军用与铁路通信中,功率放大器通常被用于无线通信系统发射机、 军用雷达的核心器件。
在第三代移动通信系统(3G)中,要求数据传输速率达到2M bit/s, 单个信号的带宽达5MHz,这就需要PA具有宽带特性。
提高射频功率放大器的输出功率、工作效率以及线性度和稳定性等 性能指标对于整个通信系统具有重要的意义。
1948年双极晶体管(BJT)
1952年提出结型场效应 管(JFET)
• 硅双极晶体管开始应用于射 频微波领域,可以对从几百 兆赫(UHF)到Ka波段的信号 进行放大
70年代以后GaAs肖特 基势垒栅场效应晶体管 (GaAs MESFET)
3. 功率放大器的研究意义
功率放大器概述
射频功率放大器 (RF PA) 作为各种无线发射机的重要模块,在现代 通信系统中的主要作用是在工作频段高效率地放大射频小信号,并 将大功率射频信号传输到发射天线中。
射频功率放大器的工作过程,实际上是将电源直流功率在输入调制 信号的控制下转换成具有相同频率、相同相位的大功率信号。

射频PA的DPD技术和系统

射频PA的DPD技术和系统

TM
Cumulative Complementary Distribution Function CCDF
• This is a statistical measure for digital signals
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2010.
P-1dB Cripps, RFPA, Ch. 8, p. 225, Figure 8.3
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2010.
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2010.
Prob (%)

射频功率放大器简介(1)

射频功率放大器简介(1)

匹配设计
成功地设计微波功率放大器的关键是设计阻抗匹配网络。在任 何一个微波功率放大器设计中,错误的阻抗匹配将使电路不稳定,同 时会使电路效率降低和非线性失真加大。在设计功率放大器匹配电路 时,匹配电路应同时满足匹配、谐波衰减、带宽、小驻波、线性及实 际尺寸等多项要求。当有源器件一旦确定后,可以被选用的匹配电路 是相当多的,企图把可能采用的匹配电路列成完整的设计表格几乎是 不现实的。
ηadd= (射频输出功率-射频输入功率)/ 直流输入功率 ηadd称为功率放大器的功率附加效率,它既反映了直流功率转换成射频功率的 能力,又反映了放大射频功率的能力。很明显,用功率附加效率ηadd衡量功率 放大器的功率效率是比较合理的。
主要性能指标
6. 饱和输出功率 和 1dB压缩点 随着输入功率的继续增大,放大器进入非线性区,其输出功率不再随输入 功率的增加而线性增加,也就是说,其输出功率低于小信号增益所预计的 值。通常把增益下降到比线性增益低1dB时的输出功率值定义为输出功率 的1dB压缩点,用P1dB放大器参数表示。典型情况下,当功率超过P1dB时, 增益将迅速下降并达到一个最大的或完全饱和的输出功率,其值比P1dB大 3-4dB。
匹配设计
③低损耗。在大功率放大器中,由于输出功率较大,输出电路有一点损耗 就会有较大功率损失,并且,在输出电路板上转成热耗,从而使电路的可 靠性变差。例如,连续波输出功率为200W,输出匹配电路损耗为1dB,则 耗散在输出匹配电路上的功率高达40W以上。输出功率越大,输出匹配电 路上所耗散的功率越大。因此,在设计大功率放大器时,应该尽可能减小 输出匹配电路的损耗。 ④线性。由非线性分析知道,功率放大器的三阶交调系数是与负载有关的, 因此在设计输出匹配电路时,必须考虑线性指标的要求。 ⑤效率。功率放大器的效率除了取决于晶体管的工作状态、电路结构、负 载等因素外,还与输出匹配电路密切相关。要求输出匹配电路保证基波功 率增益最大,谐波功率增益最小,损耗尽可能小和良好的散热装置。

