3-3高中物理热学专题

合集下载

高中物理3-3热学知识点归纳

高中物理3-3热学知识点归纳

分子的数量.n =M N =£V NM p V 1V N =N A V A 1 2•分子永不停息地做无规则热运动 (1)分子永不停息做无规则热运动的实验事实:扩散现象和布郎运动。

(2)扩散现象:不同物质能够彼此进入对方的现象。

本质:由物质分子的无规则运动产生的。

(3)布朗运动布朗运动是悬浮在液体(或气体)中的固体微粒的无规则运动。

布朗运动不是分子本身的运动,但它间接地反映了液体(气体)分子的无规则运动。

①实验中画出的布朗运动路线的折线,不是微粒运动的真实轨迹。

因为图中的每一段折线,是每隔30s 时间观察到的微粒位置的连线,就是在这短短的30s 内,小颗粒的运动也是极不规则的。

②布朗运动产生的原因大量液体分子(或气体)永不停息地做无规则运动时,对悬浮在其中的微粒撞击作用的不平衡性是产生布朗运动的原因。

简言之:液体(或气体)分子永不停息的无规则运动是产生布朗运动的原因。

③影响布朗运动激烈程度的因素固体微粒越小,温度越高,固体微粒周围的液体分子运动越不规则,对微粒碰撞的不平衡性越强,布朗运动越激烈。

④ 能在液体(或气体)中做布朗运动的微粒都是很小的,一般数量级在错误!未找到引用源。

,这种微粒肉眼是看不到的,必须借助于显微镜。

3.分子间存在着相互作用力(1)分子间的引力和斥力同时存在,实际表现出来的分子力是分子引力和斥力的合力。

分分子质量:分子平均占据的空间大小)分子直径: N 4兀(°)3=V球体模型:A 32I 16V d=31■ 3兀\6V ~ 0-(固体、液体一般用此模型) 选修3-3热学知识点归纳一、分子运动论1•物质是由大量分子组成的(1)分子体积分子体积很小,它的直径数量级是错误!未找到引用源。

(2)分子质量分子质量很小,一般分子质量的数量级是错误!未找到引用源。

(3)阿伏伽德罗常数(宏观世界与微观世界的桥梁)1摩尔的任何物质含有的微粒数相同,这个数的测量值:错误!未找到引用源。

最新人教版高二物理选修3-3《热学》计算题专项训练(详细解析)

最新人教版高二物理选修3-3《热学》计算题专项训练(详细解析)

人教版高二物理选修3-3《热学》计算题专项训练(解析)1.在如图所示的p ﹣T 图象中,一定质量的某种理想气体先后发生以下两种状态变化:第一次变化是从状态A 到状态B ,第二次变化是从状态B 到状态C ,且AC 连线的反向延长线过坐标原点O ,已知气体在A 状态时的体积为3A V L =,求:①气体在状态B 时的体积B V 和状态C 时的压强C p ;②在标准状态下,1mol 理想气体的体积为V=22.4L ,已知阿伏伽德罗常数23610NA =⨯个/mol ,试计算该气体的分子数(结果保留两位有效数字).注:标准状态是指温度0t =℃,压强51110p atm Pa ==⨯.2.如图所示,U 型玻璃细管竖直放置,水平细管与U 型细管底部相连通,各部分细管内径相同。

此时U 型玻璃管左.右两侧水银面高度差为15cm ,C 管水银面距U 型玻璃管底部距离为5cm ,水平细管内用小活塞封有长度12.5cm 的理想气体A ,U 型管左管上端封有长25cm 的理想气体B ,右管上端开口与大气相通,现将活塞缓慢向右压,使U 型玻璃管左、右两侧水银面恰好相平(已知外界大气压强为75cmHg ,忽略环境温度的变化,水平细管中的水银柱足够长),求:①此时气体B 的气柱长度;②此时气体A 的气柱长度。

3.竖直平面内有一直角形内径处处相同的细玻璃管,A 端封闭,C 端开口,AB 段处于水平状态。

将竖直管BC 灌满水银,使气体封闭在水平管内,各部分尺寸如图所示,此时气体温度T 1=300 K ,外界大气压强P0=75 cmHg 。

现缓慢加热封闭气体,使AB 段的水银恰好排空,求:(1)此时气体温度T 2;(2)此后再让气体温度缓慢降至初始温度T 1,气体的长度L 3多大。

4.如图所示,下端带有阀门K 粗细均匀的U 形管竖直放置,左端封闭右端开口,左端用水银封闭着长L =15.0cm 的理想气体,当温度为27.0°C 时,两管水银面的高度差Δh =5.0cm 。

高中物理选修3-3热学知识点总结

高中物理选修3-3热学知识点总结

第一章分子动理论1、物质是由大量分子组成的(1)单分子油膜法测量分子直径(2)1mol任何物质含有的微粒数相同N A=6.02x1023mol-1(3)对微观量的估算:分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体)利用阿伏伽德罗常数联系宏观量与微观量Ⅰ.微观量:分子体积V0、分子直径d、分子质量m0.Ⅱ.宏观量:物体的体积V、摩尔体积V m,物体的质量m、摩尔质量M、物体的密度ρ.特别提醒:1、固体和液体分子都可看成是紧密堆集在一起的。

分子的体积V0=NA Vm ,仅适用于固体和液体,对气体不适用,仅估算了气体分子所占的空间。

2、对于气体分子,的值并非气体分子的大小,而是两个相邻的气体分子之间的平均距离.2、分子永不停息的做无规则的热运动(布朗运动 扩散现象)(1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子间有空隙,温度越高扩散越快。

可以发生在固体、液体、气体任何两种物质之间(2)布朗运动:它是悬浮在液体(或气体)中的固体微粒的无规则运动,是在显微镜下观察到的。

①布朗运动的三个主要特点:永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。

②产生布朗运动的原因:它是由于液体分子无规则运动对固体微小颗粒各个方向撞击的不均匀性造成的。

③布朗运动间接地反映了液体分子的无规则运动,布朗运动、扩散现象都有力地说明物体内大量的分子都在永不停息地做无规则运动。

(3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈3、分子间的相互作用力(1)分子间同时存在引力和斥力,两种力的合力又叫做分子力。

(2)分子之间的引力和斥力都随分子间距离增大而减小,随分子间距离的减小而增大。

但总是斥力变化得较快。

(3)图像:两条虚线分别表示斥力和引力;实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。

r0位置叫做平衡位置,r0的数量级为10-10m。

高中物理3-3热学练习题(含答案)

高中物理3-3热学练习题(含答案)

高中物理选修3-3热学(复习)试题一、单项选择题1、在测定分子大小的油膜实验中,下面的假设与该实验无关的是()A.油膜的体积等于总的分子体积之和B.油膜为单层分子且都是球形C.分子是一个挨一个排列,它们间的间隙可忽略D.油膜中分子沿直线排列2、关于分子的热运动,下述正确的是()A.分子的热运动就是布朗运动B.布朗运动是悬浮在液体中微粒的分子的无规则运动,它反映微粒分子的无规则运动C.温度越高,悬浮微粒越小,布朗运动越激烈D.物体的速度越大,内部分子的热运动越激烈3、右图为两分子系统的势能E p与两分子间距离r的关系曲线。

下列说法正确的是()A.当r大于r1时,分子间的作用力表现为引力B.当r小于r1时,分子间的作用力表现为斥力C.当r等于r1时,分子间的作用力为零D.在r由r1变到r2的过程中,分子间的作用力做负功4、气体的温度升高了30℃,在热力学温标中,温度升高了()A. 30KB. 273+30KC. 243KD. 303K5、下列关于内能的说法中,正确的是()A.不同的物体,若温度相等,则内能也相等B.物体速度增大,则分子动能增大,内能也增大C.对物体做功或向物体传热,都可能改变物体的内能D.冰熔解成水,温度不变,则内能也不变6、某汽车后备箱内安装有撑起箱盖的装置,它主要由汽缸和活塞组成。

开箱时,密闭于气缸内的压缩气体膨胀,将箱盖顶起,如图所示。

在此过程中,若缸内气体与外界无热交换,忽略气体分子间相互作用,则缸内气体()A.对外做正功,内能增大B.对外做正功,分子的平均动能减小C.对外做负功,分子的平均动能增大D.对外做负功,内能减小7、一定质量的气体,在体积不变时,温度每升高1℃,它的压强增加量()A. 相同B. 逐渐增大C. 逐渐减小D. 成正比例增大8、已知理想气体的内能与温度成正比。

