高一下学期期末考试数学试题人教A版

合集下载

2020-2021学年高一下学期数学(人教A版(2019)必修第二册)(含解析)

2020-2021学年高一下学期数学(人教A版(2019)必修第二册)(含解析)
19.已知复数z满足 , 的虚部为2,
(1)求复数z;
(2)若复数z在复平面内所对应的点位于第一象限,且复数m满足 ,求 的最大值和最小值.
20.某中学为了解大数据提供的个性化作业质量情况,随机访问50名学生,根据这50名学生对个性化作业的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间 、 、…、 、 .
【详解】
∵向量 ,
∴ ,又 ,
∴ ,
∴ .
故选:B.
6.D
【分析】
设出正六棱柱底面边长为 ,可知正六棱柱的高为 ,再通过正六棱锥与正六棱柱的侧面积之比为 可得正六棱锥的高,这样就可以得到答案.
【详解】
设正六棱柱底面边长为 ,由题意可知正六棱柱的高为 ,则可知正六棱柱的侧面积为 .
设正六棱锥的高为 ,可知正六棱锥侧面的一个三角形的边为 上的高为 ,
9.BD
【分析】
根据图表,对各项逐个分析判断即可得解.
【详解】
对A,在前四年有下降的过程,故A错误;
对B,六年的在校生总数为24037,平均值为4006以上,故B正确;
对C, ,未接受高中阶段教育的适龄青少年有468万人以上,故C错误;
对D, ,故D正确.
故选:BD
10.ABC
【分析】
对于A, ,可判断错误;对于B找出反例 不满足题意,判定错误;对于C若 ,则其不正确;对于D, ,则其虚部为0,故正确.故可得答案.
A.近六年,高中阶段在校生规模与毛入学率均持续增长
B.近六年,高中阶段在校生规模的平均值超过4000万人
C.2019年,未接受高中阶段教育的适龄青少年不足420万
D.2020年,普通高中的在校生超过2470万人
10.下列说法不正确的是()

人教A版数学必修四(下)高一期末考试

人教A版数学必修四(下)高一期末考试

银川一中2015/2016学年度(下)高一期末考试数 学 试 卷命题人:尹秀香一、选择题(每小题5分,共60分) 1.计算()sin 600-o 的值是()A .12B .2C .2-D .12-2.若0tan <α,且ααcos sin >,则α在()A .第一象限B .第二象限C .第三象限D .第四象限 3.设向量(2,4)a =r 与向量(,6)b x =r共线,则实数x =() A .2B .3C .4D .64.函数2sin cos 44+-=x x y 的最小周期是() A .πB .π2C .2πD .4π 5.为了得到函数3sin 26y x π⎛⎫=- ⎪⎝⎭的图象,只需把函数3sin 6y x π⎛⎫=-⎪⎝⎭的图象上所有的点的()A .横坐标伸长到原来的2倍,纵坐标不变B .横坐标缩短到原来的12倍,纵坐标不变C .纵坐标伸长到原来的2倍,横坐标不变D .纵坐标缩短到原来的12倍,横坐标不变6.在ABC ∆中,已知2AB =,1BC =,AC =AB BC BC CA CA AB ⋅+⋅+⋅=u u u r u u u r u u u r u u u r u u u r u u u r( )A .-4B .-2C .0D .47.若)0(137cos sin πααα<<=+,则=αtan () A .31-B .512 C .512-D .318.已知角θ的顶点与原点重合,始边与x 轴正半轴重合,终边在直线x y 2=上,则)42sin(πθ+的值为() A .1027-B .1027 C .102-D .102 9.下列四个函数中,以π为最小正周期,且在区间,2ππ⎛⎫⎪⎝⎭上单调递减函数的是() A .sin 2y x =B .2cos y x =C .cos2xy =D .()tan y x =- 10.函数)23cos(x y --=π的单调递增区间是()A .)(322,342Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ B.)(324,344Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ C .)(382,322Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ D.)(384,324Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ 11.定义运算bc ad d bca -=.若71cos =α,1433cos sin cos sin =ββαα,20παβ<<<,则β=()A .12πB .6πC .4πD .3π12.设函数())sin(2)(||)2f x x x πϕϕϕ=+++<,且其图象关于直线0x =对称,则( )A .()y f x =的最小正周期为π,且在(0,)2π上为增函数ABCDOB .()y f x =的最小正周期为π,且在(0,)2π上为减函数C .()y f x =的最小正周期为2π,且在(0,)4π上为增函数 D .()y f x =的最小正周期为2π,且在(0,)4π上为减函数二、填空题(每题5分,共20分)13.已知r a 与r b 为两个不共线的单位向量,k 为实数,若向量r a +r b 与向量k r a -rb 垂直,则k =_______.14.如果函数3cos(2)y x ϕ=+的图象关于点4(,0)3π中心对称,那么||ϕ的最小值为 .15.如图所示,在四边形ABCD 中,AC 和BD 相交于点O ,设AD=,a AB b =u u u r r u u u r r ,若2AB DC =u u u r u u u r ,则AO =u u u r.16.已知1tan()42πα+=,则2sin 2cos 1cos 2ααα-+的值为 . 三、解答题(共70分) 17.(本小题满分10分) 求值:(1)οοοοοο18sin 45sin 27cos 18sin 45cos 27sin -+(2)οοοο80sin 2)]10tan 31(10sin 50sin 2[2++18.(本小题满分12分)在平面直角坐标系中,已知向量22,(sin ,cos ),(0,).2m n x x x π=∈u r r (1)若m n ⊥u r r,求tan x 的值; (2)若m n u r r 与的夹角为3π,求x 的值.19.(本小题满分12分)已知函数)0,0,0( ) sin()(πϕωϕω<<>>+=A x A x f的部分图象,如图所示.(1)求函数解析式; (2)若方程()f x m =在]1213,12[ππ-有两个不同 的实根,求m 的取值范围.20.(本小题满分12分)已知函数)0(23cos 3cos sin )(2>++-⋅=a b a x a x x a x f (1)写出函数的单调递减区间; (2)设]2,0[π∈x ,)(x f 的最小值是2-,最大值是3,求实数b a ,的值.21.(本小题满分12分)设关于x 的函数22221f (x )cos x a cos x (a )=--+的最小值为g(a ). (1)试用a 写出g(a )的表达式; (2)试求12g(a )=时a 的值,并求此时f (x )的最大值.22.(本小题满分12分)已知向量)2,2cos (x a -=,)2sin 32,2(x b -=,函数4)(-⋅=b a x f . (1)若]2,0[π∈x ,求)(x f 的最大值并求出相应x 的值;(2)若将)(x f 图象上的所有点的纵坐标缩小到原来的21倍,横坐标伸长到原来的2倍,再向左平移3π个单位得到)(x g 图象,求)(x g 的最小正周期和对称中心; (3)若1)(-=αf ,)2,4(ππα∈,求α2sin 的值.高一第二学期期末考试数学试卷——参考答案1 2 3 4 5 6 7 8 9 10 11 12 BBBABACDDDDB二、 解答题(每小题5分,共20分)13.114.6π15.2133a b +r r 16.56-17.(本小题10分)解:(1)原式sin(4518)cos 45sin18sin 45cos18tan 451cos(4518)sin 45sin18cos 45cos18-+====--o o o o o oo o o o o o o(2)18.(本小题12分) 解:(1)由已知得22cos 0,tan 122x x x -==得 (2)由已知得||1,||1,m n ==u r r221sin ||||cos 2232m n x x m n π∴⋅=-==u r r u r r 15sin(),(0,),,,422444612x x x x x πππππππ∴-=∈∴-<<∴-==又 19.(本小题12分)解:(1)由图可知A=1,T 52=,22632T πππππωω-=∴===得由2225()sin()1,033333f ππϕϕπππϕπ=+=-<<<+<得 235+==326πϕπϕπ∴,,5()sin(2)6f x x π=+ (2)由(1)及图知,5135()[,][,],]12361236f x ππππππ-在及上递减,在[上递增。

人教a版数学高一期末试题及答案

人教a版数学高一期末试题及答案

人教a版数学高一期末试题及答案一、选择题(每题3分,共30分)1. 下列函数中,为奇函数的是()A. y = x^2B. y = |x|C. y = sin(x)D. y = x^3答案:D2. 已知函数f(x) = 2x + 1,求f(-1)的值是()A. 1B. -1C. 3D. -3答案:B3. 函数y = 2x - 3的图象与x轴交点的横坐标是()A. 3/2B. -3/2C. 2/3D. -2/3答案:B4. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∩B的值是()A. {1}B. {2, 3}C. {4}D. {1, 2, 3}答案:B5. 已知等差数列{a_n}的首项为2,公差为3,求第5项的值是()A. 17B. 14C. 11D. 8答案:A6. 已知向量a = (1, 2),向量b = (3, 4),求向量a与向量b的点积是()A. 10B. 8C. 14D. 11答案:B7. 已知复数z = 2 + 3i,求z的共轭复数是()A. 2 - 3iB. -2 + 3iC. -2 - 3iD. 2 + 3i答案:A8. 已知函数f(x) = x^2 - 4x + 3,求f(x)的最小值是()A. -1B. 3C. 1D. 0答案:A9. 已知函数y = 1/x,求其在x = 2处的导数是()A. 1/2B. -1/2C. 2D. -2答案:B10. 已知函数f(x) = x^2 + 2x + 1,求其对称轴是()A. x = -1B. x = 1C. x = 0D. x = 2答案:A二、填空题(每题4分,共20分)1. 已知函数f(x) = x^3 - 3x,求f'(x) = ______。

答案:3x^2 - 32. 已知等比数列{a_n}的首项为1,公比为2,求第4项的值是______。

答案:163. 已知向量a = (3, -4),向量b = (2, 1),求向量a与向量b的叉积是 ______。

贵州省册亨县民族中学2013-2014学年高一下学期期末考试数学试题 Word版含答案(新人教A版)

贵州省册亨县民族中学2013-2014学年高一下学期期末考试数学试题 Word版含答案(新人教A版)

册亨县民族中学2013-2014学年第二学期期末考试试卷 高一数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4.本试卷主要内容:必修2,必修5。

第Ⅰ卷一.选择题:本大题共12小题.每小题5分,在每个小题给出的四个选项中,只有一项是符合题目要求的。

1.不等式x x x 2522>--的解集是( )A .{}51|≥-≤x x x 或B .{}51|>-<x x x 或C .{}51|<<-x xD .{}51|≤≤-x x2.若b a >,R c ∈则下列关系一定成立的是( )A .22bc ac >B .bc ac >C .c b c a +>+D .b a 11<3.右面的三视图所表示的几何体是( ) A .圆锥 B .棱柱 C .五棱锥 D .六棱锥4.不等式062<--y x 表示的平面区域在直线062=--y x 的( ) A.左上方 B. 右上方 C. 左下方 D. 右下方 5. 直线l 过点(2,1)且与直线072=+-y x 平行,则直线l 的方程为( )A. 02=-y xB. 032=+-y xC. 072=--y xD.正视图侧视图俯视图 (第3题图)02=-y x6. 方程064222=++-+y x y x 表示的曲线是( )A. 圆B. 点C. 不存在D. 无法确定7.在空间直角坐标系中,已知点()4,1,5-P ,则点P 关于Z 轴的对称点为( )A. ()4,1,5--'PB. ()4,1,5---'PC. ()4,1,5-'PD. ()4,1,5--'P8.在△ABC 中,A B C ∠∠∠、、所对的边分别是2、3、4,则三角形中最大角的余弦值为( )A. 78B.1116C. 14D. 14-9.数列{}n a 的通项公式为492-=n a n ,当该数列的前n 项和n S 达到最小时,n 等于( ) A .24 B .25 C .26 D .2710. 一个直角三角形的三边长分别为3cm 、4cm 、5cm ,则它绕斜边旋转一周形成的几何体的体积等于( )A .3584cm π B . 3548cm π C . 3528cm π D . 3524cm π 11.一个正方体的顶点都在球面上,它的棱长为2cm ,则球的表面积是( )A .28cm πB .212cm πC .216cm πD .220cm π12.如图,在长方体中,2,321===CC AD AB ,则二面角C BD C --1的大小为( ) A . 90° B . 60° C . 45° D . 30°第Ⅱ卷二.填空题:本大题共4小题,每小题5分。

广东省清远市2013-2014学年高一下学期期末考试数学试题 Word版含答案(新人教A版)

广东省清远市2013-2014学年高一下学期期末考试数学试题 Word版含答案(新人教A版)

2013-2014学年广东省清远市高一(下)期末数学试卷一、选择题(每小题5分,共50分)1.A={x|x>0},B={x|x>1},则A∩B=()A.{x|0≤x<1} B.{x|0<x≤1} C.{x|x<0} D.{x|x>1}2.各项都为正数的等比数列{a n}中,a1=2,a3=8,则公比q的值为()A.2B.3C.4D.53.不等式x2﹣3x+2>0的解集为()A、(﹣∞,﹣2)∪(﹣1,+∞)B、(﹣∞,1)∪(2,+∞)C、(﹣2,﹣1)D、(1,2)4.按如图的程序框图运行后,输出的S应为()A.7B.15 C.26 D.405.为了从甲乙两人中选一人参加数学竞赛,老师将二人最近6次数学测试的分数进行统计,甲乙两人的平均成绩分别是、,则下列说法正确的是()A.>,乙比甲成绩稳定,应选乙参加比赛B.>,甲比乙成绩稳定,应选甲参加比赛C.<,甲比乙成绩稳定,应选甲参加比赛D.<,乙比甲成绩稳定,应选乙参加比赛A.a3>b3B.C.0<b﹣a<1 D.a2>b2<7.将下列不同进位制下的数转化为十进制,这些数中最小的数是()A.(20)7B.(30)5C.(23)6D.(31)48.二次不等式ax2+bx+c<0的解集是R的条件是()A.B.C.D.9.在长为12cm的线段AB上任取一点M,并以线段AM为一边作正方形,则此正方形的面积介于36cm2与81cm2之间的概率为()A.B.C.D.10.在△ABC中,sinA:sinB:sinC=2:3:x,且△ABC为锐角三角形,则x的取值范围是()A.B.<x<5 C.2<x<D.<x<5二、填空题(每小题5分,共20分)11.执行如图所示的程序框图,若输入x=2,则输出y的值为_________.12.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为_________人.13.若x>0,y>0,且,则x+y的最小值是_________.14.如图所示,将若干个点摆成三角形图案,每条边(包括两个端点)有n(n>1,n∈N*)个点,相应的图案中总的点数记为a n,按上述规律,则a6=_________,a n=_________.三、解答题(共80分)15.(12分)某同学在研究性学习中,收集到某制药厂车间工人数(单位:十人)与药品产量(单位:万盒)的数据如表所示:工人数:x(单位:十人) 1 2 3 4药品产量:y(单位:万盒)3 4 5 6(1)请画出如表数据的散点图;(2)参考公式,根据表格提供的数据,用最小二乘法求出y关于x的线性回归方程y=x+;(参考数据i2=30,x i y i=50)(3)试根据(2)求出的线性回归方程,预测该制药厂车间工人数为45时,药品产量是多少?16.(12分)在△ABC中,角A,B,C的对边长分别为a,b,c,已知向量=(2cos,sin),=(cos,2sin),•=﹣1.(1)求角A的值;(2)若a=2,b=2,求c的值.17.(14分)高二某班50名学生在一次百米测试中,成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组[13,14),第二组[14,15)…第五组[17,18],如图是按上述分组方法得到的频率分布直方图.(1)若成绩大于等于14秒且小于16秒规定为良好,求该班在这次百米测试中成绩为良好的人数.(2)请根据频率分布直方图,估计样本数据的众数和中位数(精确到0.01).(3)设m,n表示该班两个学生的百米测试成绩,已知m,n∈[13,14)∪[17,18],求事件“|m﹣n|>2”的概率.18.(14分)等差数列{a n},a1=25,a6=15,数列{b n}的前n项和为S n=2b n﹣2.(n∈N*)(1)求数列{a n}和{b n}的通项公式;(2)求数列{}的前n项和T n.19.(14分)制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损分别为30%和10%.投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?20.(14分)设A(x1,f(x1)),B(x2,f(x2))是函数f(x)=+log2的图象上的任意两点.(1)当x1+x2=1时,求f(x1)+f(x2)的值;(2)设S n=f()+f()+…+f()+f(),其中n∈N*,求S n;(3)对于(2)中S n,已知a n=()2,其中n∈N*,设T n为数列{a n}的前n项的和,求证:≤T n<.。

河南省安阳一中2013-2014学年高一下学期期末考试数学试题 Word版含答案(新人教A版)

河南省安阳一中2013-2014学年高一下学期期末考试数学试题 Word版含答案(新人教A版)

安阳一中2013—2014学年第二学期期末考试高一数学试题卷一、选择题(共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知4sin 5α=,并且α是第二象限的角,那么tan α的值等于( ) A.43-B.34- C.43 D.342、已知向量(1,2),(2,1)a b ==-,下列结论中不正确的是( ) A .a ⊥b B .a ∥b a b = a b a b +=-3、等比数列{}n a 中, ,243,952==a a 则{}n a 的前4项和为( ) A .81 B .120 C .168 D .1924、在等差数列9}{,27,39,}{963741前则数列中n n a a a a a a a a =++=++项的和9S等于 ( )A .297B .144C .99D . 66 5、在ABC ∆中,::1:2:3A B C =,则::a b c 等于( )A .1:2:3B .3:2:1C .D .2 6、在ABC ∆中,若8,3,7===c b a ,则其面积等于( ) A .12 B .221C .36D .28 7、下列各函数中,最小值为2的是 ( ) A .1y x x =+ B .1sin sin y x x=+,(0,2)x π∈C .2y =D .2y =-8、若02522>-+-x x ,则221442-++-x x x 等于( )A .3B .3-C .54-xD .x 45- 9、要得到函数cos(2)3y x π=-的图象,只需将函数cos 2y x =的图象 ( )A. 向右平移6π个单位 B. 向右平移3π个单位 C. 向左平移6π个单位 D. 向左平移3π个单位 10、已知向量)sin ,(cos θθ=a , )1,3(-=b 则|2|b a -的最大值,最小值分别是( ) A .0,24 B .24,4 C .16,0 D .4,011、设各项均为正数的等差数列n a n 的前}{项和为,1,>m S n 若0211=-++-m m m a a a 且m S m 则,3812=-等于 ( )A .38B .20C .10D .912、如图,ABC ∆的外接圆的圆心为O ,2AB =,3AC =,BC =则⋅AO BC 等于( )A.32B.52C. 2D.3二、填空题(共4小题,每小题5分,满分20分)13、设,x y R +∈且111x y+=,则x y +的最小值为________. 14、若实数x 、y 满足约束条件⎪⎩⎪⎨⎧-≥≤+≤.1,1,y y x x y 则y x z +=2的最大值是_________15、已知数列{}n a 中,732,1a a ==,且数列1{}1n a +为等差数列,则5a = _________ 16、如图,为测量山高MN ,选择A 和另一座山的山 顶C 为测量观测点.从A 点测得M 点的仰角60MAN ∠=︒C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测得60MCA ∠=︒已知山高100BC m =,则山高MN =________m .三、解答题(本小题共6小题,共70分,解答应写出文字说明,证明过程或演................算步骤...) 17、(本小题满分10分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .角A ,B ,C 成等差数列.(1)求B cos 的值;(2)边a ,b ,c 成等比数列,求C A sin sin 的值.18、(本小题满分12分)已知17cos ,sin(),(0,),(,)3922ππβαβαβπ=-+=∈∈. (Ⅰ)求cos 2β的值; (Ⅱ)求sin α的值.19、(本小题满分12分)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根。

期末考试综合检测试卷-2020-2021学年高一数学同步练习和分类专题(人教A版2019必修第二册)

期末考试综合检测试卷-2020-2021学年高一数学同步练习和分类专题(人教A版2019必修第二册)