WCDMA内环功控(ILPC)因应之道

WCDMA内环功控(ILPC)因应之道

在测WCDMA的内环功控时最常Fail在Step E跟Step F因为Step E跟Step F要求的动态范围最大,至少73 dB,且要求的精确度高 (Step Size = 1dB, Range = 0.5 dB ~ 1.5 dB),因此最常Fail而PA在切换Gain Mode时 会有一段区间的Power是重迭的,称为磁滞现象该磁滞现象,是避免PA在Power Mode切换时,因不稳定而产生震荡。

同 时也可避免Power变化太过剧烈,以至于Slot跟Slot间的Power差异过大, 造成内环功控 Fail。

而在量内环功控时 每秒钟会调整功率1500次,以Step E跟Step F而言,因为动态范围最大,所以必定每个Power Mode都会用到。

如果Power Mode切换时间太慢,以下图为例:可能仪器在量测时,本来预期是要从16.5 dBm,降到15.5dBm,但PA还却停留在16.5 dBm,这样就是Slot Delta = 0,而ILPC要求Slot Delta范围为 0.5 dB ~ 1.5 dB,故此时就Fail。

所以Power Mode切换时间,是越快越好。

因此 假设A厂家跟B厂家 切换Gain Mode的时间不同由上表可知 A厂家内环功控的机会较大 因为切换时间较长此外 MIPI信号也是一个影响PA切换Gain Mode速度的考虑因素根据电容公式 :若长度越长,截面积越大,则寄生电容越大。

而A方案的SDATA/SCLK长度比较长,造成的寄生电容较大,使得PA在Power Mode切换的反应速度变慢,若赶不上内环功控每667us调整一次功率的要求,就可能会Fail此外 若A方案跟B方案,其SDATA/SCLK的线宽不同 :因为B方案的线宽较宽,寄生电容较大,使得PA在Power Mode切换的反应速度变慢,若赶不上内环功控每667us调整一次功率的要求,就可能会Fail。

除此之外,若要添加RC滤波器时,其电容的值也要特别注意,不要超出MIPI 讯号的电容负载限制。

氮化镓功率器件-2016版

氮化镓功率器件-2016版

《氮化镓功率器件-2016版》POWER GaN 2016: EPITAXY AND DEVICES, APPLICATIONS, AND TECHNOLOGY TRENDS购买该报告请联系:麦姆斯咨询王懿电子邮箱:wangyi#(#换成@)氮化镓(GaN)功率器件:一个有前途的、快速增长的市场氮化镓功率器件市场持续增长,好消息不断2015~2016年氮化镓(GaN)功率器件市场一直保持增长势头,令人信心满满。

截止2014年底,尽管多家厂商发布了一些产品进展公告,但是600V / 650V氮化镓高电子迁移率场效晶体管(HEMT)的商业可用性还存在问题。

快到2016年时,终端用户不仅可以从Effcient Power Conversion公司购买到低压(小于200V)氮化镓器件,也可以从Transphorm、GaN Systems和Panasonic等公司购买到高压(600V / 650V)氮化镓器件。

另外,2016年3月初创公司Navitas Semiconductor发布了氮化镓功率IC,随后Dialog Semiconductors于2016年8月发布了氮化镓功率IC。

还有一些厂商也想将氮化镓从功率半导体引入更大的模拟IC市场。

例如,Effcient Power Conversion公司和GaN Systems公司都在研发一个更加集成化的解决方案,模拟IC领头羊——德州仪器(Texas Instruments)已经涉足氮化镓领域,并在2015年和2016年分别发布了80V功率级和600V功率级产品。