如图,实线是汽缸内一定质量的理想气体由状态1到状态2的变化曲线,则在整个过程中汽缸内气体的内能()A、先增大后减小B、先减小后增大C、单调变化D、保持不变9、两个容器A、B用截面均匀的水平玻璃管相通,如图所示,A、B中所装气体温度分别为100ºC和200ºC,水银柱在管中央平衡,如果两边温度都升高100ºC,则水银将()A.向左移动 B.向右移动C.不动 D.无法确定10、在密闭的四壁绝热的房间里,使房里长期没工作的电冰箱开始工作,并打开电冰箱的门,经过一段较长时间之后()A.房间内的温度将降低 B.房间内的温度将不变C.房间内的温度将升高 D.无法判断房间内温度的变化,铝的摩尔质量为M,铝的密度为ρ,则下列说法13、已知阿伏伽德罗常数为NA正确的是( )A.1kg铝所含原子数为ρN A B.1个铝原予的质量为M/N A/(ρM) D.1个铝原子所占的体积为M/(ρN A) C.1m3铝所含原子数为NA14、一个物体沿粗糙斜面匀速滑下,则下列说法正确的是()A.物体机械能减小,内能增大B.物体机械能减小,内能不变C.机械能与内能总量减小D.机械能与内能总量不变15、下列说法正确的是()A.第二类永动机与第一类永动机一样违背了能量守恒定律B.自然界中的能量是守恒的,所以能量永不枯竭,不必节约能源C.热力学第二定律反映了自然界中任何宏观过程都具有方向性D.不可能让热量由低温物体传递给高温物体而不引起其它任何变化16、如图所示,绝热气缸中间用固定栓将可无摩擦移动的导热隔板固定,隔板质量不计,左右两室分别充有一定量的氢气和氧气(视为理想气体)。

高考物理总复习 第十三章 热学(选修3-3)

高考物理总复习 第十三章 热学(选修3-3)