高中数学必修二期末考试综合检测试卷第二学期高一期末测试一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知复数z=(1-i)+m(1+i)是纯虚数,则实数m=( )A.-2B.-1C.0D.12.幸福感指数是指某个人主观地评价他对自己目前生活状态的满意程度的指标,常用区间[0,10]内的一个数来表示,该数越接近10表示满意程度越高.现随机抽取6位小区居民,他们的幸福感指数分别为5,6,7,8,9,5,则这组数据的第80百分位数是( )A.7B.7.5C.8D.93.已知α为平面,a,b为两条不同的直线,则下列结论正确的是( )A.若a∥α,b∥α,则a∥bB.若a⊥α,a∥b,则b⊥αC.若a⊥α,a⊥b,则b∥αD.若a∥α,a⊥b,则b⊥α4.已知在平行四边形ABCD中,M,N分别是BC,CD的中点,如果=a,=b,那么=( )A.a-bB.-a+bC.a+bD.-a-b5.已知圆锥的表面积为3π,且它的侧面展开图是一个半圆,则该圆锥的体积为( )A.πB.πC.πD.2π6.庆祝中华人民共和国成立70周年的阅兵式彰显了中华民族从站起来、富起来迈向强起来的雄心壮志.阅兵式规模之大、类型之全均创历史之最,编组之新、要素之全彰显强军成就,装备方阵堪称“强军利刃”“强国之盾”,见证着人民军队迈向世界一流军队的坚定步伐.此次大阅兵不仅得到了全中国人的关注,还得到了无数外国人的关注.某单位有6位外国人,其中关注此次大阅兵的有5位,若从这6位外国人中任意选取2位进行一次采访,则被采访者都关注了此次大阅兵的概率为( )A. B. C. D.7.如图,有四座城市A、B、C、D,其中B在A的正东方向,且与A相距120 km,D在A的北偏东30°方向,且与A相距60 km,C在B的北偏东30°方向,且与B相距60 km.一架飞机从城市D出发,以360 km/h 的速度向城市C飞行,飞行了15 min后,接到命令改变航向,飞向城市B,此时飞机距离城市B的距离为( )A.120 kmB.60 kmC.60 kmD.60 km8.如图,在平面直角坐标系xOy中,原点O为正八边形P1P2P3P4P5P6P7P8的中心,P1P8⊥x轴,若坐标轴上的点M(异于原点)满足2++=0(其中1≤i≤8,1≤j≤8,且i,j∈N*),则满足以上条件的点M的个数为( )A.2B.4C.6D.8二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分)9.已知复数z满足(1-i)z=2i,则下列关于复数z的结论正确的是( )A.|z|=B.复数z的共轭复数=-1-iC.复平面内表示复数z的点位于第二象限D.复数z是方程x2+2x+2=0的一个根10.某市教体局对全市高一年级学生的身高进行抽样调查,随机抽取了100名学生,他们的身高都处在A,B,C,D,E五个层次内,根据抽样结果得到如下统计图,则下列结论正确的是( )A.样本中女生人数多于男生人数B.样本中B层次人数最多C.样本中E层次的男生人数为6D.样本中D层次的男生人数多于女生人数11.已知事件A,B,且P(A)=0.5,P(B)=0.2,则下列结论正确的是( )A.如果B⊆A,那么P(A∪B)=0.2,P(AB)=0.5B.如果A与B互斥,那么P(A∪B)=0.7,P(AB)=0C.如果A与B相互独立,那么P(A∪B)=0.7,P(AB)=0D.如果A与B相互独立,那么P()=0.4,P(A)=0.412.如图,正方体ABCD-A'B'C'D'的棱长为1,则下列命题中正确的是( )A.若点M,N分别是线段A'A,A'D'的中点,则MN∥BC'B.点C到平面ABC'D'的距离为C.直线BC与平面ABC'D'所成的角等于D.三棱柱AA'D'-BB'C'的外接球的表面积为3π三、填空题(本题共4小题,每小题5分,共20分)13.已知a,b,c分别为△ABC的三个内角A,B,C的对边,且bcos C+ccos B=asin A,则A= .14.已知数据x1,x2,x3,…,x m的平均数为10,方差为2,则数据2x1-1,2x2-1,2x3-1,…,2x m-1的平均数为,方差为.15.已知|a|=3,|b|=2,(a+2b)·(a-3b)=-18,则a与b的夹角为.16.如图,在三棱锥V-ABC中,AB=2,VA=VB,AC=BC,VC=1,且AV⊥BV,AC⊥BC,则二面角V-AB-C的余弦值是.四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知向量a=(1,2),b=(4,-3).(1)若向量c∥a,且|c|=2,求c的坐标;(2)若向量b+ka与b-ka互相垂直,求实数k的值.18.(12分)已知a,b,c分别为△ABC的三个内角A,B,C的对边,且a=,c=1,A=.(1)求b及△ABC的面积S;(2)若D为BC边上一点,且,求∠ADB的正弦值.从①AD=1,②∠CAD=这两个条件中任选一个,补充在上面的问题中,并解答.注:如果选择多个条件分别解答,按第一个解答计分.19.(12分)在四面体A-BCD中,E,F,M分别是AB,BC,CD的中点,且BD=AC=2,EM=1.(1)求证:EF∥平面ACD;(2)求异面直线AC与BD所成的角.20.(12分)溺水、校园欺凌等与学生安全有关的问题越来越受到社会的关注和重视,为了普及安全教育,某市组织了一次学生安全知识竞赛,规定每队3人,每人回答一个问题,答对得1分,答错得0分.在竞赛中,甲、乙两个中学代表队狭路相逢,假设甲队每人回答问题正确的概率均为,乙队每人回答问题正确的概率分别为,,,且每人回答问题正确与否相互之间没有影响.(1)分别求甲队总得分为3分与1分的概率;(2)求甲队总得分为2分且乙队总得分为1分的概率.21.(12分)如图,在三棱锥P-ABC中,PA⊥底面ABC,AB⊥BC,PA=AB=BC=2,点D为线段AC的中点,点E 为线段PC上一点.(1)求证:平面BDE⊥平面PAC;(2)当PA∥平面BDE时,求三棱锥P-BDE的体积.22.(12分)2020年开始,山东推行全新的高考制度.新高考不再分文理科,采用“3+3”模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还需要依据想考取的高校及专业要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科满分100分.2020年初受疫情影响,全国各地推迟开学,开展线上教学.为了了解高一学生的选科意向,某学校对学生所选科目进行检测,下面是100名学生的物理、化学、生物三科总分成绩,以20为组距分成7组:[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300],画出频率分布直方图如图所示.(1)求频率分布直方图中a的值;(2)(i)求物理、化学、生物三科总分成绩的中位数;(ii)估计这100名学生的物理、化学、生物三科总分成绩的平均数(同一组中的数据用该组区间的中点值作代表);(3)为了进一步了解选科情况,在物理、化学、生物三科总分成绩在[220,240)和[260,280)的两组中用比例分配的分层随机抽样方法抽取7名学生,再从这7名学生中随机抽取2名学生进行问卷调查,求抽取的这2名学生来自不同组的概率.答案全解全析1.B 复数z=(1-i)+m(1+i)=(m+1)+(m-1)i,因为z是纯虚数,所以解得m=-1.2.C 将6个数据按照从小到大的顺序排列为5,5,6,7,8,9,因为6×80%=4.8,所以第5个数据即为这组数据的第80百分位数,故选C.3.B 如果两条平行直线中的一条垂直于一个平面,那么另一条直线也垂直于这个平面,因此B选项正确,易知A、C、D错误.4.B =-=+-(+)=+--=-+=-a+b.5.A 设圆锥的底面半径为r,母线长为l,依题意有2πr=·2πl,所以l=2r,又圆锥的表面积为3π,所以πr2+πrl=3π,解得r=1,因此圆锥的高h==,于是体积V=πr2h=π×12×=π.6.C 这6位外国人分别记为a,A,B,C,D,E,其中a未关注此次大阅兵,A,B,CD,E关注了此次大阅兵, 则样本点有(a,A),(a,B),(a,C),(a,D),(a,E),(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D ,E),共15个,其中被采访者都关注了此次大阅兵的样本点有10个,故所求概率为=.故选C.7.D 取AB的中点E,连接DE,BD.设飞机飞行了15 min后到达F点,连接BF,如图所示,则BF即为所求.因为E为AB的中点,且AB=120 km,所以AE=EB=60 km,又∠DAE=60°,AD=60 km,所以三角形DAE为等边三角形,所以DE=60 km,∠ADE=60°,在等腰三角形EDB中,∠DEB=120°,所以∠EDB=∠EBD=30°,所以∠ADB=90°,所以BD2=AB2-AD2=1202-602=10 800,所以BD=60 km,因为∠CBE=90°+30°=120°,∠EBD=30°,所以∠CBD=90°,所以CD===240 km,所以cos∠BDC===,因为DF=360×=90 km,所以在三角形BDF中,BF2=BD2+DF2-2×BD×DF×cos∠BDF=(60)2+902-2×60×90×=10 800,所以BF=60 km,即此时飞机距离城市B的距离为60 km.8.D 取线段P i P j的中点Q k,因为2++=0,所以+=-2,即2=-2,所以=-,于是Q k,O,M共线,因为点M在坐标轴上,所以Q k也在坐标轴上,于是满足条件的(i,j)的情况有(1,8),(2,7),(3,6),(4,5),(2,3),(1,4),(5,8),(6,7),即满足条件的点M有8个.9.ABCD 由(1-i)z=2i得z==-1+i,于是|z|=,其共轭复数=-1-i,复数z在复平面内对应的点是(-1,1),位于第二象限.因为(-1+i)2+2(-1+i)+2=0,所以复数z是方程x2+2x+2=0的一个根,故选项A、B、C、D均正确.10.ABC 样本中女生人数为9+24+15+9+3=60,则男生人数为40,故A选项正确;样本中B层次人数为24+40×30%=36,并且B层次占女生和男生的比例均最大,故B层次人数最多,B选项正确;E层次中的男生人数为40×(1-10%-30%-25%-20%)=6,故C选项正确;D层次中,男生人数为40×20%=8,女生人数为9,故D选项错误.11.BD 由于B⊆A,所以A∪B=A,AB=B,于是P(A∪B)=P(A)=0.5,P(AB)=P(A∩B)=P(B)=0.2,故A选项错误;由于A与B互斥,所以P(A∪B)=P(A)+P(B)=0.5+0.2=0.7,AB为不可能事件,因此P(AB)=0,故B 选项正确;如果A与B相互独立,那么P(AB)=P(A)P(B)=0.1,故C选项错误;P()=P()P()=0.5×0.8=0.4,P(A)=P(A)P()=0.5×0.8=0.4,故D选项正确.12.ACD 因为M,N分别是线段A'A,A'D'的中点,所以MN∥AD',又因为AD'∥BC',所以MN∥BC',故A 选项正确;连接B'C,易证B'C⊥平面ABC'D',因此点C到平面ABC'D'的距离为B'C=,故B选项错误;直线BC与平面ABC'D'所成的角为∠CBC'=,故C选项正确;三棱柱AA'D'-BB'C'的外接球即正方体的外接球,其半径R=,因此其表面积为4π×=3π,故D选项正确.13.答案90°解析由正弦定理可得sin Bcos C+sin Ccos B=sin2A,即sin(B+C)=sin 2A,所以sin A=sin2A,易知sin A≠0,所以sin A=1,故A=90°.14.答案19;8解析依题意可得2x1-1,2x2-1,…,2x m-1的平均数为2×10-1=19,方差为22×2=8.15.答案解析设a,b的夹角为θ,依题意有|a|2-a·b-6|b|2=-18,所以32-3×2×cos θ-6×22=-18,解得cos θ=,由于θ∈[0,π],故θ=.16.答案解析取AB的中点D,连接VD,CD,由于VA=VB,AC=BC,所以VD⊥AB,CD⊥AB,于是∠VDC就是二面角V-AB-C的平面角.因为AV⊥BV,AC⊥BC,AB=2,所以VD=,DC=,又VC=1,所以cos∠VDC==.17.解析(1)解法一:因为向量c∥a,所以设c=λa,(1分)则c2=(λa)2,即(2)2=λ2a2,(2分)所以20=5λ2,解得λ=±2.(4分)所以c=2a=(2,4)或c=-2a=(-2,-4).(5分)解法二:设向量c=(x,y).(1分)因为c∥a,且a=(1,2),所以2x=y,(2分)因为|c|=2,所以=2,(3分)由解得或(4分)所以c=(2,4)或c=(-2,-4).(5分)(2)因为向量b+ka与b-ka互相垂直,所以(b+ka)·(b-ka)=0,(6分)即b2-k2a2=0.(7分)因为a=(1,2),b=(4,-3),所以a2=5,b2=25,(8分)所以25-5k2=0,解得k=±.(10分)18.解析(1)由余弦定理得,()2=b2+12-2bcos ,(2分)整理得b2+b-6=0,解得b=2或b=-3(舍去).(5分)所以△ABC的面积S=bcsin A=×2×1×=.(6分)(2)选择条件①.在△ABC中,由正弦定理=,得=,(8分)所以sin B=.(9分)因为AD=AB=1,所以∠ADB=∠B.(10分)所以sin∠ADB=sin B,所以sin∠ADB=.(12分)选择条件②.在△ABC中,由余弦定理的推论,得cos B==.(8分)因为A=,所以∠BAD=-=,(9分)所以sin∠ADB=cos B,即sin∠ADB=.(12分)19.解析(1)证明:因为E,F分别为AB,BC的中点,所以EF∥AC.(2分)因为EF⊄平面ACD,AC⊂平面ACD,所以EF∥平面ACD.(4分)(2)易得EF∥AC,FM∥BD,(5分)所以∠EFM为异面直线AC与BD所成的角(或其补角).(7分)在△EFM中,EF=FM=EM=1,所以△EFM为等边三角形,(10分)所以∠EFM=60°,即异面直线AC与BD所成的角为60°.(12分)20.解析(1)记“甲队总得分为3分”为事件A,“甲队总得分为1分”为事件B.甲队得3分,即三人都答对,其概率P(A)=××=.(2分)甲队得1分,即三人中只有一人答对,其余两人都答错,其概率P(B)=××+××+××=.(5分)所以甲队总得分为3分的概率为,甲队总得分为1分的概率为.(6分)(2)记“甲队总得分为2分”为事件C,“乙队总得分为1分”为事件D.甲队得2分,即三人中有两人答对,剩余一人答错,则P(C)=××+××+××=.(8分)乙队得1分,即三人中只有一人答对,其余两人都答错,则P(D)=××+××+××=.(11分)由题意得,事件C与事件D相互独立.所以甲队总得分为2分且乙队总得分为1分的概率为P(C)P(D)=×=.(12分)21.解析(1)证明:因为PA⊥底面ABC,且BD⊂底面ABC,所以PA⊥BD.(1分)因为AB=BC,且点D为线段AC的中点,所以BD⊥AC.(2分)又PA∩AC=A,所以BD⊥平面PAC.(3分)又BD⊂平面BDE,所以平面BDE⊥平面PAC.(4分)(2)因为PA∥平面BDE,PA⊂平面PAC,平面PAC∩平面BDE=ED,所以ED∥PA.(5分)因为点D为AC的中点,所以点E为PC的中点.(6分)解法一:由题意知P到平面BDE的距离与A到平面BDE的距离相等.(7分)所以V P-BDE=V A-BDE=V E-ABD=V E-ABC=V P-ABC=×××2×2×2=.所以三棱锥P-BDE的体积为.(12分)解法二:由题意知点P到平面BDE的距离与点A到平面BDE的距离相等.(7分)所以V P-BDE=V A-BDE.(8分)由题意得AC=2,AD=,BD=,DE=1,(9分)由(1)知,AD⊥BD,AD⊥DE,且BD∩DE=D,所以AD⊥平面BDE,(10分)所以V A-BDE=AD·S△BDE=×××1×=.所以三棱锥P-BDE的体积为.(12分)解法三:由题意得AC=2,AD=,BD=,DE=1,(8分)由(1)知,BD⊥平面PDE,且S△PDE=DE·AD=×1×=.(10分)所以V P-BDE=V B-PDE=BD·S△PDE=××=.所以三棱锥P-BDE的体积为.(12分)22.解析(1)由题图得,(0.002+0.009 5+0.011+0.012 5+0.007 5+a+0.002 5)×20=1,(1分)解得a=0.005.(2分)(2)(i)因为(0.002+0.009 5+0.011)×20=0.45<0.5,(0.002+0.009 5+0.011+0.012 5)×20=0.7>0.5,所以三科总分成绩的中位数在[220,240)内,(3分)设中位数为x,则(0.002+0.009 5+0.011)×20+0.012 5×(x-220)=0.5,解得x=224,即中位数为224.(5分)(ii)三科总分成绩的平均数为170×0.04+190×0.19+210×0.22+230×0.25+250×0.15+270×0.1+290×0.05=225.6.(7分)(3)三科总分成绩在[220,240),[260,280)两组内的学生分别有25人,10人,故抽样比为=.(8分)所以从三科总分成绩为[220,240)和[260,280)的两组中抽取的学生人数分别为25×=5,10×=2.(9分)记事件A=“抽取的这2名学生来自不同组”.三科总分成绩在[220,240)内的5人分别记为a1,a2,a3,a4,a5,在[260,280)内的2人分别记为b1,b2.现在这7人中抽取2人,则试验的样本空间Ω={(a1,a2),(a1,a3),(a1,a4),(a1,a5),(a1,b1),(a1,b2),(a2,a3),(a2,a4),(a2,a5),(a2,b1),(a2,b2),(a3,a4) ,(a3,a5),(a3,b1),(a3,b2),(a4,a5),(a4,b1),(a4,b2),(a5,b1),(a5,b2),(b1,b2)},共21个样本点.(10分) 其中A={(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(a4,b1),(a4,b2),(a5,b1),(a5,b2)},共10个样本点.(11分)所以P(A)=,即抽取的这2名学生来自不同组的概率为.(12分)。

山西省广灵一中2013-2014学年高一下学期期末考试数学试题 Word版含答案(新人教A版)

山西省广灵一中2013-2014学年高一下学期期末考试数学试题 Word版含答案(新人教A版)

高一下学期期末考试数学试题(考试时间120分钟,满分150分)一、选择题(每题5分,共60分) 1.cos540°= ( )A .0B .1C .-1D . 1/22.平面向量a 与b 的夹角为60°,()2,0a =,1b =,则a b += ( )A. 9B.C. 3D. 73.已知角θ的始边与x 轴非负半轴重合,终边在直线y=2x 上,则cos2θ=( )A. 45-B. 45C. 35D. 35- 4.公比不为1的等比数列{a n }的前n 项和为S n ,且1233,,a a a --成等差数列,若1a =1,则4s =( )A .-20B .0C .7D .405.若x ,y 满足约束条件03434x x y x y ⎧⎪+⎨⎪+⎩≥≥≤,则2z x y =-的最大值是( )A . 4B .43C .1D .2 6. 函数()()sin f x A x ωϕ=+(00,0A ωϕ>,><<π)的图象如图所示,则f(0)值为 ( )A .1B .0 CD7.设1e 与2e 是不共线向量,2121,a ke e b e e =+=+,若a b ∥且a b ≠,则实数k 的值为( )A .0B .1C .1-D .1±8.已知函数f (x )﹣cosx ,x ∈R ,若f (x )≥1,则x 的取值范围为( )A.{x|k π+3π≤x ≤k π+π,k ∈Z} B.{x|2k π+3π≤x ≤2k π+π,k ∈Z} C.{x|k π+3π≤x ≤k π+56π,k ∈Z} D.{x|2k π+6π≤x ≤2k π+56π,k ∈Z}9.已知等差数列{a n }的前n 项和为S n ,S 4=40,n s =210,4n s -=130,则n =( )A .12B .14C .16D .1810.在ABC ∆中,若B A sin sin >,则A 与B 的大小关系为( )A .B A > B .B A <C .A B ≥D .A 、B 的大小关系不能确定 11.△ABC 中,若2cos c a B =,则△ABC 的形状为( )A .直角三角形B .等腰三角形C .等边三角形D .锐角三角形 12.已知,则的最小值是( )A. 4B. 3C. 2D. 1二、填空题(每题5分,共20分)13.若34αβ+=π,则()()1tan 1tan αβ--= __。

(必修二)(人教A版 2019)-高一数学下学期期末考试考前必刷题 (人教A版 2019必修二)

(必修二)(人教A版 2019)-高一数学下学期期末考试考前必刷题 (人教A版 2019必修二)