尽管有上述令人振奋的产业发展,但是相比巨大的硅基半导体市场(3350亿美元),氮化镓功率器件市场仍显得很小。

事实上,根据Yole调研数据显示,2015年氮化镓功率器件市场低于1000万美元。

但是,请再三打量“氮化镓”,它刚刚在市场上抛头露面,所以目前的市场规模是合理的。

首个氮化镓器件直到2010年才实现商用,可见氮化镓行业才仅仅6岁。

射频前端技术考核试卷

射频前端技术考核试卷
2.射频前端设计时,不需要考虑信号的电磁兼容(EMC)问题。()
3.在射频前端中,低噪声放大器(LNA)的主要作用是提高信号的增益。()
4.射频开关的速度越快,对射频前端性能的影响越小。()
5.射频前端中的滤波器可以完全消除带外干扰。()
6.射频前端的天线设计只需考虑其增益和方向性。()
7.射频前端中的功率放大器(PA)可以工作在A类、B类或C类状态,且效率依次提高。()
3.天线分集技术通过使用多个天线在不同位置或方向接收同一信号,提高信号接收的可靠性和性能,特别是在多路径环境中。
4.频率合成器通过使用低相位噪声的参考晶振和合成技术来降低相位噪声。相位噪声影响信号的稳定性和系统的误码率性能。
三、填空题(本题共10小题,每小题2分,共20分,请将正确答案填到题目空白处)
1.射频前端的主要功能是进行信号的______、______和______。()
2.射频放大器的______是指其在工作频率范围内的最大增益。()
3.射频前端设计中的______技术可以有效降低放大器的功耗。()
4.在射频前端中,______是衡量放大器效率的重要指标。()
9.在多频段多模(MMMB)射频前端设计中,______技术可以减少不同频段间的干扰。()
10.射频前端中的______技术可以用于提高信号的线性度和效率。()
四、判断题(本题共10小题,每题1分,共10分,正确的请在答题括号中画√,错误的画×)
1.射频前端中,放大器的增益越高,其线性度通常越好。()
A. Doherty技术
B. Envelope Tracking
C.数字预失真
D. A类放大器设计
8.射频前端中的匹配网络可以起到以下哪些作用:()

包络跟踪(ET)--功率放大器效率提高利器

包络跟踪(ET)--功率放大器效率提高利器

在无线射频设计和测试中包络跟踪(ET-Envelope tracking)描述了一种射频(RF) 放大器设计方法;其通过不断调整施加到射频功率放大器的电源电压,以确保放大器在每个传输时刻所需的功率以峰值效率运行。

一、功率放大器的效率曲线采用固定电源电压设计的传统射频放大器只有在压缩工作时才能最有效地工作。

功放输出功率与效率曲线显示:功放输出的功率越高,效率越高。

图1.功率与效率曲线图二、GSM信号特点在GSM网络中它基于恒定包络调制,这意味着其信号的PAPR接近于零。

因此GSM放大器输出功率接近饱和点,因此它具有更好的效率,如下图所示:图2.GSM功率与效率曲线图GSM恒定包络信号在时域中的样子:图3.GSM恒包络信号三、LTE信号特点在LTE网络中其信号采用由于OFDM调制,PAPR接近12dB。

并且使用一些基带技术可以实现8.5dB PAPR。

因此由于这个8.5dB PAPR,功率放大器在低于饱和点8.5dB处工作,从而导致PA效率下降,如下所示:图4.LTE功率与效率曲线图LTE变化包络信号在时域中的样子:图5.LTE变化包络信号四、峰均比与放大器如果峰值与平均功率比很高即与平均值相比,波形具有更高的峰值电平,因为放大器必须能够适应峰值,同时仍仅以低平均功率电平运行。