第十三章热学(选修3-3)第1讲分子动理论内能必备知识·自主排查一、分子动理论1.物体是由大量分子组成的(1)分子的大小①分子的直径(视为球模型):数量级为________ m;②分子的质量:数量级为10-26 kg.(2)阿伏加德罗常数①1 mol的任何物质都含有相同的粒子数.通常可取N A=________;②阿伏加德罗常数是联系宏观物理量和微观物理量的桥梁.(3)热运动①分子的永不停息的________运动叫做热运动;②特点:分子的无规则运动和温度有关,温度越高,分子运动越激烈.2.分子永不停息地做无规则运动(1)扩散现象①定义:________物质能够彼此进入对方的现象;②实质:扩散现象并不是外界作用引起的,也不是化学反应的结果,而是由分子的无规则运动产生的物质迁移现象,温度________,扩散现象越明显.(2)布朗运动①定义:悬浮在液体中的________的永不停息的无规则运动;②实质:布朗运动反映了________的无规则运动;③特点:a.永不停息、________运动.b.颗粒越小,运动越________.c.温度越高,运动越________.(3)热运动:分子永不停息的____________叫作热运动.分子的无规则运动和温度有关,温度越高,分子无规则运动________.3.分子间的相互作用力(1)分子间同时存在相互作用的________和________.实际表现出的分子力是________和________的合力.(2)引力和斥力都随分子间距离的减小而________;随分子间距离的增大而__________;斥力比引力变化快.(3)分子力F与分子间距离r的关系(r0的数量级为10-10 m).距离分子力F F -r图象r=r0F引____F斥F=0r<r0F引____F斥F为斥力r>r0F引____F斥F为引力r>10r0F引=F斥=0F=0二、温度、内能1.温度:两个系统处于________时,它们必定具有某个共同的热学性质,把表征这一“共同热学性质”的物理量叫作温度.一切达到热平衡状态的系统都具有相同的温度.温度标志物体内部大量分子做无规则运动的________.2.摄氏温标和热力学温标单位规定关系摄氏温标(t)℃在标准大气压下,冰的熔点是______,水的______是100 ℃T=t+273.15 KΔT=Δt热力学温标(T)K零下________即为0 K3.分子的动能(1)分子动能是分子________所具有的动能.(2)分子热运动的平均动能是所有分子热运动的动能的平均值,温度是分子热运动的________的标志.(3)分子热运动的总动能是物体内所有分子热运动动能的________.4.分子的势能(1)意义:由于分子间存在着引力和斥力,所以分子具有由它们的________决定的能.(2)分子势能的决定因素:①微观上——决定于分子间距离和分子排列情况;取r→∞处为零势能处,分子势能E p 与分子间距离r的关系如图所示,当r=r0时分子势能最小.②宏观上——决定于________和状态.5.物体的内能(1)等于物体中所有分子的热运动动能与分子势能的总和,是状态量.对于给定的物体,其内能大小由物体的____________决定.(2)改变物体内能有两种方式:________________.,生活情境1.(1)秋风吹拂,树叶纷纷落下,属于分子的无规则运动.()(2)在箱子里放几块樟脑丸,过些日子一开箱就能闻到樟脑的气味,属于分子的无规则运动.()(3)烟囱里冒出的黑烟在空中飘荡是布朗运动.()(4)室内扫地时,在阳光照射下看见灰尘飞扬是布朗运动.()(5)水流速度越大,水分子的热运动越剧烈.()(6)水凝结成冰后,水分子的热运动停止.()(7)水的温度越高,水分子的热运动越剧烈.()(8)水的温度升高,每一个水分子的运动速率都会增大.()教材拓展2.[人教版选修3-3P7T2改编](多选)以下关于布朗运动的说法错误的是()A.布朗运动就是分子的无规则运动B.布朗运动证明,组成固体小颗粒的分子在做无规则运动C.一锅水中撒一点胡椒粉,加热时发现水中的胡椒粉在翻滚,这说明温度越高布朗运动越激烈D.在显微镜下可以观察到煤油中小粒灰尘的布朗运动,这说明煤油分子在做无规则运动E.扩散现象和布朗运动都证明分子在做永不停息的无规则运动3.[鲁科版教材·改编](多选)如图,用温度计测量质量已知的甲、乙、丙三杯水的温度,根据测量结果可以知道()A.甲杯中水的内能最少B.甲、乙杯中水的内能一样多C.丙杯中水分子的平均动能最大D.甲杯中水分子的平均动能小于乙杯中水分子的平均动能关键能力·分层突破考点一微观量的估算问题1.宏观量与微观量的关系(1)微观量:分子体积V0、分子直径d、分子质量m0.(2)宏观量:物体的体积V、摩尔体积V m、物体的质量m、摩尔质量M、物体的密度ρ.(3)关系①分子的质量:m0==.②分子的体积:V0==.③物体所含的分子数:N=·N A=·N A或N=·N A=·N A.2.两种模型(1)球体分子模型直径为d=(2)立方体分子模型边长为d=.跟进训练1.(多选)已知铜的摩尔质量为M kg/mol,铜的密度为ρ kg/m3,阿伏加德罗常数为N A mol -1.下列判断正确的是()A.1 kg铜所含的原子数为B.1 m3铜所含的原子数为C.1个铜原子的质量为kgD.1个铜原子的体积为m3E.1个铜原子的体积为2.很多轿车为了改善夜间行驶时的照明问题,在车灯的设计上选择了氙气灯,因为氙气灯灯光的亮度是普通灯灯光亮度的3倍,但是耗电量仅是普通灯的一半,氙气灯使用寿命则是普通灯的5倍,很多车主会选择含有氙气灯的汽车,若氙气充入灯头后的容积V=1.6 L,氙气密度ρ=6.0 kg/m3.已知氙气摩尔质量M=0.131 kg/mol,阿伏加德罗常数N A=6×1023 mol-1.试估算:(结果保留一位有效数字)(1)灯头中氙气分子的总个数N;(2)灯头中氙气分子间的平均距离.考点二布朗运动与分子热运动1.扩散现象:相互接触的物体分子彼此进入对方的现象.产生原因:分子永不停息地做无规则运动.2.扩散现象、布朗运动与热运动的比较:现象扩散现象布朗运动热运动活动主体分子微小固体颗粒分子区别分子的运动,发生在固体、液体、气体任何两种物质之间比分子大得多的微粒的运动,只能在液体、气体中发生分子的运动,不能通过光学显微镜直接观察到共同点①都是无规则运动;②都随温度的升高而更加激烈联系扩散现象、布朗运动都反映分子做无规则的热运动跟进训练3.(多选)关于扩散现象,下列说法正确的是()A.温度越高,扩散进行得越快B.扩散现象是不同物质间的一种化学反应C.扩散现象是由物质分子无规则运动产生的D.扩散现象在气体、液体和固体中都能发生E.液体中的扩散现象是由于液体的对流形成的4.[2022·山西五市联考](多选)小张在显微镜下观察水中悬浮的细微粉笔末的运动.从A 点开始,他把粉笔末每隔20 s的位置记录在坐标纸上,依次得到B、C、D、…、J点,把这些点连线形成如图所示折线图,则关于该粉笔末的运动,下列说法正确的是()A.该折线图是粉笔末的运动轨迹B.粉笔末的无规则运动反映了水分子的无规则运动C.经过B点后10 s,粉笔末应该在BC的中点处D.粉笔末由B到C的平均速度小于C到D的平均速度E.若改变水的温度,再记录一张图,则仅从图上不能确定记录哪一张图时的温度高5.[2022·广东茂名一模]新型冠状病毒主要依靠呼吸道飞沫传播,在空气中含病毒飞沫微粒的运动取决于空气分子的不平衡碰撞,所以含病毒飞沫微粒所做的无规则运动属于________运动;空气分子间作用力F与分子间距离r的关系如图所示,r=r0时,F=0.相距较远的两个分子间距离减小到r0的过程中,分子势能______________(填“先减小后增大”“先增大后减小”“一直增大”或“一直减小”).考点三分子动能、分子势能和内能1.改变内能的方式2.分析物体内能问题的四点提醒(1)内能是对物体的大量分子而言的,不存在某个分子内能的说法.(2)内能的大小与温度、体积、分子数和物态等因素有关.(3)通过做功或热传递可以改变物体的内能.(4)温度是分子平均动能的标志,相同温度的任何物体,分子的平均动能相同.角度1分子力、分子势能与分子间距离的关系例1.分子间作用力F与分子间距r的关系如图所示,r=r1时,F=0.分子间势能由r决定,规定两分子相距无穷远时分子间的势能为零.若一分子固定于原点O,另一分子从距O 点很远处向O点运动,在两分子间距减小到r2的过程中,势能________(填“减小”“不变”或“增大”);在间距由r2减小到r1的过程中,势能________(填“减小”“不变”或“增大”);在间距等于r1处,势能________(填“大于”“等于”或“小于”)零.解题心得:角度2物体的内能例2. (多选)下列说法中正确的是()A.物体自由下落时速度增大,所以物体内能也增大B.物体的机械能为零时内能也为零C.物体的体积减小温度不变时,物体内能不一定减小D.质量、温度、体积都相等的物体的内能不一定相等E.温度和质量都相同的氢气和氧气内能不相等解题心得:跟进训练6.(多选)两个相距较远的分子仅在分子力作用下由静止开始运动,直至不再靠近.在此过程中,下列说法正确的是()A.分子力先增大,后一直减小B.分子力先做正功,后做负功C.分子动能先增大,后减小D.分子势能先增大,后减小E.分子势能和动能之和不变7.(多选)1 g 100 ℃的水和1 g 100 ℃的水蒸气相比较,下列说法正确的是() A.分子的平均动能和分子的总动能都相同B.分子的平均动能相同,分子的总动能不同C.内能相同D.1 g 100 ℃的水的内能小于1 g 100 ℃的水蒸气的内能E.1 g 100 ℃的水和1 g 100 ℃的水蒸气的机械能可能相等考点四实验:用油膜法估测分子的大小●注意事项1.干净:实验用具要擦洗干净.2.适量:痱子粉和油酸的用量都不可太大,否则不易成功.3.适宜:油酸酒精溶液的浓度以小于0.1%为宜.4.水平、垂直:浅盘要水平放置,以便准确地画出薄膜的形状,画线时视线应与板面垂直.5.稳定:要待油膜形状稳定后再画轮廓.6.数格数:数出正方形的个数,不足半个的舍去,多于半个的算一个.●误差分析1.纯油酸体积的计算引起误差;2.油膜形状的画线误差;3.数格子法本身是一种估算的方法,自然会带来误差.跟进训练8.用油膜法估算分子大小的实验中,首先需将纯油酸稀释成一定浓度的油酸酒精溶液,稀释的目的是_________________________________________________________________________________________________________________.实验中为了测量出一滴已知浓度的油酸酒精溶液中纯油酸的体积,可以________________________________________________________________________ ________________________________________________________________________.为得到油酸分子的直径,还需测量的物理量是________.9.[2022·枣庄模拟](1)如图1所示的四个图反映“用油膜法估测分子的大小”实验中的四个步骤,将它们按操作先后顺序排列应是________(用符号表示).(2)在该实验中,油酸酒精溶液的浓度为每1 000 mL溶液中有1 mL油酸.用注射器测得1 mL上述溶液有100滴,把2滴该溶液滴入盛水的浅盘里,画出油膜的形状如图2所示,坐标格的正方形大小为20 mm×20 mm.可以估算出油膜的面积是________ m2,2滴油酸溶液中纯油酸的体积为________ m3,由此估算出油酸分子的直径是________ m(所有结果均保留两位有效数字).(3)某同学通过测量出的数据计算分子直径时,发现计算结果比实际值偏大,可能是由于________.A.油酸未完全散开B.油酸溶液浓度低于实际值C.计算油膜面积时,将所有不足一格的方格算作一格D.求每滴溶液体积时,1 mL的溶液的滴数多记了10滴第十三章热学(选修3-3)第1讲分子动理论内能必备知识·自主排查一、1.(1)①10-10(2)①6.02×1023(3)①无规则2.(1)①不同②越高(2)①小颗粒②液体分子③无规则明显激烈(3)无规则运动越剧烈3.(1)引力斥力引力斥力(2)增大减小(3)=<>二、1.热平衡剧烈程度2.0 ℃沸点273.15 ℃3.(1)热运动(2)平均动能(3)总和4.(1)相对位置(2)②体积5.(1)温度和体积(2)做功和热传递生活情境1.(1)×(2)√(3)×(4)×(5)×(6)×(7)√(8)×教材拓展2.答案:ABC3.答案:AC关键能力·分层突破1.解析:因为铜的摩尔质量为M kg/mol,所以1 kg铜所含的原子数为,选项A正确;铜的密度为ρ kg/m3,1 m3铜的质量为ρ,1 m3铜所含有的原子数为N A,选项B错误;1摩尔铜原子的质量为M,则1个铜原子的质量为kg,选项C正确;可将铜原子看作球体模型,1摩尔铜原子的体积为V=,因此1个铜原子的体积为m3,选项D正确,E错误.答案:ACD2.解析:(1)设氙气的物质的量为n,则n=氙气分子的总数:N=N A=×6×1023≈4×1022个(2)每个分子所占的空间为V0=设分子间平均距离为a,则有V0=a3则a==m≈3×10-9 m.答案:(1)4×1022个(2)3×10-9 m3.解析:扩散现象是分子无规则热运动的反映,C正确、E错误;温度越高,分子热运动越激烈,扩散越快,A正确;气体、液体、固体的分子都在不停地进行着热运动,扩散现象在气体、液体和固体中都能发生,D正确;在扩散现象中,分子本身结构没有发生变化,不属于化学变化,B错误.答案:ACD4.解析:折线图是每隔20 s记录的粉笔末的位置的连线图,并非粉笔末的运动轨迹,A项错误;粉笔末的无规则运动反映了水分子的无规则运动,B项正确;由于布朗运动的无规则性,我们不能确定经过B点后10 s时粉笔末的具体位置,C项错误;由=,因为,t BC=t CD,所以D项正确;改变水的温度,显然能改变水分子热运动的剧烈程度,但并不能改变布朗运动的无规则性,则仅从图上不能确定记录哪一张图时的温度高,E项正确.答案:BDE5.解析:含病毒飞沫微粒的运动是由空气分子的不平衡碰撞造成的,所以是布朗运动.两个相距较远的分子间距离减小到r0的过程中,分子间的作用力表现为引力,分子力一直做正功,分子势能一直减小.答案:布朗一直减小例1解析:另一分子从距O点很远处向O点运动,在两分子间距减小到r2的过程中,分子间作用力表现为引力,故分子间作用力做正功,分子间势能减小;在两分子间距由r2减小到r1的过程中,分子间作用力仍然表现为引力,故分子间作用力做正功,分子间势能减小;在间距减小到等于r1之前,分子间势能一直减小,由于规定两分子相距无穷远时分子间势能为零,则在间距等于r1处,分子间势能小于零.答案:减小减小小于例2解析:物体的机械能和内能是两个完全不同的概念,物体的动能由物体的宏观速率决定,而物体内分子的动能由分子热运动的速率决定.分子动能不可能为零(温度不可能达到绝对零度),而物体的动能可能为零,所以A、B不正确;物体体积减小时,分子间距离减小,但分子势能可能增加,所以C正确;质量、温度、体积都相等的物体,如果是由不同物质组成,分子数不一定相同,因此,物体内能不一定相等,选项D正确;温度和质量都相同的氢气和氧气具有相同的分子平均动能,但由于分子数不相等,分子总动能不相等,分子势能也不相等,故其内能不相等,选项E正确.答案:CDE6.解析:分子力F与分子间距离r的关系是:当r<r0时F为斥力;当r=r0时F=0;当r>r0时F为引力.综上可知,当两分子由相距较远逐渐达到最近过程中分子力是先变大再变小后又变大,A项错误.分子力为引力时做正功,分子势能减小,分子力为斥力时做负功,分子势能增大,故B项正确,D项错误.因仅有分子力作用,故只有分子动能与分子势能之间发生转化,即分子势能减小时分子动能增大,分子势能增大时分子动能减小,其总和不变,C、E项均正确.答案:BCE7.解析:温度相同则它们的分子平均动能相同;又因为1 g水和1 g水蒸气的分子数相同,因而它们的分子总动能相同,A正确,B错误;当100 ℃的水变成100 ℃的水蒸气时,分子间距离变大,分子力做负功,分子势能增加,该过程吸收热量,所以1 g 100 ℃的水的内能小于1 g 100 ℃的水蒸气的内能,C错误,D正确;机械能是指物体的动能和势能的总和,故1 g 100 ℃的水和1 g 100 ℃的水蒸气的机械能可以相等,故E正确.答案:ADE8.解析:本题考查了用油膜法估算分子大小的实验内容,突出了实验的操作、分析、探究能力的考查,体现了核心素养中科学探究、科学态度要素,体现了劳动实践、科学探索的价值观.用油膜法估算分子大小,是用油膜厚度代表油酸分子的直径,所以要使油酸分子在水面上形成单分子层油膜;因为一滴溶液的体积很小,不能准确测量,故需测量较多滴的油酸酒精溶液的总体积,再除以滴数得到一滴溶液的体积,进而得到一滴溶液中纯油酸的体积;因为本题中油酸体积等于厚度乘面积,故测厚度不仅需要测量一滴溶液的体积,还需要测量单分子层油膜的面积.答案:使油酸在浅盘的水面上容易形成一块单分子层油膜把油酸酒精溶液一滴一滴地滴入小量筒中,测出1 mL油酸酒精溶液的滴数,得到一滴溶液中纯油酸的体积单分子层油膜的面积9.解析:(1)“用油膜法估测分子的大小”实验步骤为配制油酸酒精溶液→测定一滴油酸酒精溶液的体积→准备浅水盘→形成油膜→描绘油膜边缘→测量油膜面积→计算分子直径,因此操作先后顺序排列应是dacb.(2)由图示油膜可知,小方格的个数为75.油膜的面积S=75×20 mm×20 mm=30 000 mm2=0.030 m2,2滴油酸溶液含纯油酸的体积为V=2×mL=2.0×10-5 mL=2.0×10-11 m3,油酸分子的直径为d==m≈6.7×10-10 m.(3)计算油酸分子直径的公式是d=,V是纯油酸的体积,S是油膜的面积.油酸未完全散开,S偏小,故得到的分子直径d将偏大,故A正确;如果测得油酸溶液浓度低于实际值,则油酸的实际体积偏小,则直径将偏小,故B错误;计算油膜面积时,将所有不足一格的方格算作一格时,S将偏大,故得到的分子直径将偏小,故C错误;求每滴溶液体积时,1 mL的溶液的滴数多记了10滴,由V1=mL可知,纯油酸的体积将偏小,则计算得到的分子直径将偏小,故D错误.答案:(1)dacb(2)0.030 2.0×10-11 6.7×10-10(3)A。