2020-2021高一下学期期末考试考前预测卷02试卷满分:150分 考试时长:120分钟注意事项:1.本试题满分150分,考试时间为120分钟.2.答卷前务必将姓名和准考证号填涂在答题纸上.3.使用答题纸时,必须使用0.5毫米的黑色签字笔书写,要字迹工整,笔迹清晰.超出答题区书写的答案无效;在草稿纸、试题卷上答题无效.一、单选题(本大题共8小题,共40.0分)1.在复平面内,已知复数11z i =-,则其共轭复数z 对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【分析】 根据复数运算和共轭复数定义求得z ,由此可得对应点坐标,从而确定结果.【详解】 ()()111111122i z i i i i +===+--+,1122z i ∴=-, z ∴对应的点为11,22⎛⎫-⎪⎝⎭,位于第四象限. 故选:D. 2.在一个袋子中放2个白球,2个红球,摇匀后随机摸出2个球,与“摸出1个白球1个红球”互斥而不对立的事件是( )A .至少摸出1个白球B .至少摸出1个红球C .摸出2个白球D .摸出2个白球或摸出2个红球【答案】C【分析】根据互斥事件,对立事件的概念判断可得选项.【详解】对于A ,至少摸出1个白球与摸出1个白球1个红球不是互斥事件;对于B ,至少摸出1个红球与摸出1个白球1个红球不是互斥事件;对于C ,摸出2个白球与摸出1个白球1个红球是互斥而不对立事件;对于D ,摸出2个白球或摸出2个红球与摸出个白球1个红球是互斥也是对立事件. 故选:C .3.某班有48名学生,在一次考试中统计出平均分为70分,方差为75,后来发现有2名同学的分数登错了,甲实得80分,却记了50分,乙得70分却记了100分,更正后平均分和方差分别是( )A .70,75B .70,50C .75,1.04D .65,2.35【答案】B【分析】由数据可知平均分不变,结合方差公式,写出更正前和更正后的方差表达式,即可求出更正后的方差.【详解】因甲少记了30分,乙多记了30分,故平均分不变,设更正后的方差为s 2,由题意得, s 2=148[(x 1-70)2+(x 2-70)2+…+(80-70)2+(70-70)2+…+(x 48-70)2],而更正前有: 75=148[(x 1-70)2+(x 2-70)2+…+(50-70)2+(100-70)2+…+(x 48-70)2], 化简整理得s 2=50.故选:B.4.已知空间三条直线a ,b ,c .若a b a c ⊥⊥,,则( )A .b 与c 平行B .b 与c 异面C .b 与c 相交D .b 与c 平行、异面、相交都有可能【答案】D【分析】利用正方体模型进行分析判断【详解】解:如图在正方体1111ABCD A B C D -中,1,AB AD AB AA ⊥⊥,此时AD 与1AA 相交; 当,AB AD AB BC ⊥⊥时, AD ∥BC ;当1,AB AD AB CC ⊥⊥时,AD 与1CC 异面, 所以由a b a c ⊥⊥,,可得b 与c 平行、异面、相交都有可能,故选:D5.在ABC 中,角,,A B C 的对边分别为,,a b c ,若()222tan a c bB ac +-=,则角B 的大小为( )A .6πB .3πC .6π或56πD .3π或23π 【答案】C【分析】将()222tan a c b B ac +-=,变形为222cos 2s 2in =ac a c b B B +-求解. 【详解】因为()222tan a c b B ac +-=, 所以222co =s cos sin 22a c b B a B Bc +-=, 即()cos 2sin 10B B -=,因为cos 0B ≠, 所以1sin 2B =, 因为()0,B π∈, 所以6B π=或56π, 故选:C6.若P 是等边三角形ABC 所在平面外一点,且PA PB PC ==,D ,E ,F 分别是AB ,BC ,CA 的中点,则下列结论中不正确的是( )A .//BC 平面PDFB .DF ⊥平面PAEC .平面PAE ⊥平面ABCD .平面PDF ⊥平面ABC【答案】D【分析】 由//DF BC 判断A ,由,AE PE 与BC 垂直,证明线面垂直,再结合平行线判断B ,根据面面垂直的判定定理判断C ,根据正棱锥的性质判断D .【详解】 P 是等边三角形ABC 所在平面外一点,且PA PB PC ==,D ,E ,F 分别是AB ,BC ,CA 的中点,//DF BC ∴,DF ⊂平面PDF ,BC ⊂/平面PDF ,//BC ∴平面PDF ,故A 正确; PA PB PC ==,E 是BC 中点,PE BC ∴⊥,AE BC ⊥,PE AE E =,,PE AE ⊂平面PAE ,BC ∴⊥平面PAE ,//DF BC ,DF ⊥∴平面PAE ,故B 正确;BC ⊥平面PAE ,BC ⊂平面ABC ,∴平面PAE ⊥平面ABC ,故C 正确;设AEDF O =,连结PO ,O 不是等边三角形ABC 的重心,PO ∴与平面ABC 不垂直, ∴平面PDF 与平面ABC 不垂直,故D 错误.故选:D .7.已知向量,a b 满足5a =,6b =,6a b ⋅=-,则cos ,a a b <+>=( ) A .3135- B .1935- C .1735 D .1935【答案】D【分析】 利用数量积的运算律可求得a b +,根据向量夹角公式可求得结果.【详解】 ()222225127a b a b a a b b +=+=+⋅+=-+=, ()225619cos ,5735a ab a a b a a b a a b a a b ⋅++⋅-∴<+>====⨯⋅+⋅+.故选:D.【点睛】 结论点睛:(1)求夹角的大小:若,a b 为非零向量,则由平面向量的数量积公式得cos a ba b θ⋅=⋅(夹角公式),所以平面向量的数量积可以用来解决有关角度的问题;(2)确定夹角的范围:数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明不共线的两向量的夹角为直角,数量积小于0说明不共线的两向量的夹角为钝角. 8.如图,在棱长为4的正方体1111ABCD A B CD -中,E ,F ,G 分别为棱 AB ,BC ,1CC 的中点,M 为棱AD 的中点,设P ,Q 为底面ABCD 内的两个动点,满足1//D P 平面EFG ,1DQ =,则PM PQ +的最小值为( )A .1B .2C .1D .2【答案】C【分析】把截面EFG 画完整,可得P 在AC 上,由1DQ =知Q 在以D 为圆心1为半径的四分之一圆上,利用对称性可得PM PQ +的最小值.【详解】如图,分别取11111,,C D D A A A 的中点,,H I J ,连接,,,GH HI IJ JE ,易证,,,,,E F G H I J 共面,即平面EFG 为截面EFGHIJ ,连接11,,AD D C AC ,由中位线定理可得//AC EF ,AC ⊄平面EFG ,EF ⊂平面EFG ,则//AC 平面EFG ,同理可得1//AD 平面EFG ,由1AC AD A =可得平面1AD C //平面EFG ,又1//D P 平面EFG ,P 在平面ABCD 上,∥P AC ∈.正方体中1DD ⊥平面ABCD ,从而有1DD DQ ⊥,∥1DQ ==,∥Q 在以D 为圆心1为半径的四分之一圆(圆在正方形ABCD 内的部分)上,显然M 关于直线AC 的对称点为E ,11PM PQ PE PQ PE PD DQ ED DQ +=+≥+-≥-==,当且仅当,,,E P Q D共线时取等号,∥所求最小值为1.故选:C .【点睛】本题考查空间距离的最小值问题,解题时作出正方体的完整截面求出P 点轨迹是第一个难点,第二个难点是求出Q 点轨迹,第三个难点是利用对称性及圆的性质求得最小值.二、多选题(本大题共4小题,共20.0分)9.(多选)已知复数z a =+(a ∈R )在复平面内对应的点位于第二象限,且|z |=2则下列结论正确的是( )A .z 3=8B .zC .z 的共轭复数为1+D .z 2=4 【答案】AB【分析】由已知求解a ,进一步求出z 2与z 3的值,然后逐一核对四个选项得答案.【详解】解:∥复数z a =+在复平面内对应的点位于第二象限,∥a <0,又|z |2,得a =﹣1(a <0),∥1z =-+,则()2212z =-+=--,()()322118z z z =⋅=-+-=.∥A 正确,B 正确,故选:AB .10.下列说法正确的是( )A .随着试验次数的增加,频率一般会越来越接近概率B .连续10次掷一枚骰子,结果都是出现1点,可以认为这枚骰子质地不均匀C .某种福利彩票的中奖概率为11000,那么买1000张这种彩票一定能中奖 D .某市气象台预报“明天本市降水概率为70%”,指的是:该市气象台专家中,有70%认为明天会降水,30%认为不降水【答案】AB【分析】根据频率和概率之间的关系、概率的定义可得正确的选项.【详解】对于A ,试验次数越多,频率就会稳定在概率的附近,故A 正确对于B ,如果骰子均匀,则各点数应该均匀出现,所以根据结果都是出现1点可以认定这枚骰子质地不均匀,故B 正确.对于C ,中奖概率为11000是指买一次彩票,可能中奖的概率为11000,不是指1000张这种彩票一定能中奖,故C 错误.对于D ,“明天本市降水概率为70%”指下雨的可能性为0.7,故D 错.故选:AB .【点睛】本题考查频率与概率的关系、概率的定义,注意两者之间的关系是概率是频率的稳定值,本题属于基础题.11.已知正方体1111ABCD A B C D -的棱长为2,点O 为11A D 的中点,若以O 为半径的球面与正方体1111ABCD A B C D -的棱有四个交点E ,F ,G ,H ,则下列结论正确的是( )A .11//A D 平面EFGHB .1AC ⊥平面EFGHC .11A B 与平面EFGH 所成的角的大小为45°D .平面EFGH 将正方体1111ABCD A B C D -分成两部分的体积的比为1:7【答案】ACD【分析】如图,计算可得,,,E F G H 分别为所在棱的中点,利用空间中点线面的位置关系的判断方法可判断A 、B 的正确与否,计算出直线AB 与平面EFGH 所成的角为45︒后可得C 正确,而几何体BHE CGF -为三棱柱,利用公式可求其体积,从而可判断D 正确与否.【详解】如图,连接OA ,则OA ==,故棱1111,,,A A A D D D AD 与球面没有交点. 同理,棱111111,,A B B C C D 与球面没有交点.因为棱11A D 与棱BC 之间的距离为>BC 与球面没有交点.因为正方体的棱长为2,而2<球面与正方体1111ABCD A B C D -的棱有四个交点E ,F ,G ,H ,所以棱11,,,AB CD C C B B 与球面各有一个交点, 如图各记为,,,E F G H .因为OAE △为直角三角形,故1AE ==,故E 为棱AB 的中点. 同理,,F G H 分别为棱11,,CD C C B B 的中点.由正方形ABCD 、,E F 为所在棱的中点可得//EF BC ,同理//GH BC ,故//EF GH ,故,,,E F G H 共面.由正方体1111ABCD A B C D -可得11//A D BC ,故11//A D EF因为11A D ⊄平面EFGH ,EF ⊂平面EFGH ,故11//A D 平面EFGH ,故A 正确.因为在直角三角1BA C 中,1A B =2BC = ,190A BC ∠=︒, 1A C 与BC 不垂直,故1A C 与GH 不垂直,故1A C ⊥平面EFGH 不成立,故B 错误. 由正方体1111ABCD A B C D -可得BC ⊥平面11AA B B ,而1A B ⊂平面11AA B B , 所以1BC A B ⊥,所以1EF A B ⊥在正方形11AA B B 中,因为,E H 分别为1,AB BB 的中点,故1EH A B ⊥,因为EF EH E =,故1A B ⊥平面EFGH ,所以BEH ∠为直线AB 与平面EFGH 所成的角,而45BEH ∠=︒,故直线AB 与平面EFGH 所成的角为45︒,因为11//AB A B ,故11A B 与平面EFGH 所成的角的大小为45°.故C 正确.因为,,,E F G H 分别为所在棱的中点,故几何体BHE CGF -为三棱柱, 其体积为111212⨯⨯⨯=,而正方体的体积为8, 故平面EFGH 将正方体1111ABCD A B C D -分成两部分的体积的比为1:7,故D 正确. 故选:ACD.【点睛】本题考查空间中线面位置的判断、空间角的计算和体积的计算,注意根据球的半径确定哪些棱与球面有交点,本题属于中档题.12.在ABC 中,角,,A B C 所对的边分别为,,a b c ABC ,的面积为S ,若22a S =,则( ) A .sin sin 2(cos cos )b Cc B b C c B +=+ B .2a bc的最大值为1 C .c b b c+的最大值为5 D .2222tan 2b c a A a+-= 【答案】ABC【分析】 由面积公式可得2sin bc A a =,再由正弦定理化简即可判断A ;由2sin a A bc =根据sin 1A ≤可判断B ;利用余弦定理可得22sin 2cos b c bc A bc A +=+,进而得出sin 2cos c b A A b c+=+可判断C ;由已知结合余弦定理即可判断D.【详解】 211sin 22S bc A a ==,即2sin bc A a =, 由正弦定理可得2sin sin sin sin B C A A =,sin 0A ≠,()sin sin sin sin sin cos cos sin B C A B C B C B C ∴==+=+,即()sin sin sin sin 2sin cos cos sin B C B C B C B C +=+, 由正弦定理可得sin sin 2(cos cos )b C c B b C c B +=+,故A 正确;2sin bc A a =,2sin a A bc=,()0,A π∈,则当2A π=时,2a bc取得最大值为1,故B 正确;由余弦定理得2222cos a b c bc A =+-,22sin 2cos b c bc A bc A ∴+=+,()22sin 2csin 2c o o s s bc A bc Ac b c b A A A b c bc bcϕ+∴+==+=+=+,其中tan 2ϕ=,则可得c bb c+C 正确;由2sin bc A a =,2222cos a b c bc A =+-联立可得22222tan a A b c a=+-,故D 错误. 故选:ABC. 【点睛】关键点睛:本题考查正余弦定理的运用,解题的关键是利用面积公式和正弦定理将已知化简得出2sin bc A a =.三、填空题(本大题共4小题,共20.0分)13.已知向量||3,||2,|2|213a b a b ==+=,则,a b 的夹角为_________. 【答案】3π 【分析】设a ,b 的夹角为θ,则22244213a b a b a b +=++⋅=,利用数量积的定义,将已知代入即可得到答案. 【详解】设a ,b 的夹角为θ,则22244213a b a b a b +=++⋅=,又3a =,2b ==所以1cos 2θ=,又[0,]θπ∈,故3πθ=.故答案为:3π14.已知复数1z ,2z 满足221z z =,121z z =+,则对于任意的t ∈R ,12tz z +的最小值是________.【分析】先设出2z a bi =+,根据题意得到21z ==,()121z z =⋅,代入12tz z +化简得到21z t z =+12tz z +的最小值. 【详解】解:设2z a bi =+, 则2z a bi =-, 又()()22221z z a bi a bi a b =+⋅-=+=,21z ∴==,121z z =+, ()121z z ∴=⋅,12tz z ∴+()221t z z =+⋅+()211t z =++⋅()11t =+===t R ∈,∴当14t =-时,1min 2tz z ==+15.圆锥底面半径为1,母线长为4,轴截面为PAB ,如图,从A 点拉一绳子绕圆锥侧面一周回到A 点,则最短绳长为_________.【答案】【分析】把圆锥侧面展开为一个平面图形,利用平面上两点间线段最短可得. 【详解】由题意1,4r l ==,所以圆锥侧面展开图中心角为2142ππθ⨯==,如图,2APA π'∠=,则4AA '==故答案为:【点睛】关键点点睛:本题考查圆锥侧面上的最短距离问题,空间几何体表面上两点间的最短距离问题的解决方法常常是把几何体的表面展开摊平为一个平面图形,利用平面上两点间线段最短求解.16.南宋数学家秦九韶在《数书九章》中提出“三斜求积术”,即以小斜幂,并大斜幂,减中斜幂,余半之,自乘于上:以小斜幂乘大斜幂,减上,余四约之,为实:一为从隅,开平方得积可用公式S =a 、b 、c 、S 为三角形的三边和面积)表示.在ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,若3a =,且22cos cos 3c b C c B -=,则ABC 面积的最大值为___________.【分析】由条件22cos cos 3c b C c B -=结合余弦定理可得出223b c =,然后利用二次函数的基本性质结合公式S =ABC 面积的最大值. 【详解】22cos cos 3c b C c B -=,则22222222223cos 3cos cos cos 22a b c a c b c b C c B ab C ac B ab ac b c ab ac+-+-=-=-=⋅-⋅=-,可得223b c =,所以,S ===12==. 当且仅当3c =时,等号成立.因此,ABC .【点睛】方法点睛:求三角形面积的最值一种常见的类型,主要方法有两类:(1)找到边与边之间的关系,利用基本不等式或二次函数的基本性质来求解; (2)利用正弦定理,转化为关于某个角的三角函数,利用函数思想求解.四、解答题(本大题共6小题,共70.0分)17.有一个数学难题,在半小时内,甲能解决的概率是12,乙能解决的概率是13,2人试图独立地在半小时内解决它,求: (1)2人都未解决的概率; (2)问题得到解决的概率. 【答案】(1)13;(2)23【分析】(1)由两个独立事件同时发生的概率等于两个事件分别发生的概率乘积,即可求出2人都未解决的概率;(2)根据问题能得到解决的对立事件为两人都未解决问题,再根据对立事件概率和等于1,即可求解.【详解】解:(1)由题意知:甲、乙两人都未能解决的概率为:11111233⎛⎫⎛⎫-⨯-= ⎪ ⎪⎝⎭⎝⎭; (2)问题能得到解决,即至少有1人能解决问题, 其对立事件为两人都未解决问题,∴问题得到解决的概率为:12133-=. 18.已知复数(1)(21)()z m m i m R =-++∈ (1)若z 为纯虚数,求实数m 的值;(2)若z 在复平面内的对应点位于第二象限,求实数m 的取值范围及z 的最小值【答案】(1)1;(2)1,12m ⎛⎫∈- ⎪⎝⎭,||min z = 【分析】(1)利用纯虚数的定义,实部为零,虚部不等于零即可得出. (2)利用复数模的计算公式、几何意义即可得出. 【详解】 解:(1)(1)(21)()z m m i m R =-++∈为纯虚数,10m ∴-=且210m +≠ 1m ∴=(2)z 在复平面内的对应点为(1,21))m m -+ 由题意:10210m m -<⎧⎨+>⎩,∴112m -<<.即实数m 的取值范围是1,12⎛⎫-⎪⎝⎭.而||z ===当11(,1)52m =-∈-时,||5min z =19.已知(1,0),(2,1)a b ==.(1)当k 为何值时,ka b -与2a b +共线?(2)若23,AB a b BC a mb =+=+且A ,B ,C 三点共线,求m 的值.【答案】(1)12k =-;(2)32. 【分析】(1)由题意,求得(2,1)ka b k -=--,2(5,2)a b +=,根据ka b -与2a b +共线,列出方程,即可求解;(2)因为A ,B ,C 三点共线,得到AB BC λ=,列出方程组,即可求解. 【详解】(1)由(1,0),(2,1)a b ==,可得(1,0)(2,1)(2,1)ka b k k -=-=--,2(1,0)2(2,1)(5,2)a b +=+=,因为ka b -与2a b +共线,所以2(2)(1)50k ---⨯=, 即2450k -+=,解得12k =-. (2)因为A ,B ,C 三点共线,所以,AB BC R λλ=∈,即23()a b a mb λ+=+,所以23m λλ=⎧⎨=⎩,解得32m =.20.已知四棱锥P ABCD -的底面是边长为2的菱形,且60ABC ∠=︒,2PA PC ==,PB PD =.(∈)若O 是AC 与BD 的交点,求证:PO ⊥平面ABCD ; (∈)若点M 是PD 的中点,求异面直线AD 与CM 所成角的余弦值.【答案】(∥)证明见解析;(∥. 【分析】(1)连接AC 与BD 交于点O ,可证得PO AC ⊥,PO BD ⊥,从而得证;(2)取PA 的中点N ,连接MN ,则//MN AD ,则NMC ∠就是所求的角(或其补角),根据边长,利用余弦定理求解即可. 【详解】(1)连接AC 与BD 交于点O ,连OP .PA PC =,PD PB =,且O 是AC 和BD 的中点,PO AC ∴⊥,PO BD ⊥,AC 和BD 为平面ABCD 内的两条相交直线, PO ∴⊥平面ABCD .(2)取PA 的中点N ,连接MN ,则//MN AD ,则NMC ∠就是所求的角(或其补角),根据题意得2,PA PC AC AB AD PO OD =======所以112MN AD ==,NC =PD =所以,MC =故222cos 2MN MC NC NMC MN MC +-∠==⋅21.已知ABC 中,内角,,A B C 的对边分别为,,a b c ,_________. (1)求角C 的大小;(2)若1,tan b c B -==,求ABC 的面积S .在①cos c C R =(R 为ABC 外接圆的半径),②sin 2cos cos sin 2B C A Bb a-=,③2224S a b c =+-(S 为ABC 的面积),这三个条件中选一个,补充在横线上,并加以解答.【答案】(1)4C π;(2)4+【分析】(1)选①,利用正弦定理的边角互化以及二倍角正弦公式即可求解;选②,利用正弦定理的边角互化即可求解;选③,利用三角形的面积公式以及余弦定理即可求解.(2)根据同角三角函数的基本关系求出sin 3B =,再根据正弦定理可得34c b =,求出,b c ,利用三角形的面积公式求解即可.【详解】(1)选①,由正弦定理2sin sin sin a b cR A B C===, 则cos cos 2sin cos 12sin cc C R c C C C C=⇒=⇒=sin 21C ⇒=, 又02C π<<, 所以22C π=,解得4Cπ.选②,sin 2cos cos sin 2B C A Bb a-= 2sin cos cos cos sin 2sin sin B B C A BB A-⇒=sin cos cos sin cos A B A B C ⇒+= ()sin cos A B C ⇒+=sin cos C C ⇒= tan 1C ⇒=,因为0C π<<,所以4C π.选③,2224S a b c =+-14sin 2cos 2ab C ab C ⇒⨯=sin cos C C ⇒=tan 1C ⇒=,因为0C π<<,所以4C π.(2)tan B =sin cos BB⇒=, 又22sin cos 1B B +=,解得sin 3B =,1cos 3B =,由(1)4Cπ,由正弦定理sin sin b cB C=,=,整理可得34c b =,又1b c -=,解得4,3b c ==,14sin sin()sin cos cos sin 32326A B C B C B C =+=+=+⨯=114sin 124226ABCSbc A +==⨯⨯=+ 22.如图,棱柱1111ABCD A B C D -中,底面ABCD 是平行四边形,侧棱1AA ⊥底面ABCD ,过AB 的截面与上底面交于PQ ,且点P 在棱11A D 上,点Q 在棱11C B 上,且1AB =,AC =2BC =.(1)求证:11//PQ A B ;(2)若二面角1A C D C --,求侧棱1BB 的长. 【答案】(1)证明见解析;(2)2.【分析】(1)由线面平行的性质定理可推出//AB PQ ,再由平行的传递性可证得11//PQ A B (2)先找出二面角1A C D C --的平面角CAP ∠,表示出tan CAP ∠,求出CP ,再设1CC x =,建立方程求出1CC ,进而求出1BB .【详解】(1)在棱柱1111ABCD A B C D -中,//AB 面1111D C B A ,AB面ABPQ , 面1111A B C D 面ABPQ PQ =,由线面平行的性质定理有//AB PQ ,又11//AB A B ,故11//PQ A B ;(2)证明:在底面ABCD 中,1AB =,AC =2BC =.222AB AC BC +=, AB AC ∴⊥,AC CD ∴⊥又因为侧棱1AA ⊥底面ABCD ,则1CC ⊥底面ABCDAC ⊂面11ABB A ,1CC AC ∴⊥又1=CC CD C ,AC ∴⊥面11CDD C过点C 作1CS C D ⊥于S ,连接AS ,则CSA ∠是二面角1A C D C --的平面角.os c CSA ∠=22cos sin 1CSA CSA ∠+∠=,则in s CSA ∠=an t CSA ∠=2tan AC CS CSCSA ==∠=,CS ∴= 设1CC x =,则1111122CC D SC D CS CD CC =⋅⋅=⋅.CS x =,CS ∴==故12CC =,故12BB =.【点睛】方法点睛:作二面角的平面角可以通过垂线法进行,在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角.。

2023-2024学年全国高中高一下数学人教A版期末试卷(含解析)

2023-2024学年全国高中高一下数学人教A版期末试卷(含解析)