在峰值期间放大器需要完整的电源电压才能在不压缩的情况下提供所需的功率;但在较低信号期间,不需要该电压,这意味着功率会在设备中消耗。

放大器只需要较小的电压即可提供较低水平的功率,因此始终以较高的电压运行,不必要地浪费功率。

图6.功率与电压网线图可以看出功耗与射频包络顶部和轨电压之间的面积成正比。

对于低峰均功率比信号,这可能很高。

五、包络跟踪特点为了提高射频放大器的效率水平,最有效方法之一是采用包络跟踪技术(Envelope tracking technology)。

而包络跟踪则是采用一种系统,放大器可以跟踪和利用信号的幅度包络。

浅析晶体管放大电路的负载线

浅析晶体管放大电路的负载线

浅析晶体管放大电路的负载线晶体管放大电路的负载线包括直流负载线和交流负载线,描述了输出端电压、电流与负载之间的关系。

大学期间曾经学习过相关知识,本文将与大家重温所学内容,并介绍直流工作点对功率放大器性能的影响。

直流负载线以场效应管为例,图1给出了典型的晶体管放大电路,直流供电UDD、电阻Rg和Rd构成了晶体管的偏置网络,决定了静态偏置点,RL为电路的负载。

ui(t)为输入的交流信号,叠加在UDD提供的栅压上,共同控制晶体管的输出特性,漏源电压Uds也是放大后的交流信号与直流电压的叠加波形。

图1. 典型的晶体管放大电路及直流等效电路晶体管可以工作在直流模式,在偏置网络一定的情况下,栅源电压Ugs和漏源电压Uds是不随时间变化的,通常称之为静态工作状态。

当Ugs大于阈值电压时,晶体管开始导通,漏极电压的存在将使得漏极电流急剧增大,相当于一个压控电流源,正是基于这一特性,晶体管可以用来设计放大电路。

图1右为等效的直流电路,此时Rd相当于晶体管输出的负载,漏源电压可以表示为进一步转换为上式即为直流负载方程,漏极电流与漏源电压呈现为线性的关系,在晶体管的直流输出特性曲线中将得到一条斜率为(-1/Rd)的直线,如图2所示,这就是直流负载线。

决定晶体管输出电流的关键因素之一在于所施加的栅源电压,晶体管导通后,随着栅源电压的增大,漏极电流也将不断增大,对于上述直流偏置网络,漏源电压将逐步减小。

因此,直流负载线表面上只是漏极电流和漏源电压的关系,实际上栅源电压是“幕后推手”。

图2. 晶体管的直流负载曲线值得一提的是,直流负载方程取决于偏置网络,偏置网络不同,直流负载方程不同,直流负载线也将不同。

比如,实际的射频功放偏置网络很少采用图1的形式,因为漏极电阻Rd会消耗很多功率,限制了效率。

更常见的偏置网络是,使用LDO经过RF Choke电感结合电容或者1/4λ传输线结合扇面电容给功放供电,不存在Rd (假设传输线及电感是理想无耗的),无论Id如何变化,Uds始终是恒定的。

MIPI 技术及物理层测试的挑战

MIPI 技术及物理层测试的挑战

Copyright © 2014 MIPI Alliance. All rights reserved.
关于MIPI实体规范的新闻稿将于9月17日发布
• MIPI联盟推出MIPI C-PHY与D-PHY的更新——新规范的发布将扩展MIPI联
盟为移动及相关产业应用所提供物理层级规范的家族
• 今天MIPI推出新的MIPI C-PHY – 扩展了MIPI联合会 的物理层级规范,拓宽了生产商们的接口选择,同 时也为公司基于特定商业策略或技术要求的差异化产品设计,提供了 新的机遇 – 专为程序处理器连接相机和显示模块设计 • 更新了1.2版本的D-PHY以及3,1版本的M-PHY • 1.0版本MIPI C-PHY 、1.2版本的D-PHY以及3,1版本的M-PHY现在对MIPI联 合会成员开放
– 第二部
• Synopsys 的 MIPI相关IP技术及其与UFS/SSIC/M-PCIe的 互操作性 – 第三部
• MIPI物理层发展规划以及电气特征测试方案
MIPI 物理层测试的挑战
–李凯
Page 20
测试主题的内容安排
MIPI 物理层的发展 MIPI 物理层的电气特点 物理层测试的挑战以及测试方案 • 发送端的测试
MIPI 技术及物理层测试的挑战
–是德科技(Keysight)携手MIPI联盟和 Synopsys共同推动MIPI技术发展
Page 1
内容安排
– 第一部
• MIPI 联盟简介、中国成员、规范框架以及未来走向
– 第二部
• Synopsys 的 MIPI相关IP技术及其与UFS/SSIC/M-PCIe的 互操作性 – 第三部
Copyright © 2014 MIPI Alliance. All rights reserved.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