(完整版)高中物理3-3热学知识点归纳(全面、很好)(最新整理)

(完整版)高中物理3-3热学知识点归纳(全面、很好)(最新整理)

选修3-3热学知识点归纳一、分子运动论1. 物质是由大量分子组成的(1)分子体积分子体积很小,它的直径数量级是10‒10m(2)分子质量分子质量很小,一般分子质量的数量级是10‒26kg(3)阿伏伽德罗常数(宏观世界与微观世界的桥梁)1摩尔的任何物质含有的微粒数相同,这个数的测量值:N A =6.02×1023mol ‒1设微观量为:分子体积V 0、分子直径d 、分子质量m ;宏观量为:物质体积V 、摩尔体积V 1、物质质量M 、摩尔质量μ、物质密度ρ.分子质量: m =μN A =ρV 1N A分子体积: (对气体,V 0应为气体分子平均占据的空间大小) V 0=μρN A =V 1N A分子直径:球体模型: (固体、液体一般用此模型)V d N =3A 2(34π303A 6=6=ππV N V d 立方体模型: (气体一般用此模型)(对气体,d 理解为相邻分子间的平均距离)30=V d 分子的数量.A 1A 1A A N V V N V M N V N Mn ====ρμρμ2. 分子永不停息地做无规则热运动(1)分子永不停息做无规则热运动的实验事实:扩散现象和布郎运动。

(2)布朗运动布朗运动是悬浮在液体(或气体)中的固体微粒的无规则运动。

布朗运动不是分子本身的 运动,但它间接地反映了液体(气体)分子的无规则运动。

(3)实验中画出的布朗运动路线的折线,不是微粒运动的真实轨迹。

因为图中的每一段折线,是每隔30s 时间观察到的微粒位置的连线,就是在这短短的30s 内,小颗粒的运动也是极不规则的。

(4)布朗运动产生的原因大量液体分子(或气体)永不停息地做无规则运动时,对悬浮在其中的微粒撞击作用的不平衡性是产生布朗运动的原因。

简言之:液体(或气体)分子永不停息的无规则运动是产生布朗运动的原因。

(5)影响布朗运动激烈程度的因素固体微粒越小,温度越高,固体微粒周围的液体分子运动越不规则,对微粒碰撞的不平衡性越强,布朗运动越激烈。

高中物理3-3热学知识点归纳及典型题训练

高中物理3-3热学知识点归纳及典型题训练

选修3-3 热学知识点+典型题一、分子动理论、内能和固体、液体1、分子动理论①阿伏伽德罗常数:N A=6.02×1023mol-1,是联系宏观和微观的的桥梁;分子直径数量级10-10m。

②分子热运动:分子永不停息的无规则运动(温度高,分子运动越激烈)。

③分子力和分子势能:分子间引力和斥力同时存在,都随分子间距增大而减小。

分子力F、分子势能E P与分子间距r的关系图线如图所示。

当r=r0时,分子力为零,分子势能最小但不为零。

④气体分子运动速率按统计规律分布,表现出“中间多,两头少”的规律。

例题1:下列说法准确的是()A.显微镜下观察到墨水中的小炭粒在不停的做无规则运动,这反映了小炭粒分子运动的无规则性B.气体对容器壁的压强,是由气体分子对容器壁的频繁碰撞造成的C.分子势能随着分子间距离的增大,可能先减小后增大D.不可能从单一热源吸收热量使之完全转化为有用的功而不产生其他影响E.当温度升高时,物体内每一个分子热运动的速率一定都增大变式训练1:下列选项正确的是()A.液体温度越高,悬浮颗粒越小,布朗运动越剧烈B.布朗运动是指悬浮在液体中固体颗粒的分子的无规则运动C.液体中的扩散现象是由于液体的对流形成的D.扩散现象是由物质分子无规则运动产生的E.当分子间距增大时,分子间的引力和斥力都减小变式训练2:下列说法正确的是()A.温度越高,扩散进行得越快B.扩散现象是不同物质间的一种化学反应C.布朗运动的激烈程度与温度有关,这说明分子运动的激烈程度与温度有关D.扩散现象在气体、液体和固体中都能发生E.布朗运动就是热运动例题2:分子力F、分子势能E p,与分子间距离r的关系图线如甲、乙两条曲线所示(取无穷远处分子势能E p=0)。