2023-2024学年全国高一下数学期末试卷考试总分:146 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 7 小题 ,每题 5 分 ,共计35分 )1. 已知,则 A.B.C.D.2. 甲、乙两名篮球运动员最近五场比赛的得分如茎叶图所示,则 A.甲的中位数和平均数都比乙高B.甲的中位数和平均数都比乙低C.甲的中位数比乙的中位数高,但平均数比乙的平均数低D.甲的中位数比乙的中位数低,但平均数比乙的平均数高3. 把一个体积为 ,表面涂有红色的正方体木块锯成个体积为的小正方体.从这个小正方体中随机取出块,则这块至少有面涂有红色的概率是( )A.cosα=13sin(2α+)=(π2)−7979±42–√9−89()64c m 3641c m 364111387B.C.D. 4. 已知且,则与的夹角为( )A.B.C.D.5. 为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:频率本根据此频率分布直方图,下面结论中不正确的是( )A.该地农户家庭年收入低于万元的农户比率估计为B.该地农户家庭年收入不低于万元的农户比率估计为C.估计该地农户家庭年收入的平均值不超过万元D.估计该地有一半以上的农户,其家庭年收入介于万元至万元之间6. 设,是两条不同的直线, ,,是三个不同的平面,给出下列四个命题:①若,,则;②若,,,则;③若,,则.其中正确命题的序号是( )A.①和②B.②和③C.①和③D.①②③781858||=1,||=a →b →3–√⊥a →b →a →−b →a →π33π42π35π64.56%10.510%6.5 4.58.5m n αβγm ⊥αn//αm ⊥n α//ββ//γm ⊥αm ⊥γm//αn//αm//n7. 如图,在平面直角坐标系中,扇形的圆心角为,半径为,是上一点,其横坐标为,则=( )A.B.C.D.二、 多选题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )8. 已知两个不相等的非零向量,,两组向量,,,,和,,,,均由个和个排列而成,记,表示所有可能取值中的最小值.则下列说法正确的是( )A.有个不同的值B.若,则与无关C.若,则与无关D.若,则9. 已知,则以下关系成立的有( )A.B.C.xOy AOB 3π41P AB ^22–√3sin ∠BOP 2–√33–√34+2–√63+2–√6a →b →x 1→x 2→x 3→x 4→x 5→y 1→y 2→y 3→y 4→y 5→2a →3b →S =⋅+⋅+⋅+⋅+⋅x 1→y 1→x 2→y 2→x 3→y 3→x 4→y 4→x 5→y 5→S min S S 5⊥a →b →S min ||a →//a →b →S min ||b →||>4||b →a →>0S min z =+i 123–√2=−1z 3=−z 2z¯¯¯=1z 12−z +1=02D.10. 从一批产品中取出三件产品,设“三件产品不是次品”,“三件产品全是次品”,“三件产品不全是次品”,则下列结论正确的是 A.与互斥且为对立事件B.与互斥且为对立事件C.与存在有包含关系D.与不是对立事件11. 在管理学研究中,有一种衡量个体领导力的模型,称为“五力模型”,即一个人的领导力由五种能力——影响力、控制力、决断力、前瞻力和感召力构成.如图是某企业对两位领导人领导力的测评图,其中每项能力分为三个等级,“一般”记为分、“较强”记为分、“很强”记为分,把分值称为能力指标,则下列判断正确的是( )A.甲、乙的五项能力指标的均值相同B.甲、乙的五项能力指标的方差相同C.如果从控制力、决断力、前瞻力考虑,乙的领导力高于甲的领导力D.如果从影响力、控制力、感召力考虑,甲的领导力高于乙的领导力12. 用平行于棱锥底面的平面去截棱锥,得到上、下两部分空间图形且上、下两部分的高之比为,则关于上、下两空间图形的说法正确的是( )A.侧面积之比为B.侧面积之比为C.体积之比为D.体积之比为卷II (非选择题)三、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )−z +1=0z 2A =B =C =()A B B C A C A C 4561:21:41:81:271:2613. 函数的对称轴方程是________.14. 如图,四棱锥中,底面为四边形.其中为正三角形,又.设三棱锥,三棱锥的体积分别是,,三棱锥,三棱锥的外接球的表面积分别是,.对于以下结论:①;②=;③;④;⑤=;⑥.其中正确命题的序号为________.15. 已知样本,,,,的平均数为,方差为,则,,,,的平均数和方差分别是________.16. 在我国古代数学名著《九章算术》中,把两底面为直角三角形的直棱柱称为“堑堵”.已知三棱柱是一个“堑堵”,其中===,点是的中点,则四棱锥的外接球的表面积为________.四、 解答题 (本题共计 6 小题 ,每题 11 分 ,共计66分 ) 17. 如图,,是单位圆上的动点,是圆与轴正半轴的交点,设.(1)当点的坐标为时,求的值.(2)若,且当点,在圆上沿逆时针方向移动时,总有,试求的取值范围. 18. 某教师对所教两个班名学生网课期间参加体育活动的情况调查后整理得到如下列表(已知这名学生男女比例恰为)参加体育锻炼未参加体育锻炼总计男同学女同学总计补全列联表,并判断是否有的把握认为“参加体育锻炼与性别有关系?”按分层抽样在未参加体育锻炼的学生中抽取人,再从这人中随机选取人接受采访,求抽到男同学和女同学各人的概率.附:.y =cos2x P −ABCD ABCD △ACD ⋅=⋅=3⋅DA →DB →DB →DC →DB →AB →P −ABD P −ACD V 1V 2P −ABD P −ACD S 1S 2<V 1V 2V 1V 2>V 1V 2<S 1S 2S 1S 2>S 1S 2x 1x 2x 3x 4x 551−2x 1−2x 2−2x 3−2x 4−2x 5ABC −A 1B 1C 1AB BC B B 12M A 1C 1M −CB B 1C 1A B O C x ∠COA =αA (,)3545cos2α1+sin2α0≤α≤π3A B ∠AOB =π3BC 90901:1352590(1)99.5%(2)7721=,n =a +b +c +d K 2n (ad −bc)2(a +b)(c +d)(a +c)(b +d)P (K 2≥k)0.150.100.050.0250.0100.0050.001k 2.0722.7063.8415.0246.6357.87910.828ABCD −A B C D ABCD A B C B19. 如图,在四棱柱中,底面为菱形,=.(1)证明:平面平面;(2)若=,是等边三角形,求二面角的余弦值. 20. 已知.(1)求向量的夹角;(2)求. 21. 某市在开展创建“全国文明城市”活动中,工作有序扎实,成效显著,尤其是城市环境卫生大为改观,深得市民好评.“创文”过程中,某网站推出了关于环境治理和保护问题情况的问卷调查,现从参与问卷调查的人群中随机选出人,并将这人按年龄分组:第组,第组,第组,第组,第组,得到的频率分布直方图如图所示.(1)求出的值;(2)若已从年龄较小的第,组中用分层抽样的方法抽取人,现要再从这人中随机抽取人进行问卷调查,求第组恰好抽到人的概率. 22. 如图,在四棱锥中,===,=,=,,,分别为,的中点,.(1)求证:平面;(2)求直线与底面所成角的大小ABCD −A 1B 1C 1D 1ABCD A B 1C B 1BD ⊥D 1B 1ABCD ∠DAB 60∘△D B B 1−BD −A 1C 1||=6,||=4,(−2)⋅(+3)=−72a b a b a b ,a b θ|+3|a b 2002001[15,25)2[25,35)3[35,45)4[45,55)5[55,65)a 1255322A −DBCE AD BD AE CE =5–√BC 4DE 2DE//BC O H DE AB AO ⊥CE DH //ACE DH DBCE参考答案与试题解析2023-2024学年全国高一下数学期末试卷一、 选择题 (本题共计 7 小题 ,每题 5 分 ,共计35分 )1.【答案】A【考点】两角和与差的三角函数【解析】结合诱导公式及二倍角余弦公式进行化简即可求解.【解答】因为,则=.2.【答案】B【考点】众数、中位数、平均数、百分位数【解析】分别计算出两组数据的中位数和平均数即可得出选项.【解答】解:甲的平均数为:,中位数为,乙的平均数为:,中位数为,所以甲的中位数和平均数都比乙低.故选.3.【答案】cosα=13sin(2α+)=cos2απ22α−1=−cos 279=2925+28+29+31+32529=3028+29+30+31+32530BB【考点】古典概型及其概率计算公式【解析】由题意,先弄清至少有一面涂红漆的小正方体个数以及没有颜色的小正方体的个数,从中随机取出一块,根据古典概型及其概率计算公式解之即可.【解答】解:由题意可知,正方体的边长为,没有颜色的小正方体有个,至少有一面涂有红色的小正方体有个,从个正方体中随机取出块,这一块至少有一面有红色的概率是.故选.4.【答案】C【考点】数量积表示两个向量的夹角【解析】设与的夹角为,因为,所以,所以,故,所以又,所以,故选.【解答】C 5.【答案】C【考点】频率分布直方图【解析】=4cm 64−−√3856641P ==566478B a →−b →a →θ⊥a →b →⋅=0a →b →⋅(−)=⋅−=−1a →b →a →a →b →a →2=+−2⋅=1+3=4(−)b →a →2a →2b →2a →b →−=2∣∣∣b →a →∣∣∣cosθ===−a ⋅(b −a)||⋅a|a →−11×212θ∈[0,π]θ=2π3C此题暂无解析【解答】此题暂无解答6.【答案】A【考点】空间中直线与平面之间的位置关系空间中直线与直线之间的位置关系空间中平面与平面之间的位置关系命题的真假判断与应用【解析】利用空间线面平行以及垂直判定定理,依次判断,即可求出选项.【解答】解:由,是两条不同直线,,,是三个不同平面,得在①中,,,则由线面垂直的性质定理得,故①正确;在②中,若,,,则由面面平行性质定理、线面垂直的判定定理得,故②正确;在③中,若,,则与相交、平行或异面,故③错误,综上所述,正确命题的序号是①②.故选.7.【答案】C【考点】任意角的三角函数两角和与差的三角函数【解析】由题意求得点坐标,根据三角函数的定义写出、,再计算的值.【解答】由题意知,点,m n αβγm ⊥αn//αm ⊥n α//ββ//γm ⊥αm ⊥γm//αn//αm n A P sin ∠P OA cos ∠P OA sin ∠BOP P (,)22–√313∠P OA =1根据三角函数的定义知,,,所以==.二、 多选题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )8.【答案】B,D【考点】平面向量数量积的性质及其运算平面向量数量积【解析】写出的所有可能组合,计算它们的值,结合选项进行判断.【解答】解:共有三种组合方式,分别记作,,,则,.,故错误;当时,,故正确;当时,或,故错误;当时,,,∴,.又,∴,故正确.故选.9.【答案】A,B,D sin ∠P OA =13cos ∠P OA =22–√3sin ∠BOP sin(−∠P OA)3π4sin cos ∠P OA −cos sin ∠P OA 3π43π4=×−(−)×2–√222–√32–√213=4+2–√6S S S 1S 2S 3=⋅+⋅+⋅+⋅+⋅S 1a →a →a →a →b →b →b →b →b →b →=2+3a →2b →2=⋅+⋅+⋅+⋅+⋅S 2a →b →a →b →b →b →b →a →b →a →=4⋅+a →b →b →2=⋅+⋅+⋅+⋅+⋅S 3a →a →a →b →b →a →b →b →b →b →=+2⋅+2a →2a →b →b →2A ⊥a →b →=S min =S 2b →2B //a →b →⋅=||||a →b →a →b →−||||a →b →C ||>4||b →a →−4<⋅<4a →2a →b →a →2>16b →2a →2>0S 2>0S 3>0S 1>0S min D BD复数的运算共轭复数【解析】根据复数的运算得到,在对选项逐一判定即可得解.【解答】解:因为,所以,,,故正确;,因为,所以,故正确;, ,故错误;, ,故正确.故选.10.【答案】B,C,D【考点】互斥事件与对立事件【解析】本题中给了三个事件,四个选项都是研究互斥关系的,可先对每个事件进行分析,再考查四个选项得出正确答案.【解答】解:为"三件产品全不是次品",指的是三件产品都是正品,为"三件产品全是次品",为"三件产品不全是次品",它包括一件次品,两件次品,三件全是正品三个事件,由此知:与是互斥事件,但不对立;与是包含关系,不是互斥事件,更不是对立事件;与是互斥事件,也是对立事件.故选.11.=−+i z 2123–√2z =+i 123–√2==+i +=−+i z 2(+i)123–√22143–√234i 2123–√2A =(−+i)(+i)=−=−1z 3123–√2123–√2(i)3–√2214A B =−i z ¯¯¯123–√2=−z 2z ¯¯¯B C 1z =1+i 123√2=−i 123√2(+i)(−i)123√2123√2=−i 123–√2C D −z +1=−+i −(+i)+1=0z 2123–√2123–√2D ABD A B C A B A C B C BCDA,B【考点】众数、中位数、平均数、百分位数极差、方差与标准差【解析】【解答】解:甲的五项能力指标为,,,,,平均值为,乙的五项能力指标为,,,,,平均值为,则正确;由于均值相同,各项指标也相同(只是顺序不同),所以方差也相同,则正确;从控制力、决断力、前瞻力考虑,甲的均值为,乙的均值为,所以甲的领导力高于乙的领导力,则不正确;从影响力、控制力、感召力考虑,甲、乙的指标均值相同,方差也相同,所以甲、乙水平相当,则不正确.故选.12.【答案】B,D【考点】棱锥的结构特征棱柱、棱锥、棱台的体积棱柱、棱锥、棱台的侧面积和表面积截面及其作法【解析】计算出小棱锥与原棱锥的相似比,结合两个棱锥侧面积之积为相似比的平方、体积之比为相似比的立方可求得结果.【解答】解:由题意可知,上部分为小棱锥,下部分为棱台,则小棱锥与原棱锥的底面边长之比为,高之比为,所以小棱锥与原棱锥的侧面积之比为,体积之比为,65454=4.86+5+4+5+4564545=4.86+4+5+4+55A B 143133C D AB 1:31:31:91:27所以小棱锥与棱台的侧面积之比为,体积之比为.故选.三、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )13.【答案】【考点】余弦函数的对称性余弦函数的图象【解析】此题暂无解析【解答】解:,令,则,∴的对称轴方程为.故答案为:.14.【答案】①⑤【考点】棱柱、棱锥、棱台的体积命题的真假判断与应用【解析】利用已知条件,推出,然后推出,说明三棱锥的外接球相同,然后推出结果.【解答】不妨设=,又为正三角形,由,得,即有,所以=,1:81:26BD x =(k ∈Z)kπ2y =cos2x 2x =kπ,k ∈Z x =,k ∈Z kπ2y =cos2x x =(k ∈Z)kπ2x =(k ∈Z)kπ2DB ⊥AC <V 1V 2P −ACD |AD |2△ACD ⋅=⋅=3⋅DA →DB →DB →DC →DB →AB →⋅−⋅=⋅(−)=0DA →DB →DB →DC →DB →DA →DC →DB ⊥AC ∠ADB 30∘=3⋅→→=3⋅(−)→→DB |=4–√得,化简可以得,∴=,易得,故,由于==,所以与的外接圆相同(四点共圆),所以三棱锥,三棱锥的外接球相同,所以=.15.【答案】,【考点】极差、方差与标准差众数、中位数、平均数、百分位数【解析】根据平均数的变化规律可得出数据,,,,的平均数是;先根据数据,,,,的方差为,求出数据,,,,的方差是.【解答】解:数据,,,,的平均数是,数据,,,,的平均数是.数据,,,,的方差为,数据,,,,的方差是.故答案为:,.16.【答案】【考点】异面直线及其所成的角【解析】将直三棱柱中的四棱锥单独如图所示,四棱锥是外接球的球心在过底面正方形的中心做底面的垂线上,设球心为,做交于点,可得=,连接,可得==,在两个三角形中求出的值,进而求出外接球的表面积.【解答】解:连接 ,取的中点,连接,,为中点, ,且 ,⋅=3⋅DB →DC →DB →AB →⋅=3⋅(−)DB →DC →DB →DB →DA →|DB |=43–√3∠DAB 90∘S <△ABD S △ACD <V 1V 2∠ADB ∠ACD 60∘△ABD △ACD P −ABD P −ACD S 1S 231−2x 1−2x 2−2x 3−2x 4−2x 55−2x 1x 2x 3x 4x 51−2x 1−2x 2−2x 3−2x 4−2x 51∵x 1x 2x 3x 4x 55∴−2x 1−2x 2−2x 3−2x 4−2x 55−2=3∵x 1x 2x 3x 4x 51∴−2x 1−2x 2−2x 3−2x 4−2x 5×1=11231π3O ON //P E ME N NE OP OC OM OC OM R R C B 1B 1C E DE BE ∵D AC ∴DE =A 12B 1DE//A B 1A B BD ∠BDE则异面线 与所成的角即为 ,, ,, , , , , 为等边三角形, .故答案为:.四、 解答题 (本题共计 6 小题 ,每题 11 分 ,共计66分 )17.【答案】解:(1)∵点的坐标为,∴,,∴,,∴(2)∵(,),,∴,∵,∴,∴,∴,∴.【考点】三角函数【解析】(1)根据三角形函数线以及点的坐标,求出,,再根据二倍角公式,分别求出,,代入计算即可;(2)先表示出点的坐标,根据点与点的距离公式,根据三角函数的图象和性质即可求出,的取值范围.【解答】解:(1)∵点的坐标为,A B 1BD ∠BDE ∵∠ABC =90∘AB =BC =B =2B 1∴AC =22–√BD =2–√A =C =2B 1B 12–√∴DE =A =12B 12–√BE =C =12B 12–√∴△BDE ∴∠BDE =π3π3A (,)354545sinα=45cosα=35cos2α=2α−1=−cos 2725sin2α=2sinαcosα=2425==−cos2α1+sin2α−7251+242517B cos(α+)π3sin(α+)π3C(1,0)|BC =[cos(α+)−1+(α+)=2−2cos(α+)|2π3]2sin 2π3π30≤α≤π3≤α+≤π3π32π3−≤cos(α+)≤12π3121≤2−2cos(α+)≤3π31≤|BC |≤3–√A sinα=45cosα=35cos2αsin2αB BC A (,)354545α=4α=3∴,,∴,,∴(2)∵(,),,∴,∵,∴,∴,∴,∴.18.【答案】解:补全列联表如下:参加体育锻炼未参加体育锻炼总计男同学女同学总计所以,故有的把握认为“参加体育锻炼与性别有关系”.因为参加未体育锻炼的男同学有人,女同学有人,按分层抽样从中抽取人,则男同学应抽取人,记为,女同学应抽取人,记为,再从这人中随机抽取人共有种情况,即,,,,,,,,,,,,,,,,,,,,,抽到男同学和女同学各人有种情况,即,故所求的概率为.【考点】独立性检验列举法计算基本事件数及事件发生的概率【解析】此题暂无解析sinα=45cosα=35cos2α=2α−1=−cos 2725sin2α=2sinαcosα=2425==−cos2α1+sin2α−7251+242517B cos(α+)π3sin(α+)π3C(1,0)|BC =[cos(α+)−1+(α+)=2−2cos(α+)|2π3]2sin 2π3π30≤α≤π3≤α+≤π3π32π3−≤cos(α+)≤12π3121≤2−2cos(α+)≤3π31≤|BC |≤3–√(1)351045202545553590=K 290(35×25−10×20)245×45×55×35=≈10.519>7.87910×27211×9×799.5%(2)102572x,y 5a ,b ,c ,d ,e 7221xy xa xb xc xd xe ya yb yc yd ye ab ac ad ae bc bd be cd ce de 110xa ,xb ,xc ,xd ,xe ,ya ,yb ,yc ,yd ,ye 1021【解答】解:补全列联表如下:参加体育锻炼未参加体育锻炼总计男同学女同学总计所以,故有的把握认为“参加体育锻炼与性别有关系”.因为参加未体育锻炼的男同学有人,女同学有人,按分层抽样从中抽取人,则男同学应抽取人,记为,女同学应抽取人,记为,再从这人中随机抽取人共有种情况,即,,,,,,,,,,,,,,,,,,,,,抽到男同学和女同学各人有种情况,即,故所求的概率为.19.【答案】证明:如图,设与相交于点,连接,又面为菱形,故,为中点,又=,故,又在平面内,在平面内,且=,∴平面,又在平面内,∴平面平面;由是等边三角形,可得,故平面,∴,,两两互相垂直,则以为坐标原点,建立如图所示的空间直角坐标系,不妨设=,则,则,设平面的一个法向量为,则,可取,设平面的一个法向量为,则,可取,∴,∴二面角的余弦值为.(1)351045202545553590=K 290(35×25−10×20)245×45×55×35=≈10.519>7.87910×27211×9×799.5%(2)102572x,y 5a ,b ,c ,d ,e 7221xy xa xb xc xd xe ya yb yc yd ye ab ac ad ae bc bd be cd ce de 110xa ,xb ,xc ,xd ,xe ,ya ,yb ,yc ,yd ,ye 1021AC BD O O B 1ABCD AC ⊥BD O AC A B 1C B 1O ⊥AC B 1BD BD D 1B 1O B 1BD D 1B 1BD ∩O B 1O AC ⊥BD D 1B 1AC ABCD BD ⊥D 1B 1ABCD △D B B 1O ⊥BD B 1O ⊥B 1ABCD O B 1AC BD O AB 2AO =,O =3–√B 13–√A(,0,0),B(0,1,0),(0,0,),D(0,−1,0),(,−1,),(−,−1,)3–√B 13–√A 13–√3–√C 13–√3–√BD C 1=(x,y,z)n⋅=2y =0n BD →⋅=−x −y +z =0n O C 1→3–√3–√=(1,0,1)n BD A 1=(a,b,c)m⋅=2b =0m BD →⋅=a −b +c =0m O A 1→3–√3–√=(−1,0,1)m cos <,>==0m n ⋅m n ||||m n−BD −A 1C 10【考点】二面角的平面角及求法平面与平面垂直【解析】(1)首先由,可得平面,而在平面内,由面面垂直的判定即得证;(2)建立空间直角坐标系,求出两个平面的法向量,利用向量的夹角公式计算得出答案.【解答】证明:如图,设与相交于点,连接,又面为菱形,故,为中点,又=,故,又在平面内,在平面内,且=,∴平面,又在平面内,∴平面平面;由是等边三角形,可得,故平面,∴,,两两互相垂直,则以为坐标原点,建立如图所示的空间直角坐标系,不妨设=,则,则,设平面的一个法向量为,则,可取,设平面的一个法向量为,则,可取,∴,∴二面角的余弦值为.AC ⊥BD O ⊥AC B 1AC ⊥BD D 1B 1AC ABCD AC BD O O B 1ABCD AC ⊥BD O AC A B 1C B 1O ⊥AC B 1BD BD D 1B 1O B 1BD D 1B 1BD ∩O B 1O AC ⊥BD D 1B 1AC ABCD BD ⊥D 1B 1ABCD △D B B 1O ⊥BD B 1O ⊥B 1ABCD O B 1AC BD O AB 2AO =,O =3–√B 13–√A(,0,0),B(0,1,0),(0,0,),D(0,−1,0),(,−1,),(−,−1,)3–√B 13–√A 13–√3–√C 13–√3–√BD C 1=(x,y,z)n⋅=2y =0n BD →⋅=−x −y +z =0n O C 1→3–√3–√=(1,0,1)n BD A 1=(a,b,c)m⋅=2b =0m BD →⋅=a −b +c =0m O A 1→3–√3–√=(−1,0,1)m cos <,>==0m n ⋅m n ||||m n−BD −A 1C 1020.【答案】由=,=,=,所以,所以=;所以,又,所以向量的夹角为;=,所以.【考点】平面向量数量积的性质及其运算【解析】(1)由平面向量的数量积求和的值;(2)根据平面向量的数量积求模长.【解答】由=,=,=,所以,所以=;所以,又,所以向量的夹角为;=,所以.21.【答案】由=,解得=.第,组的人数分别为人,人,从第,组中用分层抽样的方法共抽取人,则第,组抽取的人数依次为人,人,分别记为,,,,;设从人中随机抽取人,则有,,,,,,,,,共个基本事件;其中第组恰好抽到人包含,,,,,共个基本事件;所以第组抽到人的概率.||a 6||b 4(−2)⋅(+3)a b a b −72+⋅−6=−72a 2a b b 2⋅=−72−36+6×16a b −12cosθ===−⋅a b ||×||a b −126×412θ∈[0,π],a b θ=2π3=+6⋅+9=36+6×(−12)+9×16(+3)a b 2a 2a b b 2108|+3|==6a b 108−−−√3–√cosθθ|+3|a b ||a 6||b 4(−2)⋅(+3)a b a b −72+⋅−6=−72a 2a b b 2⋅=−72−36+6×16a b −12cosθ===−⋅a b ||×||a b −126×412θ∈[0,π],a b θ=2π3=+6⋅+9=36+6×(−12)+9×16(+3)a b 2a 2a b b 2108|+3|==6a b 108−−−√3–√10×(0.010+0.015+a +0.030+0.010)1a 0.0351220301251223a 1a 2b 1b 2b 353(,,)a 1a 2b 1(,,)a 1a 2b 2(,,)a 1a 2b 3(,,)a 1b 1b 2(,,)a 1b 1b 3(,,)a 1b 2b 3(,,)a 2b 1b 2(,,)a 2b 1b 3(,,)a 2b 2b 3(,,)b 1b 2b 31022(,,)a 1b 1b 2(,,)a 1b 1b 3(,,)a 1b 2b 3(,,)a 2b 1b 2(,,)a 2b 1b 3(,,)a 2b 2b 3622P ==61035【考点】频率分布直方图【解析】(1)由频率分布直方图能求出.(2)第,组抽取的人数分别为人,人,从第,组中用分层抽样的方法抽取人,第,组抽取的人数分别为人,人,分别记为,,,,.从人中随机抽取人,利用列举法能求出第组抽到人的概率.【解答】由=,解得=.第,组的人数分别为人,人,从第,组中用分层抽样的方法共抽取人,则第,组抽取的人数依次为人,人,分别记为,,,,;设从人中随机抽取人,则有,,,,,,,,,共个基本事件;其中第组恰好抽到人包含,,,,,共个基本事件;所以第组抽到人的概率.22.【答案】证明:取线段的中点,连接,.因为是的中位线,所以.又因为=,,所以=,.所以四边形为平行四边形,所以.因为平面,平面.所以平面.连接,取的中点,连接,.a 1220301251223a 1a 2b 1b 2b 3532210×(0.010+0.015+a +0.030+0.010)1a 0.0351220301251223a 1a 2b 1b 2b 353(,,)a 1a 2b 1(,,)a 1a 2b 2(,,)a 1a 2b 3(,,)a 1b 1b 2(,,)a 1b 1b 3(,,)a 1b 2b 3(,,)a 2b 1b 2(,,)a 2b 1b 3(,,)a 2b 2b 3(,,)b 1b 2b 31022(,,)a 1b 1b 2(,,)a 1b 1b 3(,,)a 1b 2b 3(,,)a 2b 1b 2(,,)a 2b 1b 3(,,)a 2b 2b 3622P ==61035AC F EF HF HF △ABC HF =BC =2,HF ∥BC 12DE 2DE//BC HF DE HF //DE DEFH EF //HD EF ⊂ACE DH ⊂ACE DH //ACE OB OB G HG DG易知,易知是的中位线,所以且.因为=,为中点,,又,所以.因为,,所以.又=,,平面,所以底面.所以是与底面所成的角.易求等腰梯形的高为所以=.在中,由.得=.故直线与底面所成角的大小为.【考点】直线与平面所成的角直线与平面平行【解析】(1)利用中位线的性质及平行线的传递性,可证四边形为平行四边形,由此即可得证;(2)关键是找出是与底面所成的角,进而转化到三角形中解三角形即可.【解答】证明:取线段的中点,连接,.因为是的中位线,所以.又因为=,,所以=,.OD =DE =1,AO ===212A −O D 2D 2−−−−−−−−−−√−()5–√212−−−−−−−−−√HG △AOB HG//AO HG =AO =112AD AE O DE AO ⊥DE HG//AO HG ⊥DE AO ⊥CE HG//AO HG ⊥CE DE ∩CE E DE CE ⊂DBCE HG ⊥DBCE ∠HDG DH DBCE DBCE ==2C −E 2()BC −DE 22−−−−−−−−−−−−−−−−−√−()5–√2()4−222−−−−−−−−−−−−−−√DG 1Rt △HDG tan ∠HDG ===1HG DG 11∠HDG 45∘DH DBCE 45∘DEFH ∠HDG DH DBCE AC F EF HF HF △ABC HF =BC =2,HF ∥BC 12DE 2DE//BC HF DE HF //DE DEFH所以四边形为平行四边形,所以.因为平面,平面.所以平面.连接,取的中点,连接,.易知,易知是的中位线,所以且.因为=,为中点,,又,所以.因为,,所以.又=,,平面,所以底面.所以是与底面所成的角.易求等腰梯形的高为所以=.在中,由.得=.故直线与底面所成角的大小为.DEFH EF //HD EF ⊂ACE DH ⊂ACE DH //ACE OB OB G HG DG OD =DE =1,AO ===212A −O D 2D 2−−−−−−−−−−√−()5–√212−−−−−−−−−√HG △AOB HG//AO HG =AO =112AD AE O DE AO ⊥DE HG//AO HG ⊥DE AO ⊥CE HG//AO HG ⊥CE DE ∩CE E DE CE ⊂DBCE HG ⊥DBCE ∠HDG DH DBCE DBCE ==2C −E 2()BC −DE 22−−−−−−−−−−−−−−−−−√−()5–√2()4−222−−−−−−−−−−−−−−√DG 1Rt △HDG tan ∠HDG ===1HG DG 11∠HDG 45∘DH DBCE 45∘。