What is Envelope Tracking- Envelope Tracking, ET is becoming a key technique in many RF amplifier designs where it enables much higher levels of efficiency to be achieved, thereby saving battery or other power consumption as well as bring other advantages.Envelope tracking is a technology associated with Radio Frequency, RF amplifier design.When using envelope tracking technology the power supply voltage applied to the power amplifier is constantly adjusted to ensure that the amplifier is operating at peak efficiency for the given instantaneous output power requirements.This brings many advantages to RF amplifier applications in many industry sectors and as a result it has been adopted in a wide variety of areas.While the concept behind envelope tracking technology has been understand for many years, it has not been easy to achieve in a workable form until recently because of the difficulties of implementing it in a satisfactory format.RF amplifier efficiency improvement techniquesOver the years there have been several techniques, apart from envelope tracking that have been used to improve the efficiency performance of RF amplifiers. Each of these techniques has its advantages and disadvantages.Ope rate PA i n co mpr essi on This scheme is only applicable for constant amplitude schemes such as FM and GMSK where there is no amplitude element in the modulation. Can use digital pre-distortion to provide linearity where some amplitude components are available.• Easy operation where modulation and performance requirements permit.• Provides high efficiency while in compression• Does not provide high efficiency for high peak to average power levels signals as amplifier will not run in compression all thetime.DC Trac king The PA voltage is adjusted in line with the modulation level,often using protocol commanded power supply voltage levelchanges• Relatively straightforward to implement.• Does not requireparticularly advanced techniques.• Deals only with average power.• Does not address broadbandissues.• Does not address instantaneous peaks and troughs.Doh erty Amp lifier Amplifier consists of two elements: main amplifier and a peaking amplifier that comes in to assist with peak power levels.The peaking amplifier is biased off for most of the time, onlycoming into operation for peaks.• Gives useful increase in efficiency• Requires combiner for combining output of two amplifier sections.• Gain kinks can occur• Gain and phase vary with output power.Env elop e Tr acki ng Envelope tracking, has the PA supply voltage that tracks the RF envelope. This enables the amplifier to be run at a voltage that gives the optimum efficiency or other performance level at any instantaneous power level.• Provides best performance at all power levels.• Permits broadband operation.• Provides additional advantages in terms of operation into mismatched loads, etc. .• Envelope tracking requires very fast - high bandwidth - powersupply.• Requires accurate envelope signal for power supply.Each technique has its own advantages and can be used to provide significant benefits under certain scenarios. Envelope tracking is able to offer some significant benefits in terms of efficiency, and general operation for RF power amplifiers used in many applications.Envelope tracking backgroundBefore looking further into the technology in this envelope tracking tutorial, it is worth looking at the background and need for the technique.In most RF amplifier applications, the efficiency of the amplifier has an impact on the design, operation and efficiency of the overall system. Power supply requirements, RF amplifier capabilities and heat-sinks, battery life and many more elements are dependent upon the RF amplifier, especially when it is one of the main power users within a system.For any RF amplifier power is supplied to the circuit, and a signal is produced. The output will always be less than the DC input power, the ratio of output to DC input being the efficiency.The efficiency of an amplifier depends upon the shape of the waveform and the mode in which it is operating.When operating in a linear mode, the output device must always be in conduction, with the output voltage rising and falling between the two limits.When operating in this mode, often called Class A, the maximum theoretical efficiency that can be achieved is 50%. However in a real system the achieved levels are always below this.Linear operation of an amplifierTo achieve better efficiency levels, it is possible to drive the amplifier into compression. Much greater levels of efficiency can be achieved, and if a steady waveform, like FM is used, the only degradation of the signal is that additional harmonics of the fundamental carrier are generated and these can be filtered out using RF filters.Unfortunately when modulation with an amplitude component is applied to a carrier this is distorted if it is passed through an amplifier that is run in compression.For data transmission systems that are used today like UMTS, HSPA, and 4G LTE, etc, the