下列说法正确的是()A.乙图线为分子势能与分子间距离的关系图线B.当r=r 0时,分子势能为零C.随着分子间距离的增大,分子力先减小后一直增大D.分子间的斥力和引力大小都随分子间距离的增大而减小,但斥力减小得更快E.在r<r 0阶段,分子力减小时,分子势能一也定减小变式训练1:将一个分子P 固定在O 点,另一个分子Q 从图中的A点由静止释放,两分子之间的作用力与间距关系的图像如图所示,则下列说法正确的是()A.分子Q 由A 运动到C 的过程中,先加速再减速B.分子Q 在C 点时分子势能最小C.分子Q 在C 点时加速度大小为零D.分子Q 由A 点释放后运动到C 点左侧的过程中,加速度先增大后减小再增大E.该图能表示固、液、气三种状态下分子力随分子间距变化的规律变式训练2:根据分子动理论,物质分子间距离为r 0时分子所受到的引力与斥力相等,以下关于分子力和分子势能的说法正确的是()A.分子间距离小于r 0时,分子间距离减小,分子力减小B.分子间距离大于r 0时,分子间距离增大,分子力一直增大C.当分子间距离为r 0时,分子具有最大势能,距离增大或减小时势能都减小D.当分子间距离为r 0时,分子具有最小势能,距离增大或减小时势能都增大2、内能①定义:物体内所有分子动能和势能的总和。

高中物理3-3《热学》计算题专项练习题(含答案)

高中物理3-3《热学》计算题专项练习题(含答案)

热学计算题(二)1.如图所示,一根长L=100cm、一端封闭的细玻璃管开口向上竖直放置,管内用h=25cm长的水银柱封闭了一段长L1=30cm的空气柱.已知大气压强为75cmHg,玻璃管周围环境温度为27℃.求:Ⅰ.若将玻璃管缓慢倒转至开口向下,玻璃管中气柱将变成多长?Ⅱ.若使玻璃管开口水平放置,缓慢升高管内气体温度,温度最高升高到多少摄氏度时,管内水银不能溢出.2.如图所示,两端开口、粗细均匀的长直U形玻璃管内由两段水银柱封闭着长度为15cm的空气柱,气体温度为300K时,空气柱在U形管的左侧.(i)若保持气体的温度不变,从左侧开口处缓慢地注入25cm长的水银柱,管内的空气柱长为多少?(ii)为了使空气柱的长度恢复到15cm,且回到原位置,可以向U形管内再注入一些水银,并改变气体的温度,应从哪一侧注入长度为多少的水银柱?气体的温度变为多少?(大气压强P0=75cmHg,图中标注的长度单位均为cm)3.如图所示,U形管两臂粗细不等,开口向上,右端封闭的粗管横截面积是开口的细管的三倍,管中装入水银,大气压为76cmHg。