人教版2020-2021学年下学期高一数学期末检测卷及答案(含两套题)

人教版2020-2021学年下学期高一数学期末检测卷及答案(含两套题)
故选:B.
【点睛】一般地,如果 为等差数列, 为其前 项和,则有性质:
(1)若 ,则 ;
(2) 且 ;
(3) 且 为等差数列;
(4) 为等差数列.
6.A
【解析】
【分析】
利用正弦定理将边转化为角得到 ,再由角C的范围可得选项.
【详解】因为 ,
所以由正弦定理得 ,所以 ,即 ,
又因为 为 的内角,
所以 .
解得 , ,
, ;
(2) ,

又 ,由题得 ,即 ,
,即
由题知 且 ,故 ,
故 ,
故只需考虑 , 时 , 时 , 时 ,
17.(10分)已知 中,点 .
(1)求直线 的方程;
(2)求 的面积.
18.(12分)已知函数 .
(1)当 时,求不等式 的解集;
(2)若关于x的不等式 的解集为R,求a的取值范围.
19.(12分)己知向量 , .
(1)若 ,其中 ,求 坐标;
(2)若 与 的夹角为 ,求 的值.
20.(12分)自我国爆发新冠肺炎疫情以来,各地医疗单位都加紧了医疗用品的生产,某医疗器械厂统计了口罩生产车间每名工人的生产速度,将所得数据分成五组并绘制出如图所示的频率分布直方图.已知前四组的频率成等差数列,第五组与第二组的频率相等.
故 ,
故答案为:
【点睛】向量的数量积有两个应用:(1)计算长度或模长,通过用 来求;(2)计算角, .特别地,两个非零向量 垂直的等价条件是 .
15.9
【解析】
【分析】
将 变形后利用基本不等式可求其最小值
【详解】 ,
,等号成立时 , .
故答案为:9.
【点睛】应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.

专题12 (统计)高一数学下学期期末考试考前必刷题 (人教A版 2019必修二)

专题12 (统计)高一数学下学期期末考试考前必刷题 (人教A版 2019必修二)

2020-2021高一下学期期末考试考前必刷题 12(统计)试卷满分:150分 考试时长:120分钟注意事项:1.本试题满分150分,考试时间为120分钟.2.答卷前务必将姓名和准考证号填涂在答题纸上.3.使用答题纸时,必须使用0.5毫米的黑色签字笔书写,要字迹工整,笔迹清晰.超出答题区书写的答案无效;在草稿纸、试题卷上答题无效. 一、单选题(本大题共8小题,共40.0分)1.(2021·河北邯郸市·高二期末)某学校高二年级选择“史政地”,“史政生”和“史地生”组合的同学人数分别为210,90和60.现采用分层抽样的方法选出12位同学进行项调查研究,则“史政生”组合中选出的同学人数为( ) A .7 B .6C .3D .2【答案】C2.(2021·安徽滁州市·高二期末(理))生物等级性考试成绩位次由高到低分为A 、B 、C 、D 、E ,各等级人数所占比例依次为:A 等级15%,B 等级40%,C 等级30%,D 等级14%,E 等级1%.现采用分层抽样的方法,从参加生物等级性考试的学生中抽取300人作为样本,则该样本中获得A 或B 等级的学生人数为( ) A .95 B .144C .120D .165【答案】D3.(2020·江苏泰州市·高一期末)如果1x ,2x …n x 的方差为2,则12212121n x x x +++,的方差为( ) A .2 B .4C .8D .16【答案】C4.(2021·甘肃省永昌县第一高级中学高二期末(文))问题:①某社区有500个家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户,为了了解社会购买力的某项指标,要从中抽出一个容量为100户的样本;②从10名学生中抽出3人参加座谈会,方法:Ⅰ简单随机抽样法;Ⅰ系统抽样法;Ⅰ分层抽样法.则问题与方法配对正确的是( ) A .①Ⅰ ②ⅠB .①Ⅰ ②ⅠC .①Ⅰ ②ⅠD .①Ⅰ ②Ⅰ【答案】A5.(2021·江西上饶市·高二期末(文))庚子新春,病毒肆虐,某老师为了解某班50个同学宅家学习期间上课、休息等情况,决定将某班学生编号为01,02,…,50.利用下面的随机数表选取10个学生调查,选取方法是从下面随机数表的第1行的第2列和第3列数字开始由左到右依次选取两个数字,则选出来的第4个学生的编号为( )7 2 5 6 0 8 1 3 0 2 5 8 3 2 4 9 8 7 0 2 4 8 1 2 9 7 2 8 0 1 9 83 1 04 9 2 3 1 4 9 35 8 2 0 9 36 2 4 4 8 6 9 6 9 3 87 48 1A .25B .24C .29D .19【答案】C6.(2021·安徽滁州市·高二期末(理))“脱口秀大赛”上选手的分数分为观众评分和嘉宾评分.组织方将观众评分按照[)70,80,[)80,90,[]90,100分组,绘制频率分布直方图如图所示.嘉宾评分的平均数为1x ,观众评分的平均数为2x ,中位数为x 中,则下列选项正确的是( )A .12x x x >>中B .21x x x >>中C .12x x x >>中D .21x x x >>中【答案】C7.(2021·陕西安康市·高二期末(理))某学校举办班级间篮球比赛,甲、乙两班得分情况如茎叶图所示,甲、乙两班得分的中位数分别是x 甲,x 乙,则下列说法正确的是( )A .x x <甲乙,甲比乙成绩稳定B .x x <甲乙,乙比甲成绩稳定C . x x >甲乙,甲比乙成绩稳定D . x x >甲乙,乙比甲成绩稳定 【答案】C8.(2021·四川凉山彝族自治州·高二期末(文))如图,是根据某班学生在一次数学考试中的成绩画出的频率分布直方图,若由直方图得到的众数,中位数和平均数(同一组中的数据用该组区间的中点值为代表)分别为,,a b c ,则( )A .b a c >>B .a b c >>C .2a cb +> D .2b ca +> 【答案】B二、多选题(本大题共4小题,共20.0分)9.(2020·江苏南通市·高一期末)某篮球运动员8场比赛中罚球次数的统计数据分别为:2,6,8,3,3,4,6,8,关于该组数据,下列说法正确的是( ) A .中位数为3B .众数为3,6,8C .平均数为5D .方差为4.8【答案】BC10.(2021·河北邯郸市·高二期末)某学校为了调查高二年级学生周末阅读时间情况,随机选取了100名学生,绘制了如图所示频率分布直方图,则( )A .众数的估计值为35B .中位数的估计值为35C .平均数的估计值为29.2D .样本中有25名同学阅读时间不低于40分钟 【答案】ACD11.(2021·辽宁沈阳市·高一期末)在疫情防护知识竞赛中,对某校的2000名考生的参赛成绩进行统计,可得到如图所示的频率分布直方图,其中分组的区间为[)40,50,[)50,60,[)60,70,[)70,80,[)80,90,[]90,100,60分以下视为不及格,若同一组中数据用该组区间中间值作代表值,则下列说法中正确的是( )A .成绩在[)70,80的考生人数最多B.不及格的考生人数为500C.考生竞赛成绩的众数为75分D.考生竞赛成绩的中位数约为75分【答案】AC12.(2020·山东)在对某中学高一年级学生身高(单位:cm)的调查中,随机抽取了男生23人、女生27人,23名男生的平均数和方差分别为170和10.84,27名女生的平均数和方差分别为160和28.84,则()A.总样本中女生的身高数据比男生的离散程度小B.总样本的平均数大于164C.总样本的方差大于45D.总样本的标准差大于7【答案】BC三、填空题(本大题共4小题,共20.0分)13.(2021·武汉外国语学校高二期末)一组数据2,4,x,8,10的平均值是6,则此组数据的方差是_______.【答案】814.(2021·广东珠海市·高二期末)某社会爱心组织面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45),得到的频率分布直方图如图所示.若从第3,4,5组中用分层抽样的方法抽取6名志愿者参与广场的宣传活动,应从第3组抽取__________名志愿者.【答案】315.(2020·山东泰安市·)某校从高一新生中随机抽取了一个容量为20的身高样本,数据从小到大排序如下(单位:cm ):152,155,158,164,164,165,165,165,166,167,168,168,169,170,170,170,171,x ,174,175,若样本数据的第90百分位数是173,则x 的值为________. 【答案】17216.(2020·云南高二期末(文))给出下列命题:①函数()π4cos 23f x x ⎛⎫=+ ⎪⎝⎭的一个对称中心为5π,012⎛⎫- ⎪⎝⎭;②若,αβ为第一象限角,且αβ>,则tan tan αβ>;③设一组样本数据12,,,n x x x ⋅⋅⋅的平均数是2,则数据1221,21,,21n x x x --⋅⋅⋅-的平均数为3;④函数sin 2y x =的图象向左平移π4个单位长度,得到πsin 24y x ⎛⎫=+ ⎪⎝⎭的图象.其中正确命题的序号是_____________(把你认为正确的序号都填上). 【答案】①③四、解答题(本大题共6小题,共70.0分)17.(2021·四川宜宾市·高二期末(理))6月17日是联合国确定的“世界防治荒漠化和干旱日”,为增强全社会对防治荒漠化的认识与关注,聚焦联合国2030可持续发展目标——实现全球土地退化零增长.自2004年以来,我国荒漠化和沙化状况呈现整体遏制、持续缩减、功能增强、成效明显的良好态势.治理沙漠离不开优质的树苗,现从苗埔中随机地抽测了200株树苗的高度(单位:cm ),得到以下频率分布直方图.(1)求直方图中a 的值及众数、中位数;(2)若树高185cm及以上是可以移栽的合格树苗.①求合格树苗的平均高度(结果精确到个位);②从样本中按分层抽样方法抽取20株树苗作进一步研究,不合格树苗、合格树苗分别应抽取多少株?=,众数190,中位数为190;(2)①197(cm);②不合格树苗、【答案】(1)a0.0250合格树苗分别应抽取7株和13株.18.(2021·邱县第一中学高二期末)某科研课题组通过一款手机APP软件,调查了某市1000名跑步爱好者平均每周的跑步量(简称“周跑量”),得到如下的频数分布表:(1)补全该市1000名跑步爱好者周跑量的频率分布直方图;(2)根据以上图表数据,试求样本的中位数及众数(保留一位小数);(3)根据跑步爱好者的周跑量,将跑步爱好者分成以下三类,不同类别的跑者购买的装备的价格不一样(如表),根据以上数据,估计该市每位跑步爱好者购买装备,平均需要花费多少元?【答案】(1)见解析;(2)中位数29.2,众数32.5;(3)平均花费3720元.19.(2021·湖南张家界市·高二期末)某蔬果经销商销售某种蔬果,售价为每千克25元,成本为每千克15元,其销售宗旨是当天进货当天销售,若当天未销售完,未售出的全部降价以每千克10元处理完.据以往销售情况,按[0,100),[100,200),[200,300),[300,400),[400,500)进行分组,得到如图所示的频率分布直方图.(1)根据频率分布直方图求该蔬果日需求量的平均数x (同组数据用区间中点值代表); (2)该经销商某天购进了250千克蔬果,假设当天的日需求量为x 千克(0500x ≤≤),利润为y 元.①求y 关于x 的函数表达式;②根据频率分布直方图估计利润y 不小于1750元的概率. 【答案】(1)265千克;(2)①151250,02502500,250500x x y x -≤<⎧=⎨≤≤⎩;②0.7.20.(2021·山东德州市·高三期末)某研究院为了调查学生的身体发育情况,从某校随机抽频率组距测120名学生检测他们的身高(单位:米),按数据分成[1.2,1.3],(1.3,1.4],,(1.7,1.8]这6组,得到如图所示的频率分布直方图,其中身高大于或等于1.59米的学生有20人,其身高分别为1.59,1.59,1.61,1.61,1.62,1.63,1.63,1.64,1.65,1.65,1.65,1.65,1.66,1.67,,1.68,1.69,1.69,1.71,1.72,1.74,以这120名学生身高在各组的身高的频率估计整个学校的学生在各组身高的概率.(1)求该校学生身高大于1.60米的频率,并求频率分布直方图中m 、n 、t 的值; (2)若从该校中随机选取3名学生(学生数量足够大),记X 为抽取学生的身高在(1.4,1.6]的人数求X 的分布列和数学期望.【答案】(1)0.25m = , 1.25n =, 3.5t =;(2)分布列见详解;2.1.21.(2020·万宁市民族中学高二期末)某中学甲、乙两名同学最近几次的数学考试成绩情况如下(单位:分):甲:82 86 84 87 86 乙:90 86 86 81 82 (1)画出两人数学成绩的茎叶图; (2)分别求出两人的平均数及方差; (3)比较两名同学谁的成绩更稳定.【答案】(1)茎叶图见解析;(2)甲的平均分为185x =,乙的平均分为285x =,甲,乙的方差分别为22121652,55S S ==;(3)甲的成绩更稳定. 22.(2020·长沙县实验中学高一期末)某高级中学今年高一年级招收“国际班”学生720人,学校为这些学生开辟了直升海外一流大学的绿色通道,为了逐步提高这些学生与国际教育接轨的能力,将这720人分为三个批次参加国际教育研修培训,在这三个批次的学生中男、女学生人数如下表:已知在这720名学生中随机抽取1名,抽到第一批次、第二批次中女学生的概率分别是0.25,0.15.(1)求,,m n k 的值;(2)为了检验研修的效果,现从三个批次中按分层抽样的方法抽取6名同学问卷调查,则三个批次被选取的人数分别是多少?(3)若从第(2)小问选取的学生中随机选出两名学生进行访谈,求“参加访谈的两名同学至少有一个人来自第一批次”的概率.【答案】(1)180,108,48m n k ===;(2)3,2,1;(3)45.。

人教A版高一数学必修第二册全册复习测试题卷含答案解析(1)

人教A版高一数学必修第二册全册复习测试题卷含答案解析(1)