RF waveforms that are used incorporate an amplitude component in addition to the phase elements and therefore they require a linear amplifier.The situation becomes worse as if the peak to average ratio is high, i.e. the waveform has higher peak levels when compared to the average because the amplifier has to be able to accommodate the peaks while still only running at a low average power level.Waveform with high peak to average ratioDuring the peaks, the amplifier requires the full voltage to be able to deliver the required power without running into compression, but during the periods of lower signal, this voltage is not required and means that power is dissipated in the device. The amplifier only requires a smaller voltage to deliver the lower levels of power and therefore running with the higher voltage all the time, unnecessarily wastes power.High levels of power are dissipated if the full rail voltage is maintainedIt can be seen that the power dissipated is proportional to the aea between the top of the RF envelope and the rail voltage. For low peak to average power ratio signals, this can be high.In addition to the modulation, many requirements placed on RF amplifiers used in modern applications such as cellular telecommunications still further reduce the efficiency levels - many amplifiers are required to operate over wide bands, or multiple frequency bands for example.Envelope tracking: basic conceptIn order to improve the efficiency levels of RF amplifiers, one of the approaches that can be used is to employ envelope trackingtechnology.As the name indicates, envelope tracking employs a system whereby the amplitude envelope of the signal is tracked and utilised by the amplifier.Using envelope tracking the power supply voltage applied to the power amplifier is constantly adjusted to ensure that the amplifier is operating at peak efficiency for the given instantaneous output power requirements.Envelope tracking conceptIt can be seen that using envelope tracking technology the voltage applied to the amplifier is sufficient to enable it to handle the signal without entering compression, but it also does not dissipate unnecessary power.Envelope Tracking Systems & Block Diagramthe Envelope Tracking, ET systems requires a number of circuit blocks providing modulation information to the power supply to provide an effective operating system.In order to implement envelope tracking, several circuits and circuit blocks are needed.It is necessary to be able to control the power supply voltage to the amplifier so that it only receives the voltage, and hence the power required to deliver the signal in a linear fashion.The envelope tracking block diagram and circuits or envelope tracking system requires a system that is fast and able to respond to the quickly changing envelope levels while still being able to provide the current levels needed all the time.Traditional system block diagramIn order to develop an envelope tracking amplifier, it is necessary to modify the existing system block diagram to accommodate the additional components.A traditional RF amplifier block diagram would have the baseband generation system where the signal is created with its modulation and up-converted to the final frequency. It would then be amplified and applied to the final RF power amplifier. This would traditionally be supplied by a DC-DC converter providing a constant voltage.Traditional amplifier system block diagramIt is possible to look a little deeper into what is contained within these different areas.Most signals these days are in a digital format and they arrive at the modulator as I or In-phase signals and Q or Quadrature signals. The I and Q signals are applied to the modulator to give the overall signal.Traditional amplifier system signal pathIn the diagram it can be seen that the I and Q signals in their digital format are separately applied to a digital to analogue converter to transform them into an analogue format. This signal is passed through a low pass filter to remove the unwanted alias and higher frequency products.Envelope tracking system block diagram Envelope tracking system signal pathEnvelope tracking system signal pathThis obviously places some critical design requirements onto the envelope tracking modulator / supply, but it also place requirementsEnvelope Tracking Shaping Characteristics- Envelope tracking systems can utilise a number of different characteristics or profiles to define the envelope shape. These can be optimised to provide different results.The shaping characteristics or profiles of the envelope tracking signal applied to the envelope tracking power supply / modulator can provide different results dependent upon the requirements for the system.By selecting the approach required, it is possible to attain different types of performance within the RF power amplifier.Effect of modulating the supply voltageVarying the voltage on the RF power amplifier enables the optimum performance point to be selected for any given level of RF power