左端开口管中水银面到管口距离为11cm,且水银面比封闭管内高4cm,封闭管内空气柱长为11cm。

现在开口端用小活塞封住,并缓慢推动活塞,使两管液面相平,推动过程中两管的气体温度始终不变,试求:①粗管中气体的最终压强;②活塞推动的距离。

4.如图所示,内径粗细均匀的U形管竖直放置在温度为7℃的环境中,左侧管上端开口,并用轻质活塞封闭有长l1=14cm,的理想气体,右侧管上端封闭,管上部有长l2=24cm的理想气体,左右两管内水银面高度差h=6cm,若把该装置移至温度恒为27℃的房间中(依然竖直放置),大气压强恒为p0=76cmHg,不计活塞与管壁间的摩擦,分别求活塞再次平衡时左、右两侧管中气体的长度.5.如图所示,开口向上竖直放置的内壁光滑气缸,其侧壁是绝热的,底部导热,内有两个质量均为m的密闭活塞,活塞A导热,活塞B绝热,将缸内理想气体分成Ⅰ、Ⅱ两部分.初状态整个装置静止不动且处于平衡状态,Ⅰ、Ⅱ两部分气体的高度均为l0,温度为T0.设外界大气压强为P0保持不变,活塞横截面积为S,且mg=P0S,环境温度保持不变.求:在活塞A上逐渐添加铁砂,当铁砂质量等于2m时,两活塞在某位置重新处于平衡,活塞B下降的高度.6.如图,在固定的气缸A和B中分别用活塞封闭一定质量的理想气体,活塞面积之比为S A:S B=1:2,两活塞以穿过B的底部的刚性细杆相连,可沿水平方向无摩擦滑动.两个气缸都不漏气.初始时,A、B 中气体的体积皆为V0,温度皆为T0=300K.A中气体压强P A=1.5P0,P0是气缸外的大气压强.现对A加热,使其中气体的体积增大V0/4,,温度升到某一温度T.同时保持B中气体的温度不变.求此时A中气体压强(用P0表示结果)和温度(用热力学温标表达)7.如图所示为一简易火灾报警装置.其原理是:竖直放置的试管中装有水银,当温度升高时,水银柱上升,使电路导通,蜂鸣器发出报警的响声.27℃时,空气柱长度L1为20cm,水银上表面与导线下端的距离L2为10cm,管内水银柱的高度h为13cm,大气压强P0=75cmHg. (1)当温度达到多少摄氏度时,报警器会报警?(2)如果要使该装置在87℃时报警,则应该再往玻璃管内注入多少cm高的水银柱?8.如图所示,导热气缸A与导热气缸B均固定于地面,由刚性杆连接的导热活塞与两气缸间均无摩擦,两活塞面积S A、S B的比值4:1,两气缸都不漏气;初始状态系统处于平衡,两气缸中气体的长度皆为L,温度皆为t0=27℃,A中气体压强P A=7P0/8,P0是气缸外的大气压强;(Ⅰ)求B中气体的压强;(Ⅱ)若使环境温度缓慢升高,并且大气压保持不变,求在活塞移动位移为L/2时环境温度为多少摄氏度?9.如图,两气缸AB粗细均匀,等高且内壁光滑,其下部由体积可忽略的细管连通;A的直径为B的2倍,A上端封闭,B上端与大气连通;两气缸除A顶部导热外,其余部分均绝热.两气缸中各有一厚度可忽略的绝热轻活塞a、b,活塞下方充有氮气,活塞a上方充有氧气;当大气压为P0,外界和气缸内气体温度均为7℃且平衡时,活塞a离气缸顶的距离是气缸高度的1/4,活塞b在气缸的正中央.(ⅰ)现通过电阻丝缓慢加热氮气,当活塞b升至顶部时,求氮气的温度;(ⅱ)继续缓慢加热,使活塞a上升,当活塞a上升的距离是气缸高度的1/16时,求氧气的压强.10.A 、B 汽缸的水平长度均为20 cm 、截面积均为10 cm 2,C 是可在汽缸内无摩擦滑动的、体积不计的活塞,D 为阀门.整个装置均由导热材料制成.起初阀门关闭,A 内有压强A P =4.0×105 Pa 的氮气.B 内有压强=B P 2.0×105 Pa 的氧气.阀门打开后,活塞C 向右移动,最后达到平衡.求活塞C 移动的距离及平衡后B 中气体的压强.11.如图所示,内壁光滑长度为4l 、横截面积为S 的汽缸A 、B ,A 水平、B 竖直固定,之间由一段容积可忽略的细管相连,整个装置置于温度27℃、大气压为p 0的环境中,活塞C 、D 的质量及厚度均忽略不计.原长3l 、劲度系数03p S k l=的轻弹簧,一端连接活塞C 、另一端固定在位于汽缸A 缸口的O 点.开始活塞D 距汽缸B 的底部3l .后在D 上放一质量为0p S m g =的物体.求: (1)稳定后活塞D 下降的距离;(2)改变汽缸内气体的温度使活塞D 再回到初位置,则气体的温度应变为多少?热学计算题(二)答案解析1.解:Ⅰ.以玻璃管内封闭气体为研究对象,设玻璃管横截面积为S,初态压强为:P1=P0+h=75+25=100cmHg,V1=L1S=30S,倒转后压强为:P2=P0﹣h=75﹣25=50cmHg,V2=L2S,由玻意耳定律可得:P1L1=P2L2 ,100×30S=50×L2S,解得:L2=60cm;Ⅱ.T1=273+27=300K,当水银柱与管口相平时,管中气柱长为:L3=L﹣h=100﹣25cm=75cm,体积为:V3=L3S=75S,P3=P0﹣h=75﹣25=50cmHg,由理想气体状态方程可得:代入数据解得:T3=375K,t=102℃2.解:(ⅰ)由于气柱上面的水银柱的长度是25cm,所以右侧水银柱的液面的高度比气柱的下表面高25cm,所以右侧的水银柱的总长度是25+5=30cm,试管的下面与右侧段的水银柱的总长45cm,所以在左侧注入25cm长的水银后,设有长度为x的水银处于底部水平管中,则 50﹣x=45解得 x=5cm即5cm水银处于底部的水平管中,末态压强为75+(25+25)﹣5=120cmHg,由玻意耳定律p1V1=p2V2代入数据,解得:L2=12.5cm(ⅱ)由水银柱的平衡条件可知需要也向右侧注入25cm长的水银柱才能使空气柱回到A、B之间.这时空气柱的压强为:P3=(75+50)cmHg=125cmHg由查理定律,有: =解得T3=375K3.①88cmHg;②4.5cm①设左管横截面积为S,则右管横截面积为3S,以右管封闭气体为研究对象.初状态p1=80 cmHg,V1=11×3S=33S,两管液面相平时,Sh1=3Sh2,h1+h2=4 cm,解得h2=1 cm,此时右端封闭管内空气柱长l=10 cm,V2=10×3S=30S气体做等温变化有p1V1=p2V2即80×33S=p2×30S 解得p2=88cmHg②以左管被活塞封闭气体为研究对象p1′=76 cmHg,V1′=11S,p2=p2′=88 cmHg气体做等温变化有p1′V1′=p2′V2′解得V2′=9.5S活塞推动的距离为L=11 cm+3 cm-9.5 cm=4.5cm4.解:设管的横截面积为S,活塞再次平衡时左侧管中气体的长度为l′,左侧管做等压变化,则有:其中,T=280K,T′=300K,解得:设平衡时右侧管气体长度增加x,则由理想气体状态方程可知:其中,h=6cmHg解得:x=1cm所以活塞平衡时右侧管中气体的长度为25cm.5.解:对I气体,初状态,末状态由玻意耳定律得:所以,对 II气体,初状态,末状态由玻意耳定律得:所以,l2=l0B活塞下降的高度为: =l0;6.解:活塞平衡时,由平衡条件得:P A S A+P B S B=P0(S A+S B)①,P A′S A+P B′S B=P0(S A+S B)②,已知S B =2S A ③,B 中气体初、末态温度相等,设末态体积为V B ,由玻意耳定律得:P B ′V B =P B V 0 ④,设A 中气体末态的体积为V A ,因为两活塞移动的距离相等, 故有=⑤,对A 中气体,由理想气体状态方程得:⑥, 代入数据解得:P B =,P B ′=,P A ′=2P 0,V A =,V B =,T A ==500K ,7.①177℃②8 cm ①封闭气体做等压变化,设试管横截面积为S ,则初态:V 1=20S ,T 1=300K ,末态:V 2=30S ,由盖吕萨克定律可得:1v T =22v T ,解得T 2=450K ,所以t 2=177℃. ②设当有xcm 水银柱注入时会在87℃报警,由理想气体状态方程可得:111p v T =222p v T , 代入数据解得x=8 cm .8.解:(1)设初态汽缸B 内的压强为p B ,对两活塞及刚性杆组成的系统由平衡条件有:p A S A +p 0S B =p B S B +p 0S A …①据已知条件有:S A :S B =4:1…②联立①②有:p B =;(2)设末态汽缸A 内的压强为p A ',汽缸B 内的压强为p B ',环境温度由上升至的过程中活塞向右移动位移为x ,则对汽缸A 中的气体由理想气体状态方程得:…③对汽缸B 中的气体,由理想气体状态方程得:…④对末态两活塞及刚性杆组成的系统由平衡条件有:p A 'S A +p 0S B =p B 'S B +p 0S A …⑤联立③④⑤得:t=402℃.9.解:(ⅰ)活塞b 升至顶部的过程中,活塞a 不动,活塞a 、b 下方的氮气经历等压过程.设气缸A 的容积为V 0,氮气初态体积为V 1,温度为T 1,末态体积为V 2,温度为T 2,按题意,气缸B 的容积为V 0,则得:V 1=V 0+•V 0=V 0,①V 2=V 0+V 0=V 0,②根据盖•吕萨克定律得: =,③由①②③式和题给数据得:T 2=320K ; ④(ⅱ)活塞b 升至顶部后,由于继续缓慢加热,活塞a 开始向上移动,直至活塞上升的距离是气缸高度的时,活塞a 上方的氧气经历等温过程,设氧气初态体积为V 1′,压强为P 1′,末态体积为V 2′,压强为P 2′,由题给数据有,V 1′=V 0,P 1′=P 0,V 2′=V 0,⑤由玻意耳定律得:P 1′V 1′=P 2′V 2′,⑥由⑤⑥式得:P 2′=P 0.⑦ 10.7.6cm 3×105Pa 解析:由玻意耳定律,对A 部分气体有 S x L P LS P A )(+= ① 对B 部分气体有S x L P LS P B )(-= ②代入相关数据解得x =320=7.6cm ,P =3×105 Pa11.解:(1)开始时被封闭气体的压强为,活塞C 距气缸A 的底部为l ,被封气体的体积为4lS ,重物放在活塞D 上稳定后,被封气体的压强为:活塞C 将弹簧向左压缩了距离,则活塞C 受力平衡,有:根据玻意耳定律,得:解得:x=2l活塞D 下降的距离为:(2)升高温度过程中,气体做等压变化,活塞C 的位置不动,最终被封气体的体积为,对最初和最终状态,根据理想气体状态方程得解得:。

高中物理二轮专题复习:8热学部分(选修3-3)(新人教版)

高中物理二轮专题复习:8热学部分(选修3-3)(新人教版)