高一数学必修第二册全册复习测试题卷11(共22题)一、选择题(共10题)1. △ABC 中,若 a =1,c =2,B =60∘,则 △ABC 的面积为 ( ) A . 12B . 1C .√32D . √32. 若书架中放有中文书 5 本,英文书 3 本,日文书 2 本,则抽出一本书为外文书的概率为 ( ) A . 15B . 310C . 25D . 123. 若 θ 为两个非零向量的夹角,则 θ 的取值范围为 ( ) A .(0,π) B .(0,π] C .[0,π) D .[0,π]4. 从一箱产品中随机地抽取一件,设事件 A = { 抽到一等品 },事件 B = { 抽到二等品 },事件 C = { 抽到三等品 } ,且已知 P (A )=0.65,P (B )=0.2,P (C )=0.1.则事件“抽到的是二等品或三等品”的概率为 ( ) A .0.7 B .0.65 C .0.35 D .0.35. 下列关于古典概型的说法中正确的是 ( ) ①试验中所有可能出现的样本点只有有限个; ②每个事件出现的可能性相等; ③每个样本点出现的可能性相等;④若样本点总数为 n ,随机事件 A 包含其中的 k 个样本点,则 P (A )=kn . A .②④ B .③④ C .①④ D .①③④6. 给定一组数据:102,100,103,104,101,这组数据的第 60 百分位数是 ( ) A . 102 B . 102.5 C . 103 D . 103.57. 为比较甲、乙两地某月 14 时的气温情况,随机选取该月中的 5 天,这 5 天中 14 时的气温数据(单位:∘C )如下:甲:2628293131乙:2829303132以下结论:①甲地该月 14 时的平均气温低于乙地该月 14 时的平均气温; ②甲地该月 14 时的平均气温高于乙地该月 14 时的平均气温;③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.其中根据数据能得到的统计结论的编号为( )A.①③B.①④C.②③D.②④8.下列说法正确的是( )A.任何事件的概率总是在(0,1)之间B.频率是客观存在的,与试验次数无关C.随着试验次数的增加,事件发生的频率一般会稳定于概率D.概率是随机的,在试验前不能确定9.用符号表示“点A在直线l上,l在平面α内”,正确的是( )A.A∈l,l∉αB.A⊂l,l⊄αC.A⊂l,l∈αD.A∈l,l⊂α10.半径为2的球的表面积为( )A.4πB.8πC.12πD.16π二、填空题(共6题)11.一家保险公司想了解汽车的挡风玻璃在一年时间里破碎的概率,公司收集了20000部汽车,时间从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年时间里挡风玻璃破碎的概率约为.12.思考辨析 判断正误.( )做100次拋硬币的试验,结果51次出现正面朝上,因此,出现正面朝上的概率是5110013.若空间两个角的两条边分别平行,则这两个角的大小关系是.14.如图所示,在复平面内,网格中的每个小正方形的边长都为1,点A,B对应的复数分别是z1,=.z2,则z2z115.平均数:如果n个数x1,x2,⋯,x n,那么x=叫做这n个数的平均数.16.思考辨析判断正误为了更清楚地反映学生在这学期多次考试中数学成绩情况,可以选用折线统计图.( )三、解答题(共6题)17.如图所示,梯形ABCD中,AD∥BC,且AD<BC,当梯形ABCD绕AD所在直线旋转一周时,其他各边旋转围成了一个几何体,试描述该几何体的结构特征.18.小明是班里的优秀学生,他的历次数学成绩是96,98,95,93,45分,最近一次考试成绩只有45分的原因是他带病参加了考试.期末评价时,怎样给小明评价(90分及90分以上为优秀,75∼90分为良好)?19.类比绝对值∣x−x0∣的几何意义,∣z−z0∣(z,z0∈C)的几何意义是什么?20.如图,在三棱锥P−ABC中,平面PAC⊥平面ABC,∠ACB=90∘,PA=AC=2BC.(1) 若PA⊥PB,求证:平面PAB⊥平面PBC;(2) 若PA与平面ABC所成角的大小为60∘,求二面角C−PB−A的余弦值.21.应用面面平行判断定理应具备哪些条件?22.如图,在四棱锥P−ABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,DC=6,AD=8,BC=10,PD=9,E为PA的中点.(1) 求证:DE∥平面BPC.(2) 在线段AB上是否存在一点F,满足CF⊥DB?若存在,试求出此时三棱锥B−PCF的体积;若不存在,请说明理由.答案一、选择题(共10题) 1. 【答案】C【解析】由题得 △ABC 的面积 S =12AB ⋅BC ⋅sin60∘=12×2×1×√32=√32. 【知识点】三角形的面积公式2. 【答案】D【解析】在 10 本书中,中文书 5 本,外文书为 3+2=5 本,由古典概型,在其中抽出一本书为外文书的概率为 510,即 12. 【知识点】古典概型3. 【答案】D【知识点】平面向量的数量积与垂直4. 【答案】D【解析】由题意知事件 A 、 B 、 C 互为互斥事件,记事件 D =“抽到的是二等品或三等品”,则 P (D )=P (B ∪C )=P (B )+P (C )=0.2+0.1=0.3. 【知识点】事件的关系与运算5. 【答案】D【解析】②中所说的事件不一定是样本点,所以②不正确;根据古典概型的特征及计算公式可知①③④正确. 【知识点】古典概型6. 【答案】D【解析】 5×0.6=3,第 60 百分位数是第三与第四个数的平均数, 即103+1042=103.5.【知识点】样本数据的数字特征7. 【答案】B【解析】因为 x 甲=26+28+29+31+315=29,x 乙=28+29+30+31+325=30,所以 x 甲<x 乙.又 s 甲2=9+1+0+4+45=185,s 乙2=4+1+0+1+45=2,所以 s 甲>s 乙,故由样本估计总体可知结论①④正确. 【知识点】样本数据的数字特征8. 【答案】C【解析】不可能事件的概率为 0,必然事件的概率为 1,故A 错误;频率是由试验的次数决定的,故B 错误;概率是频率的稳定值,故C 正确,D 错误. 【知识点】频率与概率9. 【答案】D【解析】点 A 在直线 l 上,表示为 A ∈l ,l 在平面 α 内,表示为 l ⊂α. 【知识点】平面的概念与基本性质10. 【答案】D【解析】因为球的半径为 r =2, 所以该球的表面积为 S =4πr 2=16π. 【知识点】球的表面积与体积二、填空题(共6题) 11. 【答案】 0.03【解析】 P =60020000=0.03.【知识点】频率与概率12. 【答案】 ×【知识点】频率与概率13. 【答案】相等或互补【知识点】直线与直线的位置关系14. 【答案】 −1−2i【解析】由题意,根据复数的表示可知z1=i,z2=2−i,所以z2z1=2−ii=(2−i)⋅(−i)i⋅(−i)=−1−2i.【知识点】复数的乘除运算、复数的几何意义15. 【答案】1n(x1+x2+⋯+x n)【知识点】样本数据的数字特征16. 【答案】√【知识点】频率分布直方图三、解答题(共6题)17. 【答案】如图所示,旋转所得的几何体是一个圆柱挖去两个圆锥后剩余部分构成的组合体.【知识点】组合体18. 【答案】小明5次考试成绩从小到大排列为45,93,95,96,98,中位数是95,应评定为“优秀”.【知识点】样本数据的数字特征19. 【答案】∣z−z0∣(z,z0∈C)的几何意义是复平面内点Z到点Z0的距离.【知识点】复数的加减运算20. 【答案】(1) 因为平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,BC⊂平面ABC,BC⊥AC,所以BC⊥平面PAC,因为PA⊂平面PAC,所以PA⊥BC.又PA⊥PB,PB∩BC=B,所以PA⊥平面PBC,因为PA⊂平面PAB,所以平面PAB⊥平面PBC.(2) 如图,过P作PH⊥AC于点H,因为平面PAC⊥平面ABC,所以PH⊥平面ABC,所以∠PAH=60∘,不妨设PA=2,所以PH=√3,以 C 为原点,分别以 CA ,CB 所在直线为 x 轴,y 轴,以过 C 点且平行于 PH 的直线为 z 轴,建立如图所示的空间直角坐标系,则 C (0,0,0),A (2,0,0),B (0,1,0),P(1,0,√3),因此 AB⃗⃗⃗⃗⃗ =(−2,1,0),AP ⃗⃗⃗⃗⃗ =(−1,0,√3),CB ⃗⃗⃗⃗⃗ =(0,1,0),CP ⃗⃗⃗⃗⃗ =(1,0,√3). 设 n ⃗ =(x 1,y 1,z 1) 为平面 PAB 的一个法向量, 则 {n ⃗ ⋅AB⃗⃗⃗⃗⃗ =0,n ⃗ ⋅AP⃗⃗⃗⃗⃗ =0, 即 {−2x 1+y 1=0,−x 1+√3z 1=0,令 z 1=√3,可得 n ⃗ =(3,6,√3), 设 m ⃗⃗ =(x 2,y 2,z 2) 为平面 PBC 的一个法向量, 则 {m ⃗⃗ ⋅CB⃗⃗⃗⃗⃗ =0,m ⃗⃗ ⋅CP ⃗⃗⃗⃗⃗ =0, 即 {y 2=0,x 2+√3z 2=0,令 z 2=√3,可得 m ⃗⃗ =(−3,0,√3), 所以 cos⟨m ⃗⃗ ,n ⃗ ⟩=4√3×2√3=−14, 易知二面角 C −PB −A 为锐角, 所以二面角 C −PB −A 的余弦值为 14.【知识点】平面与平面垂直关系的判定、利用向量的坐标运算解决立体几何问题、二面角21. 【答案】①平面 α 内两条相交直线 a ,b ,即 a ⊂α,b ⊂α,a ∩b =P .②两条相交直线 a ,b 都与 β 平行,即 a ∥β,b ∥β. 【知识点】平面与平面平行关系的判定22. 【答案】(1) 取 PB 的中点 M ,连接 EM ,CM ,过点 C 作 CN ⊥AB ,垂足为 N ,如图所示. 因为 CN ⊥AB ,DA ⊥AB , 所以 CN ∥DA , 又 AB ∥CD ,所以四边形 CDAN 为矩形, 所以 CN =AD =8,DC =AN =6.在 Rt △BNC 中,BN =√BC 2−CN 2=√102−82=6, 所以 AB =12.因为 E ,M 分别为 PA ,PB 的中点, 所以 EM ∥AB 且 EM =6, 又 DC ∥AB ,且 CD =6, 所以 EM ∥CD 且 EM =CD , 则四边形 CDEM 为平行四边形, 所以 DE ∥CM .因为 CM ⊂平面BPC ,DE ⊄平面BPC ,所以 DE ∥平面BPC .(2) 存在.理由如下:由题意可得 DA ,DC ,DP 两两互相垂直,故以 D 为原点,DA ,DC ,DP所在直线分别为 x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系 Dxyz . 则 D (0,0,0),B (8,12,0),C (0,6,0),所以 DB⃗⃗⃗⃗⃗⃗ =(8,12,0). 假设 AB 上存在一点 F 使 CF ⊥BD ,设点 F 坐标为 (8,t,0)(0≤t ≤12), 则 CF⃗⃗⃗⃗⃗ =(8,t −6,0), 由 CF ⃗⃗⃗⃗⃗ ⋅DB ⃗⃗⃗⃗⃗⃗ =0,得 64+12(t −6)=12t −8=0, 所以 t =23,即 AF =23,故 BF =12−23=343.又 PD =9,所以 V 三棱锥B−PCF =V 三棱锥P−BCF =13×12×343×8×9=136.【知识点】直线与平面平行关系的判定、利用向量的坐标运算解决立体几何问题。

高一数学下学期期末考试分类汇编综合练习01新人教A版

高一数学下学期期末考试分类汇编综合练习01新人教A版

综合练习01(考试范围:必修二 考试时间:120分钟 满分:150分)一、单选题:本大题共8小题,每个小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.抛掷两枚质地均匀的硬币,设事件“第一枚硬币正面朝上”,事件“第二枚硬币反面朝上”,则下列结论中正确的为( )A.与互为对立事件B.与互斥C.与相等D.【答案】D【分析】利用互斥事件和对立事件的定义分析判断即可【详解】因为抛掷两枚质地均匀的硬币包含第一枚硬币正面朝上第二枚硬币正面朝上,第一枚硬币正面朝上第二枚硬币反面朝上,第一枚硬币反面朝上第二枚硬币正面朝上,第一枚硬币反面朝上第二枚硬币反面朝上,4种情况,其中事件包含第一枚硬币正面朝上第二枚硬币正面朝上,第一枚硬币正面朝上第二枚硬币反面朝上2种情况,事件包含第一枚硬币正面朝上第二枚硬币反面朝上,第一枚硬币反面朝上第二枚硬币反面朝上2种情况,所以与不互斥,也不对立,也不相等,,所以ABC错误,D正确,故选:D2.下列命题正确的是( )A.三点确定一个平面B.一条直线和一个点确定一个平面C.梯形可确定一个平面D.圆心和圆上两点确定一个平面【答案】C【分析】根据公理对选项逐一分析,由此确定正确选项.【详解】对于A选项,三个不在同一条直线上的点,确定一个平面,故A选项错误.对于B选项,直线和直线外一点,确定一个平面,故B选项错误.对于C选项,两条平行直线确定一个平面,梯形有一组对边平行,另一组对边不平行,故梯形可确定一个平面,所以C选项正确.对于D选项,圆的直径不能确定一个平面,所以若圆心和圆上的两点在直径上,则无法确定一个平面.所以D选项错误.故选:C【点睛】本小题主要考查公理的理解和运用,属于基础题.3.已知为虚数单位,复数的共轭复数为( )A.B.C.D.【答案】B【分析】利用复数的除法可将复数表示为一般形式,利用共轭复数的定义可得出结果.【详解】,因此,复数的共轭复数为.故选:B.【点睛】本题考查共轭复数的计算,解答的关键就是利用复数的除法运算将复数表示为一般形式,考查计算能力,属于基础题.4.已知,是夹角为60°的两个单位向量,,,若,则实数( )A.B.1C.D.【答案】B【分析】由题意利用两个向量垂直的性质,两个向量的数量积的运算法则,求出m的值.【详解】∵已知,是夹角为60°的两个单位向量,∴•1•1•cos60°.而 ,,若,则 ()•(m)m m1﹣m,则m=1,故选:B5.某人从出发点向正东走后到,然后向左转150°再向前走到,测得的面积为,此人这时离出发点的距离为( )A.B.C.D.【答案】D【分析】由题意可得,再由的面积为,求出的长,然后利用余弦定理求出即可【详解】如图,由题意可得,因为的面积为,,,所以,解得,由余弦定理得,所以,故选:D6.在区域病毒流行期间,为了让居民能及时了解疫情是否被控制,专家组通过会商一致认为:疫情被控制的指标是“连续7天每天新增感染人数不超过5人”,记连续7天每天记录的新增感染人数的数据为一个预报簇,根据最新的连续四个预报簇①、②、③、④,依次计算得到结果如下:①平均数;②平均数,且标准差;③平均数,且极差;④众数等于1,且极差.其中符合疫情被控制的指标的预报簇为( )A.①②B.①③C.③④D.②④【答案】C【分析】通过举反例说明命题不符合题意,或通过根据平均数和标准差的统计意义,找出符合要求的选项即可.【详解】①错,举反倒:0,0,0, 0,2, 6,6;其平均数,不符合题意;②错,举反倒:;其平均数且,不符合题意;③对,若7天中某一天新增感染人数x超过5人,即x≥6,则极差大于故假设不成立,故一定符合上述指标;④对,若7天中某一天新增感染人数x超过5人,即x≥6, 则极差不小于,与极差小于或等于4相矛盾,故假设不成立,故一定符合上述指标.故选:C7.已知是面积为的等边三角形,其顶点均在球的表面上,当点在球的表面上运动时,三棱锥的体积的最大值为,则球的表面积为( )A.B.C.D.【答案】A【分析】作出图形,结合图形知,当点P与球心O以及△ABC外接圆圆心M三点共线且P 与△ABC外接圆圆心位于球心的异侧时,三棱锥的体积取得最大值,结合三棱锥的体积求出三棱锥的高h,并注意到此时该三棱锥为正三棱锥,利用,求出球O的半径R,最后利用球体的表面积公式可求出答案.【详解】如图所示,设点M为外接圆的圆心,当点三点共线时,且分别位于点的异侧时,三棱锥的体积取得最大值.因为的面积为,所以边长为3,由于三棱锥的体积的最大值为,得,易知SM⊥平面ABC,则三棱锥为正三棱锥,的外接圆直径为,所以,设球O的半径为R,则,解得,所以球的表面积为.故选:A8.在等腰梯形中,,,,为的中点,为线段上的点,则的最小值是( )A.0B.C.D.1【答案】B【分析】以为轴,的中垂线为轴建立平面直角坐标系,设,用数量积的坐标表示求得数量积,然后由二次函数知识得最小值.【详解】由题意等腰梯形的高为,如图,以为轴,的中垂线为轴建立平面直角坐标系,则,,,设,则,,,所以时,取得最小值.故选:B.二、多选题:本大题共4小题,每个小题5分,共20分.在每小题给出的选项中,只有一项或者多项是符合题目要求的.9.下列关于平面向量的说法中正确的是( )A.已知,均为非零向量,若,则存在唯一实数,使得B.在中,若,则点为边上的中点C .已知,均为非零向量,若,则D.若且,则【答案】ABC【分析】利用向量共线、向量加法、向量垂直、向量运算等知识对选项逐一分析,由此确定正确选项.【详解】A选项,根据向量共线的知识可知,A选项正确,B选项,,根据向量加法的运算可知点为边上的中点,B选项正确.C 选项,由两边平方并化简得,所以,C选项正确.D选项,是一个数量,无法得到两个向量相等,D选项错误.故选:ABC10.一个袋子中装有大小和质地相同的个白球和个红球,从中随机抽取个球,其中结论正确的是( )A.一次抽取个,取出的两个球中恰有一个红球的概率是B.每次抽取个,不放回抽取两次,样本点总数为C.每次抽取个,有放回抽取两次,样本点总数为D.每次抽取个,不放回抽取两次,“第一次取出白球”与“第二次取出红球”相互独立【答案】AC【分析】A应用古典概率求法求概率,B、C应用分步计数及组合数求样本点总数,D根据独立事件的定义及不放回试验的特点判断事件是否独立.【详解】A:取出的两个球中恰有一个红球的概率,正确;B:每次抽取个,不放回抽取两次,样本点总数,错误;C:每次抽取个,有放回抽取两次,样本点总数,正确;D:每次抽取个,不放回抽取两次,“第一次取出白球”与“第二次取出红球”不相互独立,错误.故选:AC11.在中,角,,的对边分别是,,,则能确定为钝角的是( )A.B.C.D.【答案】CD【分析】结合正弦定理、余弦定理、向量运算、三角恒等变换确定正确选项.【详解】A选项,由正弦定理得为锐角.B选项,为锐角.C选项,由余弦定理得,,为钝角.D选项,,由于三角形中,最多只有一个钝角,所以,则,即,为钝角.故选:CD12.将边长为的正方形沿对角线折成直二面角,如图所示,点,分别为线段,的中点,则( )A.B .四面体的表面积为C.四面体的外接球的体积为D.过且与平行的平面截四面体所得截面的面积为【答案】BCD【分析】A用非等腰三角形来判断,B求四面体表面积来判断,C求外接球体积来判断,D 作出截面并计算出截面面积来判断.【详解】设是的中点,则两两相互垂直,二面角为之二面角,平面,A选项,连接,,,所以三角形不是等腰三角形,而是的中点,所以与不垂直,A选项错误.B选项,,所以三角形和三角形是等边三角形,所以四面体的表面积为,B选项正确.C选项,由于,所以是四面体外接球的球心,外接球的半径为,体积为,C选项正确.D 选项,设是中点,是中点,画出图象如下图所示,,四点共面.由于平面,平面,所以平面,,由于,所以平面,所以,而,所以,所以截面面积为.D选项正确.故选:BCD三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上. 13.设向量,为单位正交基底,若,,且,则______.【答案】2【分析】由条件可得,然后可算出答案.【详解】因为向量,为单位正交基底,,,所以,即所以,即故答案为:214.在中,已知,若,则的面积为______.【答案】【分析】先由求出,然后再利用三角形的面积公式可求得结果【详解】解:因为,,所以,得,所以,故答案为:15.现有一个圆锥形礼品盒,其母线长为,底面半径为,从底面圆周上一点处出发,围绕礼品盒的侧面贴一条金色彩线回到点,则所用金色彩线的最短长度为______.【答案】【分析】根据题意,将圆锥侧面展开得最短距离为,再根据几何关系求解即可.【详解】解:如图,将圆锥展开,由题可知最短距离为,因为圆锥形礼品盒,其母线长为,底面半径为,设,所以,即,所以在等腰三角形中,取中点,则为直角三角形,且,,所以,所以.故答案为:16.在平面直角坐标系中,角均以轴正半轴为始边.已知角的终边在直线上,则________;已知角与角的终边关于直线对称,且角与单位圆的交点坐标为,则________.【答案】 2【分析】设角终边上一点的坐标为,根据三角函数的定义,求得,设点关于的对称点为,求得点,结合三角函数的定义,即可求解.【详解】由题意,角均以轴正半轴为始边,且角的终边在直线上,设角终边上一点的坐标为,根据三角函数的定义,可得,又由角与单位圆的交点坐标为,设点关于的对称点为,可得,解得,即角的终边上一点的坐标为,根据三角函数的定义,可得.故答案为:;.四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.“自媒体”是指普通大众通过网络等途径向外发布他们本身的事实和新闻的传播方式某“自媒体”作者2020年度在“自媒体”平台A上发布了200条事实和新闻,现对其点击量进行统计,如表格所示:点击量(万次)条数201006020(Ⅰ)现从这200条事实和新闻中采用分层抽样的方式选出10条,求点击量超过50万次的条数;(Ⅱ)为了鼓励作者,平台A在2021年针对每条事实和新闻推出如下奖励措施:点击量(万次)奖金(元)020********若该作者在2021年5月份发布了20条事实和新闻,请估计其可以获得的奖金数.【答案】(Ⅰ)4条;(Ⅱ)7000元.【分析】(Ⅰ)根据样本容量比与总体容量比相等计算;(Ⅱ)利用2020年的频率估计2021的频率,得各范围内的条数,从而可计算奖金.【详解】(Ⅰ)设被抽取的点击量(万次)在的事实和新闻的条数分别为m,n,p,q,则,所以,则点击量超过50万次的条数为4条;(Ⅱ)由题意知,根据2020年度的频率估计得出:奖金(元)02050100条数(元)21062则,所以估计该作者在2021年5月可以得到的奖金为7000元.18.在中,内角,,所对的边分别为,,,已知,,.(1)求的值;(2)且,求正实数的值.【答案】(1);(2).【分析】(1)利用余弦定理求出边b的值,再用正弦定理即可作答;(2)由给定条件结合特征求出BD长即可得解.【详解】(1)在中,由余弦定理知,,即,由正弦定理知,;(2)因点D在边BC上,且,则,而,则有为直角三角形,,又,,所以.19.如图,在三棱柱,F为AC中点.(1)求证:平面.(2)若此三棱柱为正三梭柱,且,求的大小.【答案】(1)证明见解析(2)【分析】(1)取中点,连接,,,推导出四边形是平行四边形,进一步得到平面平面,再利用面面平行的性质,证明平面即可.(2)设,则,分别求出,,,利用余弦定理能求出的大小.【详解】(1)证明:取中点,连接,,,在三棱柱中,,是中点,则,四边形是平行四边形,,平面,平面,平面,,是中点,,四边形是平行四边形,,平面,平面,平面,,平面平面,平面,平面.(2)设,则,在正中,,在中,,,.的大小为.20.某中学为了解大数据提供的个性化作业质量情况,随机访问50名学生,根据这50名学生对个性化作业的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间、、…、、.(1)求频率分布直方图中的值;(2)估计该中学学生对个性化作业评分不低于70的概率;(3)从评分在的受访学生中,随机抽取2人,求此2人评分都在的概率.【答案】(1);(2);(3).【分析】(1)可根据频率分布直方图得出结果;(2)可通过后三组的频率之和得出结果;(3)本题首先可令5名受访职工依次为、、、、,然后列出随机抽取2人的所有可能情况以及抽取2人的评分都在的所有可能情况,最后根据古典概型的概率计算公式即可得出结果.【详解】(1),解得.(2)由频率分布直方图易知:50名受访学生评分不低于70的频率为,故该中学学生对个性化作业评分不低于70的概率的估计值为.(3)受访学生评分在的有人,依次为、、,受访学生评分在的有人,依次为、,从这5名受访职工中随机抽取2人,所有可能的结果共有10种,依次为:、、、、、、、、、,因为所抽取2人的评分都在的结果有3种,依次为、、,所以此2人评分都在的概率.21.如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥底面ABCD,PA=AB=4,E为PB的中点,F为线段BC上的点,且BF=BC.(1)求证:平面AEF⊥平面PBC;(2)求点F到平面PCD的距离.【答案】(1)证明见解析;(2).【分析】(1)根据题意可得AE⊥平面PBC,进而可证明平面AEF⊥平面PBC;(2)利用等体积法求点到面的距离.【详解】(1)证明:因为PA⊥底面ABCD,BC底面ABCD,所以,又因为底面ABCD为正方形,所以,又因为AB平面PBC,PA平面PBC,且,所以BC⊥底面PAB,又因为AE平面PBA,所以,因为PA=AB,E为PB的中点,所以,又因为PB平面PBC,BC平面PBC,所以AE⊥平面PBC,因为AE平面AEF,所以平面AEF⊥平面PBC;(2)解:因为,,所以,又,所以,因为,设点B到平面PCD的距离为,所以,由BF=BC,知点F到平面PCD的距离为.22.某中学在2020年高考分数公布后对高三年级各班的成绩进行分析.经统计某班有50名同学,总分都在区间内,将得分区间平均分成5组,统计频数、频率后,得到了如图所示的“频率分布”折线图.(1)估计该班级的平均分;(2)经过相关部门的计算,本次高考总分大于等于680的同学可以获得高校的“强基计划”入围资格.高校的“强基计划”校考分为两轮.第一轮为笔试,所有入围同学都要参加,考试科目为数学和物理,每科的笔试成绩从高到低依次有,,,四个等级,两科中至少有一科得到,且两科均不低于,才能进入第二轮,第二轮得到“通过”的同学将被高校提前录取.已知入围的同学参加第一轮笔试时,总分高于690分的同学在每科笔试中取得,,,的概率分别为,,,;总分不超过690分的同学在每科笔试中取得,,,的概率分别为,,,,;进入第二轮的同学,若两科笔试成绩均为,则免面试,并被高校提前录取;若两科笔试成绩只有一个,则要参加面试,总分高于690分的同学面试“通过”的概率为,总分不超过690分的同学面试“通过”的概率为,面试“通过”的同学也将被高校提前录取.若该班级考分前10名都已经报考了高校的“强基计划”,且恰有2人成绩高于690分.求①总分高于690分的某位同学没有进入第二轮的概率;②该班恰有两名同学通过“强基计划”被高校提前录取的概率.【答案】(1);(2)① ;② .【分析】(1)根据公式可直接计算平均分;(2)总分大于等于分的同学有人,有3人总分小于等于690分,2人总分大于690分,① 利用对立事件的概率公式和相互独立事件概率的乘法公式即可求得;② 利用相互独立事件概率的乘法公式和互斥事件概率求出.【详解】(1)由频率分布折线图可知:该班平均分估计为;(2)总分大于等于分的同学有人,由已知,其中有3人总分小于等于690分,2人总分大于690分,① ,总分高于690分的某位同学没有进入第二轮的概率;② 设总分高于690分的同学被高校提前录取的事件为,总分不超过690分的同学被高校提前录取的事件为,该班恰有两名同学通过“强基计划”被高校提前录取的概率.。