output.It is found that for any given supply voltage, there is an optimum level of efficiency that can be obtained. The aim of an envelope tracking system is generally to operate at the most efficient point on the curve for any given power output.It can be seen by the graph below that the for any given supply voltage, i.e. drain voltage or collector voltage dependent upon the type of device, the power efficiency rises as the power output starts to rise, then reaches a peak before falling away.If many plots are made for different supply voltages, it can be seen that there is curve for the maximum efficiency level. If the supply voltage follows this curve, then the RF amplifier can operate at its maximum efficiency level for any given power level.Power efficiency for different supply voltagesEnvelope tracking shapingThe obvious aim for an envelope tracking system is to optimise the efficiency of the system. Under these circumstances the envelope tracking signal should be such that the points of maximum efficiency are used for each voltage.However it is also possible to adopt other envelope tracking profiles. One in particular follows a constant gain and is known as the Isogain contour and provides the maximum linearity.Envelope shaping - maximum efficiencyIn order to obtain the maximum efficiency a supply voltage shape profile that follows the points of maximum efficiency for the various output power levels is required.This can be plotted on the various curves for gain and power output for the different supply voltage levels.Maximum efficiency envelope tracking shape / contourIn order to obtain the required voltage, it is necessary to develop a shape look-up table. This ensures that the required voltage is provided to the amplifier for a given envelope amplitude. This can be developed from the curves for the amplifier.Typical shape lookup curve for maximum efficiencyEnvelope shaping - linear gainUnder some circumstances it may be necessary to optimise the envelope tracking system to provide linear gain rather than maximum efficiency. Under these circumstances it is necessary to alter the operating conditions slightly and this results in a different curve for the look-up table.Linear gain envelope tracking shape / contourThe figures from these contours are taken and added into the shape loo-up table to provide the required envelope tracking contour for linear gain.Typical shape lookup curve for linear gainThe figures in the look-up tables are those used in the envelope shaping look-up memory. They enable the required contour to be provided to match the required supply voltage for the given instantaneous amplitude of the RF amplifier.Envelope tracking system block diagramEnvelope tracking control signal block diagramPre-envelope gain: This stage of the control signal generation is required because the output power of the overall transmitterEnvelope tracking system signal pathIn this diagram, it can be seen that the I and Q signals enter a block called delay where the delay matching can be applied and theyare also split off along their different paths.The RF path passed into DACs, one for the I and another for the Q signal and these outputs are then filtered and mixed up to the required frequency where they are summed and then amplified.The envelope control signal path incorporates very different signal processing techniques and therefore it has a different level of delay.The envelope control signal path incorporates a number of different baseband blocks to ensure the contour of the control signal is correct: this involves aspects including gain control and a RAM look up table. The signal is converted from digital into an analogue format and then filtered before being applied to the envelope tracking supply.One of the major factors in the different delays between the two signal paths is the low pass filters used after the DACs. Low pass filters inherently have a delay and as their characteristics are very different, they have different levels of delay.As seen on the left most block in the block diagram, the delay balanced is added as the IQ signals are split along the two paths and in this way the delay can easily be balanced at the outset.Envelope tracking synchronisation examplesIn order to illustrate the issue of synchronisation it is useful to see some examples.There are images taken from real laboratory envelope tracking systems showing good and poor synchronisation levels.Good envelope tracking synchronisationIf the delay envelope tracking balancing is not well matched, both signals fall out of synchronism and there is a mismatch between the two signals.As a rough rule of thumb the alignment must be within about half a nanosecond for 20 MHz bandwidth LTE signal.Poor envelope tracking synchronisationEven though the apparent discrepancy appears small, there are areas where there is insufficient voltage applied to the RF amplifier to cater for the signal, and other areas where there is too much voltage which will result in excess dissipation.。

相关文档
最新文档