专题八 热学局部(选修3 -3)知识梳理一、分子动理论1. 微观物理量的估算问题:m M N m N A分摩==V N V V N M N m V d V d A A ======⎧⎨⎪⎩⎪分摩摩分分分ρρ固、液:球形气体:立方体1633πN n N n A =·:摩尔数()n m M VV mol mol ==(1 )分子间存在着相互作用的分子力 .分子力有如下几个特点:分子间同时存在引力和斥力;分子间的引力和斥力都随分子间的距离增大而减小 ,随分子距离的减小而增大 ,但斥力比引力变化更快 .实际表现出来的是引力和斥力的合力 .(2 )分子势能(1 )分子间由于存在相互作用而具有的 ,大小由分子间相对位置决定的能叫做分子势能 .(2 )分子势能改变与分子力做功的关系:分子力做功 ,分子势能减少;克服分子力做功 ,分子势能增加;且分子力做多少功 ,分子势能就改变多少 .分子势能与分子间距的关系 (如右图示 ):二、热力学定律1、 热力学第|一定律ΔE =Q +W2、热力学第二定律 表述:(1 )不可能使热量由低温物体传递到高温物体 ,而不引起其他变化 (按热传导的方向性表述 ) .(2 )不可能从单一热源吸收热量并把它全部用来做功 ,而不引起其他变化 (按机械能和内能转化过程的方向性表述 ) .或第二类永动机是不可能制成的 .3、热力学第三定律:热力学零度不可到达{宇宙温度下限:-273.15摄氏度 (热力学零度 )} 三、气体实验定律1、等温过程:p 1V 1 =p 2V 2 =k (玻-马定律 )2、等容过程:⎪⎪⎩⎪⎪⎨⎧==-221100t T p T p 273p tp p (查理定律 )3、等压过程: (盖·吕萨克定律 )4、理想气体状态方程:pV/T =恒量或111T V p =222T Vp 专题测试1.(5分).关于一定量的气体 ,以下表达正确的选项是 ( ) A.气体吸收的热量可以完全转化为功B.气体体积增大时 ,其内能一定减少C .气体从外界吸收热量 ,其内能一定增加D .外界对气体做功 ,气体内能可能减少2. (5分) (2021上海卷第4题).如图 ,一定量的理想气体从状态a 沿直线变化到状态b ,在此过程中 ,其压强( ) A. 逐渐增大 B.逐渐减小 C.始终不变 D.先增大后减小3.(5分) (2021上海卷第8题).某种气体在不同温度下的气体 分子速率分布曲线如下列图 ,图中()f v 表示v 处单位速率区间内的分子数百分率 ,所对应的温度分别为,,I II III T T T ,那么 ( )A I II III T T T >>B III III I T T T >>C ,II I II III T T T T >>D I II III T T T ==4.(5分).图4为某种椅子与其升降局部的结构示意图,M 、N 两筒间密闭了一定质量的气体 ,M 可沿N 的内壁上下滑动 ,设筒内气体不与外界发生热交换 ,在M 向下滑动的过程中( ) A.外界对气体做功 ,气体内能增大 B.外界对气体做功 ,气体内能减小 C.气体对外界做功 ,气体内能增大 D.气体对外界做功 ,气体内能减小5.(10分)(1)以下说法中正确的选项是________.(填选项前的字母) A .热不可能从低温物体传到高温物体B .容器中气体压强是由于大量气体分子对容器壁的频繁碰撞造成的C .液体外表存在张力是由于外表层分子间距离小于液体内局部子间距离D .蔗糖受潮后会粘在一起 ,因为没有确定的几何形状 ,所以它是非晶体(2)假设一气泡从湖底上升到湖面的过程中温度保持不变 ,对外界做了0.6 J 的功 ,那么在此过程中关于气泡中的气体(可视为理想气体) ,以下说法正确的选项是________.(填选项前的字母)A .气体分子的平均动能要减小B .气体体积要减小C .气体向外界放出的热量大于0.6 JD .气体从外界吸收的热量等于0.6 J ×104J ,气体内能减 ×105 J ,那么此过程 ( )×105 J ×105 J ×104 J ×104 J(2)封闭在贮气瓶中的某种理想气体 ,当温度升高时 ,以下说法中正确的选项是(容器的热膨胀忽略不计)________.(填选项前的字母) A .密度不变 ,压强增大 B .密度不变 ,压强减小 C .密度增大 ,压强不变D .密度减小 ,压强不变7.(1)(5分)假设以M 表示氧气的摩尔质量 ,ρ表示标准状况下氧气的密度 ,N A 表示阿伏加德 罗常数 ,那么( ) A .每个氧气分子的质量为M N AB .在标准状况下每个氧气分子的体积为MρN AC .单位质量的氧气所含氧气分子个数为N A MD .在标准状况下单位体积的氧气所含氧气分子个数为N A Mρ(2)(10分)如图3所示 ,在水平面上固定一个气缸 ,缸内由质量为m 的活塞封闭一定质量的理想气体 ,活塞与缸壁间无摩擦且无漏气 ,活塞到气缸底距离为L 0.今有一质量也为m 的重物自活塞上方h 高处自由下落到活塞上并立即以碰前速度的12与活塞一起向下运动 ,向下运动过程中活塞可到达的最||大速度为v ,求从活塞开始向下移动到到达最||大速度的过程中活塞对封闭气体做的功.(被封闭气体温度不变 ,外界大气压强为p 0)8.(15分)(1)现代科学技术的开展与材料科学、能源的开发密切相关 ,以下说法正确的选项是( )A .化石能源为清洁能源B .纳米材料的粒度在1~100 μm 之间C .能源就是能量 ,是不会减少的D .液晶既有液体的流动性 ,又有光学性质的各向异性 ×105×105J ,那么此过程中气体______(填 "吸收〞或 "放出〞×105×105J 的热量 ,那么此过程中 ,气体内能增加了________ J.(3)铁的摩尔质量M ×10-2kg /mol ,密度ρ=7.8×103 kg/m 3,阿伏加德罗常数N A ×1023mol -1,求1 cm 3铁中含有的铁原子数.(保存两位有效数字)9.(15分)二氧化碳是导致全球变暖的主要原因之一 ,人类在采取节能减排措施的同时 ,也在 研究控制温室气体的新方法 ,目前专家们正在研究二氧化碳的深海处理技术. (1)在某次实验中 ,将一定质量的二氧化碳气体封闭在一可自由压缩的导热容器中 ,将容器缓慢移到海水某深处 ,气体体积减为原来的一半 ,不计温度变化 ,那么此过程中 ( )A .封闭气体对外界做正功图3B .封闭气体向外界传递热量C .封闭气体分子的平均动能增大D .封闭气体组成的系统的熵减小(2)实验发现 ,二氧化碳气体在水深170 m 处变成液体 ,它的密度比海水大 ,靠深海的压力使它永沉海底 ,以减少排放到大气中的二氧化碳量.容器中的二氧化碳处于汽液平衡状态时的压强随温度的增大而______(选填 "增大〞、 "减小〞或 "不变〞);在二氧化碳液体外表 ,其分子间的引力________(选填 "大于〞、 "等于〞或 "小于〞)斥力.(3)实验发现 ,在水深300 m 处 ,二氧化碳将变成凝胶状态 ,当水深超过2 500 m 时 ,二氧化碳会浓缩成近似固体的硬胶体.设在某状态下二氧化碳气体的密度为ρ ,摩尔质量为M ,阿伏加德罗常数为N ,将二氧化碳分子看作直径为D 的球 ,体积为于16πD 3,那么在该状态下体积为V 的二氧化碳气体变成固体后体积为多少 ? 10. (1)(5分)关于分子间作用力的说法中正确的选项是( )A. 分子间既存在引力也存在斥力 ,分子力是它们的合力B. 分子之间距离减小时 ,引力和斥力都增大 ,且引力增大得比斥力快C. 紧压两块铅块后它们会连接在一起 ,这说明铅分子间存在引力D. 压缩气缸内气体时要用力推活塞 ,这说明气体分子间的作用力主要表现为斥力 (2) .(10 分)如图 ,绝||热气缸A 与导热气缸B 均固定于地面 ,由刚性杆连接的绝||热活塞与两气缸间均无摩擦 .两气缸内装有处于平衡状态的理想气体 ,开始时体积均为0V 、温度均为0T .缓慢加热A 中气体 ,停止加热到达稳定后 ,A 中气体压强为原来的倍 .设环境温度始终保持不变 ,求气缸A 中气体的体积A V 和温度A T .图4答案1.D 2.A 3.B 5.(1)B (2)D 6.(1)B (2)A 7.(1)AC (2)mg (L 0+12h )-m v 28.(1)D(3分) (2)放出 ×105×105(每空2分) (3)1 cm 3铁所含的铁原子数为N =ρVN A M=错误!×1022(个)(写出表达式4分 ,算对结果2分)9.(1)BD(5分) (2)增大(2分) 大于(2分) (3)二氧化碳气体的摩尔数n =ρVM(3分)变成固体后的体积V ′=nNV 球=πρVND36M (3分)10.(1)AC(2) 设初态压强为0p ,膨胀后A ,B 压强相等 01.2B p p = (1分) B 中气体始末状态温度相等00001.2(2)A p V p V V =- (3分)∴076A V V =(1分) A 局部气体满足00000 1.2Ap V p V T T =(4分 ) ∴01.4A T T = (1分。