高一数学下学期期末考试试卷(含解析)-人教版高一全册数学试题

高一数学下学期期末考试试卷(含解析)-人教版高一全册数学试题

某某省某某市长安区第一中学2015-2016学年高一下学期期末考试数学一、选择题:共12题1.不等式的解集为A. B.C. D.【答案】C【解析】本题考查一元二次不等式的解法.,即,解得.即不等式的解集为.选C.2.数列,,,,,,,则是这个数列的A.第10项B.第11项C.第12项D.第21项【答案】B【解析】本题考查数列的通项.由题意得,令,解得.选B.3.在数列中,,,则的值为A.52B.51C.50D.49【答案】A【解析】本题考查等差数列的性质.由得,所以为等差数列,所以==,所以.选A.4.=A. B. C. D.【答案】A【解析】本题考查同角三角函数的诱导公式及两角和的正弦公式.====.选A.【备注】.5.已知角的终边经过点,则的值等于A. B. C. D.【答案】D【解析】本题考查三角函数的定义.由题意得所以=,=,所以=.选D.6.若数列是等差数列,且,则A. B. C. D.【答案】B【解析】本题考查等差数列的性质,诱导公式.因为是等差数列,所以=,又所以,,所以===.选B.【备注】若,等差数列中.7.设,若是与的等比中项,则的最小值为A.8B.4C.1D.【答案】B【解析】本题考查等比数列性质,基本不等式.因为是与的等比中项,所以,即.所以===4(当且仅当时等号成立),即的最小值为4.选B.【备注】若,等比数列中.8.已知是等比数列,,则=A.16()B.16()C.)D.)【答案】C【解析】本题考查等比数列的通项与求和.由题意得的公比=,所以=,所以,令,则是以8为首项,为公比的等比数列,所以的前n项和=).选C.【备注】等比数列中,.9.在△中,已知,,若点在斜边上,,则的值为A.48 B.24 C.12 D.6【答案】B【解析】本题考查平面向量的线性运算和数量积.因为,,所以==,所以==+0=24.选B.【备注】.10.函数,,的部分图象如图所示,则A. B.C. D.【答案】D【解析】本题考查三角函数的性质和图象,解析式的求解.由图可得,,,即,即,所以,又过点,所以=2,由可得=.所以.选D.【备注】知图求式.11.已知向量,,且∥,则= A. B. C. D.【答案】C【解析】本题考查向量的坐标运算与线性运算,二倍角公式.因为∥,所以,即,即=-3,所以=====.选C.【备注】二倍角公式:,.12.设函数,若存在使得取得最值,且满足,则m的取值X围是A. B.C. D.【答案】C【解析】本题考查三角函数的性质与最值,一元二次不等式.由题意得,且=,解得,(),所以转化为,而,所以,即,解得或.选C.二、填空题:共6题13.不等式的解集是 .【答案】【解析】本题考查分式不等式,一元二次不等式.由题意得且,所以或.所以不等式的解集是.【备注】一元高次不等式的解法:穿针引线法.14.已知,,则的值为_______.【答案】3【解析】本题考查两角和与差的正切角公式.由题意得=== 3.【备注】=是解题的关键.15.已知向量a=,b=, 若m a+n b=(),则的值为______. 【答案】-3【解析】本题考查平面向量的坐标运算.由题意得===,即,解得,,所以.16.江岸边有一炮台高30m,江中有两条船,船与炮台底部在同一水面上,由炮台顶部测得两船的俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距 m.【答案】【解析】本题考查解三角形的应用.画出图形,为炮台,为两船的位置;由题意得m,,,;在△中,=m.在Rt△中,,所以m;在△中,由余弦定理得=300.即,两条船相距m.【备注】余弦定理:.17.若将函数f(x)=sin(2x+)的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是.【答案】【解析】本题主要考查三角函数图象平移、函数奇偶性及三角运算.解法一f(x)=sin(2x+)的图象向右平移φ个单位得函数y=sin(2x+-2φ)的图象,由函数y=sin(2x+-2φ)的图象关于y轴对称可知sin(-2φ)=±1,即sin(2φ-)=±1,故2φ-=kπ+,k∈Z,即φ=+,k∈Z,又φ>0,所以φmin=.解法二由f(x)=sin(2x+)=cos(2x-)的图象向右平移φ个单位所得图象关于y轴对称可知2φ+=kπ,k∈Z,故φ=-,又φ>0,故φmin=.【备注】解题关键:解决三角函数的性质问题,一般化为标准型后结合三角函数的图象求解,注意正余弦函数的对称轴过曲线的最低点或最高点是解题的关键所在.18.已知分别为△的三个内角的对边,,且,则△面积的最大值为 . 【答案】【解析】本题考查正、余弦定理,三角形的面积公式.由正弦定理得=,又所以,即,所以=,所以.而,所以;所以≤=(当且仅当时等号成立).即△面积的最大值为.【备注】余弦定理:.三、解答题:共5题19.在△中,已知,,.(1)求的长;(2)求的值.【答案】(1)由余弦定理知,==,所以.(2)由正弦定理知,所以,因为,所以为锐角,则,因此【解析】本题考查二倍角公式,正、余弦定理.(1)由余弦定理知.(2)由正弦定理知,,因此.20.设是公比为正数的等比数列,,.(1)求的通项公式;(2)设是首项为1,公差为2的等差数列,求数列的前n项和.【答案】(1)设q为等比数列{a n}的公比,则由a1=2,a3=a2+4得2q2=2q+4,即q2-q-2=0,解得q=2或q=-1(舍去),因此q=2.所以{a n}的通项为a n=2·2n-1=2n(n∈N*)(2)S n=+n×1+×2=2n+1+n2-2.【解析】本题考查等差、等比数列的通项与求和.(1)求得q=2,所以a n=2n(n∈N*);(2)分组求和得S n=2n+1+n2-2.21.已知向量,,函数,且的图象过点.(1)求的值;(2)将的图象向左平移个单位后得到函数的图象,若图象上各最高点到点的距离的最小值为,求的单调递增区间.【答案】(1)已知,过点,解得(2)由(1)知,左移个单位后得到,设的图象上符合题意的最高点为,,解得,,解得,,由得,的单调增区间为【解析】本题考查平面向量的数量积,三角函数的图像与性质,三角恒等变换.(1)由向量的数量积求得,过点,解得;(2),求得,,其单调增区间为.22.某种汽车的购车费用是10万元,每年使用的保险费、养路费、汽油费约为0.9万元,年维修费用第一年是0.2万元,第二年是0.4万元,第三年是0.6万元,……,以后逐年递增0.2万元. 汽车的购车费用、每年使用的保险费、养路费、汽油费、维修费用的总和平均摊到每一年的费用叫做年平均费用.设这种汽车使用x(x∈N*)年的维修总费用为g(x),年平均费用为f(x).(1)求出函数g(x),f(x)的解析式;(2)这种汽车使用多少年时,它的年平均费用最小?最小值是多少?【答案】(1)由题意,知使用x年的维修总费用为g(x)==0.1x+0.1x2,依题意,得f(x)=[10+0.9x+(0.1x+0.1x2)]=(10+x+0.1x2).(2)f(x)=++1≥2+1=3,当且仅当,即x=10时取等号.所以x=10时,y取得最小值3.所以这种汽车使用10年时,它的年平均费用最小,最小值是3万元.【解析】无23.把正奇数数列中的数按上小下大、左小右大的原则排成如下三角形数表:设是位于这个三角形数表中从上往下数第行、从左往右数第个数.(1)若,求,的值;(2)已知函数,若记三角形数表中从上往下数第行各数的和为,求数列的前项和.【答案】(1)三角形数表中前m行共有个数,所以第m行最后一个数应当是所给奇数列中的第项.故第m行最后一个数是.因此,使得的m是不等式的最小正整数解.由得,, 于是,第45行第一个数是,(2)第n行最后一个数是,且有n个数,若将看成第n行第一个数,则第n行各数成公差为的等差数列,故..故.因为,两式相减得..【解析】本题考查数列的概念,数列的通项与求和.(1)找规律得第m行最后一个数是.可得,求出第45行第一个数是,(2)..错位相减可得.。

(必修二)(人教A版 2019)高一数学下学期期末考试考前必刷题 (人教A版 2019必修二)

(必修二)(人教A版 2019)高一数学下学期期末考试考前必刷题 (人教A版 2019必修二)