高三物理3-3热学知识点

高三物理3-3热学知识点

高三物理3-3热学知识点热学是物理学中的重要分支,研究物质热现象及其规律。

在高三物理学习中,热学是一个重要的考点。

本文将介绍高三物理3-3热学的知识点,包括热与能、能量守恒定律、热力学第一定律、热力学第二定律等。

一、热与能热是一种能量的传递方式,是物质内部微观粒子运动的宏观表现。

热能转化通常伴随着温度的升高或降低。

热的传递方式有三种:传导、传热、辐射。

1. 传导:传导是物质内部分子间的热能传递方式。

当两个物体的温度不同时,热量从高温物体传向低温物体。

传导的速率与导热系数、温度差和传热截面积有关。

2. 传热:传热是通过物质的流动实现的热量传递方式。

常见的传热方式有对流传热、辐射传热等。

3. 辐射:辐射是通过电磁波的传播实现的热量传递方式。

辐射的强度与物体的温度相关,与物体的性质、表面形状等有关。

二、能量守恒定律能量守恒定律是研究热学时非常重要的一个定律。

根据能量守恒定律,能量在转化过程中不会凭空产生或消失,只能从一种形式转化为另一种形式,即能量守恒。

在热学中,能量转化的过程受到热量传递的影响。

根据能量守恒定律,热量转化过程中的能量变化可以通过以下公式表示:Q = ΔU + W其中,Q表示吸收或释放的热量,ΔU表示系统内能的变化,W表示对外界做功。

三、热力学第一定律热力学第一定律是热学中的重要定律,也被称为能量守恒定律。

根据热力学第一定律,一个封闭系统的内能变化等于系统吸收热量与对外界做功的代数和。

ΔU = Q - W其中,ΔU表示系统内能的变化,Q表示系统吸收或释放的热量,W表示对外界做的功。

根据热力学第一定律的公式可以看出,当系统吸收热量时,内能增加;当系统释放热量时,内能减少;当系统对外界做功时,内能减少。

四、热力学第二定律热力学第二定律是热学中的基本定律,主要描述了热现象的不可逆性。

根据热力学第二定律,热量自然地从温度高的物体传递到温度低的物体,不会反过来自发传递。

根据热力学第二定律,一个孤立系统内部的熵总是增加,永远不会减少。

高中物理3-3 热学

高中物理3-3 热学

作者介绍
不久元军大举南下,驻军于皋亭山,文天祥以 资政殿学士身份出使元军议和,被扣,后在北 解途中逃脱,经海路转至福州,拥立端宗,图 谋恢复,转战东南,终兵败被俘。次年送至大 都(北京)宁死不屈,从容就义。时年仅46岁, 遗有《文山先生全集》二十七卷。
检测预习 1、“序”是一种怎样的文体? 2、本课《指南录后序》中的“后序”是我们刚刚说的列于书后的 “跋”、“后序”吗?
目标导航,自主阅读 1.学习文中常见的文言实词和虚词,掌握特殊的文言句式。 2.理解本文在叙述中兼用议论抒情的表达方式和作用。 3.感受文天祥“不指南方不肯休”的爱国精神,体会其爱国
情怀。
整体把握 《指南录后序》以自述抒怀的形式,历数自己出使北营被扣及伺 机脱逃的九死一生的艰险历程。气宇轩昂,慷慨悲歌,气断声吞, 扣人心弦。表达了作者坚贞不渝的英雄气概和舍生取义以死报国 的爱国情怀。
答案
123456
5.什么是液体的表面张力?产生表面张力的原因是什么?表面张力的特点 和影响因素有哪些? 答案 液体表面具有收缩的趋势,这是因为在液体内部,分子引力和斥力 可认为相等,而在表面层里分子间距较大(分子间距离大于r0)、分子比较 稀疏,分子间的相互作用力表现为引力的缘故.使液体表面各部分间相互 吸引的力叫做液体的表面张力. 表面张力使液体表面有收缩到最小的趋势,表面张力的方向和液面相切; 表面张力的大小除了跟边界线的长度有关外,还跟液体的种类、温度有关.
基础知识再重温
选修3-3 热学
考点要求重温
考点1 分子动理论的基本观点和实验依据(Ⅰ) 考点2 阿伏加德罗常数(Ⅰ) 考点3 气体分子运动速率的统计分布(Ⅰ) 考点4 温度是分子平均动能的标志、内能(Ⅰ) 考点5 固体的微观结构、晶体和非晶体(Ⅰ) 考点6 液晶的微观结构(Ⅰ) 考点7 液体的表面张力现象(Ⅰ)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(二)被封闭的气体的压强
在应用气体定律和气态方程解题时,往往要选择被封闭的气体为研究对象,正确求解气体的压强是解题的关键.被封闭的气体压强的计算一般有以下几种方法.
1、利用连通器原理.连通器原理告诉我们:在同种液体中同一水平面上的各点压强都相等.当管内液面低于管外液面时(如图所示),设大气压强为p0,管内液体与管外液体便构成了一个连通器,在同一水平面上分别取两点A、B,故p A=p B,由于p A=p o+ρ液gh,而且p气=p B,故有p气=P O-ρ液gh.
当管内液面高于管外液面时(如图所示),分析方法与上述相同,容易得到:p气=P O-ρ液gh.
例1、如图所示,U型管左端有一段被封闭的气体A,右端也有一段被封闭的同样的气体B,它们均被水银所封闭,其余尺寸如图所示,单位为cm,设大气压为p0.求:被封闭的气体A和B的压强.
2、利用静力平衡原理
如果气体被液体或其它物体所封闭.且处于平衡状态.可以利用力的平衡原理求解.
要注意(l)在进行压强的加减运算时,一定要注意压强单位的统一;
(2)静力平衡法只适用于热学系统处于静止或匀速运动状态封闭气体压强的计算.
例2、汽缸截面积为S,质量为m的梯形活塞上面是水平的,下面倾角为α,如图所示。

当活塞上放质量为M的重物而处于静止.设外部大气压为P0,若活塞与缸壁之间无摩擦.求汽缸中气体的压强?
1. 一端封闭一端开口,内径均匀的直玻璃管注入一段60mm的水银柱,当管水平放置达到平衡时,闭端空气柱长140mm,开口端空气柱长140mm,如图7-16所示。

若将管轻轻倒转后再竖直插入水银槽内,
达到平衡时,管中封闭端空气柱A长133mm,如图7-17所示(设大气压强为1.01325×105Pa(760mmHg),温度保持不变),求槽中水银进入管中的长度H=?
2.如图(a)所示,长为L=75cm的粗细均匀、一端开口一端封闭的玻璃管,内有长度为d=25cm 的汞柱.当开口向上竖直放置、管内空气温度为27ºC时,封闭端内空气柱的长度为36cm.外界大气压为75cmHg不变.(1) 现以玻璃管的封闭端为轴,使它做顺时针转动,当此玻璃管转到水平方向时,如图(b)所示,要使管内空气柱的长度变为45cm,管内空气的温度应变为多少摄氏度? (2)让气体的温度恢复到27ºC,继续以玻璃管封闭端为轴顺时针缓缓地转动玻璃管,当开口向下,玻璃管与水平面的夹角θ=30º,停止转动如图(C)所示。

此时再升高温度,要使管内汞柱下表面恰好移动到与管口齐平,则温度又应变为多少摄氏度?
3.如图所示,一竖直放置的、长为L的细管下端封闭,上端与大气(视为理想气体)相通,初始时管内气体温度为。

现用一段水银柱从管口开始注入管内将气柱封闭,该过程中气体温度保持不变且没有气体漏出,平衡后管内上下两部分气柱长度比为l∶3。

若将管内下部气体温度降至,在保持温度不变的条件下将管倒置,平衡后水银柱下端与管下端刚好平齐(没有
水银漏出)。

已知,大气压强,重力加速度为g。

求水银柱的长度h和水银的密度
4..如图所示,一定质量的理想气体被水银柱封闭在竖直玻璃管内,气柱长度为h。

现继续向管内缓
慢地添加部分水银,水银添加完时,气柱长度变为。

再取相同质量的水银缓慢地添加在管内。

外界大气压强
保持不变。

①求第二次水银添加完时气柱的长度。

②若第二次水银添加完时气体温度为T0,现使气体温度缓慢升高,求气柱长度恢复到原来长度h时气体的温
度。

7.(2012·上海青浦区高三期末)一端开口的U形管内由水银柱封有一段空气柱,大气压强为76cmHg,当气体温度为27℃时空气柱长为8cm,开口端水银面比封闭端水银面低2cm, 如下图所示,求
(1)当气体温度上升到多少℃时,空气柱长为10cm?
(2)若保持温度为27℃不变,在开口端加入多长的水银柱能使空气柱长为6cm?
6.(2012·上海金山区高二期末)如图所示,固定的绝热气缸内有一质量为m的“T”型绝热活塞(体积可忽略),距气缸底部h0处连接一U形管(管内气体的体积忽略不计)。

初始时,封闭气体温度为T0,活塞距离气缸底部为1.5h0,两边水银柱存在高度差。

已知水银的密度为ρ,大气压强为p0,气缸横截面积为s,活塞竖直部分长为1.2h0,重力加速度为g。

试问:
(1)初始时,水银柱两液面高度差多大? (2)缓慢降低气体温度,两水银面相平时温度是多少?。

相关文档
最新文档