2020-2021高一下学期期末考试考前预测卷03试卷满分:150分 考试时长:120分钟注意事项:1.本试题满分150分,考试时间为120分钟.2.答卷前务必将姓名和准考证号填涂在答题纸上.3.使用答题纸时,必须使用0.5毫米的黑色签字笔书写,要字迹工整,笔迹清晰.超出答题区书写的答案无效;在草稿纸、试题卷上答题无效. 一、单选题(本大题共8小题,共40.0分)1.用任意一个平面截一个几何体,各个截面都是圆,则这个几何体一定是( ) A .圆柱 B .圆锥C .球体D .圆柱、圆锥、球体的组合体【答案】C 【分析】由球体截面的性质,即可确定正确选项. 【详解】各个截面都是圆,几何体中只有球体的任意截面都是圆,∴这个几何体一定是球体,故选:C .2.已知复数z 满足()234z i i +=+(其中i 为虚数单位),则复数z 的共轭复数为( ) A .12i + B .12i -C .2i +D .2i -【答案】C 【分析】根据复数模的公式,结合复数除法运算的法则、共轭复数的定义进行求解可. 【详解】解:∵()234z i i +=+,∵3455(2)222(2)(2)i i z i i i i i +-=====-+++-,∵2z i =+, 故选:C .3.已知数据12,,,,n x x x t 的平均数为t ,方差为21s ,数据12,,,n x x x 的方差为22s ,则( )A .2212s s > B .2212s s = C .2212s s < D .21s 与22s 的大小关系无法判断【答案】C 【分析】利用方差与均值的关系,结合方差公式即可判断2212,s s 的大小.【详解】 由题设,123...1n x x x x t t n +++++=+,即123...nx x x x t n++++=,∵22111()1n i i s x t n ==-+∑,22211()n i i s x t n ==-∑,即有2212s s <. 故选:C.4.甲乙两人进行扑克牌得分比赛,甲的三张扑克牌分别记为A ,b ,C ,乙的三张扑克牌分别记为a ,B ,c .这六张扑克牌的大小顺序为A a B b C c >>>>>.比赛规则为:每张牌只能出一次,每局比赛双方各出一张牌,共比赛三局,在每局比赛中牌大者得1分,牌小者得0分.若每局比赛之前彼此都不知道对方所出之牌,则六张牌都出完时乙得2分的概率为( ) A .16B .23C .12D .13【答案】D 【分析】依题意列出所有的可能情况,根据古典概型的概率公式计算可得; 【详解】解:依题意基本事件总数有3216⨯⨯=种; 分别有以下情况:A a ↔,bB ↔,C c ↔,此时乙得1分; A a ↔,b c ↔,C B ↔,此时乙得1分; A B ↔,b a ↔,C c ↔,此时乙得1分; A B ↔,b c ↔,C a ↔,此时乙得1分; A c ↔,b a ↔,C B ↔,此时乙得2分;A c ↔,bB ↔,C a ↔,此时乙得2分;故六张牌都出完时乙得2分的概率2163P == 故选:D5.在ABC 中,若138,7,cos 14a b C ===,则最大角的余弦是( ) A .15- B .16-C .17-D .18-【答案】C 【分析】运用余弦定理求出c ,再根据三角形中大边对大角的性质,结合余弦定理进行求解即可. 【详解】因为138,7,cos 14a b C ===,所以3c ===, 因为a b c >>,所以A B C >>,因此222499641cos 22737b c a A bc +-+-===-⨯⨯,故选:C6.一个正方体的展开图如图所示,A B C D 、、、为原正方体的顶点,则在原来的正方体中( )A .//AB CD B .AB 与CD 相交C .AB CD ⊥ D .AB 与CD 异面【答案】D【分析】将展开图还原为正方体,然后判断,AB CD 的关系即可 【详解】解:还原的正方体如图所示, 显然AB 与CD 异面,连接,CE DE ,则AB ∵DE ,则EDC ∠为异面直线所成的角,因为CDE △是等边三角形,所以60EDC ∠=︒,所以AB 与CD 不垂直, 故选:D7.已如平面向量a 、b 、c ,满足33a =,2b =,2c =,2b c ⋅=,则()()()()222a b a c a b a c ⎡⎤-⋅---⋅-⎣⎦的最大值为( )A .B .192C .48D .【答案】B 【分析】作OA a =,OB b =,OC c =,取BC 的中点D ,连接OD ,分析出BOC 为等边三角形,可求得OD ,计算得出()()()()()22222ABC a b a c a b a c S ⎡⎤-⋅---⋅-=⎣⎦△,利用圆的几何性质求出ABC 面积的最大值,即可得出结果. 【详解】如下图所示,作OA a =,OB b =,OC c =,取BC 的中点D ,连接OD , 以点O 为圆心,|a⃗|为半径作圆O ,1cos cos ,2b c BOC b c b c⋅∠=<>==⋅,0BOC π≤∠≤,3π∴∠=BOC , 所以,BOC 为等边三角形,D 为BC 的中点,OD BC ,所以,BOC 的底边BC 上的高为2sin3OD π==,a ⃗−b⃗⃗=OA ⃗⃗⃗⃗⃗⃗−OB ⃗⃗⃗⃗⃗⃗=BA ⃗⃗⃗⃗⃗⃗,OA OC a c CA --==, 所以,()()cos a b a c BA CA AB AC AB AC BAC -⋅-=⋅=⋅=⋅∠,所以,()()()()()222222cos a b a c a b a c AB AC AB AC BAC ⎡⎤-⋅---⋅-=⋅-⋅∠⎣⎦()()22sin 2ABC AB AC BACS =⋅∠=△,由圆的几何性质可知,当A 、O 、D 三点共线且O 为线段AD 上的点时,ABC 的面积取得最大值,此时,ABC 的底边BC 上的高h 取最大值,即max 43h AO OD =+=,则()max 122ABC S =⨯⨯=△因此,()()()()222a b a c a b a c ⎡⎤-⋅---⋅-⎣⎦的最大值为(24192⨯=.故选:B. 【点睛】结论点睛:已知圆心C 到直线l 的距离为d ,且圆C 的半径为r ,则圆C 上一点到直线l 距离的最大值为d r +.8.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为A B C D 【答案】A 【分析】首先利用正方体的棱是3组每组有互相平行的4条棱,所以与12条棱所成角相等,只需与从同一个顶点出发的三条棱所成角相等即可,从而判断出面的位置,截正方体所得的截面为一个正六边形,且边长是面的对角线的一半,应用面积公式求得结果. 【详解】根据相互平行的直线与平面所成的角是相等的, 所以在正方体1111ABCD A B C D -中,平面11AB D 与线11111,,AA A B A D 所成的角是相等的,所以平面11AB D 与正方体的每条棱所在的直线所成角都是相等的, 同理平面1C BD 也满足与正方体的每条棱所在的直线所成角都是相等, 要求截面面积最大,则截面的位置为夹在两个面11AB D 与1C BD 中间的,且过棱的中点的正六边形,且边长为2,所以其面积为26S ==,故选A. 点睛:该题考查的是有关平面被正方体所截得的截面多边形的面积问题,首要任务是需要先确定截面的位置,之后需要从题的条件中找寻相关的字眼,从而得到其为过六条棱的中点的正六边形,利用六边形的面积的求法,应用相关的公式求得结果.二、多选题(本大题共4小题,共20.0分) 9.下列关于复数的说法,其中正确的是( ) A .复数(),z a bi a b R =+∈是实数的充要条件是0b = B .复数(),z a bi a b R =+∈是纯虚数的充要条件是0b ≠ C .若1z ,2z 互为共轭复数,则12z z 是实数D .若1z ,2z 互为共轭复数,则在复平面内它们所对应的点关于y 轴对称 【答案】AC 【分析】根据复数的有关概念和充分条件和必要条件的定义进行判断即可. 【详解】解:对于A :复数(),z a bi a b R =+∈是实数的充要条件是0b =,显然成立,故A 正确; 对于B :若复数(),z a bi a b R =+∈是纯虚数则0a =且0b ≠,故B 错误;对于C :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所以()()2122222z a bi a bi a b b z i a =+-=-=+是实数,故C 正确;对于D :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所对应的坐标分别为(),a b ,(),a b -,这两点关于x 轴对称,故D 错误; 故选:AC 【点睛】本题主要考查复数的有关概念的判断,利用充分条件和必要条件的定义是解决本题的关键,属于基础题.10.已知向量()()1,0,cos ,sin ,,22a b ππθθθ⎡⎤==∈-⎢⎥⎣⎦,则a b +的值可以是( )A B C .2·D .【答案】ABC 【分析】由题意,向量()()1,0,cos ,sin a b θθ==,求得22cos a b +=+结合余弦函数的性质,即可求解. 【详解】由题意,向量()()1,0,cos ,sin a b θθ==, 可得1,1,cos a b a b θ==⋅=,又由22222cos a b a b a b +=++⋅=+因为,22ππθ⎡⎤∈-⎢⎥⎣⎦,则cos [0,1]θ∈2], 即[2,2]a b +∈,结合选项,可得ABC 适合. 故选:ABC.11.已知正三棱锥P ABC-的底面边长为1,点P 到底面ABC,则( ) A.该三棱锥的内切球半径为6B.该三棱锥外接球半径为12C D 【答案】ABD 【分析】设PM 是棱锥的高,则M 是ABC 的中心,D 是AB 中点,易得几何体的体积,进而结合等体积法求得内切球的半径,利用直角三角形求解外接球的半径.【详解】如图,PM 是棱锥的高,则M 是ABC 的中心,D 是AB 中点,21ABC S ==△1133P ABC ABC V SPM -=⋅==△C 错D 正确; 113DM ==,6PD ==CM=. 12PBC S BC PD =⨯⨯△112=⨯=所以331242PBC ABC S S S =+=⨯+=△△, 设内切球半径为r ,则13P ABC Sr V -=,3r ==A 正确;易知外接球球心在高PM 上,球心为O ,设外接球半径为R ,则)2223R R ⎛⎫+= ⎪ ⎪⎝⎭,解得R =,B 正确; 故选:ABD .【点睛】本题考查空间几何体的内切球,外接球问题,三棱锥的体积求解,考查空间想象能力,运算求解能力,是中档题.本题内切球的半径的求解利用等体积法求解,即:13V S r =⋅表面积(其中r 为内切球半径).12.下列说法正确的是( )A .若非零向量0AB AC BC AB AC ⎛⎫ ⎪+⋅= ⎪⎝⎭,且12AB AC AB AC ⋅=,则ABC 为等边三角形 B .已知,,,OA a OB b OC c OD d ====,且四边形ABCD 为平行四边形,则0a b cd +--=C .已知正三角形ABC 的边长为圆O 是该三角形的内切圆,P 是圆O 上的任意一点,则PA PB ⋅的最大值为1D .已知向量()()()2,0,2,2,2cos OB OC CA αα===,则OA 与OB 夹角的范围是5,412ππ⎡⎤⎢⎥⎣⎦【答案】AC 【分析】利用单位向量以及向量数量积的定义可判断A ;利用向量的加法运算可判断B ;利用向量的加、减运算可判断C ;由题意可得点A 在以()2,2为圆心,2为半径的圆上,由向量夹角定义可判断D.【详解】A ,因为非零向量0AB AC BC AB AC ⎛⎫⎪+⋅= ⎪⎝⎭,所以BAC ∠的平分线与BC 垂直, ABC 为等腰三角形,又12AB AC ABAC⋅=,所以3BAC π∠=, 所以ABC 为等边三角形,故A 正确; B ,a b c d OA OB OC OD +--=+--,CA DB CD DA DA AB =+=+++,在平行四边形ABCD 中,有AB DC =, 所以原式20DA =≠,故B 错误; C ,设正三角形ABC 内切圆半径r , 由面积相等可得112332323sin 223r π⨯⨯=⨯, 解得1r =,令AB 的中点为D ,从而3DA DC == 则2PA PB PD +=,2PA PB BA DA -==, 两式平方作差可得22444PA PB PD DA ⋅=-,即23PA PB PD ⋅=-,若要使PA PB ⋅最大,只需2PD 最大由于D 为AB 的中点,也为圆O 与AB 的切点,所以PD 的最大值为22r =, 所以23431PA PB PD ⋅=-≤-=,故C 正确; D ,设(),OA x y =,())222,2CA OA OC x y αα=-=--=,所以22x α-=,22y α-=,所以()()22222x y -+-=,即A 在以()2,2为半径的圆上, 如图:1sin 2COA ∠==,所以6COA π∠=,当OA 与圆在下方相切时,OA 与OB 夹角最小,此时为4612πππ-=,当OA 与圆在上方相切时,OA 与OB 夹角最大,此时为54612πππ+=,所以OA 与OB 夹角的范围是5,1212ππ⎡⎤⎢⎥⎣⎦,故D 错误. 故选:AC 【点睛】关键点点睛:本题考查了向量的数量积定义、向量的加减法以及向量的夹角,解题的关键是是将向量问题转化为平面几何问题,利用圆的性质求解,考查了转化思想、数学运算、数学建模,此题是向量的综合题目.三、填空题(本大题共4小题,共20.0分)13.已知向量(1,2),(2,3)a b ==-,若向量c 满足()//c a b +,()c a b ⊥+,则c =________. 【答案】77(,)93-- 【分析】设(,)c x y =,表示出相关向量的坐标,然后利用向量的平行与垂直的坐标公式代入计算.【详解】设(,)c x y =,则()1,2c a x y +=++,()3,1+=-a b ,因为()//c a b +,()c a b ⊥+,所以()()3122030x y x y ⎧-+-+=⎨-=⎩,得77,93x y =-=-,所以77(,)93c =--. 故答案为:77(,)93--14.某网店根据以往某品牌衣服的销售记录,绘制了日销售量的频率分布直方图,如图所示,由此估计日销售量不低于50件的概率为________.【答案】0.55 【分析】用1减去销量为[)30,50的概率,求得日销售量不低于50件的概率. 【详解】用频率估计概率知日销售量不低于50件的概率为1-(0.015+0.03)×10=0.55. 故答案为:0.55 【点睛】本小题主要考查根据频率分布直方图计算事件概率,属于基础题.15.如图,点A 是半径为1的半圆O 的直径延长线上的一点,OA =B 为半圆上任意一点,以AB 为一边作等边ABC ,则四边形OACB 的面积的最大值为___________.【答案】【分析】设AOB θ∠=,表示出ABC 的面积及OAB 的面积,进而表示出四边形OACB 的面积,并化简所得面积的解析式为正弦函数形式,再根据三角函数的有界性进行求解. 【详解】四边形OACB 的面积OAB =△的面积ABC +△的面积,设AOB θ∠=,2222cos 31214AB OA OB OA OB θθθ∴=+-⋅⋅=+-⨯=-则ABC 的面积213sin 60cos 22AB AC θ=⋅⋅︒=OAB 的面积11sin 122OA OB θθθ=⋅⋅=⨯=,四边形OACB 的面积3cos 2θθ=13(sin )60)2θθθ=-=-︒,故当6090θ-︒=︒,即150θ=︒时,四边形OACB =故答案为: 【点睛】方法点睛:应用余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60︒︒︒等特殊角的三角函数值,以便在解题中直接应用.16.若四棱锥P ABCD -的侧面PAB 内有一动点Q ,已知Q 到底面ABCD 的距离与Q 到点P 的距离之比为正常数k ,且动点Q 的轨迹是抛物线,则当二面角P AB C 平面角的大小为60︒时,k 的值为_____.【分析】 设二面角PAB C 平面角为θ,点Q 到底面ABCD 的距离为||QH ,点Q 到定直线AB 的距离为d ,则||sin QH d θ=.再由点Q 到底面ABCD 的距离与到点P 的距离之比为正常数k ,可得||||QH PQ k =,故sin PQ d kθ=,根据抛物线的定义sin k θ=,由给定的二面角的大小可求k 值. 【详解】 如图,设二面角P AB C 平面角为θ,点Q 到底面ABCD 的距离为||QH ,点Q 到定直线AB 得距离为d ,则|in |s d QH θ=,即||sin QH d θ=. ∵点Q 到底面ABCD 的距离与到点P 的距离之比为正常数k ,∵||||QH k PQ =,则||||QH PQ k =,所以sin PQ d kθ=. ∵动点Q 的轨迹是抛物线,故sin k θ=.因为60θ=︒,故k =.【点睛】本题考查空间中动点的轨迹以及二面角的应用,前者需利用平面解析几何中圆锥曲线的定义来求动点满足的几何性质,本题属于中档题.四、解答题(本大题共6小题,共70.0分) 17.已知向量(3,2)a =,(2,1)b =-. (1)若k +a b 与ka b +平行,求k 的值; (2)若a b λ-与a b λ+垂直,求λ的值.【答案】(1)1k =±(2)1λ=-±【分析】(1)根据向量平行的坐标表示计算可得结果; (2)根据向量垂直的坐标表示计算可得结果. 【详解】(1)因为向量(3,2)a =,(2,1)b =-,所以(32,2)a kb k k +=+-,(32,21)ka b k k +=+-,因为k +a b 与ka b +平行,所以(32)(21)(2)(32)0k k k k +---+=,即21k =, 所以1k =±.(2)因为向量(3,2)a =,(2,1)b =-,所以a b λ-(32,21)λλ=-+,a b λ+(32,2)λλ=+-,因为a b λ-与a b λ+垂直,所以(32,21)λλ-+(32,2)λλ⋅+-0=,所以(32)(32)(21)(2)0λλλλ-+++-=,解得1λ=-±18.若复数1z 满足()()1211z i i i -++=-(i 为虚数单位),复数2z 的虚部为2,且12z z 是实数.(1)求1z 的模长; (2)求2z .【答案】(1)(2)222z i =+. 【分析】(1)利用复数的四则运算直接化简已知等式可求得1z ,由模长运算可求得结果; (2)设22z a i =+,由12z z 为实数可知12z z 的虚部为零,构造方程求得a ,进而得到2z . 【详解】 (1)()()1211z i i i -++=-,1122221iz i i i i i-∴=+-=-+-=-+,1z ∴==(2)设22z a i =+,则()()()()122222442z z i a i a a i =-+=++-,12z z 为实数,420a ∴-=,解得:2a =,222z i ∴=+.19.如图,圆锥的底面直径和高均是4,过PO 的中点O '作平行于底面的截面,以该截面为底面挖去一个圆柱.(1)求该圆锥的表面积; (2)求剩余几何体的体积.【答案】(1)4π+(;(2)103π. 【分析】(1)先求母线长,再求侧面积和底面积. (2)用锥体体积减去柱体体积. 【详解】(1)因为圆锥的底面直径和高均是4,所以半径为2,母线l ==所以圆锥的表面积为2222(4S r r l πππππ=⋅+⋅⋅=⨯+⨯⨯=+.(2)由题意知,因为O '为PO 的中点,所以挖去圆柱的半径为1,高为2,剩下几何体的体积为圆锥的体积减去挖去小圆柱的体积, 所以22110241233V πππ=⋅⨯⨯-⨯⨯=. 20.甲、乙二人独立破译同一密码,甲破译密码的概率为0.7,乙破译密码的概率为0.6.记事件A :甲破译密码,事件B :乙破译密码. (1)求甲、乙二人都破译密码的概率; (2)求恰有一人破译密码的概率.【答案】(1)0.42;(2)0.46. 【分析】(1)由相互独立事件概率的乘法公式运算即可得解;(2)由互斥事件概率的加法公式及相互独立事件概率的乘法公式运算即可得解. 【详解】(1)事件“甲、乙二人都破译密码”可表示为AB ,事件A ,B 相互独立, 由题意可知()()0.7,0.6P A P B ==,所以()()()0.70.60.42P AB P A P B =⋅=⨯=;(2)事件“恰有一人破译密码”可表示为AB +AB ,且AB ,AB 互斥 所以()()()()()()()P AB AB P AB P AB P A P B P A P B +=+=+()()10.70.60.710.60.46=-⨯+⨯-=.21.由于2020年1月份国内疫情爆发,经济活动大范围停顿,餐饮业受到重大影响.3月份复工复产工作逐步推进,居民生活逐步恢复正常.李克强总理在6月1日考察山东烟台一处老旧小区时提到,地摊经济、小店经济是就业岗位的重要来源,是人间的烟火,和“高大上”一样,是中国的生机.某商场经营者陈某准备在商场门前“摆地摊”,经营冷饮生意.已知该商场门前是一块角形区域,如图所示,其中120APB ∠=,且在该区域内点R 处有一个路灯,经测量点R 到区域边界PA 、PB 的距离分别为4m RS =,6m RT =,(m 为长度单位).陈某准备过点R 修建一条长椅MN (点M ,N 分别落在PA ,PB 上,长椅的宽度及路灯的粗细忽略不计),以供购买冷饮的人休息.(1)求点P 到点R 的距离;(2)为优化经营面积,当PM 等于多少时,该三角形PMN 区域面积最小?并求出面积的最小值.【答案】(1;(2)PM = 【分析】(1)连接ST ,PR ,在RST 中,利用余弦定理求出ST ,可求出cos STR ∠,可得出sin PTS ∠的值,在PST 中,利用正弦定理求出SP 的值,进而利用勾股定理可求得PR ;(2)利用三角形的面积公式可得出234PM PN PM PN ⋅=+,利用基本不等式可求得PM PN ⋅的最小值,进而可求得PMN 面积的最小值及其对应的PM 的值.【详解】解:(1)连接ST 、PR ,在RST 中,60SRT ∠=,由余弦定理可得:22246246cos6028ST =+-⨯⨯⨯=,ST ∴=在RST 中,由余弦定理可得,222cos 2ST RT SR STR ST RT +-∠==⋅.在PST 中,sin cos PTS STR ∠=∠=,由正弦定理可得:sin sin120SP ST PTS =∠,解得:sin sin120ST PTS SP ∠==.在直角SPR △中,2222211243PR RS SP =+=+=⎝⎭,3PR ∴=;(2)13sin1202PMN S PM PN PM PN =⋅⋅=⋅△, 11462322PMN PRM PRN S S S PM PN PM PN =+=⨯+⨯=+△△△.23PN PM PN ⋅=+≥.128PM PN ∴⋅≥,当且仅当23128PM PNPM PN =⎧⎨⋅=⎩时,即当PM =因此,4PMN S PM PN =⋅≥△ 【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理. 22.如图,直三棱柱ABC -A 1B 1C 1中,D,E 分别是AB ,BB 1的中点.(Ⅰ)证明: BC 1//平面A 1CD;(Ⅰ)设AA 1= AC=CB=2,C 一A 1DE 的体积.【答案】(∵)见解析(∵)111132C A DE V -=⨯=【详解】试题分析:(∵)连接AC1交A1C于点F,则DF为三角形ABC1的中位线,故DF∵BC1.再根据直线和平面平行的判定定理证得BC1∵平面A1CD.(∵)由题意可得此直三棱柱的底面ABC为等腰直角三角形,由D为AB的中点可得CD∵平面ABB1A1.求得CD的值,利用勾股定理求得A1D、DE和A1E的值,可得A1D∵DE.进而求得S∵A1DE的值,再根据三棱锥C-A1DE的体积为13•S∵A1DE•CD,运算求得结果试题解析:(1)证明:连结AC1交A1C于点F,则F为AC1中点又D是AB中点,连结DF,则BC1∵DF.3分因为DF∵平面A1CD,BC1不包含于平面A1CD,4分所以BC1∵平面A1CD.5分(2)解:因为ABC﹣A1B1C1是直三棱柱,所以AA1∵CD.由已知AC=CB,D为AB的中点,所以CD∵AB.又AA1∩AB=A,于是CD∵平面ABB1A1.8分由AA1=AC=CB=2,得∵ACB=90°,,,,A1E=3,故A1D2+DE2=A1E2,即DE∵A1D 10分所以三菱锥C﹣A1DE的体积为:==1.12分考点:直线与平面平行的判定;棱柱、棱锥、棱台的体积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一下学期期末考试数学试卷一、选择题:本大题共10小题,每小题3分,共30分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1. 下列命题中正确的是A. AB OB OA =-B. 0=+BA ABC. 00=⋅ABD. AD CD BC AB =++2. 函数()()R x x x f ∈⎪⎭⎫⎝⎛-=42sin 3π的最小正周期为A.2πB. πC. π2D. π43. 已知向量()2,1=a ,()3,2=b ,()4,3=c ,且b a c 21λλ+=,则21λλ,的值分别为A. 2-,1B. 1-,2C. 2,1-D. 1,2-4. 已知542cos -=⎪⎭⎫⎝⎛-x π,且x 在第三象限,则()π-x tan 的值为A. 34B. 34-C. 43D. 43-5. 不等式b a >和ba 11>同时成立的充要条件是A. 0>>b aB. 0,0<>b aC. 0<<a bD. 011>>ba6. 将函数x y sin =的图象上所有的点向右平移10π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是A. ⎪⎭⎫ ⎝⎛-=102sin πx y B. ⎪⎭⎫ ⎝⎛-=52sin πx yC. ⎪⎭⎫ ⎝⎛-=1021sin πx yD. ⎪⎭⎫ ⎝⎛-=2021sin πx y7. 如图,()3,3=AC ,()3,3-=BC ,F E ,是AB 上的三等分点,则ECF ∠cos 的值为A.85852 B.23 C.21 D.54 8. 已知等比数列{}n a 中,各项都是正数,且1a ,321a ,22a 成等差数列,则9871098a a a a a a ++++的值为A. 223+B. 21-C. 21+D. 223-9. 若有实数a ,使得方程2sin ax =在[)π2,0上有两个不相等的实数根21x x ,,则()21cos x x +的值为A. 1-B. 0C.1D.a 23 10. 在ABC ∆中,内角C B A ,,的对边分别是c b a ,,,若bc b a 322=-,B C sin 32sin =,则A 的值为A. 30°B. 60°C. 120°D. 150°二、填空题:本大题共6小题,每小题3分,共18分。

11. 在区间[]2,1-上随机取一个数x ,则[]1,0∈x 的概率为____________。

12. 在数列{}n a 中,01≠a ,()*1,22N n n a a n n ∈≥=-,前n 项和为n S ,则24a S =_______。

13. 若0>a ,20=+>b a b ,,则下列不等式对一切满足条件的b a ,恒成立的是______________(写出所有正确命题的编号)。

①1≤ab ; ②2≤+b a ;③222≥+b a ;④333≥+b a⑤211≥+ba 。

14. 已知34tan -=⎪⎭⎫⎝⎛+απ。

则=α2tan ___________。

15. 如图所示,动物园要围成四间相同面积的长方形虎笼,一面可利用原有的墙,其它各面用钢筋网围成。

现有36m 长的钢筋网材料,则可围成的每间虎笼面积最大为_________m 2。

16. 已知M 是ABC ∆内的一点,且︒=∠=⋅3032BAC ,。

定义:()=M f()z y x ,,,其中z y x ,,分别为MAB MCA MBC ∆∆∆,,的面积,若()=M f ⎪⎭⎫⎝⎛21,,y x ,则yx 221+的最小值为______________________,此时()=M f __________________。

三、解答题:本大题共6小题,共52分。

解答应写出文字说明,演算步骤或证明过程。

17. (本题9分)甲袋中有3只白球、7只红球、15只黑球;乙袋中有10只白球、6只红球、9只黑球。

(1)从甲袋中任取一球,求取到白球的概率;(2)从两袋中各取一球,求两球颜色相同的概率; (3)从两袋中各取一球,求两球颜色不同的概率。

18. (本题9分)在平面直角坐标系xOy 中,点()2,1--A 、()3,2B 、()1,2--C 。

(1)求以线段AC AB 、为邻边的平行四边形两条对角线的长; (2)当t 为何值时,t -与垂直;(3)当t 为何值时,t +与2-平行,平行时它们是同向还是反向。

19. (本题8分)在ABC ∆中,角C B A 、、所对的边分别为c b a ,,,已知412cos -=C 。

(1)求C sin 的值;(2)当2=a ,C A sin sin 2=时,求b 及c 的长。

20. (本题8分)已知等差数列{}n a 满足:267753=+=a a a ,,{}n a 的前n 项和为n S 。

(1)求n a 及n S ; (2)令na n Cb =(其中C 为常数,且*0N n C ∈≠,),求证数列{}n b 为等比数列。

21. (本题9分)设函数()[]ππ,02cos 232cos 2∈+⎪⎭⎫ ⎝⎛+=x xx x f ,。

(1)求⎪⎭⎫⎝⎛3πf 的值; (2)求()x f 的最小值及()x f 取最小值时x 的集合; (3)求()x f 的单调递增区间。

22. (本题9其中表有行,第1行的个数是1,3,5,…,,从第2行起,每行中的每个数都等于它肩上的两数之和。

(1)写出表4,验证表4各行中数的平均数按从上到下的顺序构成等比数列,并将结论n(不要求证明);推广到表()3≥n(2)每个数表中最后一行都只有一个数,它们构成数列1,4,12,…,记此数列为{}n b,求数列{}n b的前n项和。

答案二、填空题:本大题共6小题,每小题3分,共18分。

11.31 12.215 13. ①,③,⑤(少选一个扣1分)14. 34-15. 22716. 9,⎪⎭⎫ ⎝⎛2131,61,(第一空2分,第二空1分)三、解答题:本大题共6小题,共52分。

解答应写出文字说明,演算步骤或证明过程。

17. 解:(1)从甲袋中任取一球,取到白球的概率为253; ………………………3分(2)从两袋中各取一球,两球颜色相同的概率62520725925152562572510253=⨯+⨯+⨯=P ;………………………6分(3)从两袋中各取一球,两球颜色不同的概率6254186252071=-=P 。

……………9分 18. 解:(1)(方法一)由题设知()5,3=,()1,1-=,则 ()6,2=+,()4,4=-。

102=+24=-。

故所求的两条对角线的长分别为24、102。

……………………………………3分 (方法二)设该平行四边形的第四个顶点为D ,两条对角线的交点为E ,则: E 为C B 、的中点,()1,0E又()1,0E 为D A 、的中点,所以()4,1D故所求的两条对角线的长分别为10224==AD BC 、; (2)由题设知:()1,2--=,()t t t ++=-523,。

由t -与垂直,得:()0=⋅-t 。

即()()01,2523=--⋅++t t ,,从而115-=t ,所以511-=t 。

…………………………………………………6分 (3)由题设知:()t t t 23,2--=+,()8,52--=-。

由t +//2-,得1681510-=-t t 。

解得:21-=t 。

此时,()8,5214,25---=⎪⎭⎫⎝⎛=+t ,所以它们方向相反。

……………9分19. (1)解:因为41sin 212cos 2-=-=C C ,及π<<C 0,所以410sin =C 。

………………………………………………………4分(2)解:当2=a ,C A sin sin 2=时,由正弦定理CcA a sin sin =,得4=c 。

由411cos 22cos 2-=-=C C ,及π<<C 0得46cos ±=C 。

由余弦定理C ab b a c cos 2222-+=,得01262=-±b b 。

解得6=b 或62。

所以⎩⎨⎧==.4,6c b 或⎩⎨⎧==.4,62c b…………………………………………………8分20. 解:(1)设等差数列{}n a 的公差为d ,因为73=a ,2675=+a a ,所以有 ⎩⎨⎧=+=+.26102,7211d a d a 解得231==d a ,。

所以()12123+=-+=n n a n ;()n n n n n S n 222132+=⨯-+=。

………4分(2)由(1)知12+=n a n ,所以2111C C CC b b n n n n a a a a n n ===----。

(常数,*2N n n ∈≥,)所以,数列{}n b 是以31C b =为首项。

2C 为公比的等比数列。

…………………8分21. 解:(1)2123216cos 2323cos 322=⎪⎪⎭⎫ ⎝⎛+-=+⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛ππππf 。

………3分 (2)()2cos 232cos 2x x x f +⎪⎭⎫ ⎝⎛+=π 1cos 32sin sin 32cos cos ++-=x x x ππ1sin 23cos 21+-=x x 16sin +⎪⎭⎫⎝⎛-=x π。

因为[]π,0∈x ,所以6665πππ≤-≤-x ,所以216sin 1≤⎪⎭⎫ ⎝⎛-≤-x π。

所以函数()x f 的最小值为0。

此时26ππ-=-x ,即32π=x 。

所以x 的取值集合为⎭⎬⎫⎩⎨⎧32π。

……………6分 (3)由(2)可知:()[]ππ,016sin ∈+⎪⎭⎫⎝⎛-=x x x f ,。

设⎪⎭⎫ ⎝⎛≤≤--=6656πμππμx ,则原函数为1sin +=μy 。

因为x -=6πμ为减函数,所以1sin +=μy 的减区间就是复合函数()x f 的增区间。

由2665πππ-≤-≤-x ,得ππ≤≤x 32。

所以,函数()x f 的单调递增区间是⎥⎦⎤⎢⎣⎡ππ,32。

………………………………………9分 22. 解:(1)表4为1 3 5 7 4 8 12 12 20 32它的第1,2,3,4行中的数的平均数分别是4,8,16,32,它们构成首项为4,公比为2的等比数列。

将这一结论推广到表()3≥n n , 表n 的第1行是1,3,5,…,12-n ,其平均数是()n nn =-++++12531 。

即表()3≥n n 各行中的数的平均数按从上到下的顺序构成首项为n ,公比为2的等比数列。

相关文档
最新文档